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Abstract 
 

Purpose. 1,2,3-Trichloropropane (TCP) is a persistent groundwater pollutant and a 

suspected human carcinogen. It is also is an industrial chemical waste that has been 

formed in large amounts during epichlorohydrin manufacture. In view of the spread 

of TCP via groundwater and its toxicity, there is a need for cheap and efficient 

technologies for the cleanup of TCP-contaminated sites. In-situ or on-site 

bioremediation of TCP is an option if biodegradation can be achieved and 

stimulated. This paper presents an overview of methods for the remediation of 

TCP-contaminated water with an emphasis on the possibilities of biodegradation.  

 

Conclusions. Although TCP is a xenobiotic chlorinated compound of high 

chemical stability, a number of abiotic and biotic conversions have been 

demonstrated, including abiotic oxidative conversion in the presence of a strong 

oxidant and reductive conversion by zero-valent zinc. Biotransformations that have 

been observed include reductive dechlorination, monooxygenase-mediated 

cometabolism, and enzymatic hydrolysis. No natural organisms are known that can 

use TCP as a carbon source for growth under aerobic conditions, but anaerobically 

TCP may serve as electron acceptor. The application of biodegradation is hindered 

by low degradation rates and incomplete mineralization. Protein engineering and 

genetic modification can be used to obtain microorganisms with enhanced TCP 

degradation potential. 

 

Introduction 
 

1,2,3-Trichloropropane (TCP, CAS No. 96-18-4) is a non-natural, biodegradation-

recalcitrant and toxic compound that occurs in groundwater and soil, mainly as a 

result of improper disposal of TCP-contaminated chemical waste (1). TCP is 

formed as a by-product during the synthesis of various chemicals, most notably in 

the classical synthetic route to epichlorohydrin and was present in commercial 

preparations of the soil fumigant 1,3-dichloropropene (also known under the trade 

name D-D), which is now abandoned (62). TCP is also applied as an intermediate 

in the production of various other chemicals. For example, fluorination of TCP is 

used to produce the cross-linking agent hexafluoropropylene, which is applied for 

making elastomers. TCP is also used in the chemical industry as a solvent for oils 

and fats, waxes, and resins. Other past uses of this compound include in paint 

thinner and varnish remover, and as a degreasing agent. The Toxic Substances 

Control Act inventory of  the US Environmental Protection Agency (US EPA) 

estimated the usage of TCP in 2002 as 1-5·10
6
 kg  (65). The Federal Facilities 

Restoration and Reuse Office (FFRRO) of the US EPA has listed TCP as an 

Emerging Contaminant in December 2010 for which physical, toxicological and 

environmental data were summarized in a fact sheet (17) and a review of the 

toxicology of TCP was written (66). The European Union Chemicals Agency 

(ECHA) has listed 1,2,3-trichloropropane as a chemical of very high concern 

because of its carcinogenic, mutagenic and reproductive effects (13).  

Contamination of soil and groundwater by TCP has occurred both as point 

source pollution, due to improper disposal of wastes or accidental spillage, and as 

diffuse contamination, due to its presence in the nematicide 1,3-dichloropropene. 

TCP has been detected in hundreds of surface water and drinking water sources, 

e.g. in the United States, at levels of 0.1-100 μg/l (1, 2, 6, 46). In a Dutch 
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monitoring program, TCP was detected in surface water of the Rhine, Meuse, 

Westerscheldt, and in the Northern Delta Area (39). Groundwater samples from the 

Netherlands were found to contain TCP as well as 1,2-dichloropropane due to the 

application of impure nematicides, especially in potato fields (33). TCP was also 

detected in the river Nitra, Slovakia (35) and along with a range of other volatile 

organohalogens in water at an industrial site in the Osaka area, Japan (75). These 

examples illustrate that TCP is a very widespread contaminant. 

TCP is a suspected human carcinogen based on evidence of tumor formation 

in studies with rats and mice (23, 66). Because of its toxicity, the presence of TCP 

in groundwater can pose a serious risk to human health and ecosystem quality, and 

the National Toxicology Program (44, 45) of the US Department of Health has 

listed TCP as reasonably anticipated to be a human carcinogen (67). Toxicological 

properties of TCP are included in the ECHA Registered Substances Database (14) 

and the NIH Hazardous Substances Data Bank (22). 

Remediation of TCP-contaminated sites is difficult due to its persistent 

nature and its physiochemical properties, which cause spreading with flowing 

groundwater (57). Biodegradation has been observed both under anaerobic and 

aerobic conditions, but appears to be slow and mostly due to cometabolism, with 

little evidence for TCP supporting growth or adaptation of bacteria. Based on 

laboratory studies there are indications that TCP may serve as an electron acceptor 

under anaerobic conditions. In this review, we discuss abiotic and biotic 

transformations of TCP, as well as the possibilities of enzymatic dehalogenation of 

TCP and genetic construction of TCP-degrading bacteria.  

 

TCP as an environmental chemical. 1,2,3-Trichloropropane (TCP), also known 

as allyl trichloride, trichlorohydrin or glycerol trichlorohydrin, is a clear and 

colorless liquid, with a strong odor similar to that of chloroform or 

trichloroethylene.  It is soluble in ethanol, ether, and chloroform, and only slightly 

soluble in water. Like other chlorinated hydrocarbons, it reacts with some metals, 

strong basic agents, and oxidizing agents. It is sensitive to prolonged exposure to 

light and heat. TCP is flammable, and when heated to decomposition, it yields toxic 

fumes of hydrogen chloride gas (67). 

 

Metabolism and toxicity of TCP. The toxicological properties of TCP were 

recently reviewed by the US EPA (2009) and earlier by the WHO (2003) (66, 

73).The major pathways for metabolism of 1,2,3-trichloropropane in higher 

organism starts with oxidative transformation by microsomal cytochrome P-450 or 

substitution by glutathione transferase (38, 72). P450-monooxygenase-mediated 

conversion leads to formation of 2,3-dichloropropanal and 1,3-dichloroacetone, 

which can be reduced to 2,3-dichloropropanol and 1,3-dichloropropanol, 

presumably by dehydrogenase activity (Fig. 1). 2,3-Dichloropropanal also 

decomposes non-enzymatically to 2-chloroacrolein.  Glutathione conjugation of 

TCP may produce glutathione adducts that can undergo intermolecular substitution 

to form a highly reactive episulfonium ion, but glutathione can also prevent 

alkylation of proteins by the electrophilic monooxygenase products 2,3-

dichloropropanal and 1,3-dichloroacetone (72).  
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Fig. 1. Metabolic pathways of 1,2,3-trichloropropane (32, 38, 73, 66). Reactions: A, Initial 

monooxygenase (P450)-mediated conversion and dehydrogenation leading to dichloro-

metabolites; B, glutathione conjugation can occur on TCP and oxidized derivatives; C, 

glutathione adducts can be converted to highly toxic species, such as episulfonium ions; D, 

the final products include DNA adducts, as well as glutathione derivatives that are secreted. 

  

 Metabolism of glutathione conjugates formed from TCP and its oxidation 

products also gives rise to various glutathione, cysteine and N-acetylcysteine 

conjugates. Thus, TCP itself is not mutagenic, but the products (such as 2-

chloroacrolein and episulfonium ions) are strong alkylating agents, explaining the 

toxicity and mutagenicity of TCP. Using radiolabeled TCP, formation of DNA 

adducts after exposure to TCP has indeed been demonstrated in mice (32). 
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Animal studies have shown that long-term exposure to TCP may cause 

kidney failure, reduced body weight and tumors (1, 14, 23, 66). The guidelines for 

carcinogen risk assessment and IRAC monographs reported that TCP is expected to 

be carcinogenic to humans, based on animal studies, as well as resemblance of 

metabolism between human and rodent microsomes, in vitro mutagenicity, and the 

ability to form DNA adducts (23, 66, 74). 

 

Environmental fate of TCP. Properties that determine the behavior of TCP in the 

environment include: its high density (1.39 g/ml); the modest water solubility (1.75 

g/L at 20°C; for trichloroethylene the value is 1.4 g/l at 20°C); the low octanol-

water partitioning coefficient (log Kow=2.0-2.5, quite similar to the value for 

trichloroethylene); and the low Henry coefficient (H=3.2-3.4·10
-4

 atm-m
3
/mol at 

25°C). The high density causes TCP, when dumped as a liquid on soil or in ponds, 

to sink to lower levels, e.g. into groundwater or into accessible subsurface 

structures like rock fissures. The low octanol-water partitioning coefficient implies 

substantial distribution via groundwater flows, even when organic carbon is 

present. Furthermore, TCP has a tendency to evaporate from surface water to air 

(but less than trichloroethylene, H=10•10-4 atm-m
3
/mol), where, on exposure to 

sunlight, it is subjected to photo-degradation by reaction with hydroxyl radicals 

with a half-life of about 15 days. 

The volatility of TCP, the possibility of washout by precipitation, and its 

resistance to degradation in water, may result in cycling of TCP between 

environmental compartments (1, 66). Bioaccumulation and biomagnification are 

expected to be of minor importance in view of the modest lipophilicity of TCP.  

TCP can stay in groundwater for a prolonged period of time, in part due to 

its low organic carbon partitioning coefficient, but especially because rates of 

abiotic and biotic degradation in groundwater are low. Abiotic hydrolysis of TCP 

under basic and neutral abiotic conditions has been studied at different 

temperatures and pH values and in the presence of different ions such as sulfide 

and carbonate (59). TCP appears to be highly stable under a variety of conditions, 

with an expected half-life of hydrolysis under environmental conditions (25ºC, 

pH=7) in the order of hundreds of years (48). At high temperatures 2,3-dichloro-1-

propene was detected as a product that could be converted to 2-chloro-2-propen-1-

ol (Fig. 2). Other non-stimulated abiotic reactions in water under environmental 

conditions have not been characterized.  



Chapter 1 

 

 14 

Cl

Cl

Cl

Cl

Cl

OCl

O

Cl +

+

OH
O

Cl

Cl

+

+ +

Cl

reductive
Fe(0), Zn(0)

TCP
oxidative

H2O2 + Fe(0)

oxidative

H2O2 + Fe(II), Fe(III)

CO2 + H2O   (+HCl)

permanganate
persulfate
ozone +UV

Cl

Cl
very slow

(+HCl)

(+HCl)

(+HCl)

(+HCl)

A

B

C

D

E

Cl

OH

 

Fig. 2. Abiotic transformations of TCP under non-stimulated conditions (A), photochemical 

conversion  or catalytic conversion in the presence of radical-generating oxidants (B), 

conversion in the presence of Fenton reagent (C, D), and conversion under stimulated 

anaerobic (reductive) conditions (E). Non-catalyzed conversion under neutral conditions is 

very slow. See text for details. 

 

Remediation of TCP-contaminated sites: abiotic transformations. The physical 

and chemical properties of TCP obviously strongly influence possibilities for 

remediation of soil and groundwater (58). On-site methods for treating TCP-

polluted groundwater include pump and treat and vacuum extraction. The latter is 

used for different volatile organohalogens, but it is not a very favorable approach 

because of the low Henry’s law constant of TCP (7). Extracted water can be treated 

by absorption, using activated carbon, by chemical oxidation or by vacuum 

extraction. For example, full-scale remediation of TCP-contaminated groundwater 

is under investigation at the Tyson superfund site near Philadelphia, Pennsylvania, 

using vacuum extraction of soil, extraction of groundwater, and treatment of 

extracted water and vapor with activated carbon for the removal of TCP (52).  
Chemical oxidation is performed with oxidizing agents such as ozone, 

permanganate or hydrogen peroxide. They cause decomposition of TCP into carbon 

dioxide, water and chloride ions (12) (Fig. 2). With a mild oxidant such as 

permanganate, transformation of TCP is slow whereas in the presence of strong 

oxidants such as hydroxyl radicals, generated photochemically, and sulphate 

radicals, catalytically generated from persulfate, transformation is much faster (7). 

Chemical TCP oxidation may also be initiated by the Fenton reagent (H2O2 

with an iron catalyst). Khan et al. (2009) studied the effect of iron type (Fe
+2

, Fe
+3

 

and Fe
0
) on the removal of TCP by H2O2, and found that Fe

2+
 was most effective in 

reducing TCP and increasing its biodegradability (26). Degradation products were 

1,3-dichloroacetone and 2,3-dichloro-1-propene if Fe
2+

 and Fe
3+

 were used, and 

isopropanol and propionaldehyde if Fe
0
 was used, confirming extensive oxidative 

conversion. Such oxidative transformation studies have been done in batch 

reactors. Chemical oxidation can also be used for in-situ treatment of TCP 

contamination. In case TCP is present in the form of a dense non-aqueous-phase 

liquid (DNAPL), oxidants can be introduced into the subsurface to achieve 

contaminant oxidation.  
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Chlorinated solvents such as trichloroethene, carbon tetrachloride and TCP 

may also be removed by abiotic reduction with zero-valent iron. Thus, distribution 

of TCP via flowing groundwater can be prevented by using a zero-valent iron (Fe
0
) 

barrier. The predominant removal mechanisms are sorption and reductive abiotic 

transformation. Klausen et al. (2003) investigated the effects of carbonate, silica, 

chloride and organic matter on the removal of various organohalides by granular 

iron using column studies (27). The results indicated that differences in 

groundwater chemistry have a strong effect on the activity and longevity of the 

granular iron, which will influence the design of reactive barriers. Compounds 

enhancing metal corrosion (carbonate, chloride) may improve reactivity, whereas 

compounds such as FeCO3 and Na2SiO3 can reduce the activity, especially upon 

prolonged treatment, through deactivation of the metal surface. Propane, propylene, 

and trace amounts of 1-chloro-2-propene were detected as TCP transformation 

products (Fig. 2), indicating a role for reductive dechlorination and elimination of 

HCl in the removal of TCP. 

Reductive transformation of TCP was also found with zero-valent zinc, 

which exhibited a reactivity that was more than an order of magnitude higher than 

that of iron (58, 59). Groundwater components that influenced zinc surface 

properties through corrosion or formation of an inactive layer of ZnO or Zn(OH)2 

had a large influence on the removal kinetics. No degradation products other than 

propene were detected, suggesting that dechlorination is extensive.  

 
Anaerobic biodegradation of TCP. Few studies have been done aimed at 

establishing the possibilities for biodegradation and bioremediation of TCP. 

Growth-supporting biodegradation of halogenated compounds is generally based 

on one of the following processes: 1) chemotrophy with an oxidizable electron 

donor (hydrogen, lactate) and use of the halogenated compounds as a physiological 

electron acceptor (anaerobic conditions);  2) use of the halogenated compound as a 

carbon and energy source with an external electron acceptor (oxygen, nitrate); 3) 

fermentative metabolism, in which the halogenated compound serves both as 

electron donor and (indirectly) as electron acceptor. Biotransformation processes 

not linked to growth may also be important. Such cometabolic transformations are 

due to the broad substrate spectrum of many microbial enzymes, the general 

reactivity of cofactors, or the formation of reactive intermediates in the catalytic 

cycle of some enzymes. Examples are reductive dechlorination by cobalamin 

cofactors of anaerobic bacteria, and oxidative transformation by broad-specificity 

metal-containing monooxygenases of aerobic bacteria. Obviously, a biodegradation 

process that stimulates growth of the active organisms is preferable in a 

bioremediation situation since it allows adaptation at the population level, leading 

to an increase of the amount of active biomass during the treatment process. 
Reductive biotic transformation of TCP has been demonstrated under 

anaerobic conditions (19, 36, 53) (Fig. 3) and sequential aerobic-anaerobic 

conditions (37). Reductive dechlorination of both TCP and chloroethanes was 

observed with an enrichment culture that dechlorinated 1,2-dichloropropane, and 

propene and 1,2-dichloropropane were detected as products (36). Experiments in 

which various halogenated aliphatic compounds were incubated with anaerobic 

sediments indicated zero-order conversion kinetics for TCP and dichloromethane, 

whereas most other organohalogens were transformed according to first order 

kinetics (53).  
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Recently, two strains (BL-DC-8 and BL-DC-9) of an anaerobic Gram-

negative bacterium were isolated from contaminated groundwater at a Superfund 

site located near Baton Rouge, and characterized as belonging to the new species 

Dehalogenimonas lykanthroporepellens (40, 76). These bacteria utilize TCP as an 

electron acceptor under anaerobic conditions but not chlorinated alkenes. Hydrogen 

was the electron donor. For both strains, allyl chloride was detected as the main 

initial dechlorination product (Fig. 3). However, allyl chloride is unstable and is 

hydrolyzed abiotically to allyl alcohol, whereas in the presence of cysteine or 

sulphide, allyl chloride was transformed to allyl mercaptan, S-allyl 

mercaptocysteine and allyl sulphides. The mechanism of the reductive 

dechlorination reaction is not completely clear, as the enzymes responsible for TCP 

dechlorination have not yet been isolated and characterized. In freshwater 

environments, transformation of TCP into allyl chloride followed by the formation 

of allyl alcohol could be toxic to fish and aquatic life (16).  
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Fig. 3. Anaerobic biotransformations of TCP. Both reductive dehalogenation (RD) and 

dihaloelimination reactions (DHE) are observed. Formation of allylchloride may occur by 

dihaloelimination (76) or possibly via 1,3-dichloropropene (broken arrows). 

 

 Bioremediation of contaminated groundwater through in-situ reductive 

dechlorination can be performed by injecting a compound such as hydrogen, lactic 

acid or another oxidizable organic substrate that is used by microorganisms to 

produce hydrogen, which induces reductive dechlorination and serves as electron 

donor (64). At a site in California 99.9% reduction of TCP contamination has been 

found over a period of 1,000 days. However, biotic dechlorination through 

hydrogen-releasing compounds may be applicable only at low concentrations, such 

as less than 1 mg TCP/l (7).  

 

Aerobic cometabolic conversion. Various halogenated aliphatic hydrocarbons can 

be transformed in a cometabolic manner by broad-specificity monooxygenase 

involved in hydrocarbon degradation, such as methane monooxygenase (19, 47). 

The soluble methane monooxygenase produced by cells of the methanotrophic 

bacterium Methylosinus trichosporium OB3b can convert TCP, giving rise to 

dichloropropanols after subsequent reduction (5, Fig. 4). However, TCP is a poor 

substrate for the enzyme as compared to other pollutants such as trichloroethylene. 
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The conversions are analogous to those catalyzed by cytochrome P450 in 

mammalian systems (Fig. 1). The major drawback of such cometabolic conversions 

is product toxicity. In case of TCP conversion by methane monooxygenase, the 

insertion of oxygen preferentially occurs on the terminal carbon atom, which yields 

chlorinated carbonyl compounds that may undergo elimination to produce 2-

chloroacrolein, a very reactive compound.  
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Fig. 4. Conversions of 1,2,3-trichloropropane initiated by methane monooxygenase 

(MMO) produced by M. trichosporium OB3b cells. Reduction to alcohols is caused 

by alcohol dehydrogenase activity (DH). 

 

 The aerobic conversion of TCP reported by Leahy et al. (2003) using a 

mixture of hydrocarbon-degrading bacteria is probably based on similar reactions, 

but the products were not identified (34). Aromatic hydrocarbon-degrading bacteria 

produce monooxygenases that are capable of chlorinated hydrocarbon degradation 

through similar oxidative reactions as the methane monooxygenase of 

methanotrophs. For example, the toluene monooxygenase of a pseudomonas was 

described to convert chlorinated hydrocarbons (43). 

 

Recalcitrant behavior of TCP towards growth-supporting aerobic 

biotransformation. Microbial transformation of TCP to CO2, H2O and HCl by 

oxidative metabolism with oxygen as an electron acceptor and by reduction to 

lesser chlorinated propanes and HCl is thermodynamically possible (11). However, 

no aerobic organisms, enrichment cultures, or bioreactors have been described that 

demonstrate the use of TCP as a growth-supporting oxidizable substrate.  Various 

attempts to enrich TCP-degrading microorganisms from environmental samples, 

including from sites with a long history of TCP or epichlorohydrin pollution, or to 

obtain TCP degradation in continuous-flow columns inoculated with samples from 

contaminated sites, have failed (3). This indicates that TCP is indeed a very 

recalcitrant compound and nature has not yet evolved aerobic organism that are 

adapted to it. The fact that the thermodynamic calculations indicate that aerobic 

oxidation of TCP is energetically favorable suggests biochemical hurdles instead of 

another fundamental reason as the cause of the apparent recalcitrance of TCP. 
An example of such a biochemical hurdle is toxicity of intermediates. In 

case of halogenated aliphatic compounds, several reactive intermediates occur 
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along the metabolic pathways, requiring optimization of fluxes to prevent 

accumulation of such reactive intermediates to toxic levels (70). It also may be due 

to formation of dead-end side products that are toxic. Formation of such reactive 

intermediates will act against evolutionary selection of more efficient initial 

enzymes for TCP metabolism. The recalcitrant nature of a non-natural compound 

might also be due to presence of structural elements that cannot be recognized and 

converted by microbial enzymes, which evolved for the conversion of natural 

compounds (56).  

When inspecting the possible pathways for productive aerobic metabolism 

of TCP, hydrolysis of a carbon-halogen bond as the first step seems the most 

attractive reaction, because it does not involve reactive intermediates and leads to 

1,3-dichloro-2-propanol 2,3-dichloro-1-propanol. These compounds are known to 

be biodegradable and pure cultures capable of using dichloropropanols for growth 

under aerobic conditions are known (15, 21, 68, 78). 

Hydrolysis of carbon-halogen bonds in chlorinated compounds is carried out 

by a diversity of microbial enzymes called dehalogenases. These belong to 

different phylogenetic classes, of which the haloalkane dehalogenases that are 

members of the α/β-hydrolase fold superfamily of proteins are the best 

characterized (24, 28). Another prominent class is the HAD-superfamily of 

haloacid dehalogenases and phosphatases, with dehalogenases that act on 2-

chloroacetate and 2-chloropropionate. Haloalkane dehalogenases are known to 

convert compounds such as 1,2-dichloroethane, 1,2-dibromoethane, 1,3-

dichloropropane, 1,2-dichloropropene, and (slowly) hexachlorocyclohexane (25, 

28, 55). The conversion of TCP by a haloalkane dehalogenase was first described 

by Yokota et al. (1986) using an enzyme from Corynebacterium strain m15-3 (77), 

but the activity was very low (kcat/Km= 36 s
-1

M
-1

) (4). Sequence analysis and 

structural studies identified the protein (which is commonly called DhaA) as a 

member of the α/β-hydrolase fold family. Another dehalogenase that has low 

activity with TCP is LinB, and enzyme originally discovered in bacteria that 

degrade hexachlorocyclohexane (41). 

The first DhaA gene sequence was described by Kulakova et al. (1997) in 

the 1-chlorobutane degrader Rhodococcus rhodochrous NCIMB13064 (29). 

Poelarends et al. (2000) found that the same gene is geographically widely 

distributed by using PCR analysis and dehalogenase gene sequencing of different 

bacteria enriched with other haloalkanes, including 1,3-dichloropropene (54). 

Comparison of the genetic organization in different organisms revealed that the 

haloalkane dehalogenase gene likely originates from Rhodococcus strains, where it 

is present in an operon together with an alcohol dehydrogenase and an aldehyde 

dehydrogenase gene, as well as a regulatory gene that influences gene expression. 

The latter may act as a repressor in the absence of a halocarbon substrate (like 1-

chlorobutane). When the dehalogenase gene regions from a 1,2-dibromoethane 

degrading Mycobacterium and a 1,3-dichloropropene dehalogenating Pseudomonas 

were examined, it appeared that the repressor gene was absent or inactivated by 

mutations to allow production of the enzyme in the presence of these new, non-

inducing substrates (54, 55). In the absence of a functional regulatory gene, 

inactivation of the repressor causing constitutive expression of a dehalogenase 

appears a way to allow genetic adaptation and biodegradation.  

Lack of microbial growth on TCP and lack of adaptation in column or 

enrichment experiments is most likely due to the very rare occurrence of a 

haloalkane dehalogenase gene with a suitable activity in a host organism that is 
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capable of dichloropropanol conversion. Mutations in the haloalkane dehalogenase 

that would lead to an enhanced substrate range that includes TCP would be unlikely 

to propagate in an organism that does not grow on the hydrolysis product and 

thereby provide a selective growth advantage. When DNA sequence databases, 

both of completed bacterial genomes and environmental sequences, are searched 

for genes that encode the DhaA-type haloalkane dehalogenase, or the haloalcohol 

dehalogenases known to be involved in 2,3-dichloro-1-propanol metabolism 

(except in organisms isolated on these compounds), no hits are found. These genes 

seem very rare, and can only be recovered by appropriate enrichment culture 

techniques starting with polluted environmental samples. 

The evolution of bacteria that have the capacity to degrade TCP aerobically 

is thus restricted by the selectivity of haloalkane dehalogenases, and the rare 

occurrence of bacteria growing on dichloropropanols (Fig. 5). Consequently, 

attempts were made to obtain organisms capable of TCP detoxification by a 

combination of protein engineering and heterologous gene expression (3, 4). 

 

Engineering enzymes and organisms for TCP conversion. Different reports on 

the engineering of haloalkane dehalogenase variants with enhanced activity 

towards TCP have been published. By using error prone PCR and DNA shuffling, 

Bosma et al. (2002) generated a DhaA mutant (e.g. a variant called DhaAM2 with 

the mutations  C176Y and Y273F ) that had three times higher catalytic efficiency 

(kcat/Km= 280 s
-1

M
-1

) than wild-type enzyme (3). Similarly, Gray et al. (2001) 

performed in vitro evolution studies which also yielded a mutant with a substitution 

at position 176 and a mutation close to the N-terminus that showed higher activity 

with TCP as compared to wild-type, and further mutations enhanced the stability of 

the enzymes (18). 
The strategy to construct a recombinant TCP-degrading strain was based on 

the use of an improved haloalkane dehalogenase into an organism that grows on the 

product of hydrolytic dehalogenation, which is 2,3-dichloro-1-propanol. For this, a 

host was used that could degrade both 2,3-dichloropropanol and 1,3-

dichloropropanol: Agrobacterium radiobacter AD1 (68). First, the wild-type 

haloalkane dehalogenase gene for DhaA from Rhodococcus was placed  under 

control of a strong constitutive promoter and cloned on a broad host range plasmid 

(pLAFR3) that was introduced into strain AD1 (4). Growth of the resulting strain 

was not significant, but after incubation for 25 days 0.7 mM of TCP was converted 

and a small increase of biomass was observed. The strain did utilize 1,2,3-

tribromopropane and 1,2-dibromo-3-chloropropane as sole carbon source, showing 

for the first time growth on a trihalopropane.  

Growth on TCP could be obtained when a DhaA-type dehalogenase with 

improved activity for TCP was used. The dhaAM2 gene for the improved 

dehalogenase was constitutively expressed in strain AD1. The resulting strain, A. 

radiobacter AD1(pTB3-M2), was able to utilize TCP as carbon and energy source 

under aerobic conditions. After 10 days, 3.6 mM TCP was converted by a culture 

initially inoculated to an OD450 of 0.14. Due to production of hydrochloric acid, the 

pH dropped to 6.0 (3).  
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Fig. 5. Comparison of catabolic pathways for 1,2-dichloroethane (DCE) and TCP. DCE 

bioremediation has been established at full scale, using bacterial cultures that use DCE as 

carbon source for growth according to the pathway that is shown (A). It starts with 

hydrolytic dehalogenation catalyzed by a haloalkane dehalogenase (DhaA). TCP is much 

more recalcitrant, but  productive catabolic pathways can be envisaged (B). The upper routes 

could proceed from 2-chloroacrylic acid either via dehydrogenation (DH) (30) or 

dechlorination (Dhl) (42). The lower route is thought to proceed in the strain constructed by 

Bosma et al. (2002) in A. radiobacter AD1 expressing a mutants haloalkane dehalogenase 

(DhaAM2) and involves dehalogenases (Hhe) and epoxide hydrolase (EH). 

 

The construction of a recombinant strain using an improved haloalkane 

dehalogenase that was expressed under a strong constitutive promoter in a host that 

degrades a dichloropropanol, is an important step towards obtaining an organism 

that is suitable for TCP bioremediation under aerobic conditions. However, the 

system has still limitations and drawbacks (3): 1) although the initial dehalogenase 

is significantly improved for TCP conversion (ca. 5-fold as compared to wild-type) 

the activity of DhaAM2 is still too low to rapidly transform TCP. Consequently, the 

estimated doubling time of the constructed strain was 90 h, which, for comparison, 

is much slower than the ca. 10 h measured for the 1,2-dichloroethane-degrader 

Xanthobacter autotrophicus strain that is used for full-scale groundwater 

bioremediation; 2) degradation of TCP was incomplete due to the enantioselective 

conversion of  only the (R)-2,3-dichloropropanol by the host A. radiobacter AD1. 

The DhaAM2 dehalogenase produced a racemic mixture of (R)- and (S)-2,3-

dichloropropanol from TCP;  3) the modified dehalogenase gene for DhaAM2 was 

introduced into strain AD1 using the cloning vector pLAFR3, which is a 

transmissible plasmid. Such a plasmid may be modified or lost under stress 

conditions, or it may be transferred to other bacteria; 4) application of specialized 

bacteria in bioremediation operations will likely make use of open systems, such as 

an immobilized-cells bioreactor from which organisms may detach and end up in 

effluent water. This may lead to spread of resistance genes (in this case 

tetracycline) if the engineered organism contains additional antibiotic resistance 

markers. To remedy these limitations, further improvements are under 

investigation. 

 

Prospects 
 

The catabolic potential of naturally occurring organisms towards organic 

compounds is the result of long evolution processes, whereas the time in which 

organisms have been tempted to evolve new enzymes, pathways and regulatory 

mechanisms that allow conversion of xenobiotic industrial chemicals is quite short. 
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The industrial synthesis of compounds such as trichloropropane only started in the 

first half of the 20
th

 century. Nevertheless, the presence of these synthetic 

compounds in the biosphere has already triggered the evolution of new metabolic 

activities, as illustrated by various examples (24, 25, 50).  

An important example of bacteria capable of TCP degradation are the 

strictly anaerobic strains BL-DC-8 and BL-DC-9 of D. lykanthropropepellens, 

isolated from contaminated groundwater in the USA (Yan et al. 2009). The net 

dihaloelimination reaction catalyzed by these organisms implies transfer of 

electrons to TCP, with chloride release. This suggests the possibility of reductive 

dehalogenation coupled to electron transfer from hydrogen or another electron 

donor to TCP (dehalorespiration (60). Since this process could possibly stimulate 

growth, as indicated by an increase in cell numbers (76) genetic- or population-

level adaptation of cultures to TCP under anaerobic conditions can be envisaged. 

This may yield faster growing cultures than those currently described (maximum 

specific growth rate 0.15-0.17 day
-1

). It would also be highly interesting to identify 

the genes, proteins and cofactors involved in anaerobic conversion of TCP to allyl 

chloride and to establish their possible association with energy metabolism. The 

biochemical basis of dihaloelimination reactions is currently not well understood, 

although they may be important for different chlorinated substrates (10, 60). For in 

situ bioremediation, anaerobic transformation may be more attractive than aerobic 

processes, due to the difficulty of homogeneous oxygen supply and its preferred 

use for other oxidative processes if TCP is a low-level contaminant.  

Anaerobic degradation of TCP was described to produce next to allyl 

chloride also small amounts of further conjugation products (diallyl sulfide, allyl 

mercaptan), probably due to abiotic reactions with sulfide (76). The chemically 

labile carbon-halogen bonds in allyl chloride, as well as its sensitivity to cleavage 

by hydrolytic dehalogenases, suggest that more rapid biodegradation of allyl 

chloride with reduced formation of sulfur conjugates can be achieved when adapted 

mixed cultures are used. Thus, further studies on the anaerobic metabolism of TCP 

and allyl chloride, in combination with appropriate enrichment and adaptation 

strategies, may well lead to more rapid anaerobic degradation as compared to what 

is currently possible.   

Regarding aerobic degradation of TCP, genetic engineering can contribute 

to the acquisition of new bioremediation organisms, as illustrated by Bosma et al. 

(2002). To further enhance the biodegradation of TCP, use of a better haloalkane 

dehalogenase is desirable. By using rational design and directed evolution, the 

activity of DhaA against TCP was recently improved by Pavlova et al. (2010). 

Tunnel residues leading to the active site of DhaA were selected as target spots for 

mutagenesis based on the notion that substrate binding and/or product release may 

limit the rate of catalysis. The best variants that were obtained carried three new 

mutations as compared to variant DhaAM2, and had 36-times higher activity (kcat) 

than the natural enzyme towards TCP (Table 1). In the degradation pathway of 1,2-

dichloroethane (DCE)  by X. autotrophicus GJ10, the first step is catalyzed by 

DhlA, which is a phylogenetically related haloalkane dehalogenase. Since this 

organism was successfully used for groundwater cleanup at full scale (61), it is 

interesting to compare the catalytic rates of the initial haloalkane dehalogenases 

(Table 1).  The differences in Table 1 are important since kinetic properties and 

expression levels of the dehalogenases have a major impact on the kinetic 

properties of chloroalkane degradation (substrate affinity, growth rate) by the host 

organism (69). Even though the activity of DhaA31 is significantly improved by 
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directed evolution, the kcat and kcat/Km values of DhaA31 for TCP are still lower 

than the corresponding values of DhlA for DCE (Table 1). Thus, an engineered 

organism expressing the evolved DhaA31 will still have a lower affinity for TCP 

than strain GJ10 for DCE.  It is well possible that further variants of haloalkane 

dehalogenases that convert 1,2,3-trichloropropane even better can be obtained. 

Strategies for laboratory evolution of new enzyme activities are still improving, and 

recently we were able to obtain complementary 1,2,3-trichloropropane 

dehalogenating mutants that produce almost enantiopure (R)- or (S)-2,3-dichloro-1-

propanol. Although dehalogenase enantioselectivity may be unimportant for 

groundwater and soil bioremediation, it holds great promise for converting TCP 

waste to economically valuable chiral building blocks for use in the fine chemicals 

and pharmaceutical industries (71). 

Improved conversion of 2,3-dichloropropanol by a better host is under 

investigation with new isolates that were obtained from a site contaminated with 

epichlorohydrin and chloropropanols due to leakage of waste from epichlorohydrin 

manufacture. This organism, a strain of Pseudomonas putida, uses a pathway for 

2,3-dichloropropanol degradation that is different from the route detected in 

Agrobacterium strains (21, 68) and lacks enantioselectivity. However, none of the 

current dichloropropanol degraders has been selected on the basis of its potential to 

form a biofilm on a solid support under groundwater flow conditions, and in 

competition with other bacteria. Furthermore, substrate supply will likely be low, 

which also may impose physiological requirements on the host organism.  

 

Table 1. Kinetic parameters of haloalkane dehalogenase variants with TCP and 

1,2-dichloroethane (DCE). DhaA and variants thereof indicate the Rhodococcus 

enzyme that was subjected to directed evolution for enhanced TCP conversion. 

DhlA indicated the X. autotrophicus dehalogenase that was applied in a whole-cell 

cleanup process for 1,2- dichloroethane removal. 

b Margin of error not given 

 

The use of plasmid-based systems, as in the A. radiobacter AD1(pTB3-M2) 

recombinant (3) is undesirable for the construction of bioremediation organisms, 

especially when in situ remediation is targeted (8, 63). A recombinant organism 

applied in situ should be capable of establishing itself an environment where the 

conditions cannot be controlled (9). This may cause stress, leading to plasmid loss 

or lysis, as well as to spread of recombinant DNA. The presence of antibiotic-

resistance based selection markers and the use of transmissible plasmids can be 

avoided by employing chromosomal integration, for which efficient transposon-

based systems were developed. For example, a modified Tn5 transposon system 

can be used to integrate a foreign gene into the chromosome, leading to stable 

Variant Substrate kcat (s
-1

) Km (mM ) kcat /Km 

( M
-1

.s
-1

) 

Ref 

DhaA wild-type TCP 0.035 ± 0.002 0.98 ± 0.17 36 3 

DhaAM2 TCP 0.28
a
 1.0

a
 280 3 

DhaA27 TCP 1.02 ± 0.031 1.09 ± 0.10 930 51 

DhaA31          TCP 1.26 ± 0.031 1.2 ± 0.15 1060 51 

DhlA wild-type DCE 3.3 ± 0.5 0.53 ± 0.2 6200 31 
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integration (8). Such cloning vectors have been used successfully to construct 

strains for environmental applications (49).  

If an efficient pathway can be assembled or evolved in the laboratory, in a 

robust host organism that can maintain itself under practical conditions, the 

prospects of successful application of such a genetically engineered organism for 

bioremediation are good. The limited success that has been achieved so far in this 

area is mainly due to the fact that few recombinant organisms have been engineered 

to degrade compounds which are really recalcitrant and where the poor 

degradability is due to biochemical factors instead of low solubility, limiting 

oxygen supply, poor bioavailability etc. On the other hand, evolution of 

dehalogenases also occurs in natural environments (24), and it is well possible that 

at some day, due to continued evolutionary pressure, TCP becomes a degradable 

compound and that TCP-degrading organisms can be obtained by classical 

enrichment. 

 

Conclusions 
 

The toxicity and environmental behavior of TCP has stimulated research into 

techniques for removal of TCP from polluted sites. However, cleanup of TCP-

contaminated water and soil is difficult due to its physiochemical properties and 

persistent nature. Biodegradation could be an attractive approach if suitable 

cultures become available. 

Both aerobic and anaerobic processes have been investigated, but further 

work is needed to obtain cultures and processes with sufficient activity for testing 

under practical conditions and scale-up. Until then, water treatment can be done by 

chemical methods such as oxidative degradation using a strong oxidant and a 

catalyst or UV light to generate radicals. Reductive dechlorination by zero-valent 

iron and especially zinc are also suitable options, also for in situ application as 

barriers to prevent spreading via groundwater flow. Soil venting, stripping and 

activated carbon absorption may be used for removing TCP contaminants from soil 

and water. For in situ treatment, reductive dechlorination may be the best option, 

especially if it can be coupled to growth-supporting dehaloelimination. 

Recent developments in molecular biology and protein engineering have led 

to the construction of genetically engineered strains that allow slow but complete 

biodegradation of TCP under aerobic conditions. If these strains can be further 

evolved to exhibit degradation rates that compare favorably or are similar to those 

of 1,2-dichloroethane degradation by  X. autotrophicus GJ10, which is used at full 

scale for groundwater cleanup (61), it is likely that a full-scale TCP bioremediation 

is feasible. The physico-chemical properties of the two compounds are very similar. 

The construction of such strains is dependent on dehalogenase with high activity, 

robust host strains that resist uncontrollable conditions, and the possibility to obtain 

growth-supporting metabolic pathway that completely mineralizes TCP. 

 

Outline of the thesis 
 

A recombinant strain of Agrobacterium radiobacter was reported earlier to degrade 

1,2,3-trichloropropane (TCP) and use it as sole carbon source for growth. However, 

this system has several drawbacks: 1) slow growth on TCP and incomplete 

degradation; 2) instability of the dehalogenase gene that is encoded on a plasmid; 

3) the presence of an antibiotic resistance marker; 4) incapability of the organisms 
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to establish it and to degrade TCP in a continuous flow bioreactor. The aim of the 

work presented in this thesis is to construct and characterize a better TCP degrading 

strain with the following characteristics: 1) fast degradation of TCP through use of 

a better initial dehalogenase and a non-enantioselective host; 2) stable 

chromosomal integration of the recombinant dehalogenase gene, avoiding the use 

of a plasmid-based expression system; 3) absence of antibiotic resistance markers.  

In addition, demonstrating the removal of TCP from water by a genetically 

engineered strain in a packed-bed bioreactor is an important goal. For the 

construction of such a genetically modified strain, we required an improved 

dehalogenase with better activity against TCP and a better DCP-degrading 

organism. In this work, we used the improved dehalogenase variants DhaA27 and 

DhaA31 obtained by Pavlova et al. through structure-based directed evolution. 

Furthermore, an improved host, Pseudomonas putida MC4, was isolated in our 

laboratory from polluted soil as a bacterium able to degrade 2,3-dichloropropanol.  

 Chapter 1 gives an overview of the toxicity, environmental properties, and 

degradation of TCP. It is described that different transformations are known, but 

biodegradation under aerobic conditions through growth-supporting processes is 

unknown for TCP. Furthermore, TCP is recognized by regulatory agencies as an 

emerging contaminant, and a number of important toxicological and transformation 

studies have been carried out recently. 

 Chapter 2 describes the isolation and characterization of the Pseudomonas 

putida strain that is able to degrade DCP under aerobic conditions. TCP serves as a 

carbon source and electron donor for oxidative metabolism. A novel alcohol 

dehydrogenase (DppA) is described that belongs to the class of quinohemoproteins 

but also exhibits dehalogenase activity. This type of dehalogenating enzyme has 

not been reported before.  

 In Chapter 3, an improved haloalkane dehalogenase variant (DhaA31) is 

integrated into the chromosome of the DCP-degrading strain MC4 using a Tn5-

derived transposition system. The accompanying antibiotic resistance gene is 

subsequently removed from the chromosome. The MC4-derived strains constructed 

by this way were indeed able to completely degrade TCP, using it as sole carbon 

source.  

 Chapter 4 reports the unusual localization behavior of the recombinant 

haloalkane dehalogenase (DhaA31) in E. coli and P. putida MC4. During the 

construction of the MC4-derivative, we noticed that the improved dehalogenase 

variant (DhaA31) is transported to the periplasm although it does not contain any 

known signal peptide and was expected to be a cytoplasmic protein. Moreover, 

DhaA31 was used as a fusion partner for the transport of two unrelated cytoplasmic 

proteins to the periplasm.  

 Chapter 5 presents the application of the new genetically engineered TCP-

degrading strains to clean up TCP-contaminated water. Cells are immobilized in a 

packed bed reactor, and for the first time continuous removal of TCP under aerobic 

conditions is achieved. The degradation efficiency is investigated at various TCP 

concentrations and residence times. 

 In Chapter 6 the results are briefly summarized and conclusions are given. 

The possibilities and limitations of groundwater cleanup with genetically 

engineered bacteria are discussed, including steps to be taken to apply the systems 

explored in this thesis. 
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Abstract 

A Pseudomonas putida strain (MC4) that can utilize 2,3-dichloro-1-propanol 

(DCP) and several aliphatic haloacids and haloalcohols as sole carbon and energy 

source for growth was isolated from contaminated soil. Degradation of DCP was 

found to start with oxidation and concomitant dehalogenation catalyzed by a 72 

kDa monomeric protein (DppA) that was isolated from cell lysate. The dppA gene 

was cloned from a cosmid library and appeared to encode a protein equipped with a 

signal peptide and possessing high similarity to quinohemoprotein alcohol 

dehydrogenases, particularly ADH IIB and ADH IIG from Pseudomonas putida 

HK. This novel dehalogenating dehydrogenase has a broad substrate range, 

encompassing a number of non-halogenated alcohols and haloalcohols. DppA 

exhibited a kcat of 17 s
-1

 with DCP as substrate. 
1
H-NMR experiments indicated that 

DCP oxidation by DppA yielded 2-chloroacrolein, which was subsequently 

oxidized by the same enzyme to 2-chloroacrylic acid. 

 

Introduction 
 

Dichloropropanols are widely used in the chemical industry, particularly as 

intermediates for epichlorohydrin production.  The classical epichlorohydrin 

manufacturing process proceeds via hydrochlorination of allylchloride, which 

yields both 2,3-dichloro-1-propanol and 1,3-dichloro-2-propanol (32). Because of 

the increasing availability of glycerol as a side product from biodiesel synthesis, 

this classical process is being replaced by the use of glycerol as a renewable 

feedstock for epichlorohydrin manufacture, again via chlorination to the same 

dichloropropanols or via 1-chloro-2,3-propanediol (6). Epichlorohydrin itself as 

well as the production intermediates 2,3-dichloropropanol (DCP) and 1,3-

dichloropropanol are mutagenic, genotoxic, and carcinogenic, and therefore their 

release and possibility of human exposure are of  significant concern (40). DCP 

also occurs as a contaminant in cellulose and starch hydrolysates, soy sauce and 

baked foods (29).  

Microorganisms that metabolize dichloropropanols are of interest in view of 

their role in the removal of these compounds from waste streams and contaminated 

environments (17), from food and pulp products as well as carbohydrate 

hydrolysates (60), and because dichloropropanols occur as intermediates in a 

catabolic pathway for degradation of the emerging priority contaminant 1,2,3-

trichloropropane (8). Of the dichloropropanols, 2,3-dichloro-1-propanol is 

chemically more stable and more difficult to degrade than 1,3-dichloropropanol 

(17). Furthermore, microorganisms converting dichloropropanols can be used in the 

preparation of enantiopure building blocks for the pharmaceutical industry (29, 32). 

Several bacterial strains are known to grow on dichloropropanols (25), such as 

Pseudomonas sp. strain OS-K-29 (32), Alcaligenes sp. strain DS-K-S38 (31), 

Mycobacterium sp. strain GP1 (42) Agrobacterium sp. strain NHG3 (17, 23) and 

Arthrobacter sp. strain AD2 (57). 

 During the microbial conversion of vicinal haloalcohols, dehalogenation is 

usually the first step and this reaction can be catalyzed by haloalcohol 

dehalogenases (27). These enzymes, also called halohydrin dehalogenases, are 

composed of 2-4 subunits of molecular mass 28-35 kDa and are phylogenetically 

related to the short-chain dehydrogenase-reductase superfamily (SDR proteins) 

(55), even though they do not possess a nicotinamide cofactor binding site. They 
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catalyze the intramolecular displacement of a halogen by the vicinal hydroxyl 

group yielding an epoxide, a halide ion and a proton (58). At least six different 

halohydrin dehalogenases have been found so far: two enzymes from 

Corynebacterium sp. strain N-1074 (HheA and HheB) (62), and homologs in 

Arthrobacter sp. strain AD2 (HheBAD2) (58), Agrobacterium sp. strain NHG3 

(DehB) (23), Arthrobacter erithii H10a (DehA) (5), and Agrobacterium 

radiobacter strain AD1 (HheC) (57). Structures are known and the catalytic 

mechanism is well understood (14, 15, 24). The halohydrin dehalogenases have a 

preference for substrates with the halogen group on a terminal (primary) carbon 

atom, which can be explained by analysis of X-ray structures (14, 24). However, 

important compounds such as 2-chloro-1-propanol and DCP are not easily 

converted. The potential importance of DCP as an intermediate in the degradation 

of 1,2,3-trichloropropane prompted us to search for new ways of DCP metabolism 

(9).  

A well-established mechanism for the conversion of alcohols is oxidative 

conversion by alcohol dehydrogenases (ADHs). Many ADHs are NAD- or NADP-

dependent enzymes (36). Oxidation of alcohols by oxidases which generate 

hydrogen peroxide is also possible. A special class of alcohol dehydrogenases is 

formed by the periplasmic quinoprotein ADHs, which contain a quinoid cofactor 

such as pyrroloquinoline quinone (PQQ), and Ca
2+

. A quinoprotein methanol 

dehydrogenase has been found to be responsible for 2-chloroethanol oxidation in 

the 1,2-dichloroethane catabolic pathway (28). PQQ-dependent ADHs have been 

discovered in a wide variety of bacteria such as Acetobacter, Gluconobacter, 

Pseudomonas and Comamonas strains (1, 2, 4, 22, 50). Some of these enzymes 

contain heme as a secondary prosthetic group and are known as quinohemoproteins 

(4). The periplasmic quinohemoproteins transfer electrons to the membrane-bound 

bacterial respiratory chain (4, 36).  

In this work, we show that such a quinohemoprotein alcohol dehydrogenase 

may act as DCP dehalogenase. We started with the isolation of a DCP-degrading 

organism from a site (Botlek area, the Netherlands) polluted with epichlorohydrin-

production waste. We report the properties of this new DCP-utilizing bacterium, 

analyze the gene encoding the quinohemoprotein alcohol dehydrogenase and 

propose a pathway for DCP metabolism. 

 

Materials and methods 
 

Chemicals, reagents and enzymes. All chemicals were obtained from Alfa Aesar, 

Sigma-Aldrich, and Acros Organics. Oxidase test discs were obtained from Fluka. 

Plasmid DNA was isolated with Qiagen plasmid isolation kit. Enzymes used for 

cloning were either from Roche or New England Biolabs. The PCR master mix for 

screening was purchased from Promega. PCR primers were obtained from Sigma-

Genosys. 

 

Isolation and characterization of strain MC4. The organism used in this work, 

Pseudomonas putida strain MC4, was isolated from contaminated soil by 

enrichment cultivation with DCP as a sole carbon and energy source. Its growth 

spectrum with different halogenated and non-halogenated compounds was 

determined by replica plating on minimal media (MMY) agar plates supplemented 

with the carbon source of choice. The organism will be deposited at DSMZ [to be 

completed and strain number to be added if accepted or with minor revision]. 
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 The 16S rRNA DNA was amplified from the genomic DNA of strain 

MC4 by PCR with the universal primers 27F and 1492R (35). The final PCR 

mixture (20 l) was composed of 50 ng genomic DNA, 1x Pfx50 buffer, 0.25 M 

of each dNTP (Invitrogen), 0.1% (w/v) bovine serum albumin, and 0.25 M 

forward and reverse primers. After initial denaturation for 11 min at 94
o
C, the 

sample was maintained at 80
o
C and 0.5 U of Pfx50 DNA polymerase (Invitrogen) 

was added. The PCR mixture was then subjected to 25 cycles of 94
o
C for 1 min, 

55
o
C for 1 min, and 68

o
C for 1 min, followed by a final extension step at 68

o
C for 

10 min. Amplification products were purified (Qiaquick PCR purification kit, 

Qiagen) and cloned into the pZero-2 vector (Invitrogen). Purified plasmids were 

extracted from 5 ml overnight cultures and the inserts were sequenced. The 

nucleotide sequence of the partial 16S rRNA genes was deposited with GenBank 

under accession number JF825523. 

 

Growth and enzyme purification. Strain MC4 was grown in a 2.5 l fermenter in 

MMY medium containing 5 mM of DCP as the sole carbon source. The inoculum 

was prepared by growing strain MC4 overnight in LB at 30
o
C. After batch 

cultivation, cells were collected by centrifugation and washed in MMY medium. 

This was added to the batch culture to an initial OD600 of 0.05. The OD600 and 

chloride release were monitored with regular intervals. The pH of the growing 

culture was maintained at 7.0 with 2 M NaOH and the temperature maintained at 

30
o
C. At an OD600 of 0.45, more substrate was added to a total input of 10 mM. At 

OD600 of 0.7, the cells were collected, centrifuged, and washed with 10 mM Tris-

SO4, pH 8.0. The cell pellet was resuspended in 5 volumes of 10 mM Tris-SO4, pH 

8.0, and stored at -80
o
C until further use. Five batches obtained in this manner were 

combined and sonicated with a Vibra Cell sonifier (Sonics & Materials), for 20 min 

with 10 s pulse and 30 s cooling intervals. The sonicated lysate was centrifuged at 

15,000 rpm for 20 min to remove cell debris. The supernatant was again 

centrifuged at 40,000 rpm for 2 h to separate the membrane fraction and the cell-

free extract. 

The cell-free extract was subjected to ammonium sulfate fractionation. 

Fractions of 55%, 60% and 65% precipitation were pooled together and desalted 

with a desalting column (EconoPac 10DG, BioRad Laboratories). The pooled 

ammonium sulfate fractions were applied to a 60 ml DEAE-Sepharose column (GE 

Healthcare) pre-equilibrated with 10 mM Tris-SO4, pH 8.0. A salt gradient of 1 M 

NaCl in 10 mM Tris-SO4, pH 8.0, was used to elute the proteins and 5 ml fractions 

were collected and checked for activity on DCP. Active fractions were pooled, 

concentrated with an Amicon filter (Millipore YM30) and the buffer was 

exchanged to 10 mM phosphate buffer, pH 8.0. The concentrated fraction was 

further purified on a ceramic HAP column pre-equilibrated with 10 mM potassium 

phosphate buffer, pH 8.0. The enzyme was eluted with a gradient of 0.01-0.5 M 

potassium phosphate buffer, pH 8.0, concentrated, and the buffer was exchanged to 

10 mM Tris-SO4, pH 8.0. Fractions of high purity were polled and stored for 

further work. 

 

Enzyme characterization. For molecular weight determination of native enzyme, 

purified dehydrogenase (DppA) was analyzed on a gel filtration column (Superdex 

200) calibrated with the following molecular weight markers: catalase (182 kDa), 

aldolase (158 kDa), ovalbumin (43 kDa), chymotrypsin (25 kDa) and ribonuclease 

(13.7 kDa). The purity and molecular weight of the protein was determined by 
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SDS- PAGE (12%) analysis. Heme staining of the SDS-PAGE gels was done by 

the method of Francis and Becker (18). 

To determine heme c concentrations, we measured difference spectra of 

reduced and oxidized pyridine hemochrome according to a published protocol (54). 

The absorption coefficient of pyridine hemochrome in the 550 nm – 535 nm 

difference spectrum is 26.5 mM
-1

·cm
-1

. Protein containing oxidized pyridine 

hemochrome was prepared by adding 20% (v/v) pyridine, 0.2 M NaOH and 3 mM 

potassium ferricyanide (final concentrations) to a 1 ml enzyme sample containing 

0.5 mg of protein. The enzyme solution was then reduced by adding 2 mg sodium 

dithionite and the absorbance was recorded. 

 

Enzyme assays. All enzyme assays were performed at 25
o
C. The 

dehydrogenase/dehalogenase (DppA) activity towards DCP in cell free extract was 

measured by following the reduction of the electron acceptor DCPIP (2,6-dichloro-

phenolindophenol) with PMS (phenazine methosulfate) as an intermediate electron 

carrier. The reaction mixture (1 ml) contained 50 mM potassium phosphate, pH 

7.4, 35 M 2,6-DCPIP, 5 mM DCP and cell-free extract. The reaction was started 

by addition of 1.6 mM PMS and the absorbance was monitored at 600 nm.  The 

absorption coefficient of DCPIP at 600 nm is 21.0 mM
-1

·cm
-1

 (19).  

For routine measurements, the activity of the dehydrogenase/dehalogenase 

enzyme was measured by following the reduction of potassium ferricyanide 

(K3[Fe(CN)6]) at 420 nm in a 1 ml reaction mixture consisting of 50 mM Tris-SO4, 

pH 8.0, 5 mM DCP and 1 mM potassium ferricyanide. The extinction coefficient of 

ferricyanide at 420 nm is 1 mM
-1

·cm
-1 

(25). One unit of enzyme activity was 

defined as the amount of enzyme catalyzing the reduction of 1 mol of potassium 

ferricyanide per min under the conditions described above.  

The level of heme c was used to calculate the concentration of DCP 

dehalogenase (DppA) as it directly reflects the active enzyme present in the 

solution. The kinetic constants were obtained by fitting the initial rates measured at 

varying substrate concentrations to the Michaelis-Menten equation.  

 

DCP conversion and product identification. For measuring DCP conversion, 

chloride production, and product formation, a 50 ml reaction mixture was prepared 

containing 5 mM DCP as substrate, 10 mM potassium ferricyanide (K3[Fe(CN)6]) 

as artificial electron acceptor, and a suitable amount of enzyme in 50 mM 

potassium phosphate buffer, pH 8.0. At several times, a 3 ml sample was 

withdrawn and the reaction was stopped by adding 10 l of 5 M phosphoric acid. 

Samples were extracted with diethyl ether (1 ml) containing mesitylene (0.2 ml/L) 

as internal standard. The separated diethyl ether layer was analyzed on a gas 

chromatograph containing a HP1 column (30 x 0.25 mm; 0.25 m) according to the 

following method: 50°C for 5 min, temperature increase from 50°C to 200°C in 20 

min. The carrier gas was helium. 

For chloride measurements, the remaining aqueous layers from diethyl 

ether extractions were analyzed on an ion chromatograph (DX 120; Dionex, 

Sunnyvale, CA, USA) equipped with an Alltech A-2 anion column (100 x 4.6 mm; 

7 m) and an Alltech guard column (50 x 4 mm). A mixture of NaHCO3 and 

Na2CO3 (3 mM each), pH 10, in deionized water was used as eluent at a flow rate 

of 1.0 ml/min. 

For identification of the expected aldehyde product of the dehydrogenase 

reaction, 1 ml of the reaction mixture was derivatized by adding dinitrophenyl 
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hydrazine to 5 mM at pH 3.5 (3). Acetaldehyde and propanal were used to 

standardize the derivatization procedure. The derivatized products were separated 

on an LC-MS system (LCQ Fleet ion trap MS, Thermo Scientific, USA) equipped 

with a C-18 Lichrosorb (Agilent technologies, Santa Clara, USA) reverse-phase 

column (150 x 3 mm ID; 5 m), an electrospray ionization (ESI) ion source, and a 

photo-diode array detector set at 365 nm. The flow rate was 0.2 ml/min and the 

sample (10 l) were analyzed as follows: 3 min at 30% acetonitrile in water, linear 

gradient to 80% acetonitrile in water in 20 min, 80% acetonitrile for 2 min and re-

equilibration with 30% acetonitrile in water in 10 min. The analysis was carried out 

at negative ion mode with the following settings:  source voltage, 5.3 kV; capillary 

voltage, -1 V; capillary temperature, 300°C; tube lens voltage, -39.98 V. The data 

were analyzed by Xcalibur software 2.0.  

To determine the position of chlorine in the reaction product, we studied 

the conversion of DCP using NMR spectroscopy by recording 1D proton NMR 

spectra at 25°C on a Varian Unity Plus 500 MHz spectrometer. The NMR tube (1 

ml) contained 5 mM DCP, 20 mM potassium ferricyanide, 100 mM potassium 

phosphate buffer, pH 8.0 and 20 l of enzyme solution, all in D2O. The reaction 

was started by adding the enzyme, followed by gentle mixing and recording of 1D 
1
H NMR spectra for 24 h. Each experiment was performed with 176 scans per 

transient, an evolution time of 2 s, and an interscan delay of 3 s, giving rise to a net 

acquisition time of ~15 min per spectrum.  

 

N-terminal sequencing and primer design. The purified DppA protein was 

subjected to N-terminal sequencing by automated Edman degradation 

(Eurosequence B.V., Groningen). The resulting sequence was used in a BLAST 

search at NCBI database (http://blast.ncbi.nlm.nih.gov/) to identify homologous 

sequences. The primers prF1 (forward 5' CAA GTC GAC CAG GCG GCA ATC 

ATC GC 3') and prR1 (reverse 5'ACA TAG AAG AAG CCG TTT TTG GGC GC 

3'), which are based on the N-terminus of the protein and a conserved region of the 

homologous quinohemoprotein alcohol dehydrogenases, were used for PCR 

amplification. The amplified DNA was cloned in vector pZero-2 and sequenced. 

Next, three specific primers based on the amplified sequence were designed, prF2 

(forward 5' AGC CAA TGG CTC AGC CAT GGC CGC ACC TAC 3'), prR2 

(reverse 5' TCT CCA GGG TCG CCA GGG TAA TCT GCT GGG 3') and prR3 (5' 

CGT CCA GGG TGC CAA TGA AGA CCT TGC CGT 3'), and used for screening 

the gene libraries described below. 

 

Cloning and sequencing of the dichloropropanol dehalogenase gene region. 

General procedures for cloning and DNA isolation and manipulation were 

performed according to the published protocols (44). Total genomic DNA was 

isolated and the DNA pellet was resuspended in 1 ml of TE buffer, pH 7.4, and 

incubated with 100 g/ml RNase A to remove RNA for one h at 37
o
C before 

storing at -20
o
C for further experiments. 

 The genomic DNA of strain MC4 strain was partially digested with Sau3A 

to yield fragments of an average size of 15-30 kb. Fragments of appropriate size 

were cloned into pLAFR3 and packaged in vitro with Packagene Lambda DNA 

Packaging system (Promega) (46). E. coli VCS257 cells were transduced with the 

packaged mixture and colonies were selected on LB plates containing 12.5 g/ml 

tetracycline. Next, colonies of the transduced E. coli cells were arrayed in 

microtiter plates containing 100 l of LB medium and incubated for 24 h. After 
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growth, glycerol (20 l) was added to the wells and the plates were stored at -80
o
C 

until further use. Working cultures were prepared by replicating to LB+tetracycline 

(25 g/ml) agar plates or to microtiter plates containing 100 l of the same 

medium. 

 A PCR-based method (39) was used for screening the gene library. Cells 

from microtiter plate wells were grown on agar plates, collected and suspended in 

25 ml LB medium. An aliquot of 5 ml from such a pool was used for plasmid 

extraction followed by PCR to check for the presence of the dppA gene. Each DNA 

pool that showed amplification was correlated to its respective microtiter plate, 

which was further screened by columns and rows. The identified positive clones 

were grown in LB+tetracycline and stored as glycerol stocks at -80
o
C. 

 EcoRI and HindIII were used to generate separate sub-libraries in pZero-2. 

Ligation mixtures were transformed into competent E. coli TOP10 cells 

(Invitrogen) and selected with X-gal and kanamycin on LB plates. White colonies 

were selected, arrayed into microtiter plates and retested by PCR as mentioned 

above. This yielded a positive EcoRI subclone with a 2.5 kb insert that was 

sequenced and found to contain an incomplete sequence of the target gene. From a 

second sublibrary generated with HindIII and screened in same way, a further part 

of the dppA gene was sequenced. The complete gene sequence, including the 

putative ribosome binding site and promoter sequence, was assembled and 

analyzed by Clone Manager software. The sequence was further scanned for 

similarities using online BLAST tools at NCBI database 

(http://blast.ncbi.nlm.nih.gov/). 

 The nucleotide sequence of the DCP dehydrogenase/dehalogenase gene 

fragment was deposited at GenBank under accession number JN162364. 

 

Heterologous expression of DppA in E. coli. The deduced amino acid sequence 

of DppA was analyzed for possible subcellular localization and N-terminal 

cleavage sites by PSORTb v.2.0 (20) and SignalP V3.0 (7). Based on the predicted 

peptide cleavage site, a 114 bp forward primer with an NdeI site (3' ACA CAG 

GAA ACA G CATATG AA ACA AAG CAC TAT TGC ACT GGC ACT CTT 

ACC GTT ACT GTT TAC CCC TGT GAC AAA AGC CCA GGT CGA CCA 

GGC CGC CAT CAT TGC CAG CAA GCA 5') was designed to replace the 24 

amino acid N-terminal sequence of DppA with the 21 amino acid N-terminus of E. 

coli alkaline phosphatase (accession no. AAA24358). This was used for PCR with 

a reverse primer containing a KpnI site (3' AGG CCA CGC CGT AGA CGT AG 

GGTACC A TTC GAA AGG T 5'). The PCR product was cut with NdeI/KpnI and 

cloned in a pBAD vector to give plasmid pNDL1. 

 For protein expression, plasmid pNDL1 was cotransformed with plasmid 

pEC86 that constitutively produces cytochrome c maturation proteins (49) into E. 

coli TOP10 (Invitrogen) and JCB712 (26). Cells were grown in 1 l LB medium 

containing 50 g/ml ampicillin and 175 g/ml chloramphenicol under aerobic 

conditions at 30
o
C until an OD600 of 0.5 Cultures were induced with 0.02% L-

arabinose and incubated in a rotary shaker at 17
o
C and 200 rpm for 24 h. Cells were 

harvested by centrifugation and the periplasmic fractions were obtained with an 

osmotic shock procedure (20). The periplasmic fraction was incubated with 100 

M PQQ and 1 mM CaCl2 at 30
o
C for 30 min to form the holoprotein. Enzyme 

activity was measured with the potassium ferricyanide reductase assay mentioned 

earlier. Heme staining of the periplasmic fraction was also performed to verify 

incorporation of heme into the active protein. 
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Results 
 

Isolation and characterization of strain MC4. Strain MC4 was isolated from 

contaminated soil using enrichment cultivation with DCP as sole carbon and energy 

source. Cells of strain MC4 were Gram-negative, motile and rod shaped. The 

organism was oxidase positive, catalase positive and it hydrolyzed starch. Strain 

MC4 was able to grow on sugars (fructose, glucose, galactose, ribose), citrate, 

acetate, succinate, benzoate, primary alcohols, haloalcohols  (3-bromo-2-methyl-1-

propanol , (R)-3-chloro-1,2-propanediol, 3-chloro-1-propanol, rac-2-chloro-1-

propanol, 2-chloroallyl alcohol, and rac-2,3-dichloro-1-propanol) while it did not 

utilize n-alkanes or 1-chloro-n-alkanes as growth substrate. Some haloacids like 

2-bromoacrylic acid, 2-chloroacrylic acid, rac-2-chloropropionic acid, rac-2,3-

dichloropropionic acid and 4-chlorobutyric acid were also good growth substrates 

for stain MC4. Growth on DCP was not fast (ca. 0.013 h
-1

), and with a 10% 

inoculum it would take 3 days to consume 5 mM DCP in a fermentor (30°C). 

 The 16S rRNA gene sequence of the strain MC4 had 100% identity to the 

rRNA gene of an uncultured gamma proteobacterium (accession no. AF529342.1), 

and 99% identity to 16S rRNA genes of Pseudomonas putida strains (accession no. 

AB008001, AY512610, AY391278.1). This classifies the organism as a strain of P. 

putida. 

 

Identification and purification of the 2,3-dichloropropanol dehalogenase. For 

the conversion of vic-haloalcohols, several halohydrin dehalogenases of the SDR-

superfamily of proteins have been described in the literature (55, 62). Therefore, we 

analyzed genomic DNA of strain MC4 for the presence of open reading frames 

similar to the respective genes for these enzymes. A series of PCR analysis with the 

primers derived from the sequences of the hheA, hheB and hheC genes (55, 62) 

indicated that no similar gene was present in strain MC4. Assays with addition of 

DCP to cell-free extracts also failed to give dehalogenase activity, whereas 

halohydrin dehalogenase activity is readily detected this way in control organisms. 

 Next, dehalogenase activity in cell-free extracts of strain MC4 grown on 

DCP was tested in a 2,6-dichlorophenolindophenol (DCPIP) reduction assay. The 

observed reduction of DCIP was dependent on DCP, and was accompanied by 

release of chloride. The specific activity of the dehalogenase enzyme in cell free 

extract was 94 mU/mg protein in the presence of the artificial electron acceptors 

DCPIP and phenazine methosulfate (PMS). The electron acceptors DCPIP and 

PMS could not be replaced by NAD
+
 or NADP

+
. This suggests that the initial step 

in DCP conversion is catalyzed by a dehydrogenase that simultaneously 

dechlorinates the substrate and transfers electrons to an acceptor that is not a 

nicotinamide coenzyme. Activity could also be monitored with ferricyanide as an 

artificial electron acceptor. We called the enzyme DppA. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=22218221&dopt=GenBank
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=37544106
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Fig. 1. SDS-PAGE of the protein fractions obtained during purification of DppA. (A) 

Coomassie stain of the heme-stained gel. (B) Heme stained gels. Lanes: M, molecular weight 

marker proteins; 1, cell-free extract; 2, (NH4)SO4 purified fraction; 3, DEAE Sepharose 

purified fraction; 4, Ceramic HAP purified fraction. 

 

The DppA protein was purified in three steps: ammonium sulfate 

precipitation, ion-exchange chromatography on DEAE-Sepharose and separation 

on a ceramic HAP column (Fig. 1, Table 1). DCP-dependent ferricyanide reduction 

was measured at each purification step to detect the protein responsible for the 

oxidation of the substrate. The molecular weight of the DppA was estimated as 72 

kDa by SDS-PAGE analysis and 73.5 kDa by gel filtration. This indicated that 

DppA exists as a monomer in its native state. 

 

Table 1. Purification of DppA
a
 

Fraction 
Protein  

(mg/ml) 

Activity 

(U/ml) 

Total 

activity 

(U) 

Specific 

activity 

(U/mg) 

Recovery 

(%) 

Purifica-

tion 

factor 

CFE 15.3 6.6 265 0.4 100 1 

(NH4)2SO4 

fractionation 
13.8 18.4 148 1.3 56 3 

DEAE 

Sepharose 
0.5 5.8 69 10.9 26 25 

Ceramic HAP 0.9 13.2 53 14.1 20 32 

a Enzyme activity was measured at 25ºC in 50 mM Tris-SO4 (pH 8.0), containing 1 mM 

K3[Fe(CN)6]  and 5 mM 2,3-dichloropropanol. 

 

Cloning and analysis of dehalogenase gene. To identify the gene responsible for 

DCP dehalogenation, the purified protein was subjected to N-terminal sequencing, 

which yielded NH2-QVDQAAIIA, and the NCBI non-redundant protein database 

was scanned for homologs. This led to several hits annotated as quinohemoprotein 

dehydrogenases. Multiple sequence alignments showed that these enzymes possess 

a highly conserved region at about 1 kb downstream of the obtained N-terminal 

coding sequence. Two degenerate primers, prF1 based on the N-terminus of the 

protein, and prR1 based on the conserved region, were used to amplify a segment 
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of the dehalogenase gene. The sequencing of this fragment confirmed that dppA 

encoded a quinohemoprotein.  

To isolate the complete MC4 dehydrogenase/dehalogenase gene, a gene 

library of chromosomal DNA of MC4 was constructed in pLAFR3. Two primers, 

prF2 and prR2, were designed based on the PCR-amplified sequence and used to 

screen the gene library by PCR. Out of 2,016 clones, six positive clones were 

identified. One of the positive clones was used to generate two separate sub-

libraries and sequencing of two sub-library clones yielded DNA sequences that 

were assembled to obtain a 3555 bp contig containing the complete coding 

sequence for the DCP dehalogenase gene (dppA) along with its putative ribosome 

binding site and promoter sequence (Fig. 2). 

 

 

 

Fig. 2. Schematic overview of the structural DCP dehalogenase gene. The direction of 

transcription is indicated by arrows.  Small arrows indicate primer positions for 

amplification. The dppA gene (2.1 kb) encodes the DCP dehalogenase (698 aa). The qbdB 

gene encodes a putative protein which belongs to a superfamily of proteins involved in the 

meta pathway of phenol degradation. The pqqA gene encodes a short protein required for 

pyrroloquinoline quinone (PQQ) biosynthesis. 

 

 The complete dppA-encoded protein sequence including the signal peptide 

(698 aa) was highly homologous to type II quinohemoprotein alcohol 

dehydrogenases, particularly with 2-chloroethanol dehydrogenase from Ps. stutzeri 

(78% identity), the homologous alcohol dehydrogenases IIB (76%) and IIG (53%) 

from Ps. putida HK5 (51,52), a type I quinohemoprotein ethanol dehydrogenase 

from Comamonas testosteroni (51%) (41, 47) and a tetrahydrofurfuryl alcohol 

dehydrogenase from Ralstonia eutropha Bo (51% identity) (63). Homology with 

less than 50% identity was found with a quinoprotein ethanol dehydrogenase from 

Ps. aeruginosa (38% identity) (33, 16) and a methanol dehydrogenase from 

Methylophilus methylotrophus W3A1 (35% identity) (61). The first 25 amino acid 

residues of the encoded DppA protein constitute a typical signal sequence, which is 

responsible for the translocation of the protein to the periplasmic space. The 

presence of a signal peptide is a common characteristic of quinohemoproteins (53), 

which are located in the periplasm of gram-negative bacteria. The predicted size of 

the mature protein without signal peptide is 72.978 kDa, in agreement with the 

SDS-PAGE analysis. 
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Fig. 3. Sequence alignment of DppA with known quinohemoproteins and quinoproteins. 

Type II ADHs include 2-chloroethanol dehydrogenase from Ps. stutzeri (2ClEtDH, 

accession no. AAG09249.1), and the alcohol dehydrogenases ADH IIB (BAC15559.1, PDB 

1KV9) and ADH IIG (BAD99293.1, PDB 1YIQ) from Ps. putida HK5. Type I ADHs 

include quinohemoprotein ethanol dehydrogenase from C. testosteroni (QH-ADH, 

Q46444.1, PDB 1KB0) and tetrahydrofurfuryl alcohol dehydrogenase from R. eutropha Bo 

(THFA-DH, AAF86335.1). Homologous quinoprotein alcohol dehydrogenases are ethanol 

dehydrogenase from Ps. aeruginosa (QEDH, CAA08896.1, PDB 1FLG) and methanol 

dehydrogenase from Methylophylus W3A1 (MEDH, AAA83765.1, PDB 4AAH). Signal 

sequences are underlined at the beginning of the sequence. Amino acids involved in PQQ 

and calcium binding are represented by the letter P on top of the alignment while those 

forming heme domain are indicated by h. The tryptophan docking motifs W1-W8 are 

indicated in boxes.  
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 Sequence alignments with proteins of known structure indicated that the 

amino acids involved in PQQ and calcium binding in quinohemoproteins and 

quinoproteins are mostly conserved in DppA (Fig. 3). In the PQQ- and calcium-

binding domain, which corresponds to the N-terminal part of the sequence, contains 

several residues which are commonly conserved amongst quinoproteins and 

quinohemoproteins (e.g. Glu83, Cys129, Cys130, Arg135, Thr179, Gly195, 

Glu197, Trp256, Asn274, Trp318 and Asp319), whereas other residues (Gly194, 

Ala196, Thr254, Lys346 and Trp407) are only conserved only in 

quinohemoproteins. An exception is Gly406 in the PQQ binding domain of DppA, 

which aligns with a conserved Asn present in most of quinohemo/quinoproteins 

with exception of ADH IIG, having Asp at this position. The conserved acidic 

residues in the PQQ and calcium domain that are involved in catalysis in 

quinohemo/quinoproteins of known structure are conserved as Asp319 and Glu197 

in DppA (11). The heme-binding residues Cys616, Cys619 and His620, which are 

conserved in the C-terminal heme domain of all quinohemoproteins, are also 

present in DppA, in agreement with the biochemically observed heme binding. 

Finally, the partially conserved tryptophan docking motifs (W1 to W8), a typical 

feature of quinohemo- and quinoproteins, are present in DppA as well. In 7 out of 

the total 8 docking motifs found in these proteins, Ala, Gly and Trp are highly 

conserved at positions 1, 7 and 11 in each motif. In docking motif W5, these 

residues are replaced by different amino acids: Ala at position 1 is replaced by 

either Val or Thr and Trp at position 11 is replaced by either Leu or Ile while Gly at 

position 7 is conserved. These docking motifs are assumed to play a role in the 

stability of the -propeller base structure of quinohemo/quinoproteins. 

 A small ORF encoding a peptide of 23 amino acids was present downstream 

of the dppA gene. Blast analysis indicated that this peptide contains glutamate and 

tyrosine residues for PQQ biosynthesis (43). Upstream of the dppA gene, there is an 

ORF encoding 310 amino acids. A Blast search indicated that the encoded 

hypothetical protein is similar to a putative protein from Azoarcus sp. BH72 

(accession no. YP_934348) and QbdB from Pseudomonas (accession no. 

BAC15558). QbdB is a hypothetical protein believed to be involved in the meta-

pathway of phenol degradation.  

 

Substrate range and kinetic parameters. Using purified enzyme, the substrate 

profile of DppA was explored. Oxidation of halogenated and non-halogenated 

alcohols was measured by adding ferricyanide as an artificial electron acceptor. 

The data obtained were used to calculate Km and kcat values. Table 2 shows that the 

enzyme has a broad substrate range. The n-alcohols tested were well converted. 

The diols 1,2-propanediol and 1,3-propanediol showed considerably higher Km 

values than the other substrates, as also reported for ADH IIG and ADH IIB (50). 

The kcat value for DCP is 17.8 s
-1

 and the kcat/Km is 2.3 s
-1

mM
-1

, which indicates that 

DCP was well converted by DppA. 
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Table 2. Steady state kinetic parameters and substrate specificities of DppA. 
 kcat Km kcat/Km 

Substrate (s-1) (M) (s-1M-1) 

Ethanol 14.9 788 0.02 

Propanol 24.6 10 2.5 

Butanol 20.2 1.5 13.2 

Pentanol 25.3 3.3 7.6 

Hexanol 23.9 4.4 5.5 

Heptanol 16.1 1.5 10.5 

Octanol 14.3 1.1 13.6 

Allyl alcohol 17.1 15 1.1 

1,2-Propanediol 7.1 5613 0.001 

1,3-Propanediol 8.5 1033 0.008 

2,3-Dichloropropanol (DCP) 17.8 7.6 2.3 

 

The purification factor suggests that about 3% of the total protein in cell 

lysate is DCP dehalogenase, which in combination with the kinetic parameters of 

the dehalogenase and the assumption that about one-fourth of the total cell mass 

can be recovered as protein in cell-free extract suggests a possible DCP degradation 

rate of [S]·0.0075·14.5/(2.3+[S])  μmol/mg cells min
-1

. This would allow a growth 

rate of 0.43 h
-1

 at 1 mM substrate or 0.06 h
-1

 at 0.1 mM, assuming that the yield on 

DCP is the same as on glycerol (ca. 0.06 mg cell dry mass/μmole) (64) and no 

energy generation from the dehalogenation reactions. Thus, the observed growth 

rate of less than 0.02 h
-1

 appears not to be rate-limited by the catalytic activity of 

the initial dehalogenase. 

 

Product identification. To investigate the mechanism of dehalogenation, we 

examined the enzymatic conversion of DCP by purified DppA and examined 

intermediate and final products. Incubation of purified enzyme with substrate and 

potassium ferricyanide showed that DCP was converted with release of chloride, 

indicating that dechlorination and dehydrogenation are catalyzed by the same 

enzyme. Conversion of DCP (2.2 mM) yielded 1.2 mM of chloride, while 8 mM of 

ferricyanide was reduced (Fig. 4). This indicated that only one chlorine (or less) 

was released from the substrate during the dehydrogenase reaction. As homologous 

quinohemoproteins are alcohol dehydrogenases that are known to act on the 

terminal hydroxyl group of alcohols and diols to form the corresponding aldehydes 

(4), a plausible mechanism of DCP conversion would be the oxidation to 2,3-di-

chloropropanal. This aldehyde could undergo elimination of HCl to form 2- or 

3-chloroacrolein.  
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Fig. 4. Conversion of 2,3-dichloropropanol by DppA in the presence of ferricyanide as the 

electron acceptor. Symbols left-hand axis: ●, 2,3-DCP; ◊, Cl-; ▼, ferricyanide.  

 

 
Fig. 5. Derivatization reaction of chloroacrolein with dinitrophenyl hydrazine. The presence 

of the chloroacrolein-dinitrophenylhydrazone adduct (m/z = 269.06, M-H+) indicates that 

chloroacrolein is produced.  

 

We did not observe an aldehyde product by gas chromatography, which 

could be due to its reactivity or instability, and therefore we derivatized the reaction 

samples with dinitrophenylhydrazone  (DNPH) and analyzed possible adducts on 

LC-MS. In negative ionization mode, different adducts of DNPH with aldehydes 

should give different m/z values viz: m/z = 305 (DNPH-derivative of 2,3-

dichloropropanal), m/z = 271 (DNPH-derivatives of 2- and 3-chloropropanal), or 

m/z = 269 (DNPH-derivative of 2-chloroacrolein and 3-chloroacrolein). The 

negative mode ESI mass spectra indicated the appearance of a peak of m/z = 269 

(Fig. 5) which disappeared later during the conversion. This indicated that either 

2-chloroacrolein or 3-chloroacrolein was formed. A DNPH adduct of propanal was 

also seen in minute amounts during the initial phase of the enzyme reaction, which 

may be formed by an unidentified side reaction or could be due to a substrate 

impurity or fragmentation in the LC-MS. No DNPH adducts were observed to 
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indicate the formation of 2-chloropropanal, 3-chloropropanal, or 2,3-dichloro-

propanal. This indicates that chlorine is rapidly removed from the substrate during 

the oxidative reaction.  

To establish the position of the chlorine released from DCP, proton NMR 

was performed and chemical shifts were recorded on reaction mixtures containing 

enzyme, DCP and ferricyanide. All signals were studied in time which allowed us 

to link peaks to structures. Three signals in the NMR spectra of an intermediate 

product were assigned to 2-chloroacrolein (45). The time-course of its aldehyde 

proton (9.31 ppm) displayed the same trend as the two alkene protons (6.72 and 

6.57 ppm). This again suggested that the oxidation of the hydroxyl group was 

accompanied by swift elimination of HCl, either in the active site of the enzyme or 

very rapidly after product release from DppA. Two other 
1
H-NMR signals (6.07 

and 5.73 ppm) were assigned to the alkene protons of 2-chloroacrylic acid, which 

indicated further oxidation of 2-chloroacrolein to the acid by the same purified 

DppA enzyme. The acid apparently was not converted further under these 

conditions.  

The best-separated 
1
H-NMR signals of the starting compound, as well as 

those of the intermediate product and the final product were integrated in all 

samples and used to visualize substrate conversion in time (Fig. 6). The results 

show that after 6 h, the reaction halted at approximately 72% conversion. This was 

probably due to complete consumption of the electron acceptor. Mass balances 

were not exactly stoichiometric since only 25% of the final product was detected 

based on integration of proton signals. This may be due to the high substrate 

concentration and the fact that the intermediate 2-chloroacrolein is a very reactive 

compound that could form dimers or polymers in aqueous solution (45), especially 

when produced by a pure enzyme with little possibilities for follow-up conversion 

of the final product. Some minor signals in the 1D 
1
H-NMR spectra were indeed 

observed, indicating formation of side products during the time course of these 

reactions, but these signals could not be related to a specific product. The results 

indicate that DppA can oxidize DCP to 2-chloroacrolein, and convert the latter to 

2-chloroacrylic acid.   

 

 
Fig. 6. Conversion of DCP by DppA followed by 1H NMR. Symbols: ●, 2,3-DCP;  □, 2-

chloroacrolein; ∆, 2-chloroacrylic acid. 
 

Heterologous expression. Since the level of production of the native DppA in 

Pseudomonas strain MC4 is low, further work aimed at elucidating structure-
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function relationships in this novel dehalogenase would benefit from better enzyme 

production. To facilitate heterologous periplasmic expression in E. coli (21), we 

fused the dppA gene to the 21 amino acid signal peptide sequence of E. coli 

alkaline phosphatase, yielding construct pNDL1. As quinohemoproteins require 

heme c maturation (49), the fusion protein was expressed in E. coli JCB712 and E. 

coli TOP10 in the presence of cytochrome c maturation factors, encoded on 

plasmid pEC86. We found that the the recombinantly produced DppA has a better 

level of expression and heme incorporation in E. coli TOP10(pNDL1)(pEC86) than 

in E. coli JCB712(pNDL1)(pEC86)  (Fig. 7), even though strain JB712 is known to 

incorporate heme effectively in the periplasmic space (26). The specific activities 

of DppA in cell-free extracts of these recombinant E. coli strains were 1.3 U/mg 

and 0.1 U/mg, respectively, as measured with ferricyanide reduction assays. Heme 

staining confirmed that the DppA protein contained covalently bound heme and the 

enzyme showed catalytic activity with DCP (Fig. 7).  

 

 
 

Fig. 7.  Coomassie stain (A) and heme stain (B) of an SDS-PAGE gel containing 

recombinant DppA expressed in  E. coli JCB712 (lanes 1 and 2) and TOP10 (lane 3). 

Different concentrations of arabinose were used for induction: lane 1, 0.002%; lanes 2 and 3, 

0.02%. 

 

Discussion 
 

We report the isolation from a polluted site of P. putida strain MC4, which is 

capable of growth on DCP as sole carbon source. The strain grew aerobically on 

many other compounds as well, including sugars, several halogenated aliphatics, 

and non-halogenated alcohols. Bacterial cultures that utilize DCP and 1,3-dichloro-

propanol as growth substrates have been described earlier, but often substrate 

degradation is incomplete due to enantioselectivity of the catabolic enzymes, which 

restricts the possibilities to use such organisms for bioremediation applications (8, 

38), whereas they may be attractive for production of optically active compounds 

(29, 30, 31, 32). 

 It is obvious that dehalogenation is a key step for microbial utilization of 

halogenated organic compounds (13, 27, 59). The dehalogenation of haloalcohols is 
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often catalyzed by haloalcohol dehalogenases (5, 38, 55), and we initially expected 

that strain MC4 would also contain such an enzyme, but no such activity could be 

detected and no homologous dehalogenase gene was present in strain MC4. 

Instead, activity measurements indicated that chloride release was electron acceptor 

dependent and led to the identification of a novel type of oxidative dehalogenase, 

which we called DppA. The enzyme had a broad substrate range encompassing a 

number of aliphatic alcohols and aldehydes. We also found that DppA accepts both 

the (R) and (S) enantiomers of DCP since conversion goes to completion with no 

sign of biphasic kinetics. 

 A blast search of the sequence of MC4 dehalogenase gene dppA in the 

NCBI database indicated that DppA was homologous to type II quinohemoprotein 

alcohol dehydrogenases (ADH), which are mostly involved in the conversion of 

non-halogenated alcohols and contain both PQQ and heme as cofactors (4). The 

native DppA sequence contains a 25 aa signal peptide at the N-terminus that is 

cleaved off during maturation as apparent from the N-terminal sequence of the 

mature isolated protein. Furthermore, dehalogenase activity was detected in the 

periplasmic fraction prepared from strain MC4 by an osmotic shock method (data 

not shown). Other quinohemoproteins also reside in the periplasm (53). The 

presence of an enzyme in the periplasmic space may have functional implications, 

such as improved protein stability and reduced proteolytic degradation (20). 

Besides, the presence of a dehydrogenase that forms a reactive and toxic metabolite 

in the periplasm could suppress potential toxic effects that may occur when 

formation of a reactive product occurs in the cytoplasm. The conversion of 2-

chloroethanol by a periplasmic quinoprotein was described earlier (56) and may 

have the same function: prevention of formation of highly reactive chlorinated 

aldehyde in the cytoplasm. 

 Since known quinohemoproteins convert alcohols into corresponding 

aldehydes (53), we also expected the formation of an aldehyde during DCP 

conversion.  The results indeed indicate that first step in the DCP catabolic pathway 

involves the conversion of DCP into 2-chloroacrolein, which is further converted 

into 2-chloroacrylic acid. Whether the same DppA is solely responsible for both 

steps was not certain, but NMR measurements indicated that purified DppA is 

active with 2-chloroacrolein as well. By analogy to the well-studied mechanism of 

quinohemoproteins (53), we propose a
 
catalytic mechanism of DppA (Fig. 8), 

which involves dehalogenation in the enzyme active site or immediately after 

product release. Thus, we propose that conversion of DCP by DppA proceeds in 

two steps: 1) an aldehyde is formed in the first step and halide ion is released 

immediately; 2) aldehyde is converted into corresponding acid by a second round 

of dehydrogenation. The 
1
H-NMR experiments indeed suggest that release of 

chloride and a proton occur immediately upon formation of 2,3-

dichloropropionaldehyde by hydride transfer to PQQ. This forms 2-chloroacrolein 

with a structure that is more stable due to resonance delocalization of the π-

electrons. Whether the DppA enzyme mechanistically participates in halide release, 

e.g. through specific stabilizing interactions that facilitate cleavage of the carbon-

halogen bond, such as occurring in haloalkane and halohydrin dehalogenases (12, 

14, 15), is uncertain at this moment. 
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Fig.8. Proposed mechanism for the two-step oxidation for DCP by DppA. The first oxidation 

results in 2-chloroacrolein and release of chloride. The second oxidation step converts the 

2-chloroacrolein to 2-chloroacrylic acid. 

 

 A somewhat similar oxidative dehalogenation mechanism has been reported 

for a flavoenzyme from Alcaligenes sp. DS-S-7G, termed HDDase  (30, 48). The 

enzyme oxidatively dechlorinates (R)-3-chloro-1,2-propanediol and produces acetic 

acid and formic acid.  It was suggested that this conversion starts with formation of 

3-chloro-2-oxopropanol, which  could be cleaved by the reductive action of the 

FADH2-containing enzyme (29,48). The DppA-catalyzed dehalogenation is 

mechanistically completely different from the halohydrin dehalogenase catalyzed 

dehalogenation of chloroalcohols, where the vicinal halogen is released and an 

epoxide is formed by an intramolecular nucleophilic substitution (14). 

 Further degradation of 2-chloroacrylic acid was not studied in MC4, but 

possible pathways are hydrolytic dechlorination of 2-chloroacrylic acid, which 

yields pyruvate (34), or reduction of 2-chloroacrylic acid to 2-chloropropionic acid, 

which can be dehalogenated to lactate (37). 

 In summary, P. putida strain MC4 is able to completely degrade the 

environmental chemical 2,3-dichloropropanol. A novel dehalogenase gene with 

high similarity to quinohemoprotein alcohol dehydrogenases encodes a 

dehalogenase that mechanistically acts by alcohol group oxidation, causing 

dechlorination to 2-chloroacrolein. 
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Abstract 

 

1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in 

the environment and attempts to isolate TCP-degrading organisms by enrichment cultures 

have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 

2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically 

applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase 

with improved TCP degradation activity into a new DCP-degrading host bacterium. The 

dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and 

introduced into the genome of Pseudomonas putida MC4 using a transposon delivery 

system. The transposon-located antibiotic resistance marker was subsequently removed 

using a resolvase step. Growth of the engineered recombinant bacterium P. putida MC4-

5222 on TCP was indeed observed, and all organic chlorine was released as chloride. This 

genetically engineered strain is stable, free of gene transfer or transposition functions, and 

lacks a plasmid-encoded antibiotic resistance marker. It has the ability to completely 

mineralize TCP with quantitative stoichiometric release of inorganic chloride. The results 

show the applicability of an improved dehalogenase variant (developed by directed 

evolution) and genetic engineering for obtaining an effective whole-cell biocatalyst for the 

bioremediation of a recalcitrant chlorinated hydrocarbon. 

 

Introduction 
 

1,2,3-Trichloropropane (TCP) is a toxic and carcinogenic non-natural compound. It is used 

in the paint industry, as a varnish remover or cleaning agent, and as an intermediate in the 

production of other chemicals, including polysulfone liquid polymers and 

hexafluoropropylene. However, a major source of TCP is the industrial synthesis of 

epichlorohydrin, where it is formed during chlorination of propylene, which generates a 

waste stream with TCP as the predominant component (29). 

 TCP is frequently detected as a groundwater pollutant because of improper waste 

disposal and due to its recalcitrance to biodegradation. It has a higher density than water, so 

it easily moves into deeper groundwater layers, leading to widespread contamination as a 

result of its high water solubility. This causes a serious risk to ecosystem quality as well as 

human health when it infiltrates drinking water supplies (25, 29). Cleanup of TCP-

contaminated sites is problematic because of TCP’s physico-chemical properties, including 

low sorption capacity of activated carbon. TCP can be degraded by reaction with metallic 

zinc, iron, or with zinc oxides (35, 36). Removal from contaminated water by 

biodegradation would be an attractive approach, provided that microbial cultures can be 

obtained that degrade TCP and use it as a growth substrate. By employing 1,2-

dichloroethane-degrading bacteria, a full-scale groundwater treatment process has been 

developed for treatment of 1,2-dichloroethane contaminated groundwater, and since these 

compounds have similar physicochemical properties, the development of a treatment process 

should be feasible if suitable microorganisms are available. 

 To date, no naturally occurring organism has been described that can degrade TCP as 

sole carbon source under aerobic conditions. Reductive dechlorination of TCP may occur 

under anaerobic conditions a reaction that also may occur in the environment (45). We have 

previously described oxidative cometabolism of TCP by methanotrophs (1), and 

demonstrated that genetic engineering may be a strategy to obtain a strain for the aerobic 

degradation of TCP (2). Theoretical calculations have indicated that a number of 

transformations including reductive dechlorination, reductive β-elimination, 
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dehydrochlorination, and nucleophilic substitution by OH
-
 are thermodynamically 

favourable (5). 

 A possible pathway for TCP mineralization starts with the conversion of TCP to 2,3-

dichloro-1-propanol (DCP) by a haloalkane dehalogenase that hydrolyzes a carbon-chlorine 

bond. Various haloalkane dehalogenases have been described (15, 18)  but the only wild-

type dehalogenase with significant activity on TCP is DhaA, which occurs in different 

strains of Rhodococcus (3). However, DhaA has a poor turnover number and a high Km 

value. Bosma et al. (3) and Gray et al. (15) improved the kinetic properties of wild-type 

DhaA for TCP conversion by directed evolution. An engineered dehalogenase mutant 

(DhaAM2, containing the mutations Cys176Tyr + Tyr273Phe) was 3.5-fold more active 

with TCP than wild-type enzyme. In order to obtain a complete degradation pathway, this 

improved dehalogenase was cloned on a broad-host range plasmid under control of a 

constitutive promoter and transferred to a strain of Agrobacterium radiobacter that slowly 

degrades DCP. The recombinant strain indeed was able to degrade TCP (2), but there were 

several problems: (i) degradation was incomplete due to enantioselectivity of the 

haloalcohol dehalogenase HheC provided by the host whereas the introduced haloalkane 

dehalogenase produces a racemic mixture of (R)- and (S)-2,3-dichloropropanols; (ii) as 

evident from activity measurements  (41) and structural analysis (8). HheC prefers vicinal 

haloalcohols with the halogen on the terminal carbon, i.e. 1,3-dichloro-2-propanol instead of 

2,3-dichloropropanol; (iii),  the plasmid-based system that was used for haloalkane 

dehalogenase expression is a broad host range cosmid derived from pLAFR3. It carries a 

tetracycline antibiotic resistance marker and mobilization functions, which implies that it is 

not desirable to use the strain in open applications, like an immobilized cell bioreactor from 

which cells may escape; (iv) the plasmid that was used has large segments of DNA that are 

not necessary for its function and that may contribute to plasmid loss, causing instability of 

the strain and loss of the dhaA gene. In agreement with these problems, attempts to degrade 

TCP in a continuous packed-bed bioreactor failed that was inoculated with the recombinant 

strain and fed TCP-contaminated water. 

 The current study aims to remedy the above-mentioned problems by construction of a 

recombinant strain that can completely degrade TCP through an improved catabolic 

pathway, that is free of any antibiotic resistance marker and that does not contain a 

transmissible plasmid. To construct such an organism, we used an improved DhaA variant 

as well as a novel degrading bacterial host for degrading 2,3-dichloro-1-propanol  (DCP). 

The further improved haloalkane dehalogenase variant, called DhaA31, was recently 

obtained by rational design and directed evolution (27). It showed a 36-fold higher activity 

(kcat = 1.3 s
-1

) and 26-fold higher catalytic efficiency (kcat/Km = 1050 s
-1

.M
-1

) than the wild-

type enzyme. The expression of the gene for DhaA31 was achieved by using a strong 

constitutive promoter, as a high-level of cellular DhaA31 was expected to protect cells 

against toxic effects of TCP by increasing its conversion rate to DCP. As a DCP-

mineralizing host, we used Pseudomonas strain MC4, a strain that was obtained from 

polluted soil of an industrial site by selective enrichment on DCP. The dhaA31 gene was 

integrated into the chromosome of strain MC4 using a transposition system derived from 

transposon Tn5 (11). The results demonstrate that the recombinant strain MC4-5222 has the 

ability to completely degrade TCP according to the pathway given in Fig. 1. 

 



Chapter 3 

 

56 

 

 
Fig. 1. Proposed degradation pathway of TCP by P. putida strain MC4. Enzyme abbreviations: 

DhaA31, evolved haloalkane dehalogenase; DppA, dichloropropanol dehalogenase/dehydrogenase; 

CPA, 2-chloropropionic acid dehalogenase. Thick arrows indicate the enzyme activities measured in 

this study. 

 

Materials and methods 
 

Strain and growth conditions. The host organism used in this study was Pseudomonas 

putida sp. strain MC4, a 2,3-dichloropropanol degrading bacterium (I. Arif, G. Samin, D.B. 

Janssen, manuscript in preparation). The organism was grown in a synthetic mineral 

medium (MMY) that contained the following per liter: 5.4 g of Na2HPO4.12H2O, 1.4 g of 

KH2PO4, 0.5 g of (NH4)2SO4, 0.2 g of  MgSO4.7H2O, 5 ml of trace elements solution and 5 

mg of yeast extract (20). Cells were grown at pH 7.0 and 30
°
C with shaking (200-250 rpm), 

and 1,2,3-trichloropropane (TCP) or 2,3-dichloro-1-propanol (DCP) was provided as a sole 

carbon source at 0.5-1.0 mM concentrations. Bottles were made gas-tight with screw caps 

having Viton septa, and samples were taken with a syringe to avoid loss of substrate. Inocula 

consisted of cells from a 5 ml overnight culture in LB medium. The cells were collected by 

centrifugation and resuspended in sterile MMY. Growth was measured turbidimetrically at 

600 nm. For plates, 1.5% (w/v) agar was added.  

 For production of cells for testing enzyme levels, LB medium was used. A preculture 

was made by inoculating 5 ml of LB containing tetracycline (Tc, 25 g/ml) with cells from a 

freshly streaked plate and after overnight growth; it was used to inoculate a main culture in 

LB medium with 100-fold dilution. The cultures were incubated overnight at 30
º
C for strain 

MC4 and at 17
º
C for 48 h for the strain E. coli TOP10. In case of a culture containing pIT31, 

0.8 mM isopropyl-1-thio-β-D-galactopyranoside (IPTG) was added at the start for induction 

of haloalkane dehalogenase synthesis. 

 

Construction of broad-host-range expression plasmids. The gene encoding improved 

haloalkane dehalogenase (dhaA31) was placed under control of the inducible trc promoter 

(4)  or the constitutive dhlA promoter (20). Clones with the dhaA31 gene behind the trc 

promoter were constructed in the broad-host-range vector pIT2, which is derived from 

pBBR1MCS2 (22) and carries a tetracycline resistance marker and the trc promoter. Primers 

PF1 and PR1 (see supporting information) were used for the amplification of dhaA.  PCR 

was carried out as follows: 1 min at 92°C, 20 cycles of 15 sec at 94°C, 30 sec at 65°C, 1 min 

at 68°C and a final extension of 5 min at 69°C. The PCR product was purified by using the 

Qiaquick (Qiagen) purification kit. Insert was ligated at 1:3 vector: insert ratio, and the 

mixture were subsequently transformed to E. coli TOP10 by chemical transformation to E. 

coli or to strain MC4 by electroporation. The plasmid was named pIT31. Transformants 

were plated onto LB agar plates containing tetracycline (25 g/ml) and grown at 37°C for E. 

coli TOP10 and 30°C for strain MC4. 
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 For placing the dhaA31 gene under control of the strong constitutive dhlA promoter, 

we used a sequence of X. autotrophicus GJ10, including the ribosome binding site (RBS), 

but with a variation between the RBS and start codon. In one case, the three bases (TCT) 

preceding the start codon was made on base longer and the resulting segment was 

designated as translation initiation region A (one base insertion, TCAT). The second 

version, designated B, contained two mutations between the RBS and the start codon (TCT 

→ CAT). Plasmid pIT31 was digested with BamHI and HindIII to remove the trc promoter 

and ligated with a 517 bp PCR fragment harboring the dhlA promoter, ribosome binding site 

and translation initiation region A or B. For the isolation of a 517-bp fragment containing 

the dhlA promoter sequence, PCR was run with total DNA of X. autotrophicus GJ10 using 

primers PF2 and PR2a or PR2b (see supporting information), giving pIS31A and pIS31B, 

respectively. The PCR conditions used were 2 min at 94°C, 25 cycles of 30 sec at 94°C, 15 

sec at 66°C, 20 sec at 68°C and a final extension of 5 min at 68°C.  In the same way, another 

improved variant dhaA27 (27) was cloned under the trc and dhlA promoters to yield pIT27 

and pIS27, respectively. 

 

Chromosomal integration of dhaA31B. The mini Tn5 system consists of transposon vector 

(pUT) and a delivery system (10). The transposon vector contains two insertion sequences 

(IS50L and IS50R), which govern transposition in the presence of a transposase, encoded by 

the tnp gene. Two segments are present between the insertion sequences. One segment 

carries a unique NotI cloning site, where the gene of interest (dhaA31) can be inserted. The 

other segment is a marker segment containing a gene for kanamycin resistance and the xylE 

gene for easy detection of insertion by a chromogenic reaction occurring when the encoded 

catechol 2,3-dioxygenase converts catechol. The marker segment is flanked by two 

resolution sites (res) and is used to screen exconjugants after transposition events. After 

transposition, the marker segment can be removed by expression of the RP4-derived 

resolvase gene parA as the res sequences are a substrate of the resolvase. The second part of 

the mini Tn5 system carries delivery functions and consists of a suicide plasmid that is 

introduced into target organism by means of mating. Due to the R6K origin of replication it 

can only be maintained in strains producing the replication protein λ(such as the host E. coli 

λ lysogens) and therefore is lost in P. putida. The delivery plasmid can mobilize the 

transposon vector into the target strain using the helper strain E. coli HB101(RK600) having 

an RP4 transfer function.  The most salient feature of pUT vector is the presence of tnp gene 

required for transposition outside of transposon vector. After transposition event, the 

delivery vector is unable to replicate into the target strain and tnp gene is not present to 

express transposase and do further transfer of mobile segment (26).  

 To clone the dhaA31 gene in the pUT vector, a 2-kb dhaA31B fragment containing 

promoter and terminator was amplified from pIS31B by PCR, using the primers PF3 and 

PR3 and PR3 (see supporting information). The PCR program was run for 1 min at 92°C, 20 

cycles of 15 sec at 94°C, 30 sec at 65°C, 1 min at 68°C and final extension for 5 min at 

72°C. The PCR product was purified by using Qiaquick purification kit for ligation and 

digested with NotI. Cloning of the NotI insert into the unique NotI site of pJMS11 gave rise 

to pUT31B. The presence of the 2-kb fragment harboring dhaA31B was confirmed by 

digestion with NotI restriction endonuclease and analysis on gel. The resulting plasmid 

pUT31B was used as a delivery plasmid.  

 The delivery plasmid was mobilized from E. coli CC118(pir) into target cells by 

triparental mating. Overnight cultures of the required strains were prepared in 2 ml LB 

medium containing appropriate antibiotics. The recipient strain P. putida MC4 was grown at 

30°C, E. coli HB101(RK600) was grown at 37°C with chloramphenicol (Cm) at 50 g/ml 

and E. coli CC118(λ pir)(pUT31B) was grown at 37
º
C with kanamycin (Km) at 50 g/ml. 
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Mating was done by mixing 0.02 ml each of culture. After washing and resuspension in 0.02 

ml MgSO4 (10 mM), the mixture was spotted on an LB agar plate and incubated for 10-13 h 

at 30
º
C. Then the cells in the spot were resuspended into MgSO4 (10 mM) and spread on M9 

plates with citrate (10 mM) and Km (50 g/ml) for selection. Colonies were tested for 

sensitivity to piperacillin (50 g/ml) on an LB agar plate to ensure that the whole delivery 

plasmid was not integrated. Exconjugants obtained after the transposition event were 

screened in various ways, i.e. resistance to Km (75 g/ml), sensitivity to pipericillin (50 

g/ml), and catechol 1,2-dioxygenase and dehalogenase activities. Catechol 2,3-dioxygenase 

was tested by spraying plates with catechol. The ring-cleavage reaction converts catechol to 

2-hydroxymuconic semialdehyde, which gives a yellow color. Dehalogenase activities were 

screened in microtiter plates by suspending cells in water (50 l) containing TCP or DBE as 

substrate. Plates were kept at 30ºC for 4 h with DBE or for 24 h with TCP, and then halide 

detection reagents were added (20). Active cells produced a red color. 

To remove inverted repeats and antibiotic markers, plasmid pJMSB8 which harbors 

the RP4 resolvase gene parA was introduced into dehalogenase-positive exconjugants by 

triparental mating (10, 26) and desired colonies were selected by testing for loss of 

resistance to kanamycin and the retained presence of haloalkane dehalogenase activity. 

 

Southern blotting. To establish the copy number of dehalogenase gene after transposition 

event, Southern blotting was performed. The experiment was carried out with strains MC4, 

MC4-52 and MC4-5222. Genomic DNA was isolated with a genomic DNA extraction kit 

(Sigma) and digested with SalI restriction endonuclease. DNA fragments were separated on 

an 0.8% agarose gel and transferred to the nylon membrane by diffusion blotting. A 2-kb 

NotI insert containing dhaA31 was used as a template to generate a probe by labeling with 

digoxygenin, using the non-radioactive DIG high prime kit (Roche). Hybridization was 

carried out at 60ºC and detection was performed according to protocol provided by the 

manufacturer (Roche). 

 

Partial genome sequencing. A partial genome sequence was obtained by Base Clear 

Leiden, using paired-end Illumina sequencing. De novo assembly was done with CLC-Bio 

software and the established contigs were analyzed using standalone Blast software to locate 

the insert carrying the haloalkane dehalogenase gene. 

 

Enzyme and protein assays. For preparation of cell-free extracts, strain MC4 and 

derivatives thereof were cultivated in a 4 mM of 2,3-dichloropropanol (DCP) as a sole 

carbon source. The preculture was prepared by growing strain MC4 overnight in LB at 

30°C. After growth, the cells were harvested by centrifugation, washed once with TMEG 

buffer, pH 7.5, and resuspended in TMEG (1/50 of the original culture volume; 10 mM 

Tris.SO4, 1 mM 2-mercaptoethanol, 1 mM EDTA, 01.01% NaN3). After ultrasonic 

disruption of the cells, the lysate was centrifuged (40,000 rpm for 45 min). The clear 

supernatant contains dehalogenases and was used for assays. 

  Haloalkane dehalogenase assays were performed by incubating an appropriate 

amount of cell-free extract at 30ºC in 50 mM Tris-SO4 buffer, pH 8.2, containing substrate. 

Dehalogenase activity was measured by determining halide release from substrates such as 

TCP, 2-chloropropanoic acid (CPA), or 1,2-dibromoethane (DBE). Samples were taken at 

different times (5 to 40 min), and halide concentrations (0.1 to 2 mM) were measured 

colorimetrically at 460 nm after the addition of mercuric thiocyanate and ferric ammonium 

sulfate (37). One unit of enzyme activity is defined as the amount of the enzyme that 

catalyzes the formation of 1 mole of a halide per min. 
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Activity of dichloropropanol dehydrogenase (DppA) was measured at 30ºC. 

Ferricyanide reduction by DppA activity was measured by following the decrease in A420 in 

a 1 ml reaction mixture consisting of 50 mM Tris-SO4, pH 8.0, 5 mM 2,3-dichloropropanol 

and 1 mM ferricyanide. The extinction coefficient of ferricyanide at 420 nm is 1.02 mM
-

1
cm

-1
. One unit of enzyme activity is defined as the amount of enzyme catalyzing the 

reduction of 1 mole of ferricyanide per min. 

Protein concentrations of cell free extracts were measured with the Bradford 

reagent at 595 nm using the bovine serum albumin as standard.  

 

Analytical methods. Concentrations of halogenated compounds were determined by gas 

chromatography. Samples (4.5 ml) were extracted with diethyl ether (1.5 ml) containing 

0.05 mM mesitylene as an internal standard. The ether layer was analyzed by split injection 

of 2 μl samples on a gas chromatograph equipped with a flame ionization detector (Agilent ) 

and a HP5 column (25 m × 0.25 mm × 0.2 m) (Hewlett Packard). The carrier gas was 

nitrogen (50 kPa), and the temperature program was 5 min isothermal at 60ºC followed by 

an increase to 110ºC at a rate of 2ºC/min and then to 130ºC at a rate of 15ºC/min.  

 Gas chromatography-mass spectrometry was performed on a HP5890 gas 

chromatograph equipped with an HP5 capillary column connected to a type 5971 mass-

selective detector (Agilent). Helium was used as a carrier gas (0.9 ml min
−1

) and the 

temperature program was the same as above. 

 

Results and discussion 
 

Heterologous expression of a highly evolved haloalkane dehalogenase using different 

promoters. Effective conversion of 1,2,3-trichloropropane (TCP) requires high-level 

expression of a dehalogenase that is active with TCP in a host that utilizes the product 2,3-

dichloro-1-propanol (DCP). To achieve this, we constructed the broad-host range plasmids 

such as pIT31, pIS31A and pIS31B in which the gene encoding an improved haloalkane 

dehalogenase (27) is expressed under control of the trc and dhlA  promoters (4, 20). For the 

dhlA promoter region, the triplet preceding the start codon was mutated in two different 

ways (17). In one variant, named as A, one extra base (A) was inserted at the -2 position, 

leading to the sequence GGAGGCTCATATG (ribosome binding site and start codon 

underlined). In variant B, TC at the -3 to -2 positions relative to the start codon was replaced 

by CA, leading to GGAGGCCATATG (ribosome binding site and start codon underlined). 

The same pBBR1MCS2-derived replicon (22) was used for all broad-host-range expression 

plasmids, so copy number did not affect the efficiency of expression. 

 As a host, we used a newly isolated strain of P. putida that utilizes DCP as a growth 

substrate. This organism degrades both stereoisomers of DCP, in agreement with the lack of 

enantioselectivity of the initial oxidative dehalogenase/dehydrogenase (DppA) that converts 

DCP to 2-chloroacrolein and 2-chloroacrylic acid (I. Arif, G. Samin, D. B. Janssen. 

submitted for publication). The organism was identified as a strain of P. putida by 16S 

rRNA gene sequencing.  

 Two genes encoding haloalkane dehalogenase variants that were improved by 

directed evolution were tested in strain MC4. Plasmid pIT27, containing haloalkane 

dehalogenase mutant 27 (27) gave a lower haloalkane dehalogenase level than variant 31 

(Table 1). It was also observed that in the case of the trc promoter, the activity of the 

dehalogenase was low as compared to the use of the strong constitutive dhlA promoter 

(Table 1), in contrast with the results of Bosma et al., (3) who found little difference 

between the efficiencies of trc and dhlA promoters in A. radiobacter AD1 as the host. When 

the two variants of the dhlA promoter region were compared, the dehalogenase activity was 
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highest in case of pIS31B, which agrees with the notion that a C at position -3 relative to the 

first base of the start codon leads to elevated expression (17). The promoter and translation 

initiation region of pIS31B was therefore selected for further work.  

 

Table 1. Expression of haloalkane dehalogenase in MC4 containing various plasmids 

carrying the dhaA31 gene. 

Plasmid 
Haloalkane dehalogenase 

activity (U/mg) 

pIT27 0.01 

0.12 

0.01 

0.03 

0.10 

0.19 

pIT31 

pIS27A 

pIS27B 

pIS31A 

pIS31B 

Specific activities were measured with TCP using cell-free extracts from cells grown in LB medium. 

 

Chromosomal integration of mini-Tn5 containing dhaA31 into Pseudomonas. For 

chromosomal integration of the dhaA31 gene with the constructed constitutive promoter 

region into P. putida strain MC4, we employed a Tn5-derived transposon vector (pJMS11) 

developed by de Lorenzo and coworkers according to their published protocols (10, 11). 

Strain MC4 is a 2,3-dichloropropanol utilizing bacterium that was isolated from 

contaminated soil. Plasmid DNA could be introduced either by transformation through 

electroporation or by conjugation through triparental mating. For introduction of the dhaA31 

gene in strain MC4, it was first cloned on the transposon delivery vector pUT2 in E. coli as 

described under Materials and Methods. After introduction of the transposition system into 

strain MC4 by triparental mating, 50 exconjugants were selected on basis of growth on M9-

Km plates with 10 mM citrate as a carbon source. This selection permitted the Pseudomonas 

recipient strain to grow when it had acquired the Km resistance gene region, but did not 

allow growth of the E. coli donor strain.  A total of 35 Km-resistant colonies were selected 

that were able to grow on citrate and DCP as sole carbon source, whereas 15 Km-resistant 

citrate-utilizing colonies lost the capacity to grow on DCP. Sensitivity to pipericillin 

indicated that the whole plasmid only rarely integrated into the chromosome of strain MC4. 

Of the 50 Km-resistant colonies, 45 were sensitive to pipericillin. The Km-resistant colonies 

also produced catechol 2,3-dioxygenase, as indicated by a yellow color that was observed 

after spraying colonies with a solution of catechol. 

 The next step was to remove the antibiotic-resistance selection markers by using the 

resolvase protocol (11). For this, 30 haloalkane dehalogenase-positive MC4-derivatives 

were separately subjected to triparental mating in which pJMSB8 was introduced into the 

recipient to express the resolvase gene parA.  Colonies of strain MC4 were selected on M9 

medium containing 5 mM citrate and tested for Km sensitivity and spraying with catechol 

was used to verify the loss of xylE. We observed that 90% of the colonies that appeared 

were Km sensitive and showed absence of the xylE marker. The presence of a 2-kb fragment 

having the dhaA31 gene was confirmed by PCR analysis with the same primers as those 

used for cloning.  

 

Utilization of TCP as sole carbon source. Different derivatives of strain MC4 carrying the 

dhaA31B gene on the chromosome were tested for growth on TCP. For this purpose, we 

performed batch incubations using mineral medium with TCP (0.5 mM) as sole carbon 

source. Several MC4-derived strains carrying dhaA31 (e.g., MC4-5221, MC4-5222 and 
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MC4-1331) showed growth on TCP. Disappearance of TCP was accompanied by the 

stoichiometric release of inorganic chloride ions as well as microbial growth. In negative 

controls, containing wild-type strain MC4, no microbial growth or release of chloride was 

detected. A derivative designated MC4-5222 showed the most rapid growth on TCP. To 

compare the expression level of the dehalogenase in different strains that carried insertions 

with the dehalogenase gene, cell-free extracts were made, and the haloalkane dehalogenase 

activities towards TCP were measured (Table 2). Strain MC4-5222 showed the highest 

haloalkane dehalogenase activity, indicating that the DhaA31 expression level and the 

growth rate were correlated. 

 

Table 2. Specific activity of DhaA31 in MC4-31B strains towards TCP. 

Strain Properties Haloalkane dehalogenase 

(DhaA31) 

(U/mg) 

MC4 wild type 2,3-dichloropropanol degrader - 

MC4-52 dhaA31-inserted derivative of MC4 0.04 

MC4-13 dhaA31-inserted derivative of MC4 0.03 

MC4-5221 dhaA31-inserted derivative of MC4 0.04 

MC4-5222 dhaA31-inserted derivative of MC4 0.10 

MC4-1331 dhaA31-inserted derivative of MC4 0.03 

 

 To check if the plasmid-carrying strains producing haloalkane dehalogenase (strain 

MC4(pIS31B) and a strain carrying chromosomally integrated dhaA31 (MC4-5222) 

produced all three dehalogenases required for TCP degradation we measured the expression 

levels of DhaA31, haloalcohol dehydrogenase/dehalogenase (DppA) and 2-chloropropionic 

acid (CPA) dehalogenase in the wild-type strain MC4 and in the engineered derivatives (Fig. 

2). DppA is a quinohemoprotein alcohol dehydrogenase that converts 2,3-dichloropropanol 

to 2-chloroacrolein and 2-chloroacrylic acid in the presence of an artificial electron acceptor 

like ferricyanide (A. Irfan, S. Samin, D.B. Janssen, submitted). Assays with cell-free 

extracts prepared from cells grown in DCP (4 mM) showed that both strain MC4 and strain 

MC4-5222 produced dehalogenases for DCP mineralization and there were no significant 

differences between the DppA and CPA dehalogenase levels. The dehalogenases level were 

lower in the plasmid-based system MC4(pIS31B) (Table 3). Furthermore, we observed that 

the expression of DhaA31 was higher in the plasmid-based system MC4(pIS31B) than in the 

chromosomal integration MC4-5222. Possibly, the strong overexpression of DhaA31 in this 

plasmid-based system reduces expression of DppA and CPA dehalogenase.  

 The ability of strain MC4-5222 to mineralize TCP was examined in batch cultures 

with repeated addition of TCP. The optical density (OD600), chloride, TCP, and DCP levels 

were measured at different times. The culture was inoculated with overnight-grown cells in 

LB medium with a starting OD600 of  0.05.  After the first addition of TCP (0.5 mM), it was 

noticed that the OD600 decreased, which might be due to toxic effects of TCP added to the 

cultures of low cell density. After 4 days, visible growth was observed as also shown by an 

increase of OD600. This growth was continued when TCP was added with different time 

intervals. Furthermore, after 20 days, the degradation of TCP was rapid and the accumulated 

cells of P. putida strain MC4-5222 were able to degrade 1.1 mM TCP quickly. Overall, the 

added TCP (3.1 mM) was dechlorinated completely with stoichiometric release of chloride 

(9.3 mM) as shown in Fig. 3. Thus, the recombinant strain was capable of complete 

mineralization of TCP. From the optical densities, it was calculated that the growth rate μ 

varied from 0.0012 - 0.008 h
-1

. 
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Fig. 2. Haloalkane dehalogenase expression in derivatives of P. putida MC4. Slots: M, marker 

proteins; 1, cell-free extract of strain MC4; 2, strain MC4(pIS31B); and 3, strain MC4-5222 carrying 

the chromosomally integrated dhaA31 gene. All cultures were grown on DCP as carbon source. 
 

Table 3. Specific activities of DhaA-, DppA- and CPA dehalogenase in cell-free extracts of 

MC4 and derivatives thereof. 

Strain 

Haloalkane 

dehalogenase 

(DhaA31) 

(U/mg) 

Dichloropropanol 

dehalogenase 

(DppA) 

(U/mg) 

2-Chloropropanoic acid  

(CPA) dehalogenase 

(U/mg) 

MC4 0 0.13 0.28 

MC4(pIS31B) 0.73 0.03 0.12 

MC4-5222 0.37 0.16 0.57 

 

 Higher concentrations of TCP (>1 mM) appeared very toxic to strain MC4-5222, 

indicating that further mutations or genetic modifications may be required for improved 

conversion. However, extensive ethyl methanesulfonate (EMS) mutagenesis experiments 

with subsequent selection of cultures with increased resistance or repeated transfer of 

cultures exposed to TCP at the upper limit of tolerance did not yield improved strains. As 

outlined by Haro and de Lorenzo (16), the rate of metabolic fluxes, the formation of side-

metabolites and the physiological control of degradative pathway may be a bottleneck that is 

as important as the presence of all the enzymes for a metabolic pathway. 
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Fig. 3. Growth of P. putida MC4-5222 on TCP. Panels A and B represent data from the same culture. 

TCP was repeatedly added to a total concentration of 3.1 mM. Symbols: ▲, optical density at 600 nm; 

■, TCP; ●, DCP; ♦, chloride. 
 

Stability of the TCP degrading strain MC4-5222. To check the stability of the integrated 

gene on the chromosome, strain MC4-5222 was repeatedly streaked on LB agar plates 

without TCP. The presence of the dehalogenase gene was tested by measuring dehalogenase 

activity of isolated colonies as described above. No colonies that had lost the haloalkane 

dehalogenase gene were found after ten serial transfers, which indicated that strain MC4-

5222 is genetically stable, in agreement with previous reports which described that the 

chromosomally inserted DNA is stably inherited (10). 

 

Localization of the chromosomal integration. We checked the copy number of the 

integrated dhaA31 gene by means of Southern blotting. Furthermore, partial genomic 

sequences of MC4 and MC4-5222 were obtained to identify the location of integrated genes. 

The results of Southern blotting indicated that strains MC4-52 and MC4-5222 each contain a 

single copy of the dhaA31 dehalogenase gene at a different position (Fig. 4). The site of 

integration apparently influences the level of expression of the dhaA31 gene. 

 The partial genomic sequence of strain MC4-5222, and comparison with the 

sequence of the wild-type strain MC4, revealed that a 2165 bp fragment carrying the dhaA31 

gene (accession number <to be included after acceptance>) was present as an insertion after 

position 1305 of a 26,912 bp contig of strain MC4. Upstream was a 288 codon ORF with no 

similarities to genes of known function. Downstream was a 911 codon ORF encoding a 

putative protein of the P-loop NTPase superfamily showing 76% identity to a putative 

transcriptional regulator of Pseudomonas fluorescens Pf0-1. The 27 kb contig in which the 

dhaA31 gene was integrated further shows similarities to genomic segments of P. 

auruginosa SBW25, P. mendocina YMP and P. aeruginosa PA7, but query coverage was 

only 13-53%, which together with further sequence analysis showed that strain MC4 is not 

highly similar to other bacteria of which the genome sequence is published. 
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Fig. 4. Detection of chromosomally integrated dhaA DNA by Southern hybridization. Hybridization 

was performed with a 2-kb fragment (dhlA promoter, dhaA31 gene and terminator) as a probe with 

non-radioactive DIG-labeling and SalI digested chromosomal total DNA of strain MC4-5222 (lane 1); 

MC4-52 (lane 2); and MC4 (lane 3).  

 

Prospects for TCP bioremediation with genetically engineered TCP-degrading 

bacteria. The development of a biological process for on-site removal of TCP from 

groundwater is critically dependent on the availability microorganisms that degrade TCP in 

a manner that supports cellular maintenance and growth. The relevant physico-chemical 

properties of TCP are similar to those of 1,2-dichloroethane (Kow values 1.98 and 1.48, 

Henry coefficients 3.4·10
-4

 and 1.18·10
-4

 atm·m
3
·mol

-1
 for TCP and 1,2-dichloroethane, 

respectively). Due to these values, absorption by activated carbon and air stripping are 

problematic for TCP and 1,2-dichloroethane removal, making bioremediation especially 

attractive. A full-scale bioreactor-based treatment process has been installed for the removal 

of 1,2-dichloroethane from contaminated groundwater at a large contaminated site in 

Lübeck, Germany (40). This process employs the 1,2-dichloroethane degrader Xanthobacter 

autotrophicus GJ10, in which critical catabolic genes are located on a plasmid, closely 

linked to insertion sequences (19). The similarity in physical-chemical properties of TCP 

and 1,2-dichloroethane suggest that the development of a bioreactor treatment process is 

feasible once an effective organism is obtained.  

 Bacteria that degrade 1-chloro-n-alkanes gene are easily isolated from soil and they 

often produce the dhaA-type haloalkane dehalogenase that slowly degrades TCP (31). This 

includes Rhodococcus strain TB2, isolated by us from a major TCP-contaminated site in the 

USA. In view of the widespread occurrence of the dhaA gene it seems remarkable that TCP 

is so recalcitrant to aerobic biodegradation, since only 3-5 mutations are required for much 

better conversion (2, 27). Various attempts by ourselves and others to obtain a TCP-

degrading culture by classical enrichment have failed, whereas compounds of similar 

structure and toxicity, such as 1,2-dibromoethane and 1,3-dichloropropene, were degraded 

after prolonged enrichment (30, 31). We propose that the limiting factor in the evolution of 

TCP-degrading bacteria is the extremely rare occurrence of the required mutations in a 
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dhaA-type haloalkane dehalogenase gene that resides in a host organism to which such 

mutations provide an advantage for growth. Such a host should be able to metabolize the 

dichloropropanol that is produced. Bacteria that degrade dihalopropanols have been found at 

various places, (13, 21, 31) but they appear quite rare, probably because these compounds 

also do not occur naturally at biologically significant concentrations. The same may be true 

for the further metabolites chloroacrolein and 2-chloroacrylic acid (Fig. 1). Thus, in a 

natural environment, mutations in the haloalkane dehalogenase gene that would improve its 

TCP hydrolysis activity may never occur in a host that grows on the degradation product. 

The toxicity of the TCP transformation products (epichlorohydrin) if incompletely 

metabolized may even pose a selective disadvantage on organisms possessing a TCP-active 

hydrolytic dehalogenase (44). 

 To circumvent problems of slow adaptation in natural environments, genetic 

engineering techniques have been proposed for obtaining strains with enhanced 

biodegradation potential. Several improved strains have indeed been constructed ( 6, 7, 14, 

23, 28, 32, 34, 39, 42). These works provided excellent scientific insight in causes of 

recalcitrance and demonstrated that bottlenecks in catabolic pathways could be removed. 

Furthermore, tools for the construction of recombinant bioremediation bacteria were 

developed and several constructed strains exhibited remarkable new properties in the 

laboratory. On the other hand, success in terms of full-scale application is limited (6, 24, 

43). The only well-documented field trial concerns Pseudomonas fluorescens HK44, a strain 

that degrades polycyclic aromatic hydrocarbons harboring a natural catabolic plasmid that is 

equipped with a lux bioluminescent reporter. The strain produces light in response to the 

presence of naphthalene or the aromatic degradation products salicylate and 3-

methylsalicylate (33). We consider the main cause of the modest progress in this area the 

technical difficulty of constructing organisms for compounds that are really recalcitrant, 

chemicals such as 1,2,3-trichloropropane, 1,1,1,-trichloroethane or trichloroethylene (38). 

Most of the earlier work was aimed at combining into a single strain the capacity to degrade 

mixtures of compounds, or to expand the degradation capacity of a single organism (32, 34, 

43). The urgency for application may be unclear, since the performance in bioremediation of 

such organisms may not exceed that of mixed cultures or of other natural isolates.  

 The difficulty in obtaining more effective organisms by genetic construction may 

have different biochemical causes. Although transposons are very good tools for 

constructing genetically stable strains (12, 26), the obtained organisms do not always 

degrade the target substrate as expected even if the pathway looks fine on paper (9).  For 

example, a Pseudomonas strain able to grow on 2-chlorobenzoate was still unable to grow 

on 2-chlorotoluene as sole carbon source, although it possesses all the genes in a functional 

state required for its degradation (16). Similarly, we have observed that the introduction of 

the 1,2-dichloroethane dehalogenase gene from X. autotrophicus in a 2-chloroethanol-

degrading Pseudomonas does not allow the resulting recombinant strain to use 1,2-

dichloroethane for growth.  Even though the TCP-degrading Pseudomonas strain 

constructed here is may be the best example of a constructed organism that grows on a 

compound that is really recalcitrant, for unknown reasons the growth rate is not as high as 

the naturally evolved 1,2-dichloroethane-mineralizing X. autotrophicus GJ10 mentioned 

above.  

 An engineered bioremediation organism can likely survive only during an in situ or 

bioreactor treatment process when the target compound is the predominant pollutant in 

groundwater or in the waste stream, and if its metabolism supports growth, e.g., by use as 

electron donor or acceptor. If the contaminant is a minor component, the engineered strain 

may have difficulty to survive in situ (9, 24). If a waste stream contains a whole range of 

recalcitrant contaminants, adding a constructed organism that degrades only one or two 
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components will contribute too little to the overall process. Furthermore, there is only a 

chance for successful application of bacteria with a constructed pathway when the lack of a 

pathway really is the factor that restricts biodegradation, instead of substrate bioavailability 

or oxygen supply. Due to their application as solvents and intermediates and their formation 

in specific synthetic chemical processes, compounds such as 1,2-dichloroethane, TCP and 

trichloroethene occur as sole or major contaminant at many sites, making them good targets 

for this type of studies. 

 

Conclusions 
 

This study set out to construct a TCP degrader, which can be used to treat TCP contaminated 

water. For application in groundwater treatment systems, open processes such as the one 

developed for 1,2-dichloroethane will be needed. Therefore, we aimed at constructing an 

organism that is free of antibiotic resistance marker and plasmid encoded genes that can be 

transferred into other organisms by transposition or conjugation. The transposon delivery 

system developed by de Lorenzo and coworkers appears excellently suited for that purpose. 

Moreover, the constitutive expression of essential genes can be another advantage since it 

avoids the necessity of high concentrations of inducing substrates. Previous work indicated 

the potential, but success was very modest in view of the poor activity of the best available 

dehalogenase and the poor growth of the host on DCP, which is the first hydrolytic product. 

An improved organism for TCP bioremediation was obtained here by using an engineered 

haloalkane dehalogenase variant with a higher catalytic activity (DhaA31) followed by 

constitutive expression into a suitable host. Integration into the genomic DNA of the newly 

isolated host P. putida strain MC4 yielded a strain that slowly grew on TCP as sole carbon 

source. The conversion of TCP into DCP was catalyzed by the improved dehalogenase 

variant and further conversions were carried out by the enzymes of the MC4 host strain. The 

resulting engineered bioremediation bacterium strain MC4-5222 is able to utilize TCP as a 

sole carbon source with complete dechlorination. The strain has no introduced antibiotic 

resistance marker and is free of plasmid-encoded mobile genes. Taken together, these results 

suggest that the recombinant strain MC4-5222 should be applicable for the removal of TCP 

from contaminated groundwater. 
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Abstract  
 

The expression of heterologous proteins in the Escherichia coli periplasm can have 

important advantages over cytoplasmic expression because it may improve protein 

folding, reduce proteolytic degradation, and facilitate protein isolation. In case of 

whole-cell processes, periplasmic localization of enzymes can improve substrate 

access and reduce product toxicity. To enable export to the periplasm, a signal 

sequence can be fused to the target protein or the target protein is fused to an 

authentic periplasmic protein. Here, we report the identification of a modified 

Rhodococcus haloalkane dehalogenase (DhaA31) as a novel export fusion partner 

for periplasmic expression in E. coli. We observed that this haloalkane 

dehalogenase, of which another variant is used in the HaloTag reporter gene 

system, localizes to the periplasm of Pseudomonas putida and E. coli, independent 

from a signal sequence. Additionally, DhaA31 is able to trigger periplasmic 

localization when genetically fused to thioredoxin and alditol oxidase, two 

unrelated cytoplasmic enzymes. The haloalkane dehalogenase – alditol oxidase 

hybrid enzyme catalyzed the whole-cell conversion of xylitol. Our data show that 

DhaA31 can be exploited as a platform for the expression of enzymes in the 

periplasm, thereby opening new avenues for its use in biotechnological 

applications.  

  

Introduction 
 

The production of recombinant proteins in sufficient quantities is often the first 

requirement for many biotechnological applications as well as for biochemical and 

structural studies. The high-level production of recombinant proteins requires, in 

addition to an efficient genetic expression system, a suitable expression host. To 

this end, different prokaryotic or eukaryotic microorganisms are commonly used 

(39, 60). Despite the plethora of known expression hosts, the Gram-negative 

bacterium E. coli is often the preferred host because of the ease of handling and 

genetic manipulation, as well as its rapid growth rate and capability to produce 

recombinant proteins in high yields (3, 49). E. coli cells have distinct cellular 

compartments i.e. the cytoplasm and the cell envelope. The latter comprises the 

cytoplasmic and outer membranes, separated by the periplasmic space. This 

compartmentalization offers the advantage that proteins can be expressed in each of 

these cellular compartments, depending on the characteristics of the target protein. 

Periplasmic expression of target proteins may, for example, be favored over 

cytoplasmic expression in some cases as it improves protein folding, reduces 

proteolytic degradation and, moreover, the periplasm represents a cellular 

compartment with less contaminants relative to the cytoplasm, thereby allowing a 

simpler and more straightforward purification of expressed proteins (12, 30). 

 Under various physiological conditions, a further implication of periplasmic 

expression can be reduced toxicity of enzymatic transformation products. This is of 

importance when natural organisms are exposed to synthetic chemicals, such as 

halogenated hydrocarbons. Especially in the case of xenobiotic compounds and 

oxidative reactions, cytoplasmic conversion may yield reactive metabolites such as 

aldehydes and epoxides, which may decrease viability or completely block 

metabolism (57). During bacterial conversion of 1,2-dichloroethane and 1,2-

dibromoethane, sequential conversion by haloalkane dehalogenases and alcohol 

dehydrogenases can produce highly toxic bromoacetaldehyde (37, 55). Periplasmic 
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expression may lead to temporary accumulation of reactive intermediates in the 

medium rather than in the cells and thereby reduce toxicity. Thus, the conversion of 

2-chloroethanol by periplasmic quinoprotein alcohol dehydrogenase can be 

explained this way (19, 55).  

 Furthermore, the HCl-eliminating hexachlorohexane dehalogenase (LinA) 

and the 1,2,4,5-tetrachlorohexacyclohexadiene-hydrolyzing haloalkane 

dehalogenase (LinB) from bacteria degrading γ-hexachlorocyclohexane (lindane) 

have been shown to occur in the periplasm (31). The latter enzymes can act on a 

mixture of lindane degradation isomers and form various toxic side products that 

the cell may prefer to keep outside (32, 42, 43).  

 The translocation of proteins to the periplasm is usually accomplished by 

employing endogenous protein translocation pathways. The vast majority of the 

bacterial proteins that function outside of the cytoplasm (secretory proteins) are 

synthesized with an N-terminal signal sequence that directs the protein to a 

specialized membrane-embedded translocation machinery. This translocation 

system facilitates the vectorial transport across the cytoplasmic membrane (7). A 

large number of studies show that E. coli possesses two distinct translocons, Sec 

and Tat, in addition to several highly specialized mechanisms of pathogenic E. coli 

strains for the secretion of virulence factors (7, 8, 26). Most secretory proteins are 

exported by the Sec translocon in an unfolded state (7). In contrast, the Tat 

translocon is able to translocate fully folded and often cofactor-containing secretory 

proteins (26). 

 Different strategies have been presented for the export of recombinant 

proteins in E. coli and other bacteria, which usually revolve around fusing a signal 

sequence genetically to the target protein (54). However, in many cases this does 

not result in periplasmic export of the target protein and this can frequently be 

solved by attachment of a larger proteinaceous moiety that functions as an export 

signal, or secretion partner. Known examples of a secretion partner include a 

truncated variant of Staphylococcus aureus protein A and OsmY from E. coli (15, 

41). 

 Here, we report on the subcellular localization of haloalkane dehalogenase 

(DhaA31) and its use as a novel export signal for generic periplasmic expression in 

E. coli. DhaA31 is a directed-evolution improved variant of the bacterial 

haloalkane dehalogenase DhaA (34). The latter has been identified in different 

strains of the Gram-positives Rhodococcus and Mycobacterium, as well as in the 

Gram-negative Pseudomonas cichorii where it is involved in the hydrolytic 

dehalogenation of xenobiotic aliphatic organohalogens (37, 38). The enzyme 

belongs to the α/β-hydrolase superfamily of proteins and catalyzes carbon-halogen 

bond cleavage via covalent catalysis, as shown by numerous biochemical studies 

and the crystallographic structure (33). When the histidine of the catalytic triad of 

such a haloalkane dehalogenase is replaced by mutagenesis, an inactive variant is 

obtained, in which the covalent alkyl-enzyme intermediate can be trapped (36) 

because the first half-reaction - dehalogenation and enzyme alkylation - still can 

proceed but the second half reaction - hydrolysis of the covalent intermediate is 

blocked (40). This property allowed the use of a further modified haloalkane 

dehalogenase in the HaloTag localization reporter system where the dehalogenase 

is genetically fused to a target protein yielding a hybrid that subsequently can be 

detected with a fluorescent alkyl halide pseudo-substrate (28). 

 Biochemical fractionation experiments that we report here show that 

DhaA31, which is considered to be a cytoplasmic enzyme involved in alkyl halide 
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detoxification, is present in the periplasmic space when expressed in P.  putida and 

E. coli. Remarkably, DhaA31 does not contain a typical signal sequence and was 

not processed upon periplasmic export. Furthermore, we found that DhaA31 is able 

to facilitate the periplasmic export of two cytoplasmic model proteins, including an 

oxidase that was catalytically active in whole cells. Our data show that DhaA31 can 

be used as a platform for the periplasmic expression of different enzymes in a 

functional form, thereby opening avenues for use of this system in various 

biotechnological applications.  

 

Materials and methods 
 

Reagents, enzymes and sera. Restriction enzymes were obtained from New 

England Biolabs (Beverly, USA).  T4 DNA ligase and DNA polymerase were from 

Invitrogen. ECL Western-blotting detection reagent was from Amersham 

biosciences. Horseradish peroxidase was from Fluka. All other chemicals were 

supplied by Sigma and of analytical grade. Antisera against DnaK and DsbA were 

kindly provided by A. Mogk and H.D. Bernstein, respectively.  Antiserum against 

AldO was described before (53) and antiserum against the hexahistidine tag was 

from Abcam. 

  

Strains, plasmids and growth conditions. The E. coli strain TOP10 (Invitrogen) 

was used as a routine host for all plasmid constructs. E. coli strains MC1061 (6) 

and TOP10 were used for subcellular localization experiments and whole-cell 

conversions of xylitol. P.  putida strains MC4 and MC4-5222 were used for 

subcellular localization studies. The latter strain is a genetically modified derivative 

of P. putida strain MC4 in which the dehalogenase gene (dhaA31) is integrated in 

the genome and expressed under the constitutive dhlA promoter of Xanthobacter 

autotrophicus (21).  

 For the expression of DhaA31, plasmids pIT31 and pIS31 were used, which 

are based on the medium copy vector pIT2 (46), and were described previously 

(Samin et al. in preparation). For fusing AldO and TrxA with DhaA31, we used a 

three-step PCR approach in which both model proteins were appended to the C-

terminus of DhaA31 separated by a flexible linker peptide (Pro-Gly-Gly). In the 

first round, the TrxA coding sequence (accession number P0AA25) was obtained 

using genomic DNA from E. coli TOP10 as template, whereas the aldO gene was 

amplified from pBAD-mbpAldO as template (16).  The final PCR products were 

digested with NdeI/HindIII and ligated into the corresponding sites of the medium 

copy plasmid pIT2 (46), yielding pIT2-DhaA31-TrxA and pIT2-DhaA31-AldO, 

respectively. Primer sequences are available on request and the nucleotide sequence 

of all constructs was confirmed by DNA sequencing (GATC Biotech, Germany). 

 For the expression of DhaA31 or the DhaA31-TrxA fusion, cells were 

grown to saturation overnight at 30
o
C (TOP10 and MC1061), or for 48 h at 17

o
C 

(P. putida MC4). Cells were grown as previously described for the expression of 

AldO, or the DhaA31-AldO hybrid (16). No inducer was included because 

sufficient expression of all constructs was obtained by un-induced background 

expression. Strain MC4-5222 was grown in minimal media containing 4 mM 2,3-

dichloro-1-propanol as sole carbon source. All strains were routinely grown in 

Luria Bertani medium (LB, containing per l  10 g tryptone, 5 g yeast extract, 5 g 

NaCl) under aerobic conditions unless indicated otherwise. Where appropriate, 
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ampicillin (100 μg/ml) or tetracycline (12.5 μg/ml) was added to the culture 

medium. 

 

Cell fractionation. E. coli or P. putida cells expressing DhA31 or its derivatives 

were grown as described, 15-20 OD600 units of cells were harvested and 

periplasmic extracts of these cells were obtained either by osmotic shock or cold 

shock procedure as described (17, 45). Protein concentrations of the different 

subcellular fractions were measured with Bradford reagent at 595 nm using bovine 

serum albumin as standard. 

 

Enzyme assays. The dehalogenase activity of DhaA31 or CPA dehalogenase was 

analyzed by incubating an enzyme-containing sample with 5 mM 1,2,3-

trichloropropane in 50 mM Tris-SO4 buffer, pH 8.2, at 30°C. Dehalogenase 

activities were measured by determining halide release spectrophotometrically 

(Perkin-Elmer Lambda Bio40) at 460 nm after the addition of mercuric thiocyanate 

and ferric ammonium sulfate at different times (47). One unit of enzyme activity 

was defined as the amount of enzyme that catalyzes the formation of 1 mole of 

halide ion per min. The oxidase activity of cellular fractions and whole cells 

expressing AldO or DhaA31-AldO was determined by coupling the production of 

H2O2 by AldO or its derivatives to a horseradish peroxidase-mediated oxidation of 

4-aminoantipyrine and 3,5-dichloro-2-hydroxybenzenesulfonic acid. The resulting 

pink adduct can be detected spectrophotometrically at 515nm (ε515 = 26 mM
-1 

cm
-1

) 

(10). For the detection of oxidase activity, phosphate-buffered saline (pH 7.4) was 

used as assay buffer containing 0.1 mM 4-aminoantipyrine, 1 mM 3,5-dichloro-2-

hydroxybenzenesulfonic acid, 3 units of horseradish peroxidase, 5 mM xylitol, 0.01 

and OD600 units of cells. All experiments were performed at least in duplicate.  

 

SDS-PAGE and immunoblotting. Samples of cellular fractions containing equal 

amounts of protein were analyzed on standard 12% SDS-PAGE gels followed by 

protein staining, or immunoblotting. Proteins were transferred to nitrocellulose 

membrane (Amersham Biosciences) using a semidry apparatus from Biorad. 

Immunodection was performed essentially as described before (53). 

 

Ni
2+

-NTA agarose purification of DhaA31 and MALDI-TOF analysis. His-

tagged DhaA31 was isolated from an E. coli TOP10 periplasmic fraction by a one-

step nickel-NTA procedure as recently described (52). To assess whether DhaA31 

was processed during periplasmic export, the mass of the purified enzyme was 

determined by mass spectrometry on a MALDI-TOF/TOF 4800 Proteomics 

Analyzer (Applied Biosystems) in the range of m/z 600-4000, in positive ion mode, 

essentially as described (2). 

 

Sequence analysis. The presence of a potential signal sequence was analyzed by 

using the Signal P and PSORT online prediction tools (9, 59). For the prediction of 

non-classically secreted proteins SecretomeP 2.0 was used (4). 

 

Results 
 

Periplasmic expression of haloalkane dehalogenase. Dehalogenases catalyze the 

hydrolysis of the carbon-halogen bond of organohalides. Owing to this, these 

enzymes represent important potential tools for different applications such as, for 
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example, the removal of organohalides from soil and groundwater (20). 

Consequently, dehalogenases have been the focus of much research to engineer 

variants with improved properties as nicely illustrated by DhaA31. DhaA31 

represents an optimized variant of the Rhodococcus haloalkane dehalogenase DhaA 

(19, 25) with drastically improved catalytic properties (19, 34). 

 Currently, we use DhaA31 in combination with P. putida MC4 as a basis to 

engineer a bacterial strain for bioremediation purposes. During these efforts we 

noticed that DhaA31 appeared in periplasmic fractions obtained by an osmotic 

shock procedure, which is rather unexpected because it is considered to be a 

cytoplasmic enzyme. We decided, therefore, to carefully assess the subcellular 

localization of DhaA31 in P. putida MC4. To this end, two different DhaA31 

expression plasmids were constructed equipped with either a trc promoter (pIT31), 

which is an inducible promoter, or the X. autotrophicus dhlA promoter (pIS31), 

which is a strong constitutive promoter for the expression of the dhaA31 gene in 

MC4 (21). Importantly, pIT31 and pIS31 are medium copy plasmids (pBBR1 

origin of replication (23)), resulting in a moderate overexpression of DhaA31 and 

were therefore chosen for all subsequent fractionation experiments to minimize the 

risk of artifacts related to overexpression levels.  

 Following growth at 30ºC as described under Materials and Methods, MC4 

cells expressing DhaA31 were harvested and initially subjected to the osmotic 

shock procedure to obtain a periplasmic and spheroplast fraction (which contains 

the cytoplasmic and total membrane fraction). The dehalogenase activity in these 

fractions was analyzed by measuring the halide release spectrophotometrically. As 

shown in Table 1 this revealed that in all strains tested the major portion of active 

DhaA31 was found in the periplasmic fraction. As a control to monitor the 

efficiency of the fractionation protocol, we analyzed the activity of the cytoplasmic 

enzyme 2-chloropropionic acid (CPA) dehalogenase (Samin et al. in preparation) in 

all fractions (Table 1). This showed that the activity of this enzyme was restricted 

to the spheroplast fraction, thereby indicating that the fractionation procedure was 

effective. Care must be taken with interpreting these results as the fractionation 

procedure used can have a profound influence on the experimentally determined 

subcellular localization of certain proteins, as shown by a recent proteomic study 

(18). Therefore, we studied the subcellular localization of DhaA31 again using 

another fractionation protocol based on the osmotic shock method, which yielded 

almost exactly the same results as with the cold shock procedure (data not shown). 

 Despite the moderate expression of DhaA31 from a medium copy vector, it 

could be possible that (only) overexpression of DhaA31 results in its periplasmic 

localization, e.g. due to leakage or aberrant behavior of highly overexpressed 

protein. Therefore, cells of strain MC4-5222 were included as an additional control. 

In this strain, the dhaA31 gene has been inserted in the chromosome by transposon-

mediated integration, which results in low expression of this enzyme. The specific 

haloalkane dehalogenase activity was 0.37  U/mg in MC4-5222 cell-free lysates 

obtained by sonication, as compared to 0.73 U/mg for extract of MC4(pIT31).  As 

observed before, the major portion of active DhaA31 was found in the periplasmic 

fraction of MC4-5222 cells (Table 1) whereas the activity of CPA dehalogenase 

was almost exclusively found in the spheroplast fraction. Thus, the periplasmic 

localization of DhaA31 is not caused by its overexpression and the results strongly 

indicate that DhaA31 is indeed transported to the periplasm in different expression 

constructs. 
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 Encouraged by these results we next wished to confirm the periplasmic 

localization of DhaA31 by using further controls, including E. coli cells because 

most fractionation procedures have been optimized for this organism (14, 50).  To 

this end, cellular fractions were prepared according to the osmotic shock method 

from P. putida MC4 or E. coli TOP10 expressing DhaA31 from pIT31 or pIS31, 

respectively. The cellular fractions derived from TOP10 and MC4 cells were 

subjected to SDS-PAGE analysis followed by protein staining of the gel (Fig. 1A). 

This showed that DhaA31 (indicated by an asterisk) was expressed in all strains 

and, moreover, a substantial enrichment of DhaA31 was observed in the 

periplasmic fractions, consistent with the results of Table 1.  

 

Table 1. Activity of DhaA31and CPA dehalogenase in cellular fractions of P. 

putida MC4. 

Strainsb 

Activitya 

DhA31 CPA dehalogenase activity 

Periplasmic 

fraction 

Spheroplast 

fraction 

Periplasmic 

fraction 

Spheroplast 

fraction 

MC4 (pIT31) 2.20 (77) 0.66 (23) 0.17 (2) 8.64 (98) 

MC4 (pIS31) 1.65 (72) 0.64 (28) 0.27 (6) 4.40 (94) 

MC4-5222 0.10 (83) 0.02 (17) 0.05 (3) 2.25 (97) 

a Activity is expressed as specific activity and (%).  

bpIT31: DhaA31 expression plasmid equipped with the trc promotor; pIS31: DhaA31 

expression plasmid equipped with the dhlA promotor. 

 

 To assess the presence of DhaA31 in the periplasmic fractions, we next 

analyzed all subcellular fractions by immunoblotting.  To enable immunodetection 

in these experiments, DhaA31 was equipped with a C-terminal His affinity 

purification tag, allowing its identification by means of an antiserum against the 

His tag. When these samples were probed with a His antibody, a small amount of 

DhaA31 was detected in the spheroplast fractions whereas a significant fraction of 

DhaA31 was indeed observed in the periplasmic fraction of E. coli TOP10 and P. 

putida MC4 (Fig. 1B and C), thereby confirming our previous observations. To 

monitor the efficiency of the fractionation procedure, additional control blots were 

performed with antisera against DnaK or DsbA, which serve as a cytoplasmic or 

periplasmic marker, respectively. This showed that DnaK is mainly observed in the 

spheroplast fraction as expected and DsbA is predominantly detected in the 

periplasmic fractions of E. coli TOP10. Unfortunately, we were unable to detect 

DsbA in periplasmic fractions of P. putida MC4 using our DsbA antiserum against 

E. coli DsbA. Importantly, DnaK and DsbA are commonly used as fractionation 

markers by us and others in similar localization studies (35, 51-53). Combined, the 

results demonstrate that the fractionation procedure was efficient and, therefore, 

clearly show that DhaA31 is exported out of the cytoplasm to the periplasm.  
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Fig. 1. Periplasmic localization of haloalkane dehalogenase. DhaA31 was expressed from 

two distinct expression plasmids in E. coli TOP10 or P. putida MC4. Plasmid pIT31 is 

equipped with a trc promoter, and pIS31 contains the dhlA promoter. Cells were grown as 

described under Materials and Methods and subsequently fractionated into a periplasmic (P) 

and spheroplast (S) fractions, according to the osmotic shock method. Samples were 

analyzed by SDS-PAGE and Coomassie staining (A). The position of DhaA31 is indicated 

by an asterisk. TOP10 transformed with pIT31; lane 1 and 2, or with pIS31; lane 3 and 4. 

MC4 transformed with pIT31; lane 5 and 6, or pIS31; lane 7 and 8. Immunoblot analysis of 

the periplasmic and spheroplast fractions shown in panel A from TOP10 (B) or MC4 (C), 

using the indicated antisera. DhaA31 produced from pIT31; lane 1 and 2, or from pIS31; 

lane 3 and 4.  

 

DhaA31 is exported independently of a cleavable signal sequence. The vast 

majority of proteins that function outside of the cytoplasm are synthesized with an 

N-terminal signal sequence that is cleaved off upon translocation (7). Most 

established signal sequences are easily recognized in the primary sequence of a 

protein by online prediction tools such as SignalP and PSORT (9, 59). Therefore, 

we used these tools to investigate whether DhaA31 is equipped with such an 

established signal sequence. Remarkably, no signal sequence was predicted by 

these programs. Some proteins are exported out of the cytoplasm independent of a 

standard N-terminal signal sequence. Potential candidates of this group of such so-

called non-classical secreted proteins can be identified by the online prediction tool 

SecretomeP (4). However, DhaA31 was not recognized by this algorithm as a 

secreted protein that does not require an N-terminal signal-sequence. To assess the 

absence or presence of a cleavable signal sequence experimentally, we determined 

the mass of DhaA31 purified from a periplasmic preparation of E. coli TOP10 by 
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MALDI-TOF mass spectrometry. If DhaA31 is produced as a precursor protein that 

possesses a signal sequence that is removed by proteolysis upon translocation (7), 

one would expect that the periplasmic form of DhaA31 has a significantly lower 

mass than the protein predicted by the gene sequence. However, the results of the 

MALDI-TOF analysis revealed that the mass difference of periplasmic DhaA31 

and its theoretical mass was less than one amino acid, which does not correspond to 

removal of a standard signal sequence with an average length of 20 residues. This 

indicates that DhaA31 does not contain a cleavable signal sequence, thereby 

strongly suggesting that DhaA31 is exported signal sequence independently.  

 

DhaA31 as a platform for periplasmic expression. Our finding that DhaA31 is 

exported to the periplasm of E. coli and P. putida independent of a cleaved signal 

sequence has interesting implications with respect to the potential use of this 

enzyme as a platform for the periplasmic expression of other proteins. Therefore, 

we investigated the ability of DhaA31 to facilitate the periplasmic export of two 

different cytoplasmic model proteins, namely thioredoxin (TrxA) and alditol 

oxidase (AldO). TrxA is a small (ca. 15 kDa) cytoplasmic endogenous E. coli 

protein (13). AldO is a carbohydrate oxidase of 45 kDa from the bacterium 

Streptomyces coelicolor and contains covalently bound FAD as cofactor (11, 16). 

Both model proteins were genetically fused to the C-terminus of DhaA31 with a 

His tag and flexible linker peptide (Pro-Gly-Gly) in between, resulting in genes 

encoding hybrid DhaA31-TrxA or hybrid DhaA31-AldO, respectively (Fig. 2A). 

Both constructs were introduced into the medium copy vector pIT2 (see Materials 

and Methods) and transformed into E. coli. Subsequently, a spheroplast and 

periplasmic fraction was prepared from cells producing DhaA31-TrxA or DhaA31-

AldO according to the osmotic shock procedure. Next, the different cellular 

fractions were subjected to SDS-PAGE analysis followed by protein staining of the 

gel to establish the expression of the constructed hybrids (Fig. 2B). This showed 

that DhaA31-TrxA and DhaA31-AldO were expressed efficiently and migrated in 

the gel at a position corresponding to their expected size, i.e. 49 kDa for DhaA31-

TrxA (Fig. 2B, lanes 3 and 4, indicated by an closed circle), and 80 kDa for 

DhaA31-AldO (lanes 1 and 2,  indicated by an arrowhead). Interestingly, a 

considerable fraction of both chimeras was observed in the periplasmic fraction 

(lanes 1 and 3). 
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Fig. 2. DhaA31 as a platform for generic periplasmic expression. (A) Schematic 

representation of the TrxA (DhaA31-TrxA) and AldO (DhaA31-AldO) fusion constructs 

used in this study. The constructs comprise the first 294 amino acids of DhaA31, a short 

sequence of 9 residues (hatched) containing a his tag and a flexible linker  and amino acids 

1-109 of TrxA, or residues 1-418 of AldO. (B) Analysis of subcellular localization. The 

DhaA31-TrxA and the DhaA31-AldO hybrid were expressed in wild-type E. coli cells as 

described under Materials and Methods and subsequently fractionated into a periplasmic (P) 

and spheroplast (S) fraction, according to the osmotic shock procedure. Samples were 

analyzed by SDS-PAGE and Coomassie staining. The position of DhaA31-AldO (lane 1 and 

2) is indicated by an arrowhead and the position of DhaA31-TrxA (lane 3 and 4) is indicated 

by a closed circle. Immunoblot analysis of the DhaA31-TrxA (C) or DhaA31-AldO (D) 

content in the fractions shown in panel A, using the indicated antisera. 

 

  To confirm the presence of DhaA31-TrxA and DhaA31-AldO in the 

periplasmic fractions, we performed an immunoblotting experiment using an 

antibody against the His tag for detection of DhaA31-TrxA (Fig. 2C), or an 

antiserum against AldO for the identification of DhaA31-AldO (Fig. 2D). This 

revealed that a substantial amount of both hybrids was present in the periplasmic 

fractions, thereby verifying the results from the SDS-PAGE analysis. Moreover, a 

considerable fraction of DhaA31-TrxA and DhaA31-AldO was also observed in the 

spheroplast fraction. There was no apparent degradation of the TrxA chimera but 

the AldO hybrid showed some degradation, suggesting that DhaA31-AldO may be 

less stable than DhaA31-TrxA and may be prone to proteolytic degradation. As an 

additional control to monitor the efficiency of the fractionation procedure, we 

analyzed the levels of the cytoplasmic marker DnaK and the periplasmic protein 

DsbA in the same samples by immunoblotting. This showed that DnaK was mainly 

observed in the spheroplast fraction whereas a substantial amount of DsbA was 

detected in periplasmic fraction (Fig. 2C, D), showing that the fractionation 

procedure was effective. Therefore, these data show that two vastly different 

proteins, TrxA and AldO, can be successfully transported to the periplasm by 

fusing them to DhaA31. 
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Application of the DhaA31-AldO hybrid in whole-cell biocatalysis. Although 

the results described above emphasize the potential of DhaA31 as a platform for 

periplasmic expression, they do not reveal whether TrxA or AldO are translocated 

in an active form. With regards to this issue it is interesting to note that a strong 

fluorescent band was observed in the spheroplast and periplasmic fraction of cells 

expressing DhaA31-AldO when the SDS-PAGE gel shown in Fig. 2 was briefly 

incubated in acetic acid and placed under UV light prior to protein staining (data 

not shown). This indicates that DhaA31-AldO contains covalently bound FAD and, 

therefore, suggests that it is folded into its active conformation. Inspired by this 

finding we investigated the activity of DhaA31-AldO in more detail to establish if 

the system can be used in biotechnological applications. Therefore, we analyzed 

whether wild-type E. coli cells expressing the DhaA31-AldO hybrid could be 

employed in the conversion of xylitol. Xylitol represents the preferred substrate of 

AldO and is converted into D-xylose with the concomitant production of H2O2 (16, 

56). The formation of the latter can be monitored spectrophotometrically by using a 

peroxidase-mediated reaction in which the H2O2, inherently formed upon oxidase 

activity, reacts to form a colored product. 

 
Table 2. Conversion of xylitol by E. coli cells expressing AldO or DhaA31-AldO fusion 

protein. 

Protein Toluene permeabilized Whole cell activity 

(µM.min-1.OD600-1) 

AldO  
- 0 

+ 15.2 ± 1.4 

DhaA31-AldO 
- 5.3 ± 0.2 

+ 10.5 ± 1.1 

 

 Table 2 shows that control cells, expressing cytoplasmic AldO, did not show 

significant conversion of xylitol, suggesting that no substantial lysis of the cells has 

occurred under these conditions.  However, xylitol was readily converted by these 

cells upon permeabilization with toluene. This shows that cytoplasmic AldO is 

unable to react with xylitol and suggests that xylitol does not readily pass the 

cytoplasmic membrane, as noted before (53). Cells expressing the DhaA31-AldO 

hybrid were able to convert xylitol efficiently without permeabilization, indicating 

that xylitol was available to the DhaA31-AldO hybrid, in agreement with the 

presence of the protein in the periplasm. After toluene treatment, these cells 

displayed moderately improved oxidase activity.  

 These data show that DhaA31 is able to facilitate the periplasmic export of 

AldO in an active form as judged by the activity of cells expressing the DhaA31-

AldO hybrid towards xylitol. Thus, DhaA31 can be applied as a vehicle for the 

periplasmic expression of AldO in a functional form, indicating its potential use as 

a platform for generic periplasmic expression of active enzymes. 

 

Discussion 
 

Expression of target proteins in the periplasm of Gram-negative bacteria can have 

major advantages over cytoplasmic expression as, for example, it improves protein 
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stability and reduces proteolytic degradation. In case of whole-cell biocatalysis, 

periplasmic expression of enzymes that form toxic and/or reactive side products 

may reduce cellular toxicity. Moreover, the purification of proteins expressed in the 

periplasm can be done with a simple extraction procedure (12, 30). To obtain 

periplasmic expression of a target protein, it has to be exported out of the cytosol 

across the cytoplasmic membrane, which is usually achieved by fusing a signal 

sequence to the protein of interest in order to funnel it into a distinct protein 

translocation pathway (54). In many cases, however, this approach does not result 

in the periplasmic export of the target protein, which can frequently be solved by 

fusing it to a so-called secretion partner, which functions as an export signal. A 

secretion partner is larger than a signal sequence and often comprises a full-length 

protein or a truncated variant thereof, such as S. aureus protein A and OsmY from 

E. coli (15, 41). In the work reported here we show that DhaA31 can be utilized as 

a platform for periplasmic expression. Specifically, data are presented suggesting 

that: (i) DhaA31 is localized to the periplasm; (ii) it does not contain a typical 

signal sequence and is not processed upon translocation; and (iii) DhaA31 is able to 

facilitate the periplasmic export of TrxA and AldO, two unrelated cytoplasmic 

enzymes, which were genetically fused to the C-terminus of DhaA31. Moreover, 

the DhaA31-AldO hybrid was successfully applied in the whole-cell conversion of 

xylitol. 

 DhaA31 is an optimized variant of DhaA containing 6 altered residues that 

are part of its main access tunnel towards the active site (34). Furthermore, DhaA31 

is equipped with a His affinity purification tag. It is therefore conceivable that the 

translocation of DhaA31 may be caused by these mutations or the His tag. To 

exclude these possibilities, we performed an additional control experiment, 

showing that recombinant wild-type DhaA containing a His tag is also localized to 

the periplasm, similar to a DhaA31 variant lacking a His tag (data not shown). 

Combined, this shows that the translocation of DhaA31 is not an indirect effect 

caused by mutations or a His tag; rather, this appears physiologically relevant. If 

the function of DhaA translocation to the periplasm indeed is related to a 

preference for keeping the metabolism of reactive substrates and products outside 

the cells is at present unclear. The DhaA-type haloalkane dehalogenase has been 

detected in various different host strains (see Introduction), and can function in the 

metabolism of diverse compounds such as 1-halo-n-alkanes, 1,2-dibromoethane, 

1.3-dichloropropylene, and maybe other compounds (37, 38). 

 Our data indicate that DhaA31 is transported to the periplasm in a signal 

sequence-independent fashion. This is not unprecedented as several examples of 

secretory proteins that are translocated signal sequence independently have been 

described previously, including the unrelated dehalogenase LinA and the α/β-

hydrolase fold haloalkane dehalogenase LinB mentioned above (1, 22, 24, 31, 44). 

Furthermore, an increasing number of these proteins are discovered by recent 

proteomic studies analyzing the secretome of different bacteria (18, 22, 27, 58), 

giving rise to the term non-classical protein secretion as opposite to classical, signal 

sequence-dependent export (5). Non-classically secreted proteins can be identified 

by the online prediction tool Secretome P (4). Remarkably, DhaA31 and both LinA 

and LinB are not recognized by this algorithm despite their experimentally verified 

periplasmic localization (31). This may suggest that the export of DhaA31 does not 

depend on specific information present in its primary sequence. However, when we 

fused the signal sequence of DppA, a periplasmic protein of P. putida MC4, to the 

N-terminus of DhaA31 its export was blocked in MC4 as well as in E. coli (details 
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not shown). This shows that periplasmic export of DhaA31 can be impaired by N-

terminal modification, indicating that its export is sequence specific, and thereby 

ruling out non-specific export mechanisms such as leakage. 

 It is well established that in the case of classical protein export, secretory 

proteins are directed to either the Sec or Tat translocon by virtue of their N-

terminal signal sequence (7). Moreover, the wealth of genetic, biochemical and 

structural data for these systems has resulted in a detailed mechanistic 

understanding of signal sequence-dependent protein translocation (7). In contrast, 

this information is not available for non-classically secreted proteins, raising the 

question what mechanism is employed for their translocation? With regards to this 

question it is interesting to note that accumulating evidence indicates that both the 

Sec and Tat translocon are involved in signal sequence-independent translocation 

as well. Firstly, the E. coli Tat translocon is able to translocate multi-subunit 

complexes of which one subunit contains a signal sequence, which is sufficient for 

translocation of the entire complex by a so-called hitchhiker mechanism (45). 

Secondly, a recent study showed that Rhizobium leguminosarum bv. viciae  SodA, 

a periplasmic protein devoid of a classical signal sequence, was exported by a 

SecA-dependent mechanism (24). These recent findings may point towards a 

prominent role of established translocation machineries in non-classical protein 

secretion. This notion is supported by our results obtained with two unrelated 

cytoplasmic enzymes, TrxA and AldO, as model proteins to explore the ability of 

DhaA31 to facilitate the periplasmic export of passenger proteins. TrxA is a small 

(~ 15 kDa) cytoplasmic endogenous E. coli protein and is involved in maintaining 

the redox balance of the cytoplasm (13). AldO is a carbohydrate oxidase of 45 kDa 

from the bacterium S. coelicolor and contains covalently bound FAD as cofactor 

(11, 16). Recent translocation studies showed that TrxA can be exported 

functionally to the periplasm via the cotranslational SRP-dependent pathway as 

well as Tat-dependently probably because the rapid folding of TrxA prevents its 

post-translational export (29, 48). In contrast, we have shown that AldO can 

exclusively be transported in a functional form Tat-dependently to the periplasm 

because of its covalently bound FAD cofactor, which is autocatalytically 

incorporated during protein synthesis (53). Therefore, the ability of DhaA31 to 

translocate TrxA and, more specifically, AldO in a functional form to the periplasm 

points towards a Tat-dependent mechanism. This may suggest that DhaA31, and 

possibly other non-classically exported proteins, utilize the Tat pathway. Attempts 

to elucidate the export mechanism of DhaA31 by examining its translocation in E. 

coli cells with an impaired Tat or Sec pathway were inconclusive (data not shown) 

and, therefore, a novel translocation mechanism for DhaA31 cannot be excluded at 

present. 

 The ability of DhaA31 to facilitate the translocation of TrxA and AldO, 

which represent two structurally different enzymes, emphasizes the remarkable 

tolerance and flexibility of DhaA31 as a platform for the generic periplasmic export 

of heterologously expressed proteins. In addition, periplasmic expression is a 

frequently used strategy in the design of whole-cell biocataltyic systems as it 

dramatically improves substrate accessibility of the relevant enzymes (54). Our 

data illustrate this by showing that wild-type E. coli cells expressing the DhaA31-

AldO hybrid are able to convert xylitol, whereas cells expressing wild-type AldO 

cannot.  

 The commercially available HaloTag reporter system uses another 

derivative of the DhaA dehalogenase as a marker protein in localization studies 
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(28). Due to the removal of the histidine that forms the base in catalytic triad, the 

covalent intermediate formed during the first half-reaction of the catalytic cycle is 

trapped. This way, the enzyme can capture fluorescent groups that are bound to a 

substrate moiety via a linker, and a genetic fusion to a target protein can report on 

the localization of the fusion when examined by fluorescence spectroscopy. Our 

unexpected finding that DhaA31 is a periplasmic protein may have ramifications 

for this system. It would be interesting to investigate whether the DhaA variant 

employed in the HaloTag system behaves similarly as DhaA31 and to explore if the 

peculiar localization behavior of the dehalogenase appears in a broader range of 

organisms. 

 In summary, our data show that DhaA31 is exported to the periplasm signal 

sequence independently and can be exploited as a generic platform for the 

heterologous expression of biotechnologically relevant enzymes in the periplasm. 

This opens avenues for the use of this system in various biotechnological 

applications such as whole-cell biocatalysis as shown in the present study. 
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Abstract 
 

Trichloropropane is an emerging groundwater contaminant that is highly toxic and 

recalcitrant to biodegradation under aerobic conditions. The applicability of 

Pseudomonas putida MC4 strains that are genetically engineered to degrade TCP 

was investigated with a continuous flow packed-bed bioreactor. In these strains, an 

improved haloalkane dehalogenase is inserted in the chromosome, enabling 

hydrolytic conversion of TCP to 2,3-dichloro-3-propanol, which serves as a growth 

substrate for strain MC4. The reactors contained ceramic rings or sintered porous 

glass as packing material, and were inoculated with a suspension of precultivated 

cells to develop a biofilm. The extent of degradation was analyzed by measuring 

the effluent concentrations of TCP and 2,3-dichloropropanol (DCP) and the release 

of chloride ions. At low dilution rate, efficient removal was observed but when 

dilution rate was enhanced, removal efficiency decreased. A bioreactor inoculated 

with a mixed culture of different variants of engineered TCP-degrading bacteria 

and an additional dichloropropanol degrading strain showed improved performance 

with continuous 95% TCP removal at 23 h residence time over a period of 4 weeks. 

 

Introduction 
 

During recent decades, research on the biodegradation of short chain haloaliphatics 

was mainly focused on chloromethanes, chloroethanes and chloroethenes, which 

are industrially produced in large amounts and often encountered as environmental 

contaminants. However, so far too little attention has been paid to the 

biodegradation of 1,2,3-trichloropropane (TCP), which is another non-natural, toxic 

and recalcitrant chemical (30, 33). It is used as an intermediate in chemical 

production, as a solvent, paint remover and degreasing agent. It is also formed as a 

byproduct during the industrial synthesis of epichlorohydrin, a chemical that was 

widely used to prepare adhesives, coatings, epoxy resins, etc. TCP is introduced 

into the environment mainly by accidental release or improper waste disposal and it 

is found as a groundwater pollutant in different parts of the United States (2). Long-

term exposure to TCP may cause kidney failure, body weight reduction, and can 

induce formation of tumors in experimental animals. The Guidelines for 

Carcinogen Risk Assessment reported that TCP likely is likely carcinogenic to 

humans (30).  

 Remediation of TCP-contaminated sites is difficult due to its chemical 

stability, recalcitrance to biodegradation, and its unfavorable physiochemical 

properties (28). TCP can be converted by chemical reactions that involve oxidation, 

reduction, substitution, or hydrolysis (21) but complete removal is troublesome. A 

biological treatment process could be an efficient and cheap strategy for the 

purification of TCP contaminated water, but there are very few reports describing 

biodegradation (5, 15, 35). No naturally occurring bacteria are known to degrade 

TCP under aerobic conditions. Bosma et al. (2002) constructed TCP-degrading 

recombinant bacteria, which were able to grow slowly when TCP was added as the 

sole carbon source. The degradation capacity is based on the introduction of a TCP-

hydrolyzing haloalkane dehalogenase into a strain of Agrobacterium radiobacter 

(now called Agrobacterium tumefaciens) that slowly grows on 2,3-

dichloropropanol (5).  

 This first TCP-degrading strain was not optimal for environmental 

application for several reasons: 1) the growth rate and degradation kinetics are 
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slow, probably due to the modest activity of the improved haloalkane 

dehalogenase; 2) there is no good match between the enantioselectivity of the 

haloalkane dehalogenase (which produces mainly (S)-2,3-dichloro-1-propanol and 

the host organism, which prefers the (R)-enantiomer; 3) the vector system used for 

introduction of the improved dehalogenase gene into the host strain is plasmid-

based, mobilizable (although not self-transmissible), and carries a tetracycline 

antibiotic resistance marker. The use of organisms with a transmissible antibiotic 

resistance gene in an open environmental application is undesirable.  

 Recently, we succeeded in engineering new recombinant organisms for TCP 

biodegradation, in which most of these issues are partially solved. First, a better 

haloalkane dehalogenase was used (DhaA31,17). Second, the improved haloalkane 

dehalogenase gene is inserted into the chromosome without an antibiotic resistance 

marker using a transposon delivery system (7). Third, the new host, a strain of 

Pseudomonas putida called MC4, has an enhanced capacity to degrade 2,3-

dichloropropanol and there is no selectivity for one of the enantiomers (Samin et al. 

manuscript in preparation). In view of these improvements, it is tempting to test the 

new recombinant strains for removal of TCP in laboratory-scale continuous-flow 

bioreactors in order to evaluate the possibilities and limitations of application for 

groundwater cleanup, and to identify which further improvements in strain 

development are required. 

 The organisms tested in this study are P. putida MC4-5222, MC4-5221 and 

MC4-1331 (Samin et al. submitted for publication). They are derived from the 

same parent strain, P. putida MC4, which was enriched on 2,3-dichloro-1-propanol 

as sole carbon source. The derivatives carry a chromosomal insertion of the 

improved DhaA31 variant of the Rhodococcus erthropolis haloalkane dehalogenase 

(14, 17). This insertion was introduced with the help of a Tn5-derived transposon 

system (8). Using a resolvase (16), selection markers including the kanamycin-

resistance gene, were removed. The only coding sequence introduced in this 

engineered organism is gene for the improved haloalkake dehalogenase. The wild-

type version of this gene has been detected in various gram-positive and gram-

negative bacteria, and can be easily retrieved from soil by enrichment with 1-

chlorobutane or 1-chlorohexane (18, 19). 

 For the removal of chlorinated hydrocarbons from water and air, the use of 

immobilized cells in a packed-bed reactor is a commonly applied technology (9, 

10, 27). Various biofilm reactor types were used successfully to treat wastewater or 

groundwater contaminated with chlorinated xenobiotic compounds (25, 29). In 

comparison with the use of suspended cells, immobilization of microorganisms on 

an inert support has a number of advantages, such as a higher biomass 

concentration, a higher tolerable hydraulic and substrate loading, a better protection 

of cells against toxic substances, and prevention of suspended biomass in the 

effluents. Furthermore, higher degradation efficiency and improved operational 

stability were reported for systems using immobilized cells (13).  

 Especially the work of Stucki et al. (25, 26) is of interest since their 

experiments were done with a reactor inoculated with a defined culture of 

1,2-dichloroethane-degrading bacteria. Furthermore, this system was fully scaled 

up and used for the treatment of a 1,2-dichloroethane contaminated field site near 

Lübeck, Germany. The relevant physico-chemical properties of 1,2-dichloroethane 

and 1,2,3-trichloropropane are very similar, and it is justified to argue that once a 

good organism for aerobic biodegradation of TCP becomes available, the road to a 

full-scale treatment technology is straightforward. Since many prominent TCP-
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polluted sites received the contaminant from epichlorohydrin-manufacture wastes, 

TCP occurs as the predominant pollutant in many cases, which would facilitate the 

competitive maintenance of a TCP-degrader in a bioreactor receiving groundwater 

from such a practical site. 

 In this study, mineralization of TCP by the engineered strain P. putida 

MC4-5222 is investigated. Continuous biological removal of TCP from an aqueous 

stream under aerobic conditions is demonstrated for the first time. However, 

residence times had to be kept low for efficient removal. When further engineered 

strains were inoculated into the reactor (MC4-5221, MC4-1331 and Agrobacterium 

radiobacter AD1 (32), performance improved. Up to 80-95% TCP was biologically 

removed at varying residence times with negligible air stripping over a period of 

three months. 

 

Materials and Methods 
 

Chemicals. All chemicals used were of analytical grade and were supplied by 

Sigma, Aldrich or Merck. The Raschig rings were purchased from AceChemPack 

Tower Packing Co. and glass beads were ordered from ROBU-Glasfilter-Geraete 

GmbH. 

 

Growth conditions and media.  The construction of Pseudomonas putida MC4-

derivatives MC4-5222, MC4-5221 and MC4-1331 is described elsewhere (Samin 

et al. 2011, submitted for publication).  Agrobacterium radiobacter AD1 is able to 

grow on 1,3-dichloro-2-propanol and slowly degrades 2,3-dichloro-2-propanol 

(32). The MC4-derivatives were grown on TCP (0.1-1 mM) at 30ºC in a medium 

(MMY) that contained (per liter): 5.4 g of Na2HPO4·12H2O, 1.4 g of KH2PO4, 0.5 g 

of (NH4)2SO4, 0.2 g of MgSO4·7H2O, 5 ml of trace element metal solution and 5 

mg of yeast extract (11). To obtain growth, 0.5 mM TCP was initially added and 

batch cultures of MC4-derivatives were incubated at 30ºC with shaking. With 

intervals of a few days, 0.5-1 mM TCP was added until the OD600 was 0.4-0.5. The 

cells from a 4 l culture were collected by centrifugation at 5,000 rpm for 20 min, 

resuspended in 700 ml 50 mM phosphate buffer, pH 7.2, and then introduced into 

the reactor. Strain A. radiobacter AD1 was grown on LB medium at 30ºC (32).  

 

Bioreactor setup. The reactor was a double-walled cylindrical glass vessel with a 

volumetric capacity of 1.3 l and working volume of 0.7 l. Sampling ports were 

present at the top, the bottom, and at the middle of the vessel. Two reactor setups 

were used, which were same in their design except for the TCP inlet, recirculation 

method, and type of packing material. In reactor setup 1, the reactor was filled with 

300 g ceramic Raschig rings as packing material and the TCP inlet was positioned 

at the bottom of the reactor, thus achieving an upward flow through the reactor. 

Water was removed from the top of the reactor for recirculation, analysis, and 

effluent discharge. In setup 2, the packing material consisted of sintered glass beads 

(1.5 mm), and the TCP inlet was at the top. Recirculation was from the opposite 

side of the TCP inlet. The sampling port for analysis and effluent discharge were at 

the top of the reactor. A process flow diagram of both reactor setups is shown in 

Fig. 1. In both cases, part of the water stream from the outlet was recirculated using 

a peristaltic pump operated at 1 to 25 ml/min, as shown in the figure. For both 

reactors, the pH was monitored and controlled at pH 7 with 0.1 M NaOH. The 

temperature was maintained at 30ºC with the help of an outer heating jacket. Viton 
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fluoroelastomer tubing was used in the whole system to minimize TCP loss by 

evaporation or diffusion. The reactors were operated under non-sterile conditions.  

 The tendency of the support material to adsorb substrate such as TCP and 

DCP and to release chloride ions was measured in duplicate shake-flask 

experiments. Each flask contained MMY medium (50 ml), substrate and support 

material, and was incubated at 30ºC for four weeks. After this, the concentration of 

substrates by analyzed by gas chromatography and release of chloride ions by 

colorimetric analysis as described below.  

 

Biofilm formation. The Raschig rings and glass beads were washed twice with 50 

mM phosphate buffer (pH 7.2) and sterilized by autoclaving. A 700 ml suspension 

of TCP-grown cells was introduced in the reactor, which was left for 4 days with 

no supply of TCP. During this period, air was introduced at a rate of 1 ml/ min in 

the form of bubbles from the bottom of the reactor and the temperature was kept at 

30ºC. Four days after inoculation, addition of TCP (1-1.5 mM) was started at 0.1 

ml/min. To evaluate the performance of the reactor, TCP inlet concentrations were 

varied from 0.1 to 0.3 mM, inlet flow rates were varied from 0.1 to 2 ml/min, and 

recirculation was varied from 1 to 25 ml/min.  

 

 
 

Fig. 1. Process flow diagram of packed-bed bubble column bioreactor. In reactor setup 1, 

Raschig rings were used as biofilm support material with TCP feed in upward direction (1) 

and in reactor setup 2 sintered glass beads were employed as carrier material with TCP inlet 

downwards (2).  

 

Sampling and analysis. Syringes were used to take 5 ml samples from the outlet 

and inlet for TCP, DCP and chloride measurements (Fig. 1). Concentrations of TCP 

and DCP were determined by gas chromatography as follows: samples of 4.5 ml 

were extracted with diethyl ether containing 0.05 mM mesitylene as internal 
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standard. Samples of 2 μl were analyzed on a HP5 column (25 m × 0.25 mm × 0.2 

μm, Agilent Technologies) installed in a gas chromatograph equipped with a flame 

ionization detector. The carrier gas was nitrogen (50 kPa), and the temperature 

program was 5 min isothermal at 60°C followed by an increase to 110°C at a rate 

of 2°C/min and then to 130°C at a rate of 15°C/min.  

Chloride concentrations were measured colorimetrically at 460 nm after the 

addition of mercuric thiocyanate and ferric ammonium sulfate as described (4).  

 

 

Results and Discussion 
 

Packed-bed reactor. To study the continuous removal of TCP by the engineered 

recombinant bacteria, we opted for bioreactor system with a packing material to 

which the cells can attach and form a biofilm. As packing materials, ceramic 

(Raschig) rings and sintered glass beads were tested, since both have been used 

previously for the removal of synthetic contaminants in fixed film reactors, 

including chlorinated hydrocarbons (23, 25, 27, 34). To measure the possible 

adsorption of TCP and DCP by ceramic rings and sintered porous glass beads, we 

followed the procedure described under Materials and Methods. We found that 

neither packing material adsorbed TCP or DCP or released chloride ions to a 

significant extent.  

 

Biofilm development and TCP degradation in reactor 1.  Attachment of cells 

was started by incubating the reactor with a cell suspension of P. putida strain 

MC4-5222. The cells were prepared in 50 mM phosphate buffer as described in 

Materials and Methods and the support material was also prewashed with 50 mM 

phosphate (10).  Cells saturated with phosphate are more hydrophobic and have a 

higher tendency to flocculate and attach to surfaces (6). After inoculation, the 

system was left for 4 days without TCP supply since it was reported that 

attachment of cells can proceed faster when substrate is completely consumed (9). 

The temperature was kept constant at 30ºC, which is optimal for the Pseudomonas 

strain used, since it has been reported that cultivation at the optimal growth 

temperature can increase biofilm formation, e.g. through production of extracellular 

polymeric substances (EPS) involved in surface adhesion (1). 

After four days, TCP supply (1.2 - 1.5 mM) was started at low dilution rate 

(0.1 ml/min, residence time 116 h) to allow cell growth and an increase of biofilm 

size. The effluent concentrations of TCP, DCP and chloride ions were measured 

with different time intervals by GC-FID and colorimetric analysis, respectively. 

Effluent concentrations are the same as concentrations in the reactor since due to 

the high recirculation rate (5 ml/min) as compared to the feed rate (mostly 0.1 

ml/min), the overall reactor contents can be considered as ideally mixed, although 

there may be local variations in TCP levels close to the inlet port. 
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Fig. 2. Degradation of TCP by genetically engineered P. putida MC4-5222, reactor setup 1 with 

cells immobilized on ceramic rings. A) Reactor startup and TCP removal at high initial 

concentrations with dilution rate 0.008; B) TCP removal at different steady states with varying 

TCP inlet concentrations and dilution rates. Symbols: ■, TCP influent; ●, TCP effluent; ∆, 

DCP; ◊, chloride.   

 

The analytical results indicated that the immobilized genetically engineered 

MC4-5222 cells could remove TCP over a prolonged period of time (90 days). In 

the beginning, the degree of removal was around 33%, and it gradually improved to 

75% TCP removal (Table 1, Figure 2A). The data also showed that TCP was 

completely degraded since DCP was never detected as a product (detection limit 

0.01 mM) and chloride concentrations in the effluent increased stoichiometrically. 

The increasing degree of removal during the first 14 days of operation indicated 

that the engineered cells were growing within the column and stayed in the reactor 

(Fig. 2). Both TCP removal and chloride release continued over a 20-day period 

indicating that a stable degradation process was achieved due to immobilized 

organisms. Slight amounts of biomass appeared in the effluent collection vessel. 

However, after the initial startup period of 15 days, the degree of removal by strain 

MC4-5222 did not increase a lot anymore and (less than 5% further increase) under 

these reactor operation conditions.  

 Experiments were continued with a lower TCP concentration in the influent 

(0.33 mM)(Fig. 2, phase II). To prevent stripping of TCP via the exit air, the 

airflow was kept low throughout all experiments (0.5-1.5 ml/min) and the TCP 

solution (0.33 mM) was supplied at low feed rates (ca. 0.1 ml/min). This raised the 

question if oxygen supply might be limiting. In view of the TCP Henry coefficient 

(H=3.2-3.4·10
-4

 atm-m
3
/mol, which converts to a dimensionless Henry coefficient 

(or partitioning coefficient) of [TCP]g/[TCP]l = 0.012) and the air flow rate, the 

amount of TCP that could leave the reactor via the gas phase is calculated from: 

 

  TCPout,g/TCPout,l = Fgas*[TCP]g/Fl*[TCP]l, and  

 [TCP]g/[TCP]l = 0.012 

 

 This suggests that at at the conditions with the strongest aeration (liquid 

flow rate of 0.1 ml/min, air flow rate of 1.5 ml/min) still only 18% of the TCP 

could leave the reactor via the gas phase as compared to the TCP that leaves via the 

liquid phase. At residence times of 116 h and 23 h, this value was 2.4% and 0.6% 

respectively. 
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 Assuming that TCP degradation is a completely aerobic oxidative process 

and biomass formation is negligible, TCP degradation can be described by;  

 

 2 C3H5Cl3 + 7 O2 → 6 CO2 + 2 H2O + 6 HCl,  

                                           

 From this, it follows that the ratio between TCP feed (mole/ml·ml/min) 

and air flow (ml/min) should be lower than 1: 0.4. Since under the operation 

conditions used (TCP inlet 0.33 mM at 0.1 ml/min, lowest air flow 1.0 ml/min) this 

ratio is 2.5-fold higher, the system cannot be oxygen-limited. Thus, the modest 

performance in terms of % removal must have another cause.  

 To establish if TCP removal can be improved, we first tested variations in 

TCP loading and residence time in the reactor. These conditions could have an 

effect on biofilm growth and TCP degradation kinetics. Hydrodynamic conditions 

can influence biofilm density, which in turn will influence the diffusion of nutrients 

through the biofilm and thereby have an effect on reactor performance (3, 24).  

 In phase II, after decreasing the TCP feed concentration to 0.33 mM TCP at 

a residence time of 116 h, a lower level of TCP was found in the effluent and 

increased degree of TCP removal (87-93%). At day 48, mineralization of TCP had 

increased to 95-97% with only a few mg/l remaining in the effluent and with 

stoichiometric release of chloride ions. No DCP was detected in the effluent and 

the same results were seen in the reactor for about 67 days.  

 To test the possibility of TCP mineralization at a shorter water residence 

time, flow rates were increased from 0.1 ml/min to 0.5 ml/min and the TCP 

concentration was decreased from 0.33 mM to 0.14 mM (Fig. 2, Phase III). It was 

found that TCP removal efficiency was reduced to 70-80%. Apparently, the 

kinetics of the system did not allow a high hydraulic loading without losing 

performance in terms of removal efficiency. If degradation is in a first-order 

regime, which is not unlikely in view of the modest affinity of the dehalogenase for 

TCP, the removal efficiency is expected to decrease (22).  After 90 days of 

operation, reactor 1 was stopped because of back growth of cells into the TCP feed 

solution, and it was decided to test a modified setup.  

 

Modified reactor setup: sintered glass packing and upward flow. To test if 

improved performance could be obtained by changing the reactor setup, we decided 

to run the reactor with sintered glass beads as biofilm support and changed the 

substrate inlet to prevent back growth (reactor setup 2). Glass beads were found to 

be the best support material for mineralization of low-chlorinated biphenyls by 

Sphingomonas sp. (23) and trichloroethylene degradation using a pure culture 

expressing ortho-monooxygenases (27). Porosity of glass beads works well for the 

biofilm formation and inside the pores high fluid velocity has less effect on biofilm 

destruction (19).  Furthermore, the time required for biofilm formation may depend 

on the type of carrier material used for immobilization (9).  
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Fig. 3. Reactor setup 2, employing a packed-bed bioreactor with sintered glass beads as 

biofilm support. Panel A shows TCP removal at higher concentration (1.1-1.5 mM) with 

constant dilution rate during startup. Panel B represents continuous degradation under 

different loading regimes. Symbols: ■, TCP influent; ●, TCP effluent; ∆, DCP; ◊, chloride. 

The detailed operation conditions of the system are given in Table 1. 

  

 Startup of reactor 2 proceeded in a similar way as in the previous 

experiment. In the beginning, TCP (1.2-1.5 mM) was supplied with flow rate of 0.1 

ml/min. As shown in Fig. 3A, during the first 24 days, the outlet concentration 

gradually decreased from 1.1 to 0.28 mM, corresponding to a degree of removal of 

75%. Various conditions, such as TCP feed rate and recirculation rate, were 

changed as mentioned in Materials and Methods. The reactor was run until 34 days 

with same TCP concentration (1.2-1.5 mM) but no further improvement was 

observed. 

 At day 34, the reactor was supplied with 0.35 mM TCP at the same flow rate 

of 0.1 ml/min and 116 h residence time. From that time on, 92-98 % TCP removal 

was observed. However, the water-loading rate was rather low so after 59 days, the 

flow rate was increased 5-fold (0.5 ml/min) to investigate if TCP removal 

continued at lower residence time. At the same time, TCP concentration decreased 

to 0.14-0.1 mM. At the new residence time of 23 h, TCP degradation reduced to 

75-80% with stoichiometric release of chloride. 

 The results presented in Table 1 indicate that an increase of organic loading 

may have an inhibitory effect on the developed biofilm as reported earlier by 

Emanuelsson et al. (2006). With the decrease of organic loading when switching 

from phase I to phase II (1.0 to 0.26 mg h
-1

 l
-1

), the TCP removal efficiency of 

reactor 2 increased from 75 to 93% and a similar behavior was found in the reactor 

1 filled with Raschig rings. However, when the organic loading was increased from 

0.25 to 0.5 mg/l/ h (phase II to phase III), in both types of reactor the decrease of 

removal efficiency was more than what we expected from the comparison of phase 

I and II. These results suggested that in addition to the effect of organic loading, a 

high flow rate of the TCP feed (phase III in both reactors) might have an inhibitory 

effect on biofilm performance and reduce the TCP removal capacity of the reactor. 

No back growth was observed in reactor 2 over the whole period. 

 

\ 
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Table 1. Summary of operation conditions used in continuous bioreactors 1 and 2. 
Reactor Phase Days Organic loading 

(mg TCP h-1 l-1) 

Residence 

time (h) 

Removal 

efficiency 

(%) 

Strains 

1 

I* 34 1.0-1.3 116 33-77 

MC4-5222 

II 67 0.26-0.29 116 87-98 

III 90 0.4-0.6 23 71-80 

2 

I* 34 1.0-1.3 116 26-75 

II 59 0.25-0.30 116 91-98 

III 81 0.44-0.61 23 78-80 

IV 121 0.40-0.44 23 75-95 MC4-5221, 

MC4-5221, 

MC4-1331, 

AD1 

V 137 1.74-1.76 06 50-51 

*Phase 1 represents the time immediately after inoculation. 

 

Use of a mixed culture of TCP and DCP degraders. During construction of the 

TCP degrading derivatives of P. putida strain MC4 by transposition, we observed 

that, for unknown reasons, a large fraction of the dehalogenase-positive derivatives 

lost their ability to grow on DCP. This raised the suspicion that the modest 

performance of the bioreactor at higher loading rates may be caused by some 

intrinsic weakness of the recombinant strain MC4-5222. Since independent 

transposition events should yield MC4 derivatives with the haloalkane 

dehalogenase gene integrated in different positions of the genome, we tested if 

inoculation with additional independently obtained recombinants could enhance 

performance. In addition, cells of Agrobacterium radiobacter AD1 were added to 

the reactor to afford biodegradation of any possible side products or excreted 

intermediates formed in the TCP and DCP degradation pathways. Van den 

Wijngaard et al. (1993) observed that the use of defined mixed culture, obtained by 

adding the 2-chloroethanol-degrader Pseudomonas GJ1, may strongly improve the 

performance of a 1,2-dichloroethane degrading culture of Xanthobacter 

autotrophicus GJ10 that was operated in a chemostat. In that case, cross-feeding 

with vitamins in return of secretion of the intermediate 2-chloroethanol stimulated 

growth of the mixed culture (31).  

 The performance of bioreactor 2 significantly improved after a mixed 

culture of MC4-5222, MC4-5221, MC4-1331 and Agrobacterium radiobacter AD1 

was added to the reactor. At a residence time of 23 h, TCP removal efficiency was 

enhanced to 94% and only a low level of TCP was present in the effluent (Fig. 4, 

Phase IV). This indicates that the removal efficiency and overall stability of the 

TCP-mineralization process were not only influenced by the growth kinetics 

parameters of a particular strain but also by the presence of other species and 

possibly organic growth factors (31). With the mixed culture, continuous removal 

of TCP was achieved over a period of 20 days. 

 Next, while keeping the TCP concentration constant (0.1 mM), we 

decreased the residence time further to 6 h. Under these conditions, the TCP 

removal efficiency was only 50%. Thus, in addition to the effect of organic 

loading, the flow velocity of TCP affects the bioreactor performance. This may be 
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due to intrinsic kinetics of the TCP-degrading organisms or diffusion of substrates 

through the biofilm (24). Previously, it was observed that various environmental 

factors such as lack of availability of a suitable carbon source or some nutrient may 

hinder the success of inoculation (11, 36). It is well possible that unidentified 

factors (e.g. a vitamin) are required for strain MC4 derivatives to exhibit their full 

TCP degradation potential. In addition, a low concentration of TCP might limit cell 

growth and in the removal efficiency of the TCP-degrading biofilm. For example, 

if the decay rate of the organism would be high, the low substrate loading applied 

in our experiments would not suffice to obtain a continuous increase in active 

biomass in the reactor, which would influence the overall kinetics of the reactor.  

 

 

 
Fig. 4. Degradation of TCP by a mixed culture of P. putida strains MC4-5221, MC4-5221, 

MC4-1331 and A. radiobacter AD1 in reactor 2 operated in a continuous mode. Symbols: ■, 

TCP feed; ●, TCP effluent; ◊, chloride release. Loading rates and residence times are 

mentioned in Table 1. 

 

Conclusions 
 

In this study, the capacity of genetically modified organisms to mineralize TCP was 

employed to obtain, for the first time, continuous removal of TCP from an aqueous 

stream under aerobic conditions. Two different packed bed bioreactors in which 

TCP-degrading cells were immobilized were operated for more than 130 days 

under different conditions (Table 1), and both setups allowed removal of TCP up to 

90%. TCP that was removed was essentially mineralized as no side products were 

detected and all organic chlorine that was removed was detected as inorganic 

chloride in the reactor effluent. Thus, the use of immobilized cells of a genetically 

modified strain such as MC4-5222 in a packed bed bubble column bioreactor may 

offer an effective way to cleanup TCP contaminated water.  

 Limitations are the high residence time that was required and remaining 

concentrations of TCP in the effluent (0.02-0.05 mM).  At shorter residence time, 

removal efficiency decreased, for unknown reasons. We suspect that strain MC4 is 

not a very robust organism, as it was observed that during batch cultivation, the 

steady state growth phase was quickly followed by a phase in which the cell 
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density is reduced, suggesting that the organism may have a high intrinsic 

maintenance demand or decay rate. Thus, further improvement of the host may be 

needed for practical application. The low levels of TCP remaining in the bioreactor 

effluent may be removed in a practical situation with an activated carbon filter, as 

was also used during the full-scale treatment of 1,2-dichloroethane contaminated 

groundwater with a defined bacterial culture (26).   

 An intriguing observation was that with a mixed culture of TCP degrading 

genetically engineered derivatives of MC4 and an additional 2,3-dichloropropanol 

degrading organism (strain AD1), the performance of the reactor was remarkably 

improved. This suggests that composing an effective consortium should be 

included in the design of improved versions of the TCP removal process presented 

here. 
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The use of microbes for the remediation of polluted sites is an attractive alternative to 

traditional methods, which are mostly based on extraction and separation. However, the 

feasibility of a biodegradation process depends on the availability of an organism able to 

degrade the environmental compounds that are present. The existence of a wide diversity of 

microorganisms that degrade synthetic chemicals, including xenobiotic organohalogens, 

indicates that nature itself is able to partially solve the problem of increasing pollution. 

However, many synthetic halogenated compounds remain difficult to degrade by naturally 

occurring organisms in the environment (13, 33). 

 Among the group of chlorinated hydrocarbons, 1,2,3-trichloropropane (TCP) is 

recognized as an emerging contaminant. It is very recalcitrant towards degradation, 

suspected to be carcinogenic, and may cause several health hazards depending on the 

concentration and time of exposure (21). It is present as a contaminant in groundwater and 

drinking water at various places in the United States and Europe (1). The work described in 

this thesis is focused on the biodegradation of TCP under aerobic conditions with the aim to 

obtain an organism that can grow on TCP and mineralize it to innocent products.  

 Chapter 1 presents an overview of the properties of TCP and the possibilities for 

degradation and remediation. Clean-up of 1,2,3-trichloropropane contaminated water is 

difficult and challenging due the physical properties of TCP and the limited possibilities of 

chemical and biological transformation (24, 25). Aerobic degradation is possible only with 

the methanotrophic bacteria and bacteria that possess a dehalogenase gene that catalyzes 

hydrolytic dehalogenation of TCP to dichloropropanol (4). The absence of a naturally 

occurring organism for aerobic TCP degradation indicates that perhaps the evolution process 

of microbes towards the degradation of this synthetic compound is quite slow. However, the 

availability of genetic tools allows us to boost the evolution process in the laboratory and to 

construct genetically engineered strains for biodegradation. The introduction also describes 

why improved organisms for TCP degradation will be useful. For application in 

environmental biotechnology, a TCP-degrading strain should have the following properties: 

1) genetic stability, including lack of mobility of recombinant genes; 2) absence of antibiotic 

resistance markers; 3) fast and complete degradation and mineralization of TCP. 

 The first step towards the construction of an efficient TCP-degrading strain was the 

use of the improved TCP-hydrolyzing haloalkane dehalogenases that were obtained by 

Pavlova et al. (22) through directed evolution of an enzyme variant that was studied earlier 

by Bosma et al. (4). The best haloalkane dehalogenases, such as DhaA27 and DhaA31, 

exhibited a 36-fold higher activity than the natural enzyme towards TCP. We decided to use 

DhaA27 and DhaA31 for enhanced transformation of TCP into 2,3-dichloro-1-propanol 

(DCP). The next requirement was a host strain that can use DCP as sole carbon source. 

 

Isolation of 2,3-dichloro-1-propanol (DCP) degrading strain. Chapter 2 describes a 

bacterial strain, called MC4, which was isolated from contaminated soil on basis of its 

capacity to utilize DCP. This Gram-negative, motile rod was able to grow aerobically on 

various other substrates as well, including sugars, alcohols and several halogenated 

compounds such as 2-bromoacrylic acid, 2,3-dichloropropanoic acid and 2,3-dichloro-1-

propanol. The most important feature of strain MC4 was its growth on both the (R) and (S) 

enantiomers of DCP, which offers the possibility of complete degradation of DCP produced 

by DhaA31, which is a mixture of stereoisomers. The 16S rRNA gene sequence of strain 

MC4 has 99% identity to the 16S rRNA genes of different Pseudomonas putida strains, 

which classifies the organism as a strain of P. putida. 
 A novel dehalogenase, called DppA, was identified in cell extracts of strain MC4 

grown on DCP. It converts DCP with liberation of two equivalents of chloride. The 

compound is first oxidized to 2-chloroacrolein, which is further transformed into 2-
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chloroacrylic acid. The dppA gene was not homologous to halohydrin dehalogenase genes 

such as the hheA, hheB and hheC genes encoding enzymes of the short-chain 

dehydrogenase/reductase family (20, 32, 34). DppA showed dehydrogenase activity with 

DCP in a 2,6-dichlorophenolindophenol (DCPIP)-reduction assay or in an assay with 

ferricyanide as an artificial electron acceptor, thus indicating that the initial step in DCP 

conversion is both a dehydrogenase and a dehalogenase reaction. The enzyme 

simultaneously dechlorinates the substrate and transfers electrons to an acceptor during 

oxidation of the alcohol group. 

 The DppA sequence was used as a query in searches of the NCBI non-redundant 

protein database which led to several homologs annotated as quinohemoprotein 

dehydrogenases (2). A sequence alignment of DppA with proteins of known structures 

indicated that the amino acids involved in the PQQ and calcium binding sites are mostly 

conserved. To our knowledge, DppA is the first PQQ-dependent protein that is attributed 

with a dehalogenase function. 

 We propose in Chapter 2 that DCP dehalogenation by DppA takes place in two steps: 

1) an aldehyde is formed through the dehydrogenase activity with immediate release of 

chloride through elimination, yielding 2-chloroacrolein; 2) the aldehyde is converted to the 

corresponding 2-chloroacrylic acid by a second dehydrogenase reaction. A somewhat similar 

reaction mechanism was proposed for the oxidative dechlorination of dichloropropanol with 

hydroxyacetone formation, as catalyzed by a flavoenzyme from Alcaligenes sp. DS-S-7G 

(15, 28). 

 Whether the DCP-dehalogenating dehydrogenase really is adapted to carry out 

dehalogenation reactions remains uncertain at this moment. Thus, we do not know if the 

enzyme possesses a halide-binding site that facilitates the elimination of HCl and double 

bond formation during or after the oxidation of the alcohol group of DCP. HCl elimination 

may also be non-catalyzed. Structural characterization of the enzyme and measurement of 

dehalogenase activities of DppA homologs that do not originate from dehalogenating 

organisms could provide further insight in this issue. 

 

Construction of genetically engineered strains for TCP degradation. The low activity of 

the wild-type DhaA enzyme against 1,2,3-trichloropropane (TCP) is the main factor that 

limits the suitability of this enzyme for the constructing of a TCP bioremediation organism. 

In Chapter 3, we propose that if a set of enzymes for the complete mineralization of TCP is 

present in a single strain; such a strain should be able to grow on TCP as sole carbon source. 

To obtain such an organism, we first established the expression of the haloalkane 

dehalogenase variants DhaA27 and DhaA31 under two different promoters. The trc 

promoter (5) is an inducible (repressible) promoter in E. coli and the dhlA promoter (14) is a 

strong constitutive promoter in several gram-negative bacteria. Both were used in the broad 

host range vector pIT2 (16, 26) for driving dehalogenase production. It was found that the 

DhaA31 mutant showed the highest activity when expressed under the dhlA promoter 

(plasmid pIS31B), with a mutated dhlA-derived ribosome binding site, and the resulting 

recombinant strain P. putida MC4(pIS31B) was able to grow on TCP as sole carbon source.  

 In the degradation pathway of TCP, DhaA31 and DppA are the key enzymes (Fig. 2). 

The DhaA31 protein was expected to be a cytoplasmic protein because of the absence of any 

known signal peptide, whereas DppA clearly is a periplasmic protein with a signal peptide, 

as mentioned in Chapter 2. When we considered to improve the degradation properties of the 

recombinant strain, we assumed that the presence of both dehalogenating enzymes in the 

periplasm may enhance the TCP degradation by protecting the cytoplasm against 2-chloro-

acrolein, which is a functional toxic product, and by preventing useless translocation steps, 

i.e. uptake and export of TCP and DCP, respectively. To test if the co-localization of these 
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enzymes in the periplasm is beneficial, we made a fusion protein of DhaA with the signal 

peptide of the DppA protein. During this work, we noticed that even without the signal 

peptide added the DhaA31 protein was transported to the periplasm. The details of this work 

are described in Chapter 3 (see below). 

 

 

 
Fig. 1. Proposed degradation pathway for TCP by strain MC4-5222. Enzymes: DhaA31, evolved 

haloalkane dehalogenase; DppA, dichloropropanol dehalogenase/dehydrogenase; CPA, 2-

chloropropionic acid dehalogenase. Thick arrows indicate the enzyme activities measured in this thesis. 

 

 The use of a plasmid vector as a tool during strain construction is convenient but for 

environmental applications such a plasmid-based expression is undesirable. Furthermore, the 

presence of antibiotic selection markers could cause spreading of antibiotic-resistance genes 

in the environment, which is also unwanted. These considerations triggered de Lorenzo and 

coworkers to develop transposon-based systems for gene integration in Gram-negative 

bacteria (8). The Tn5-derived transposon system used in Chapter 3 can mediate integration 

of a foreign gene into the chromosome. It provides several advantages such as stable 

integration and the possibility to remove the selection markers by a subsequent resolvase 

step. Such cloning vectors have been used to construct bacteria for environmental 

applications (23). Using this delivery system, we integrated the gene encoding the modified 

haloalkane dehalogenase variant DhaA31 (22) behind the constitutive dhlA promoter into the 

chromosome of strain MC4 (Fig. 2). 

After performing the transposition and resolvase step, we found that several MC4-

derived strains were unable to grow on TCP although the integrated dehalogenase gene was 

present and functional. In addition, these strains were unable to grow on DCP as growth 

substrate. This observation suggested that several biochemical factors are involved in 

functioning of the enzymes involved in metabolic pathway for TCP, and that knockout of the 

TCP-positive phenotype can easily occur. However, three different MC4 derivatives that did 

grow on TCP were obtained (MC45221, MC45222, and MC41331). Strain MC4-5222 was 

found to be the best strain for growth on TCP. The presence of the haloalkane dehalogenase 

gene was confirmed by PCR, Southern hybridization and partial genome sequence analysis 

of P. putida MC4-5222. Moreover, activities of key enzymes involved in the TCP 

degradation pathway such as DhaA31, DppA and chloropropanoic acid dehalogenase (CPA-

dehalogenase) were measured. The results indicated that activities of these enzymes were 

sufficient to support cellular growth on TCP as sole carbon source, according to the pathway 

shown in Fig. 1. 
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Fig. 2. Integration of the dhaA31 gene into the genome of strain MC4. Steps: 1) Construction of 

pUT31B by cloning the dhaA31 gene with the dhlA promoter into the unique NotI site, which is present 

between the insertion sequences of the pUT delivery vector; 2) Introduction of pUT31B into strain 

MC4 by triparental mating. The exconjugants obtained were tested for kanamycin resistance, yellow 

coloration with catechol, haloalkane dehalogenase activity and growth on DCP as sole carbon source; 

3) The resolvase gene parA on vector pJMSB8 was introduced into MC4 derivatives by triparental 

mating (8, 23). The resulting colonies were checked for loss of the marker segment
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 During a growth experiment of MC4-5222 on TCP with repeated addition of TCP, we 

found that the growth rate (µ) was quite low, suggesting that at increasing concentrations 

TCP may be toxic to cells. Further mutations or genetic modification may be needed to 

improve the organism towards TCP degradation. However, mutagenesis experiments with 

ethyl methanesulfonate followed by selection for fast-growing derivatives on TCP did not 

yield any mutant strains having improved resistance towards TCP or an enhanced growth 

rate. As reported earlier, the rate of metabolic fluxes, the formation of toxic side-metabolites 

and an unfortunate balance between (rapid) decay and (slow) growth  could be causes of the 

observed modest growth of the engineered constructs on TCP (11).  

 

Localization of haloalkane dehalogenase and its use as fusion partner for periplasmic 

targeting. During the construction of different recombinant TCP-degrading bacteria, we 

discovered that the improved dehalogenase variant DhaA31 showed unexpected localization 

behavior. The haloalkane dehalogenase was found to be localized in the periplasm, both in 

E. coli and in P. putida MC4 derivatives. This localization behavior was unexpected since 

the haloalkane dehalogenase gene sequence does not suggest the presence of a targeting 

signal, such as an N-terminal signal sequence. Previously, two different types of 

dehalogenases, LinA and LinB, were also reported to localize into the periplasm without any 

evident signal sequence being present and without processing (19). Both LinA and LinB 

originate from the γ-hexachlorocyclohexane biodegradation pathway, LinA being a 

dehalogenase that eliminates HCl with formation of a double bond, whereas LinB is a 

haloallkane dehalogenase that is phylogenetically related to the DhaA derivatives used in 

this thesis. Several other proteins that are transported out of the cytoplasm into the periplasm 

without the presence of any signal sequence have been identified, and these are jointly called 

non-classical secreted proteins. Many of these proteins can be recognized by the 

SecretomeP, software (3). However, DhaA31 as well as LinA and LinB are not recognized 

by this algorithm as non-classical secreted proteins, despite their experimentally verified 

periplasmic localization. 
 In the localization experiments, we carefully checked if the presence of the DhaA31 

protein in the periplasm space was due to overexpression or cell lysis during fractionation. 

For this, two different DhaA31 expression plasmids were used which were equipped with 

either a trc promoter (pIT31), which is an inducible promoter, or the X. autotrophicus dhlA 

promoter (pIS31), which is a strong constitutive promoter for the expression of the dhaA31 

gene in P. putida MC4. In addition MC4-5222 in which dhaA31 gene is present as a single 

copy inserted into the chromosome of strain MC4 was also included in this study. To test the 

efficiency of the fractionation process, we analyzed the presence of various cytoplasmic and 

periplasmic marker proteins by means of SDS-polyacrylamide gel electrophoresis, Western 

immunoblotting and enzyme activity measurements on different subcellular fractions. Our 

results clearly indicate that the fractionation process was efficient and that the apparent 

periplasmic localization of DhaA31 was not due to protein overexpression or cell lysis.  
Upon translocation, a signal sequence-containing precursor protein is proteolytically 

converted into the signal sequence-less periplasmic form (9). Therefore, the periplasmic 

form of DhaA31 should have a lower mass if the enzyme is subjected to proteolytic removal 

of a signal sequence during translocation. However, the results of the MALDI-TOF analysis 

revealed that the mass of the periplasmic form corresponded nicely with its predicted mass, 

showing that DhaA31 is not proteolytically processed during periplasmic export. Moreover, 

removal of the codons for the first 20 N-terminal amino acids or the hexahistidine tag 

present on C-terminus of DhaA variants did not disturb translocation of DhaA31. Thus, the 

N-terminal end of the enzyme is not required for the observed translocation. The targeting 

mechanism is not yet clear. 
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The work presented in Chapter 3 not only describes that DhaA31 is transported to 

the periplasm without the presence of any known signal sequence and without processing, 

but also that DhaA can be used as a fusion partner to trigger the export of unrelated proteins. 

This was demonstrated with thioredoxin and alditol oxidase. The latter hybrid, DhaA31-

AldO, was successfully used in a whole-cell conversion of xylitol. These results indicate the 

potential use of DhaA as a tag for the periplasmic export of heterologously expressed 

proteins, thereby opening avenues for the use of this system in various biotechnological 

applications such as whole-cell biocatalysis.  

Periplasmic localization also may be preferred over cytoplasmic expression as it can 

improve protein folding and reduces proteolytic degradation. Moreover, the periplasm 

represents a cellular compartment with fewer proteins as compared to the cytoplasm, thereby 

allowing a simpler and more straightforward purification of expressed proteins (10, 18).  

 

Remediation of TCP in fixed-bed bioreactor by genetically engineered strains. The 

construction of a genetically stable TCP-degrading strain that has no antibiotic resistance 

marker is a key step in the development of a biological groundwater treatment process for 

TCP. The successful application of 1,2-dichloroethane-degrading bacteria in a full-scale 

process to remove 1,2-dichloroethane from groundwater has been described earlier (27). 

Based on the similarities of the physio-chemical properties of TCP and 1,2-dichloroethane, 

there is a good reason to assume that a biological process for the removal of TCP from 

groundwater can be developed when an engineered bacterium for TCP degradation becomes 

available. 

 The strains P. putida MC4-5221, MC4-5222 and MC4-1331 were immobilized on 

two different kinds of packing material i.e. ceramic raschig rings and sintered porous glass 

beads in a fixed bed bioreactor system to purify TCP-contaminated water. In addition, 

Agrobacterium radiobacter AD1, which is a naturally occurring DCP degrading organism 

(31) was also inoculated in the reactor. The degradation of TCP was measured at various 

organic loadings. TCP degradation was demonstrated by measuring the in- and outlet 

concentration of TCP, and by measuring effluent levels of DCP and chloride.  

 

 

 
Fig. 3. TCP removal in fixed-bed bioreactors at different residence times (panel A) and organic loading 

rates (panel B).  

 

 Initial experiments were done with the genetically modified TCP-degrading strain 

MC4-5222 only. With this culture, the reactor removed TCP (80-98%) at relatively high 

residence time (116 h and 23 h). However, when an increase of the dilution rate or a higher 

organic loading was applied, the TCP removal efficiency was decreased (Fig. 2A and 2B).  

 In the second part of the work, a mixed culture was used (P. putida MC4-5221, MC4-

5222, MC4-1331, A. radiobacter AD1). This improved the performance of the reactor, 
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suggesting that an effective consortium could overcome some of the drawbacks of the use of 

a single culture of a TCP-degrading organism. However, when the residence time was 

decreased from 23 h to 6 h while keeping the TCP concentration constant (0.14 mM), the 

TCP removal efficiency was again reduced (50%), thus suggesting that the higher TCP 

influx still was not well accommodated by the reactor. One explanation could be that the 

higher rate of TCP and water supply caused an inhibitory effect on the biofilm due to TCP 

toxicity, which in turns decreased the performance of the reactor (Fig. 2B). Another possible 

reason could be that a low concentration of TCP limits the substrate uptake by the cells. Loss 

of chloroacrolein may be another possibility; if produced in the periplasm it could be lost 

from the cells and have a detrimental effect on the biofilm. The precise physiological reasons 

remain unclear, and further studies will be needed to identify and solve weaknesses in the 

current TCP degraders. 

 Despite these limitations, the utilization of these genetically modified strains to 

remove TCP in a continuous process is an attractive approach, which could be used to 

develop an ex-situ bioremediation process for TCP-contaminated water, which is entered 

with low dilution rates or is combined with a classical adsorption technique employing an 

activated carbon filter. Such a combination of biodegradation and activated carbon sorption 

was also employed in the full-scale process for 1,2-dichloroethane bioremediation 

implemented by Stucki and Thuer (27). 

 

Prospects and concluding remarks. Despite the presence of highly diverse microbial 

communities in the environment and the occurrence of numerous natural organohalogens in 

the biosphere, TCP appears to be beyond the degradation capabilities of naturally occurring 

microorganisms. Therefore the work described in this thesis was designed to construct a 

genetically engineered TCP-degrading bacterium, which could be used to treat TCP-

contaminated water. For application in groundwater treatment systems, open processes will 

be needed and effluent sterilization is not an option. Therefore, using the transposon system 

developed by de Lorenzo and coworkers, we constructed TCP degrading organisms that are 

free of an antibiotic resistance marker and plasmid encoded genes that pose a risk of 

transferring genes to other organisms. Several strains have been constructed that exhibit 

remarkable properties in the laboratory but their success in terms of full-scale application is 

limited due to different biochemical and microbiological factors (6, 17, 29). For example, a 

recombinant Pseudomonas strain was unable to grow on 2-chlorotoluene as sole carbon 

source, although it possesses all the genes in a functional state required for its degradation 

(11). Likewise, earlier work in our laboratory showed that the introduction of the 

dehalogenase gene (for 1,2-dichloroethane conversion) from X. autotrophicus in a 

2-chloroethanol-degrading Pseudomonas did not allow the resulting recombinant strain to 

grow on 1,2-dichloroethane as sole carbon source.  

 The work described in this thesis for the construction of TCP-degrading 

Pseudomonas strain probably is in our view the best example of a genetically modified 

organism that grows on a chlorinated hydrocarbon. Based on the similarity in physical-

chemical properties of TCP and 1,2-dichloroethane and the successful application of a full-

scale bioreactor-based treatment process for the removal of 1,2-dichloroethane from 

contaminated groundwater at a large contaminated site in Lübeck, Germany (27), we believe 

that the development of a bioreactor treatment process for TCP removal is feasible once an 

effective organism is obtained. However, there are still some limitations. 

 The first and major hurdle is the low growth rate of the strain MC4 derivatives. It is 

lower than that of the naturally evolved 1,2-dichloroethane-mineralizing bacterium X. 

autotrophicus GJ10. Although strain MC4 has the advantage of degrading both the (R) and 

(S) enantiomers of DCP, the moderate growth rate still is a likely bottleneck. Moreover, it 
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was observed that during batch cultivation, the steady-state growth phase was quickly 

followed by a cell decay phase. We presume that strain MC4 may have a high intrinsic 

maintenance demand or decay rate. The observed improvement of the performance of the 

reactor after addition of a second 2,3-dichloropropanol degrading organism (strain AD1) 

indicates that MC4 has weaknesses and that a further improvement of the host strain may be 

beneficial. 

 In summary, the work described in this thesis shows that genetically modified TCP 

degrading strains having a productive catabolic pathway can be constructed and that further 

genetic improvements may be useful. These genetic improvements are likely to be very rare 

in nature but may possibly be achieved in the laboratory by employing powerful tools of 

molecular biology and protein engineering.  
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Op veel plaatsen in de bodem zitten vervuilende stoffen die veelal afkomstig zijn van (oude) 

fabrieken, tankstations, vuilstortplaatsen of landbouwbedrijven. Op deze plaatsen is in het 

verleden met slecht afbreekbare stoffen gewerkt die soms ook een bedreiging voor de 

volksgezondheid vormen. Er zijn verschillende bodem-vervuilende stoffen bekend, maar de 

belangrijkste bodemvervuilers zijn oude bestrijdingsmiddelen, zware metalen, cyaniden, 

aromatische koolwaterstoffen en gechloreerde koolwaterstoffen. De verbinding 1,2,3-

trichloropropaan (TCP) behoort tot de laatste groep en wordt gezien als een bodem- en 

watervervuiler die op steeds meer plaatsen in Europa en de Verenigde Staten wordt 

aangetroffen. TCP vormt een ernstige bedreiging voor de volksgezondheid mede omdat het 

waarschijnlijk kankerverwekkend is en bovendien is deze verbinding zeer lastig afbreekbaar. 

Het doel van dit proefschrift, zoals beschreven in hoofdstuk 2-5, is gericht op de microbiële 

afbraak van TCP tot onschadelijke producten.  
 

De eigenschappen van TCP. De eigenschappen van TCP en de huidige manieren om deze 

verbinding op te ruimen of af te breken zijn beschreven in hoofdstuk 1. Hieruit blijkt dat het 

erg lastig is om een TCP verontreiniging op te ruimen omdat TCP zeer stabiel is waardoor er 

een beperkt aantal mogelijkheden is om deze verbinding om te zetten op een chemische of 

microbiële manier. Voorts geeft hoofdstuk 1 aan dat er enkele belangrijke voorwaarden zijn 

waar een micro- organisme aan moet voldoen om TCP om te kunnen zetten en om succesvol 

toegepast te kunnen worden. Deze zijn: genetische stabiliteit, de afwezigheid van 

antibioticumresistentie-genen en een snelle en volledige omzetting van TCP. 
 

De isolatie van een 2,3-dichloro-1-propanol afbrekende bacterie. De experimenten 

beschreven in hoofdstuk 2 zijn gericht op de isolatie van een bacterie uit grond die in staat is 

om 2,3-dichloro-1-propanol (DCP) af te breken. Deze experimenten hebben een 

Pseudomonas putida stam opgeleverd, MC4, die in staat is onder  aerobe omstandigheden 

op diverse verbindingen te groeien, zoals suikers, alcoholen en verschillende gechloreerde 

verbindingen waaronder DCP. De laatste eigenschap van deze bacterie is zeer belangrijk 

omdat dit de volledige afbraak van TCP met microbiële enzymen mogelijk maakt. Verdere 

bestudering van deze bacterie geeft aan dat het enzym, DppA, dat verantwoordelijk is voor 

de afbraak van DCP door stam MC4 een dehalogenase is. Verassend genoeg is DppA niet 

verwant is aan bekende dehalogenases en bovendien vertoont het zowel dehydrogenase als 

dehalogenase activiteit. Hieruit kan worden geconcludeerd dat DppA een nieuw soort 

dehalogenase is. Dit laatste wordt onderstreept door de nauwe verwantschap van DppA met 

een groep van andere enzymen, namelijk quinohemoprotein dehydrogenases. Deze enzymen 

komen veel voor in aeroob levende bacteriën en hebben voor hun werking verschillende 

cofactoren nodig, zoals pyrroloquinoline quinone (PQQ), calcium en heem. DppA is dus het 

eerste PQQ-afhankelijke enzym met een dehalogenase functie. 
 

Het ontwerp van een bacteriële stam voor TCP afbraak. Indien een micro-organisme 

beschikt over alle enzymen die nodig zijn voor de afbraak van TCP, dan is het de 

verwachting dat dit organisme ook op TCP kan groeien. De genetische experimenten 

beschreven in hoofdstuk 3 hebben tot doel dit organisme te ontwerpen. Hiervoor is gebruik 

gemaakt Pseudomonas putida MC4 in combinatie met een geoptimaliseerde dehalogenase 

variant, DhaA31. Dit enzym katalyseert de omzetting van TCP naar DCP. De laatste 

verbinding kan verder omgezet kan worden door MC4 cellen, zoals aangetoond in hoofdstuk 

2. De experimenten uit hoofdstuk 3 tonen aan dat wanneer DhaA31 wordt geproduceerd in 

MC4 cellen, deze cellen inderdaad in staat zijn om te groeien op TCP wanneer dit 

toegevoegd is aan het groeimedium. Tijdens vervolgexperimenten is de genetische stabiliteit 
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van dit systeem verhoogd door middel van een insertie van het gen dat codeert voor DhaA31 

in het chromosomale DNA van MC4 cellen. Dit heeft enkele MC4 varianten opgeleverd 

waarvan MC4-5222 het beste groeit op TCP. Bovendien hebben genetische experimenten de 

aanwezigheid van het coderende gen in het chromosomale DNA van MC4 cellen bevestigd. 

Ondanks de goede groei van MC4-5222 op medium dat TCP bevat, tonen experimenten aan 

dat herhaaldelijke toevoeging van TCP waarschijnlijk giftig is voor deze cellen.  
 

De subcellulaire localisatie van DhaA31 en de toepassing van dit enzym als 

fusiepartner voor export naar het periplasma. Alle enzymen worden in het cytoplasma 

geproduceerd, maar vele enzymen functioneren buiten het cytoplasma, zoals in het 

bacteriële periplasma. Dit betekent dat deze enzymen na of tijdens productie naar de plaats 

worden getransporteerd waar ze werkzaam zijn. Om dit transport mogelijk te maken zijn 

enzymen die buiten het cytoplasma functioneren vaak uitgerust met een export signaal. 

Hoewel DhaA31 geen bekend export signaal bevat, vormen de resultaten uit hoofdstuk 3 een 

basis om te veronderstellen dat dit enzym toch werkzaam is in het periplasma. In hoofdstuk 

4 wordt de localisatie van DhaA31 in bacteriële cellen onder de loep genomen en wordt de 

rol van dit enzym als fusiepartner voor de export van andere enzymen naar het periplasma 

onderzocht. De resultaten geven aan dat DhaA31 aanwezig is in het periplasma van MC4 

cellen en Escherichia coli cellen. Bovendien kan DhaA31 gebruikt worden voor het 

transport van andere enzymen naar het periplasma in een functionele vorm. Dit laatste 

resultaat is belangrijk met betrekking tot eventuele biotechnologische toepassingen van 

DhaA31 als fusie partner voor export naar het periplasma. Aanvullende experimenten 

beschreven in hoofdstuk 4 tonen aan dat dit systeem inderdaad gebruikt kan worden voor 

biotechnologische toepassingen, bijvoorbeeld de enzymatische omzetting van xylitol door 

complete cellen.  
 

Microbiële afbraak van TCP uit verontreinigd water. De experimenten uit hoofdstuk 2 

en 3 hebben geleid tot het ontwerp van een bacterie, MC4-5222, die over alle enzymen 

beschikt om TCP af te breken tot onschadelijke producten, die bovendien genetisch stabiel is 

én geen antibioticumresistentie genen bevat. Hiermee voldoet deze bacterie in principe aan 

de voorwaarden gesteld in hoofdstuk 1 om succesvol toegepast te kunnen worden voor de 

microbiële afbraak van TCP. De experimenten die zijn beschreven in hoofdstuk 5 

onderzoeken de mogelijkheden van MC4-5222 voor de afbraak van TCP uit verontreinigd 

water. Uit deze experimenten blijkt dat deze bacterie in staat is om TCP voor 80-90% te 

verwijderen uit water verontreinigd met deze stof. Bovendien tonen de resultaten aan dat de 

efficiëntie van dit systeem verhoogd kan worden door gebruik te maken van meerdere 

bacterie- stammen tegelijkertijd. Jammer genoeg blijkt ook uit deze experimenten dat onder 

bepaalde condities de efficiëntie waarmee TCP verwijderd wordt drastisch omlaag gaat. 

Ondanks deze beperkingen, tonen de experimenten beschreven in hoofdstuk 4 aan dat het 

opruimen van een TCP verontreiniging met behulp van speciaal ontworpen bacteriecellen 

een veelbelovende strategie is, die wellicht op een grotere schaal toegepast kan worden.  

 

Conclusie en vooruitblik. TCP wordt gezien als een belangrijke bodemvervuiler en 

vormt lokaal een ernstige bedreiging voor de water- en bodemkwaliteit. Jammer genoeg is 

het aantal mogelijkheden om deze verbinding om te zetten op een chemische of microbiële 

manier beperkt. Dit omdat er geen micro-organismen zijn die TCP kunnen afbreken ondanks 

de veelvoud aan micro-organismen in de natuur én de aanwezigheid van natuurlijke 

gechloreerde koolwaterstoffen in het milieu. Om toch microbiële afbraak van TCP mogelijk 

te maken is er een bacteriestam ontworpen, zoals beschreven in dit proefschrift, die alle 

vereiste enzymen bevat. De resultaten van de experimenten beschreven in hoofdstuk 2-5 
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geven aan dat deze bacterie inderdaad TCP kan afbreken en gebruikt kan worden om TCP 

op te ruimen uit water dat is verontreinigd met deze stof. Ondanks deze succesvolle 

resultaten zijn er nog wel enkele beperkingen, die met verdere optimalisatie van dit systeem 

verholpen kunnen worden. De resultaten geven aan dat met genetische technieken een 

bacterie kan worden verkregen die TCP kan omzetten in onschadelijke producten en dat 

mogelijk op grotere schaal TCP verontreinigingen  biologisch opgeruimd kunnen worden.  
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Stellingen 

 

Behorende bij het proefschrift 

 

van Ghufrana Samin  

te verdedigen op 11th May 2012 

 

 

 

1. In the design of biodegradation processes for organohalogens, more emphasis should be given to the use of 

effective consortia (chapter 2). 

2. Haloalkane dehalogenase can be exploited as a platform for the expression of enzymes in the periplasm, 

thereby opening new avenues for its use in biotechnological applications (chapter 4). 

3. A degradation pathway that looks fine on paper may not work in a cell. 

4. The design of bioremediation process employing genetically modified organisms is restricted more by 

biochemical hurdles than by ecological constrains. 

5. Despite the wide spread occurrence of natural organohalogens in the biosphere, many chlorinated 

compounds are beyond the degradation capabilities of naturally occurring microorganisms offering great 

challenges for protein engineering and microbial physiology. 

6. Sometimes it is easy to produce a result that is difficult to reproduce. 

 

7. Research collaboration is a source of stimulation and creativity. 

 

8. The blood groups of Dutch people should be checked to introduce a new blood group called  ‘Coffee 

positive’ 

 (non-scientific observation). 

9. Language barriers are one of the main causes of social segregation. 

 

10. Seek knowledge from the cradle to the grave (Hadiath). 
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