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We present a review of experimental and theoretical studies of the anomalous Hall effect (AHE),
focusing on recent developments that have provided a more complete framework for understanding
this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy
between experimental and theoretical work, both playing a crucial role, has been at the heart
of these advances. On the theoretical front, the adoption of Berry-phase concepts has estab-
lished a link between the AHE and the topological nature of the Hall currents which originate
from spin-orbit coupling. On the experimental front, new experimental studies of the AHE in
transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semi-
conductors, have more clearly established systematic trends. These two developments in concert
with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic
Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The
intrinsic AHE can be expressed in terms of Berry-phase curvatures and it is therefore an intrin-
sic quantum mechanical property of a perfect cyrstal. An extrinsic mechanism, skew scattering
from disorder, tends to dominate the AHE in highly conductive ferromagnets. We review the
full modern semiclassical treatment of the AHE which incorporates an anomalous contribution
to wavepacket group velocity due to momentum-space Berry curvatures and correctly combines
the roles of intrinsic and extrinsic (skew scattering and side-jump) scattering-related mechanisms.
In addition, we review more rigorous quantum-mechanical treatments based on the Kubo and
Keldysh formalisms, taking into account multiband effects, and demonstrate the equivalence of all
three linear response theories in the metallic regime. Building on results from recent experiment
and theory, we propose a tentative global view of the AHE which summarizes the roles played by
intrinsic and extrinsic contributions in the disorder-strength vs. temperature plane. Finally we
discuss outstanding issues and avenues for future investigation.
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I. INTRODUCTION

A. A brief history of the AHE and new perspectives

The anomalous Hall effect has deep roots in the his-
tory of electricity and magnetism. In 1879 Edwin H.
Hall (Hall, 1879) made the momentous discovery that,
when a current-carrying conductor is placed in a mag-
netic field, the Lorentz force “presses” its electrons
against one side of the conductor. One year later, he
reported that his “pressing electricity” effect was ten
times larger in ferromagnetic iron (Hall, 1881) than in
non-magnetic conductors. Both discoveries were remark-
able, given how little was known at the time about how
charge moves through conductors. The first discovery
provided a simple, elegant tool to measure carrier con-
centration more accurately in non-magnetic conductors,
and played a midwife’s role in easing the birth of semi-
conductor physics and solid-state electronics in the late
1940’s. For this role, the Hall effect was frequently called
the queen of solid-state transport experiments.

The stronger effect that Hall discovered in ferromag-
netic conductors came to be known as the anomalous Hall
effect (AHE). The AHE has been an enigmatic problem
that has resisted theoretical and experimental assault for
almost a century. The main reason seems to be that,
at its core, the AHE problem involves concepts based on
topology and geometry that have been formulated only in
recent times. The early investigators grappled with no-
tions that would not become clear and well defined until
much later, such as the concept of Berry-phase (Berry,
1984). What is now viewed as Berry phase curvature,
later dubbed “anomalous velocity” by Luttinger, arose

naturally in the first microscopic theory of the AHE by
Karplus and Luttinger (Karplus and Luttinger, 1954).
However, because understanding of these concepts, not
to mention the odd intrinsic dissipationless Hall current
they seemed to imply, would not be achieved for another
40 years, the AHE problem was quickly mired in a contro-
versy of unusual endurance. Moreover, the AHE seems
to be a rare example of a pure, charge-transport problem
whose elucidation has not – to date – benefited from the
application of complementary spectroscopic and thermo-
dynamic probes.

FIG. 1 The Hall effect in Ni [data from A. W. Smith, Phys.
Rev. 30, 1 (1910)]. [From Ref. Pugh and Rostoker, 1953.]

Very early on, experimental investigators learned that
the dependence of the Hall resistivity ρxy on applied per-
pendicular field Hz is qualitatively different in ferromag-
netic and non-magnetic conductors. In the latter, ρxy
increases linearly with Hz, as expected from the Lorentz
force. In ferromagnets, however, ρxy initially increases
steeply in weak Hz, but saturates at a large value that
is nearly Hz-independent (Fig. 1). Kundt noted that,
in Fe, Co, and Ni, the saturation value is roughly pro-
portional to the magnetization Mz (Kundt, 1893) and
has a weak anisotropy when the field (ẑ) direction is ro-
tated with respect to the cyrstal, corresponding to the
weak magnetic anisotropy of Fe, Co, and Ni (Web-
ster, 1925). Shortly thereafter, experiments by Pugh and
coworkers (Pugh, 1930; Pugh and Lippert, 1932) estab-
lished that an empirical relation between ρxy, Hz, and
Mz,

ρxy = R0Hz +RsMz, (1.1)

applies to many materials over a broad range of external
magnetic fields. The second term represents the Hall ef-
fect contribution due to the spontaneous magnetization.
This AHE is the subject of this review. Unlike R0, which
was already understood to depend mainly on the density
of carriers, Rs was found to depend subtly on a variety
of material specific parameters and, in particular, on the
longitudinal resistivity ρxx = ρ.

In 1954, Karplus and Luttinger (KL) (Karplus and
Luttinger, 1954) proposed a theory for the AHE that, in
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hindsight, provided a crucial step in unraveling the AHE
problem. KL showed that when an external electric field
is applied to a solid, electrons acquire an additional con-
tribution to their group velocity. KL’s anomalous velocity
was perpendicular to the electric field and therefore could
contribute to Hall effects. In the case of ferromagnetic
conductors, the sum of the anomalous velocity over all
occupied band states can be non-zero, implying a contri-
bution to the Hall conductivity σxy. Because this contri-
bution depends only on the band structure and is largely
independent of scattering, it has recently been referred to
as the the intrinsic contribution to the AHE. When the
conductivity tensor is inverted, the intrinsic AHE yields
a contribution to ρxy ≈ σxy/σ

2
xx and therefore it is pro-

portional to ρ2. The anomalous velocity is dependent
only on the perfect crystal Hamiltonian and can be re-
lated to changes in the phase of Bloch state wavepackets
when an electric field causes them to evolve in crystal
momentum space (Bohm et al., 2003; Chang and Niu,
1996; Sundaram and Niu, 1999; Xiao and Niu, 2009). As
mentioned, the KL theory anticipated by several decades
the modern interest in Berry phase and Berry curvature
effects, particularly in momentum-space.

FIG. 2 Extraordinary Hall constant as a function of re-
sistivity. The shown fit has the relation Rs ∼ ρ1.9. [From
Ref. Kooi, 1954.]

Early experiments to measure the relationship between
ρxy and ρ generally assumed to be of the power law form,
i.e., ρxy ∼ ρβ , mostly involved plotting ρxy (or Rs) vs.
ρ, measured in a single sample over a broad interval of T

(typically 77 to 300 K). As we explain below, competing
theories in metals suggested either that β = 1 or β = 2.
A compiled set of results was published by Kooi (Kooi,
1954) (Fig. 2). The subsequent consensus was that such
plots do not settle the debate. At finite T , the carriers
are strongly scattered by phonons and spin waves. These
inelastic processes – difficult to treat microscopically even
today – lie far outside the purview of the early theories.
Smit suggested that, in the skew-scattering theory (see
below), phonon scattering increases the value β from 1
to values approaching 2. This was also found by other
investigators. A lengthy calculation by Lyo (Lyo, 1973)
showed that skew-scattering at T � ΘD (the Debye tem-
perature) leads to the relationship ρxy ∼ (ρ2 + aρ), with
a a constant. In an early theory by Kondo considering
skew scattering from spin excitations (Kondo, 1962), it
may be seen that ρxy also varies as ρ2 at finite T .

The proper test of the scaling relation in comparison
with present theories involves measuring ρxy and ρ in a
set of samples at 4 K or lower (where impurity scattering
dominates). By adjusting the impurity concentration ni,
one may hope to change both quantities sufficiently to
determine accurately the exponent β and use this iden-
tification to tease out the underlying physics.

The main criticism of the KL theory centered on the
complete absence of scattering from disorder in the de-
rived Hall response contribution. The semi-classical AHE
theories by Smit and Berger focused instead on the in-
fluence of disorder scattering in imperfect crystals. Smit
argued that the main source of the AHE currents was
asymmetric (skew) scattering from impurities caused by
the spin-orbit interaction (SOI) (Smit, 1955, 1958). This
AHE picture predicted that Rs ∼ ρxx (β = 1). Berger, on
the other hand, argued that the main source of the AHE
current was the side-jump experienced by quasiparticles
upon scattering from spin-orbit coupled impurities. The
side-jump mechanism could (confusingly) be viewed as a
consequence of a KL anomalous velocity mechanism act-
ing while a quasiparticle was under the influence of the
electric field due to an impurity. The side-jump AHE cur-
rent was viewed as the product of the side-jump per scat-
tering event and the scattering rate (Berger, 1970). One
puzzling aspect of this semiclassical theory was that all
dependence on the impurity density and strength seem-
ingly dropped out. As a result, it predicted Rs ∼ ρ2

xx

with an exponent β identical to that of the KL mech-
anism. The side-jump mechanism therefore yielded a
contribution to the Hall conductivity which was seem-
ingly independent of the density or strength of scatter-
ers. In the decade 1970-80, a lively AHE debate was
waged largely between the proponents of these two ex-
trinsic theories. The three main mechanisms considered
in this early history are shown schematically in Fig. 3.

Some of the confusion in experimental studies stemmed
from a hazy distinction between the KL mechanism and
the side-jump mechanism, a poor understanding of how
the effects competed at a microscopic level, and a lack of
systematic experimental studies in a diverse set of mate-
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a) Intrinsic deflection
Interband coherence induced by an 
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b) Side jump

The electron velocity is deflected in opposite directions by the opposite 
electric fields experienced upon approaching and leaving an impurity.  p p pp g g p y
The time-integrated velocity deflection is the side jump. 

c) Skew scattering

Asymmetric scattering due toAsymmetric scattering due to 
the effective spin-orbit coupling 
of the electron or the impurity. 

FIG. 3 Illustration of the three main mechanisms that can
give rise to an AHE. In any real material all of these mecha-
nisms act to influence electron motion.

rials.
One aspect of the confusion may be illustrated by con-

trasting the case of a high-purity mono-domain ferromag-
net, which produces a spontaneous AHE current propor-
tional to Mz, with the case of a material containing mag-
netic impurities (e.g. Mn) embedded in a non-magnetic
host such as Cu (the dilute Kondo system). In a field H,
the latter also displays an AHE current proportional to
the induced M = χH, with χ the susceptibility (Fert
and Jaoul, 1972). However, in zero H, time-reversal in-
variance (TRI) is spontaneously broken in the former,
but not in the latter. Throughout the period 1960-1989,
the two Hall effects were often regarded as a common
phenomenon that should be understood microscopically
on the same terms. It now seems clear that this view
impeded progress.

By the mid-1980s, interest in the AHE problem had
waned significantly. The large body of Hall data gar-
nered from experiments on dilute Kondo systems in the
previous two decades showed that ρxy ∼ ρ and therefore
appeared to favor the skew-scattering mechanism. The
points of controversy remained unsettled, however, and
the topic was still mired in confusion.

Since the 1980’s, the quantum Hall effect in two-
dimensional (2D) electron systems in semiconductor het-
erostructures has become a major field of research in
physics (Prange and Girvin, 1987). The accurate quan-
tization of the Hall conductance is the hallmark of this
phenomenon. Both the integer (Thouless et al., 1982)
and fractional quantum Hall effects can be explained in
terms of the topological properties of the electronic wave-
functions. For the case of electrons in a two-dimensional
crystal, it has been found that the Hall conductance is
connected to the topological integer (Chern number) de-
fined for the Bloch wavefunction over the first Brillouin
zone (Thouless et al., 1982). This way of thinking about
the quantum Hall effect began to have a deep impact

on the AHE problem starting around 1998. Theoretical
interest in the Berry phase and in its relation to trans-
port phenomena, coupled with many developments in the
growth of novel complex magnetic systems with strong
spin-orbit coupling (notably the manganites, pyrochlores
and spinels) led to a strong resurgence of interest in the
AHE and eventually to deeper understanding.

Since 2003 many systematics studies, both theoretical
and experimental, have led to a better understanding of
the AHE in the metallic regime, and to the recognition of
new unexplored regimes that present challenges to future
researchers. As it is often the case in condensed matter
physics, attempts to understand this complex and fasci-
nating phenomenon have motivated researchers to couple
fundamental and sophisticated mathematical concepts to
real-world materials issues. The aim of this review is to
survey recent experimental progress in the field, and to
present the theories in a systematic fashion. Researchers
are now able to understand the links between different
views on the AHE previously thought to be in conflict.
Despite the progress in recent years, understanding is
still incomplete. We highlight some intriguing questions
that remain and speculate on the most promising avenues
for future exploration. In this review we focus, in par-
ticular, on reports that have contributed significantly to
the modern view of the AHE. For previous reviews, the
reader may consult Pugh (Pugh and Rostoker, 1953) and
Hurd (Hurd, 1972). For more recent short overviews fo-
cused on the topological aspects of the AHE, we point
the reader to the reviews by Nagaosa (Nagaosa, 2006),
and by Sinova et al.(Sinova et al., 2004). A review of
the modern semiclassical treament of AHE was recently
written by Sinitsyn (Sinitsyn, 2008). The present review
has been informed by ideas explained in the earlier works.
Readers who are not familair with Berry phase concepts
may find it useful to consult the elementary review by
Ong and Lee (Ong and Lee, 2006) and the popular com-
mentary by MacDonald and Niu (MacDonald and Niu,
2004).

Some of the recent advances in the understanding of
the AHE that will be covered in this review are:

1. When σAHxy is independent of σxx, the AHE can
often be understood in terms of the geometric con-
cepts of Berry phase and Berry curvature in mo-
mentum space. This AHE mechanism is respon-
sible for the intrinsic AHE. In this regime, the
anomalous Hall current can be thought of as the
unquantized version of the quantum Hall effect. In
2D systems the intrinsic AHE is quantized in units
of e2/h at temperature T = 0 when the Fermi level
lies between Bloch state bands.

2. Three broad regimes have been identified when sur-
veying a large body of experimental data for di-
verse materials: (i) A high conductivity regime
(σxx > 106 (Ωcm)−1) in which a linear contribution
to σAHxy ∼ σxx due to skew scattering dominates
σAHxy . In this regime the normal Hall conductiv-
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ity contribution can be significant and even domi-
nate σxy, (ii) An intrinsic or scattering-independent
regime in which σAHxy is roughly independent of σxx
(104 (Ωcm)−1 < σxx < 106 (Ωcm)−1), (iii) A bad-
metal regime (σxx < 104 (Ωcm)−1) in which σAHxy
decreases with decreasing σxx at a rate faster than
linear.

3. The relevance of the intrinsic mechanisms can be
studied in-depth in magnetic materials with strong
spin-orbit coupling, such as oxides and diluted mag-
netic semiconductors (DMS). In these systems a
systematic non-trivial comparison between the ob-
served properties of systems with well controlled
materials properties and theoretical model calcula-
tions can be achieved.

4. The role of band (anti)-crossings near the Fermi en-
ergy has been identified using first-principles Berry
curvature calculations as a mechanism which can
lead to a large intrinsic AHE.

5. Semiclassical treatment by a generalized Boltz-
mann equation taking into account the Berry cur-
vature and coherent inter-band mixing effects due
to band structure and disorder has been formu-
lated. This theory provides a clearer physical pic-
ture of the AHE than early theories by identify-
ing correctly all the semiclassically defined mech-
anisms. This generalized semiclassical picture has
been verified by comparison with controlled micro-
scopic linear response treatments for identical mod-
els.

6. The relevance of non-coplanar spin structures with
associated spin chirality and real-space Berry cur-
vature to the AHE has been established both the-
oretically and experimentally in several materials.

7. Theoretical frameworks based on the Kubo formal-
ism and the Keldysh formalism have been devel-
oped which are capable of treating transport phe-
nomena in systems with multiple bands.

The review is aimed at experimentalists and theorists
interested in the AHE. We have structured the review
as follows. In the remainder of this section, we provide
the minimal theoretical background necessary to under-
stand the different AHE mechanisms. In particular we
explain the scattering-independent Berry phase mech-
anism which is more important for the AHE than for
any other commonly measured transport coefficient. In
Sec. II we review recent experimental results on a broad
range of materials, and compare them with relevant cal-
culations where available. In Sec. III we discuss AHE
theory from an historical perspective, explaining links
between different ideas which are not always recognized,
and discussing the physics behind some of the past con-
fusion. The section may be skipped by readers who do
not wish to be burdened by history. Section IV discusses

the present understanding of the metallic theory based
on a careful comparison of the different linear response
theories which are now finally consistent. In Sec. V we
present a summary and outlook.

B. Parsing the AHE:

The anomalous Hall effect is at its core a quantum phe-
nomena which originates from quantum coherent band
mixing effects by both the external electric field and
the disorder potential. Like other coherent interference
transport phenomena (e.g. weak localization), it cannot
be satisfactorily explained using traditional semiclassical
Boltzmann transport theory. Therefore, when parsing
the different contributions to the AHE, they can be de-
fined semiclassically only in a carefully elaborated theory.

In this section we identify three distinct contributions
which sum up to yield the full AHE: intrinsic, skew
scattering, and side-jump contributions. We choose this
nomenclature to reflect the modern literature without
breaking completely from the established AHE lexicon
(see Sec. III). However, unlike previous classifications,
we base this parsing of the AHE on experimental and mi-
croscopic transport theory considerations, rather than on
the identification of one particular effect which could con-
tribute to the AHE. The link to semiclassically defined
processes is established after developing a fully general-
ized Boltzmann transport theory which takes inter-band
coherence effects into account and is fully equivalent to
microscopic theories (Sec. IV.A). In fact, much of the the-
oretical effort of the past few years has been expended
in understanding this link between semiclassical and mi-
croscopic theory which has escaped cohesion for a long
time.

A very natural classification of contributions to the
AHE, which is guided by experiment and by microscopic
theory of metals, is to separate them according to their
dependence on the Bloch state transport lifetime τ . In
the theory, disorder is treated perturbatively and higher
order terms vary with a higher power of the quasiparti-
cle scattering rate τ−1. As we will discuss, it is relatively
easy to identify contributions to the anomalous Hall con-
ductivity, σAHxy , which vary as τ1 and as τ0. In experi-
ment a similar separation can sometimes be achieved by
plotting σxy vs. the longitudinal conductivity σxx ∝ τ ,
when τ is varied by altering disorder or varying tem-
perature. More commonly (and equivalently) the Hall
resistivity is separated into contributions proportional to
ρxx and ρ2

xx.
This partitioning seemingly gives only two contribu-

tions to σAHxy , one ∼ τ and the other ∼ τ0. The first
contribution we define as the skew-scattering contribu-
tion, σAH−skewxy . Note that in this parsing of AHE con-
tributions it is the dependence on τ (or σxx) which de-
fines it, not a particular mechanism linked to a micro-
scopic or semiclassical theory. The second contribution
proportional to τ0 (or independent of σxx) we further



6

separate into two parts: intrinsic and side-jump. Al-
though these two contributions cannot be separated ex-
perimentally by dc measurements, they can be sepa-
rated experimentally (as well as theoretically) by defin-
ing the intrinsic contribution, σAH−intxy , as the extrapo-
lation of the ac-interband Hall conductivity to zero fre-
quency in the limit of τ → ∞, with 1/τ → 0 faster
than ω → 0. This then leaves a unique definition for
the third and last contribution, termed side-jump, as
σAH−sjxy ≡ σAHxy − σAH−skewxy − σAH−intxy .

We examine these three contributions below ( still at
an introductory level). It is important to note that
the above definitions have not relied on identifications
of semiclassical processes such as side-jump scattering
(Berger, 1970) or skew-scattering from asymmetric con-
tributions to the semiclassical scattering rates (Smit,
1955) identified in earlier theories. Not surprisingly, the
contributions defined above contain these semiclassical
processes. However, it is now understood (see Sec. IV),
that other contributions are present in the fully general-
ized semiclassical theory which were not precisely identi-
fied previously and which are necessary to be fully con-
sitent with microscopic theories.

The ideas explained briefly in this section are substan-
tiated in Sec. II by analyses of tendencies in the AHE
data of several different material classes, and in Sec. III
and Sec. IV by an extensive technical discussion of AHE
theory. We assume throughout that the ferromagnetic
materials of interest are accurately described by a Stoner-
like mean-field band theory. In applications to real ma-
terials we imagine that the band theory is based on spin-
density-functional theory (Jones and Gunnarsson, 1989)
with a local-spin-density or similar approximation for the
exchange-correlation energy functional.

1. Intrinsic contribution to σAHxy

Among the three contributions, the easiest to eval-
uate accurately is the intrinsic contribution. We have
defined the intrinsic contribution microscopically as the
dc limit of the interband conductivity, a quantity which
is not zero in ferromagnets when SOI are included.
There is however a direct link to semiclassical theory in
which the induced interband coherence is captured by
a momentum-space Berry-phase related contribution to
the anomalous velocity. We show this equivalence below.

This contribution to the AHE was first derived by KL
(Karplus and Luttinger, 1954) but its topological nature
was not fully appreciated until recently (Jungwirth et al.,
2002b; Onoda and Nagaosa, 2002). The work of Jung-
wirth et al. (Jungwirth et al., 2002b) was motivated by
the experimental importance of the AHE in ferromag-
netic semiconductors and also by the thorough earlier
analysis of the relationship between momentum space
Berry phases and anomalous velocities in semiclassical
transport theory by Niu et al. (Chang and Niu, 1996;
Sundaram and Niu, 1999). The frequency-dependent

inter-band Hall conductivity, which reduces to the intrin-
sic anomalous Hall conductivity in the dc limit, had been
evaluated earlier for a number of materials by Mainkar
et al. (Mainkar et al., 1996) and Guo and Ebert (Guo
and Ebert, 1995) but the topological connection was not
recognized.

The intrinsic contribution to the conductivity is de-
pendent only on the band structure of the perfect crys-
tal, hence its name. It can be calculated directly from
the simple Kubo formula for the Hall conductivity for an
ideal lattice, given the eigenstates |n,k〉 and eigenvalues
εn(k) of a Bloch Hamiltonian H:

σAH−intij = e2~
∑
n 6=n′

∫
dk

(2π)3
[f(εn(k))− f(εn′(k))]

×Im
〈n,k|vi(k)|n′,k〉〈n′,k|vj(k)|n,k〉

(εn(k)− εn′(k))2
.

(1.2)

In Eq. (1.2) H is the k-dependent Hamiltonian for the
periodic part of the Bloch functions and the velocity op-
erator is defined by

v(k) =
1
i~

[r, H(k)] =
1
~
∇kH(k). (1.3)

Note the restriction n 6= n′ in Eq. (1.2).
What makes this contribution quite unique is that, like

the quantum Hall effect in a crystal, it is directly linked
to the topological properties of the Bloch states. (See
Sec. III.B.) Specifically it is proportional to the integra-
tion over the Fermi sea of the Berry’s curvature of each
occupied band, or equivalently (Haldane, 2004; Wang
et al., 2007) to the integral of Berry phases over cuts
of Fermi surface segments. This result can be derived by
noting that

〈n,k|∇k|n′,k〉 =
〈n,k|∇kH(k)|n′,k〉
εn′(k)− εn(k)

. (1.4)

Using this expression, Eq. (1.2) reduces to

σAH−intij = −εij`
e2

~
∑
n

∫
dk

(2π)d
f(εn(k)) b`n(k), (1.5)

where εij` is the anti-symmetric tensor, an(k) is the
Berry-phase connection an(k) = i〈n,k|∇k|n,k〉, and
bn(k) the Berry-phase curvature

bn(k) = ∇k × an(k) (1.6)

corresponding to the states {|n,k〉}.
This same linear response contribution to the AHE

conductivity can be obtained from the semiclassical the-
ory of wave-packets dynamics (Chang and Niu, 1996;
Marder, 2000; Sundaram and Niu, 1999). It can be
shown that the wavepacket group velocity has an addi-
tional contribution in the presence of an electric field:
ṙc = ∂En(k)/~∂k− (E/~)×bn(k). (See Sec. IV.A.) The
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intrinsic Hall conductivity formula, Eq. (1.5), is obtained
simply by summing the second (anomalous) term over all
occupied states.

One of the motivations for identifying the intrinsic
contribution σAH−intxy is that it can be evaluated accu-
rately even for relatively complex materials using first-
principles electronic structure theory techniques. In
many materials which have strongly spin-orbit coupled
bands, the intrinsic contribution seems to dominates the
AHE.

2. Skew scattering contribution to σAHxy

The skew scattering contribution to the AHE can be
sharply defined; it is simply the contribution which is
proportional to the Bloch state transport lifetime. It will
therefore tend to dominate in nearly perfect crystals. It is
the only contribution to the AHE which appears within
the confines of traditional Boltzmann transport theory
in which interband coherence effects are completely ne-
glected. Skew scattering is due to chiral features which
appear in the disorder scattering of spin-orbit coupled
ferromagnets. This mechanism was first identified by
Smit (Smit, 1955, 1958).

Treatments of semi-classical Boltzmann transport the-
ory found in textbooks often appeal to the principle of
detailed balance which states that the transition prob-
ability Wn→m from n to m is identical to the transi-
tion probability in the opposite direction (Wm→n). Al-
though these two transition probabilities are identical
in a Fermi’s golden-rule approximation, since Wn→n′ =
(2π/~)|〈n|V |n′〉|2δ(En − En′), where V is the perturba-
tion inducing the transition, detailed balance in this mi-
croscopic sense is not generic. In the presence of spin-
orbit coupling, either in the Hamiltonian of the perfect
crystal or in the disorder Hamiltonian, a transition which
is right-handed with respect to the magnetization di-
rection has a different transition probability than the
corresponding left-handed transition. When the transi-
tion rates are evaluated perturbatively, asymmetric chi-
ral contributions appear first at third order. (See Sec.
IV.A). In simple models the asymmetric chiral contribu-
tion to the transition probability is often assummed to
have the form (see Sec. III.C.2.a):

WA
kk′ = −τ−1

A k × k′ ·Ms. (1.7)

When this asymmetry is inserted into the Boltzmann
equation it leads to a current proportional to the lon-
gitudinal current driven by E and perpendicular to both
E and Ms. When this mechanism dominates, both the
Hall conductivity σH and the conductivity σ are propor-
tional to the transport lifetime τ and the Hall resistivity
ρskewH = σskewH ρ2 is therefore proportional to the longitu-
dinal resistivity ρ.

There are several specific mechanisms for skew scat-
tering (see Sec.III.C.2 and Sec. IV.A). Evaluation of
the skew scattering contribution to the Hall conductivity

or resistivity requires simply that the conventional lin-
earized Boltzmann equation be solved using a collision
term with accurate transition probabilities, since these
will generically include a chiral contribution. In prac-
tice our ability to accurately estimate the skew scatter-
ing contribution to the AHE of a real material is lim-
ited only by typically imperfect characterization of its
disorder. We emphasize that skew scattering contribu-
tions to σH are present not only because of spin-orbit
coupling in the disorder Hamiltonian, but also because
of spin-orbit coupling in the perfect crystal Hamiltonain
combined with purely scalar disorder. Either source of
skew-scattering could dominate σAH−skewxy depending on
the host material and also on the type of impurities.

We end this subsection with a small note directed to
the reader who is more versed in the latest development
of the full semiclassical theory of the AHE and in its
comparison to the microscopic theory (see Sec. IV.A and
IV.B.2). We have been careful above not to define the
skew-scattering contribution to the AHE as the sum of
all the contributions arising from the asymmetric scatter-
ing rate present in the collision term of the Boltzmann
transport equation. We know from microscopic theory
that this asymmetry also makes an AHE contribution or
order τ0. There exists a contribution from this asymme-
try which is actually present in the microscopic theory
treatment associated with the so called ladder diagram
corrections to the conductivity, and therefore of order τ0.
In our experimentally practical parsing of AHE contri-
butions we do not associate this contribution with skew-
scattering but place it under the umbrella of side-jump
scattering even though it does not physically originate
from any side-step type of scattering.

3. Side-jump contribution to σAHxy

Given the sharp defintions we have provided for the
intrinsic and skew scattering contributions to the AHE
conductivity, the equation

σAHxy = σAH−intxy + σAH−skewxy + σAH−sjxy (1.8)

defines the side-jump contribution as the difference be-
tween the full Hall conductivity and the two-simpler con-
tributions. In using the term side-jump for the remaining
contribution, we are appealing to the historically estab-
lished taxonomy outlined in the previous section. Estab-
lishing this connection mathematically has been the most
controversial aspects of AHE theory, and the one which
has taken the longest to clarify from a theory point of
view. Although this classification of Hall conductivity
contributions is often useful (see below), it is not gener-
ically true that the only correction to the intrinsic and
skew contributions can be physically identified with the
side-jump process defined as in the earlier studies of the
AHE (Berger, 1964).

The basic semiclassical argument for a side-jump
contribution can be stated straight-forwardly: when
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considering the scattering of a Gaussian wavepacket
from a spherical impurity with SOI ( HSO =
(1/2m2c2)(r−1∂V/∂r)SzLz), a wavepacket with incident
wave-vector k will suffer a displacement transverse to k
equal to 1

6k~2/m2c2. This type of contribution was first
noticed, but discarded, by Smit (Smit, 1958) and reintro-
duced by Berger (Berger, 1964) who argued that it was
the key contribution to the AHE. This kind of mecha-
nism clearly lies outside the bounds of traditional Boltz-
mann transport theory in which only the probabilities of
transitions between Bloch states appears, and not micro-
scopic details of the scattering processes. This contribu-
tion to the conductivity ends up being independent of τ
and therefore contributes to the AHE at the same order
as the intrinsic contribution in an expansion in powers
of scattering rate. The separation between intrinsic and
side-jump contributions, which cannot be distinquished
by their dependence on τ , has been perhaps the most
argued aspect of AHE theory since they cannot be dis-
tinquished by their dependence on scattering rate (see
Sec. III.C.2.d).

As explained clearly in a recent review by Sinitsyn
(Sinitsyn, 2008), side-jump and intrinsic contributions
have quite different dependences on more specific sys-
tem parameters, particularly in systems with complex
band structures. Some of the initial controversy which
surrounded side jump theories was associated with phys-
ical meaning ascribed to quantities which were plainly
gauge dependent, like the Berry’s connection which in
early theories is typically identified as the definition of
the side-step upon scattering. Studies of simple models,
for example models of semiconductor conduction bands,
also gave results in which the side-jump contribution
seemed to be the same size but opposite in sign com-
pared to the intrinsic contribution (Nozieres and Lewiner,
1973). We now understand (Sinitsyn et al., 2007) that
these cancellations are unlikely, except in models with a
very simple band structure, e.g. one with a constant
Berry’s curvature. It is only through comparison be-
tween fully microscopic linear response theory calcula-
tions, based on equivalently valid microscopic formalisms
such as Keldysh (non-equilibrium Grenn’s function) or
Kubo formalisms, and the systematically developed semi-
classical theory that the specific contribution due to the
side-jump mechanism can be separately identified with
confidence (see Sec. IV.A).

Having said this, all the calculations comparing the
intrinsic and side-jump contibutions to the AHE from a
microscopic point of view have been performed for very
simple models not immediately linked to real materials.
A practical approch which is followed at present for ma-
terials in which σAH seems to be independent of σxx, is
to first calculate the intrisic contribution to the AHE. If
this explains the observation (and it appears that it usu-
ally does), then it is deemed that the intrinsic mechanism
dominates. If not, we can take some comfort from under-
standing on the basis of simple model results, that there
can be other contributions to σAH which are also inde-

pendent of σxx and can for the most part be identified
with the side jump mechanism. Unfortunately it seems
extremelly challenging, if not impossible, to develop a
predictive theory for these contributions, partly because
they require many higher order terms in the perturbation
theory that be summed, but more fundamentally because
they depend sensitively on details of the disorder in a
particular material which are normally unknown.

II. EXPERIMENTAL AND THEORETICAL STUDIES ON
SPECIFIC MATERIALS

A. Transition-metals

1. Early experiments

Four decades after the discovery of the AHE, an empir-
ical relation between magnetization and Hall resistivity
was proposed independently by A. W. Smith and by E.
M. Pugh (Pugh, 1930; Pugh and Lippert, 1932; Smith
and Sears, 1929) (see Sec. I.A). Pugh investigated the
AHE in Fe, Ni and Co and the alloys Co-Ni and Ni-Cu
in magnetic fields up to 17 kG over large intervals in T
(10-800 K in the case of Ni), and found that the Hall
resistivity ρH is comprised of 2 terms, viz.

ρH = R0H +R1M(T,H), (2.1)

where M(T,H) is the magnetization averaged over the
sample. Pugh defined R0 and R1 as the ordinary and
extra-ordinary Hall coefficients, respectively. The latter
R1 = Rs is now called the anomalous Hall coefficient (as
in Eq. 1.1)).

On dividing Eq. (2.1) by ρ2, we see that it just ex-
presses the additivity of the Hall currents: the total Hall
conductivity σtotxy equals σNHxy + σAHxy , where σNHxy is the
ordinary Hall conductivity and σAHxy is the AHE conduc-
tivity. A second implication of Eq. (2.1) emerges when
we consider the role of domains. The anomalous Hall co-
efficient in Eq.(2.1) is proportional to the AHE in a sin-
gle domain. As H → 0, proliferation of domains rapidly
reduces M(T,H) to zero (we ignore pinning). Cancella-
tions of σAHxy between domains result in a zero net Hall
current. Hence the observed AHE term mimics the field
profile of M(T,H), as implied by Pugh’s term R1M . The
role of H is simply to align the AHE currents by rotat-
ing the domains into alignment. The Lorentz force term
σNHxy is a “background” current with no bearing on the
AHE problem.

The most interesting implication of Eq. (2.1) is that,
in the absence of H, a single domain engenders a spon-
taneous Hall current transverse to both M and E. Un-
derstanding the origin of this spontaneous off-diagonal
current has been a fundamental problem of charge trans-
port in solids for the past 60 years. The AHE is also
called the spontaneous Hall effect and the extraordinary
Hall effect in the older literature.
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2. Recent experiments

The resurgence of interest in the AHE motivated by
the Berry-phase approach (Sec. I.B.1) has led to many
new Hall experiments on 3d transition metals and their
oxides. Both the recent and the older literature on Fe
and Fe3O4 are reviewed in this section. An important
finding of these studies is the emergence of three distinct
regimes roughly delimited by the conductivity σxx and
characterized by the dependence of σAHxy on σxx. The
three regimes are:

i) A high conductivity regime for σxx & 106 (Ωcm)−1

in which σAH−skewxy ∼ σ1
xx dominates σAHxy ,

ii) A good metal regime for σAHxx ∼ 104−106 (Ωcm)−1

in which σxy ∼ σ0
xx,

iii) A bad metal/hopping regime for σxx < 104

(Ωcm)−1 in which σAHxy ∼ σ1.6−1.8
xx .

We discuss each of these regimes below.

High conductivity regime – The Hall conductivity in the
high-purity regime, σxx > 0.5 × 106 (Ωcm)−1, is dom-
inated by the skew scattering contribution σskewxy . The
high-purity regime is one of the least studied experimen-
tally. This regime is very challenging to investigate ex-
perimentally because the field H required for saturating
M also yields a very large ordinary Hall effect (OHE)
and R0 tends to be of the order of Rs (Schad et al.,
1998). In the limit ωcτ � 1, the OHE conductivity
σNHxy may be nonlinear in H (ωc is the cyclotron fre-
quency). Although σskewxy increases as τ , the OHE term
σNHxy increases as τ2 and therefore the latter ultimately
dominates, and the AHE current may be unresolvable.
Even though the anomalous Hall current can not always
be cleanly separated from the normal Lorentz-force Hall
effect in the high conductivity regime, the total Hall cur-
rent invariably increases with σxx in a way which provides
compelling evidence for a skew-scattering contribution.

In spite of these challenges several studies have man-
aged to convincingly separate the competing contribu-
tions and have identifed a dominant linear relation be-
tween σAHxy and σxx for σxx & 106 (Ωcm)−1 (Majum-
dar and Berger, 1973; Shiomi et al., 2009). In an early
study Majumdar et al. (Majumdar and Berger, 1973)
grew highly pure Fe doped with Co. The resulting σAHxy ,
obtained from Kohler plots extrapolation to zero field,
show a clear dependence of σAHxy ∼ σxx (Fig. 4 a). In a
more recent study, a similar finding (linear dependence of
σAHxy ∼ σxx) was observed by Shiomi et al. (Shiomi et al.,
2009) in Fe doped with Co, Mn, Cr, and Si. In these stud-
ies the high temperature contribution to σAHxy (presumed
to be intrinsic plus side jump) was substracted from σxy
and a linear dependence of the resulting σAHxy is observed
(Fig. 4 a and b). In this recent study the conductivity
is intentionally reduced by impurity doping to find the
linear region and reliably exclude the Lorernz contribu-
tion. The results of these authors show, in particular,

that the slope of σxx vs. σAHxy depends on the species
of the impurities as it is expected in the regime domi-
nated by skew scattering. It is reassuring to note that
the skewness parameters (Sskew = σAH/σxx) implied by
the older and the more recent experiments are consistent,
in spite of differences in the conductivity ranges stud-
ied. Sskew is independent of σxx (Majumdar and Berger,
1973; Shiomi et al., 2009) as it should be when the skew
scattering mechanism dominates. Further experiments
in this regime are desirable to fully investiage the dif-
ferent dependence on doping, temperature, and impurity
type. Also, new approaches to reliably disentangle the
AHE and OHE currents will be needed to faicilitate such
studies.
Good metal regime – Experiments re-examining the AHE
in Fe, Ni, and Co have been performed by Miyasato et
al. (Miyasato et al., 2007). These experiments indicate a
regime of σxy versus σxx in which σxy is insensitive to σxx
in the range σxx ∼ 104-106 (Ωcm)−1 (see Fig. 5). This
suggests that the scattering independent mechanisms (in-
trinsic and side-jump) dominates in this regime. How-
ever, in comparing this phenomenology to the discussion
of AHE mechanisms in Sec. I.B, one must keep in mind
that the temperature has been varied in the Hall data
on Fe, Ni, and Co in order to change the resistivity, even
though it is restricted to the range well below Tc (Fig. 5
upper panel). In the mechanisms discussed in Sec. I.B
only elastic scattering was taken into account. Earlier
tests of the ρ2 dependence of ρxy carried by varying T
were treated as suspect in the early AHE period (see Fig.
2) because the role of inelastic scattering was not fully un-
derstood. The effect of inelastic scattering from phonons
and spin waves remains open in AHE theory and is not
addressed in this review.
Bad metal/hopping regime– Several groups have mea-
sured σxy in Fe and Fe3O4 thin-film ferromagnets (Feng
et al., 1975; Fernandez-Pacheco et al., 2008; Miyasato
et al., 2007; Sangiao et al., 2009; Venkateshvaran et al.,
2008). (See Fig. 6.) Sangiao et al. (Sangiao et al., 2009)
studied epitaxial thin-films of Fe deposited by pulsed-
laser deposition (PLD) on single-crystal MgO (001) sub-
strates at pressures < 5 × 10−9 Torr. To vary σxx over
a broad range, they varied the film thickness t from 1 to
10 nm. The ρ vs. T profile for the film with t = 1.8 nm
displays a resistance minimum near 50 K, below which ρ
shows an upturn which has been ascribed to localization
or electron interaction effects (Fig. 7). The magnetiza-
tion M is nominally unchanged from the bulk value (ex-
cept possibly in the 1.3 nm film). AHE experiments were
carried out from 2–300 K on these films and displayed as
σxy vs. σxx plots together with previously published re-
sults (Fig. 6). In the plot, the AHE data from films with
t ≤ 2 nm fall in the weakly localized regime. The com-
bined plot shows that Sangio et al.’s data are collinear (on
a logarithmic scale) with those measured on 1 µm-thick
films by Miyasato et al. (Miyasato et al., 2007). For the
three samples with t = 1.3–2 nm, the inferred exponent in
the dirty regime is on average ∼ 1.66. A concern is that
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In many of the alloys, particularly in the Co doped system,
the linear scaling in the higher conductivy sector, σxx > 106

(Ωcm)−1, implies that skew scattering dominates σAHxy . After
Ref. Majumdar and Berger, 1973 and Ref. Shiomi et al., 2009.
The data from (Shiomi et al., 2009), shown also at a larger
scale in (b), is obtained by substracting the high temperature
contribuiton to σxy. In the data shown the ordinary Hall
contribution has been identified and substracted. [Panel (b)
From Ref. Shiomi et al., 2009.]

the data from the 1.3 nm film was obtained by subtract-
ing a lnT term from ρ (the subtraction procedure was
not described). How localization affects the scaling plot
is an open issue at present. In Sec. II.E, we discuss re-
cent AHE measurements in disordered polycrystalline Fe
films with t < 10 nm by Mitra et al. (Mitra et al., 2007).
Recent progress in understanding weak-localization cor-
rections to the AHE is also reviewed there.

In magnetite, Fe3O4, scaling of σxy ∼ σαxx with
α ∼ 1.6 − 1.8 was already apparent in early experi-
ments on polycrystalline samples (Feng et al., 1975).
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in single-crystal Fe and in thin foils of Fe, Co, and Ni. The
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After Ref. Miyasato et al., 2007.
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FIG. 6 Combined plot of the AHE conductivity |σxy| versus
the conductivity σxx in epitaxial films of Fe grown on MgO
with thickness t = 2.5, 2.0, 1.8 and 1.3 nm (Sangiao et al.,
2009), in polycrystalline Fe3−xZnxO4 (Feng et al., 1975), in
thin-film Fe3−xZnxO4 between 90 and 350 K (Venkateshvaran
et al., 2008) and above the Verwey transition (Fernandez-
Pacheco et al., 2008).

Recently, two groups have re-investigated the AHE in
epitaxial thin films (data included in Fig. 6). Fernandez-
Pacheco et al. (Fernandez-Pacheco et al., 2008) mea-
sured a series of thin-film samples of Fe3O4 grown by
PLD on MgO (001) substrates in ultra-high vacuum,
whereas Venkateshvaran et al. (Venkateshvaran et al.,
2008) studied both pure Fe3O4 and Zn-doped magnetite
Fe3−xZnxO4 deposited on MgO and Al2O3 substrates
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FIG. 7 The T dependence of ρ in epitaxial thin-films
MgO(001)/Fe(t)/MgO with t = 1.8 nm and 2.5 nm. The
inset shows how T0, the temperature of the resistivity mini-
mum, varies with t.[From Ref. Sangiao et al., 2009.]

grown by laser molecular-beam epitaxy under pure Ar
or Ar/O mixture. In both studies, ρ increases monotoni-
cally by a factor of ∼10 as T decreases from 300 K to the
Verwey transition temperature TV = 120 K. Below TV ,
ρ further increases by a factor of 10 to 100. The results
for ρ vs. T from Venkateshvaran et al. (Venkateshvaran
et al., 2008) is shown in Fig. 8.

The large values of ρ and its insulating trend imply
that magnetite falls in the strongly localized regime, in
contrast to thin-film Fe which lies partly in the weak-
localization (or incoherent) regime.

Both groups find good scaling fits extending over sev-
eral decades of σxx with α ∼ 1.6 − 1.8 when varying
T . Fernandez-Pacheco et al. (Fernandez-Pacheco et al.,
2008) plot σxy vs. σxx in the range 150< T <300 K
for several thicknesses t and infer an exponent α = 1.6.
Venkateshvaran et al. (Venkateshvaran et al., 2008) plot
σxy vs. σxx from 90 to 350 K and obtain power-law fits
with α = 1.69, in both pure and Zn-doped magnetite
(data shown in Fig. 6). Significantly, the 2 groups find
that α is unchanged below TV . There is presently no the-
ory in the poorly conducting regime which predicts the
observed scaling (σxx < 10−1 (Ωcm)−1).

3. Comparison to theories

Detailed first-principles calculations of the intrinsic
contribution to the AHE conductivity have been per-
formed for bcc Fe (Wang et al., 2006; Yao et al., 2004),
fcc Ni, and hpc Co (Wang et al., 2007). In Fe and Co,
the values of σxy inferred from the Berry curvature Ωz(k)
are 7.5× 102 and 4.8× 102 (Ωcm)−1, respectively, in rea-
sonable agreement with experiment. In Ni, however, the
calculated value −2.2 × 103 (Ωcm)−1 is only 30% of the
experimental value.

These calculations uncovered the crucial role played
by avoided-crossings of band dispersions near the Fermi
energy εF . The Berry curvature bz is always strongly

FIG. 8 Longitudinal resistivity ρxx vs. T for epitaxial
Fe3−xZnxO4 films. The (001), (110) and (111) oriented films
were grown on MgO(001), MgO(110) and Al2O3 substrates.
[From Ref. Venkateshvaran et al., 2008.]

FIG. 9 First-principles calculation of the band dispersions
and the Berry-phase curvature summed over occupied bands.
[From Ref. Yao et al., 2004.]

enhanced near avoided crossings, opposite direction for
the upper and lower bands. A large contribution to σintxy

when the crossing is at the Fermi energy so that only
one of the two bands is occupied, e.g. near the point H
in Fig. 9. A map showing the contributions of different
regions of the FS to bz(k) is shown in Fig. 10. The SOI
can lift an accidental degeneracy at certain wavevectors
k. These points act as a magnetic monopole for the Berry
curvature in k-space (Fang et al., 2003). In the parame-
ter space of spin-orbit coupling, σxy is nonperturbative in
nature. The effect of these “parity anomalies” (Jackiw,
1984) on the Hall conductivity was first discussed by Hal-
dane (Haldane, 1988). A different conclusion on the role
of topological enhancement in the intrinsic AHE was re-
ported for a tight-binding calculation with the 2 orbitals
dzx and dyz on a square lattice (Kontani et al., 2007).

Motivated by the enhancement at the crossing points
discussed above, Onoda et al. (Onoda et al., 2006a, 2008)
proposed a minimal model that focuses on the topologi-
cal and resonantly enhanced nature of the intrinsic AHE
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FIG. 10 First-principles calculation of the FS in the (010)
plane (solid lines) and the Berry curvature in atomic units
(color map). [From Ref. Yao et al., 2004.]

arising from the sharp peak in bz(k) near avoided cross-
ings. The minimal model is essentially a 2D Rashba
model (Bychkov and Rashba, 1984) with an exchange
field which breaks symmetries and accounts for the mag-
netic order and a random impurity potential to account
for disorder. The model is discussed in Sec. IV.D. In
the clean limit, σxy is dominated by the extrinsic skew-
scattering contribution σskew

xy , which almost masks the in-
trinsic contribution σint

xy . Since σskew
xy ∝ τ , it is suppressed

by increased impurity scattering, whereas σint
xy – an in-

terband effect – is unaffected. In the moderately dirty
regime where the quasiparticle damping is larger than
the energy splitting at the avoided crossing (typically,
the SOI energy) but less than the bandwidth, σint

xy domi-
nates σskew

xy . As a result, one expects a crossover from the
extrinsic to the intrinsic regime. When skew scattering
is due to a spin-dependent scattering potential instead of
spin-orbit coupling in the Bloch states, the skew to intrin-
sic crossover could be controlled by a different condition.
In this minimal model, a well-defined plateau is not well-
reproduced in the intrinsic regime unless a weak impurity
potential is assumed (Onoda et al., 2008). This crossover
may be seen when the skew-scattering term shares the
same sign as the intrinsic one (Kovalev et al., 2009).

With further increase in the scattering strength, spec-
tral broadening leads to the scaling relationship σxy ∝
σ1.6
xx , as discussed above (Kovalev et al., 2009; Onoda

et al., 2006b, 2008). In the strong-disorder regime, σxx
is no longer linear in the scattering lifetime τ . A dif-
ferent scaling, σxy ∝ σ2

xx, attributed to broadening of
the electronic spectrum in the intrinsic regime, has been
proposed by Kontani et al. (Kontani et al., 2007).

As discussed above, there is some experimental evi-
dence that this scaling prevails not only in the dirty
metallic regime, but also deep into the hopping regime.

FIG. 11 Anomalous Hall effect in SrRuO3. (A) The mag-
netization M , (B) longitudinal resistivity ρxx, and (C) trans-
verse resistivity ρxy as functions of the temperature T for the
single crystal and thin-film SrRuO3, as well as for Ca-doped
Sr0.8Ca0.2RuO3 thin film. µB is the Bohr magneton. [From
Ref. Fang et al., 2003.]

Sangio et al. (Sangiao et al., 2009), for e.g., obtained the
exponent α '1.7 in epitaxial thin-film Fe in the dirty
regime. In manganite, scaling seems to hold, with the
same nominal value of α, even below the Verwey tran-
sition where charge transport is deep in the hopping
regime (Fernandez-Pacheco et al., 2008; Venkateshvaran
et al., 2008). These regimes are well beyond the purview
of either the minimal model, which considers only elas-
tic scattering, or the theoretical approximations used to
model its properties (Onoda et al., 2006b, 2008).

Nonetheless, the experimental reports have uncovered
a robust scaling relationship with α near 1.6, which ex-
tends over a remarkably large range of σxx. The origin
of this scaling is an open issue at present.

B. Complex oxide ferromagnets

1. First-principles calculations and experiments on SrRuO3

The perovskite oxide SrRuO3 is an itinerant ferromag-
net with a critical temperature Tc of 165 K. The electrons
occupying the 4d t2g orbitals in Ru4+ have a SOI en-
ergy much larger than that for 3d electrons. Early trans-
port investigations of this material were reported in Refs.
Allen et al., 1996 and Izumi et al., 1997. The latter au-
thors also reported results on thin-film SrTiO3. Recently,
the Berry-phase theory has been applied to account for its
AHE (Fang et al., 2003; Mathieu et al., 2004a,b), which
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FIG. 12 The calculated transverse conductivity σxy as a
function of the chemical potential µ for SrRuO3. The chaotic
behavior is the fingerprint of the Berry curvature distribution
illustrated in Fig. 13. [From Ref. Fang et al., 2003.]

FIG. 13 The Berry curvature bz(k) for a band as a function
of k⊥ = (kx, ky) with the fixed kz = 0. [From Ref. Fang
et al., 2003.]

is strongly T dependent (Fig.11c). Neither the KL the-
ory nor the skew-scattering theory seemed adequate for
explaining the T dependence of the inferred AHE con-
ductivity σxy (Fang et al., 2003).

The experimental results motivated a detailed first-
principles, band-structure calculation that fully incorpo-
rated the SOI. The AHE conductivity σxy was calculated
directly using the Kubo formula Eq. (1.2) (Fang et al.,
2003). To handle numerical instabilities which arise near
certain critical points, a fictitious energy broadening δ
= 70 meV was introduced in the energy denominator.
Fig. 12 shows the dependence of σxy(µ) on the chemical
potential µ. In sharp contrast to the diagonal conduc-
tivity σxx, σxy(µ) fluctuates strongly, displaying sharp
peaks and numerous changes in sign. The fluctuations
may be understood if we map the momentum dependence
of the Berry curvature bz(k) in the occupied band. For
example, Fig. 13 displays bz(k) plotted as a function of
k⊥ = (kx, ky), with kz fixed at 0. The prominent peak
at k⊥ = 0 corresponds to the avoided crossing of the
energy band dispersions, which are split by the SOI. As
discussed in Sec. I.B, variation of the exchange splitting
caused by a change in the spontaneous magnetization M
strongly affects σxy in a nontrivial way.

FIG. 14 (Upper panel) Combined plots of the Hall conduc-
tivity σxy vs. magnetization M in 5 samples of the ruthen-
ate Sr1−xCaxRuO3 (0 ≤ x ≤ 0.4). The inset compares data
σxy at x = 0 (triangles) with calculated values (solid curve).
(Lower panel) First-principles calculations of σxy vs. M for
cubic and orthorhombic structures. The effect of broaden-
ing on the curves is shown for the orthorhombic case. [From
Ref. Mathieu et al., 2004b.]

From the first-principles calculations, one may esti-
mate the temperature dependence of σxy by assuming
that it is due to the temperature-dependence of the Bloch
state exchange splitting and that this splitting is propor-
tional to the temperature-dependent magnetization. The
new insight is that the T -dependence of σxy(T ) simply
reflects the M dependence of σxy: at a finite tempera-
ture T ′, the magnitude and sign of σxy may be deduced
by using the value of M(T ′) in the zero-T curve. This
proposal was tested against the results on both the pure
material and the Ca-doped material Sr1−xCaxRuO3. In
the latter, Ca doping suppresses both Tc and M system-
atically (Mathieu et al., 2004a,b). As shown in Fig. 14
(upper panel), the measured values of M and σxy, ob-
tained from 5 samples with Ca content 0.4≤ x ≤ 0, fall on
2 continuous curves. In the inset, the curve for the pure
sample (x = 0) is compared with the calculation. The
lower panel of Fig. 14 compares calculated curves of σxy
for cubic and orthorhombic lattice structures. The sen-
sitivity of σxy to the lattice symmetry reflects the dom-
inant contribution of the avoided crossing near εF . The
sensitivity to broadening is shown for the orthorhombic
case.

Kats et al. (Kats et al., 2004) also have studied the
magnetic field dependence of ρxy in an epitaxial film of
SrRuO3. They have observed sign-changes in ρxy near a
magnetic field B = 3 T at T = 130 K and near B = 8
T at 134 K. This seems to be qualitative consistent with
the Berry-phase scenario. On the other hand the authors
suggest that the intrinsic-dominated picture is likely in-
complete (or incorrect) near Tc (Kats et al., 2004).
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2. Spin chirality mechanism of the AHE in manganites

In the manganites, e.g. La1−xCaxMnO3 (LCMO), the
three t2g electrons on each Mn ion form a core local mo-
ment of spin S = 3

2 . A large Hund energy JH aligns the
core spin S with the s = 1

2 spin of an itinerant electron
that momentarily occupies the eg orbital. Because this
Hund coupling leads to an extraordinary magnetoresis-
tance in weak H, the manganites are called colossal mag-
netoresistance (CMR) materials (Tokura and Tomioka,
1999). The double exchange theory summarized by
Eq. (2.2) (below) is widely adopted to describe the onset
of ferromagnetism in the CMR manganites.

As T decreases below the Curie temperature TC ' 270
K in LCMO, the resistivity ρ falls rapidly from ∼15 mΩ
cm to metallic values <2 mΩcm. CMR is observed over a
significant interval of temperatures above and below TC ,
where charge transport occurs by hopping of electrons
between adjacent Mn ions (Fig. 15a). At each Mn site
i, the Hund energy tends to align the carrier spin s with
the core spin Si.

Early theories of hopping conductivity (Holstein, 1961)
predicted the existence of a Hall current produced by the
phase shift (Peierls factor) associated with the magnetic
flux φ piercing the area defined by 3 non-collinear atoms.
However, the hopping Hall current is weak. The observa-
tion of a large ρxy in LCMO that attains a broad maxi-
mum in modest H (Fig. 15b) led Matl et al. (Matl et al.,
1998) to propose that the phase shift is geometric in ori-
gin, arising from the solid angle described by s as the
electron visits each Mn site (s||Si at each site i as shown
in Fig. 16). To obtain the large ρxy seen, one requires
Si to define a finite solid angle Ω. Since Si gradually
aligns with H with increasing field, this effect should dis-
appear along with 〈Ω〉, as observed in the experiment.
This appears to be the first application of a geometric-
phase mechanism to account for an AHE experiment.

Subsequently, Ye et al. (Ye et al., 1999) considered
the Berry phase due to the thermal excitations of the
Skyrmion (and anti-Skyrmion). They argued that the
SOI gives rise to a coupling between the uniform magne-
tization M and the gauge field b by the term λM · b. In
the ferromagnetic state, the spontaneous uniform magne-
tization M leads to a finite and uniform b, which acts as
a uniform magnetic field. Lyanda-Geller et al. (Lyanda-
Geller et al., 2001) also considered the AHE due to the
spin chirality fluctuation in the incoherent limit where
the hopping is treated perturbatively. This approach,
applicable to the high-T limit, complements the theory
of Ye et al. (Ye et al., 1999).

The Berry phase associated with non-coplanar spin
configurations, the scalar spin chirality, was first con-
sidered in theories of high-temperature superconductors
in the context of the flux distribution generated by the
complex order parameter of the resonating valence bond
(RVB) correlation defined by χij , which acts as the trans-
fer integral of the “spinon” between the sites i and j (Lee
et al., 2006). The complex transfer integral also appears

FIG. 15 (a) The colossal magnetoresistance ρ vs. H in
La1−xCaxMnO3 (TC = 265 K) at selected T . (b) The Hall re-
sistivity ρxy vs. H at temperatures 100 to 360 K. Above TC ,
ρxy is strongly influenced by the MR and the susceptibility χ.
[From Ref. Matl et al., 1998.]

FIG. 16 Schematic view of spin chirality. When circulates
among three spins to which it is exchange-coupled, it feels a

fictitious magnetic field ~b with flux given by the half of the
solid angle Ω subtended by the three spins. [From Ref. Lee
et al., 2006.]

in the double-exchange model specified by

H = −
∑
ij,α

tij(c
†
iαcjα+h.c.)−JH

∑
i

Si·c†iασαβciβ , (2.2)

where JH is the ferromagnetic Hund’s coupling between
the spin σ of the conduction electrons and the localized
spins Si.

In the manganese oxides, Si represents the local-
ized spin in t2g-orbitals, while c† and c are the opera-
tors for eg-electrons. (The mean-field approximations of
Hubbard-like theories of magnetism, the localized spin
may also be regarded as the molecular field created by
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the conduction electrons themselves, in which case JH is
replaced by the on-site Coulomb interaction energy U .)
In the limit of large JH , the conduction electron spin s is
forced to align with Si at each site. The matrix element
for hopping from i→ j is then given by

teff
ij = tij〈χi|χj〉 = tije

iaij cos
(
θij
2

)
, (2.3)

where |χi〉 is the two-component spinor spin wave func-
tion with quantization axis ||Si. The phase factor eiaij
acts like a Peierls phase and can be viewed as originat-
ing from a fictitious magnetic field which influences the
orbital motion of the conduction electrons.

We next discuss how the Peierls phase leads to a gauge
field, i.e. flux, in the presence of non-coplanar spin con-
figurations. Let Si, Sj , and Sk be the local spins at sites
i, j, and k, respectively. The product of the three trans-
fer integrals corresponding to the loop i → j → k → i
is

〈ni|nk〉〈nk|nj〉〈nj |ni〉
= (1 + ni · nj + nj · nk + nk · nj) + ini · (nj × nk)

∝ ei(aij+ajk+aki) = eiΩ/2 (2.4)

where |ni〉 is the two-component spinor wavefunction of
the spin state polarized along ni = Si/|Si|. Its imag-
inary part is proportional to Si · (Sj × Sk), which cor-
responds to the solid angle Ω subtended by the three
spins on the unit sphere, and is called the scalar spin
chirality (Fig. 16). The phase acquired by the electron’s
wave function around the loop is eiΩ/2, which leads to
the Aharonov-Bohm (AB) effect and, as a consequence,
to a large Hall response.

In the continuum approximation, this phase factor is
given by the flux of the “effective” magnetic field b ·dS =
∇ × a · dS where dS is the elemental directed surface
area defined by the three sites. The discussion implies
that a large Hall current requires the unit vector n(x) =
S(x)/|S(x)| to fluctuate strongly as a function of x,
the position coordinate in the sample. An insightful way
to quantify this fluctuation is to regard n(x) as a map
from the x-y plane to the surface of the unit sphere (we
take a 2D sample for simplicity). An important defect
in a ferromagnet – the Skyrmion (Sondhi et al., 1993) –
occurs when n(x) points down at a point x′ in a region
A of the x-y plane, but gradually relaxes back to up at
the boundary of A. The map of this spin texture wraps
around the sphere once as x′ roams over A. The number
of Skyrmions in the sample is given by the topological
index

Ns =
∫
A
dxdy n ·

(
∂n

∂x
× ∂n

∂y

)
=
∫
A
dxdy bz, (2.5)

where the first integrand is the directed area of the image
on the unit sphere. Ns counts the number of times the
map covers the sphere as A extends over the sample. The
gauge field b produces a Hall conductivity. Ye et al. (Ye

et al., 1999) derived in the continuum approximation the
coupling between the field b and the spontaneuos magne-
tization M through the SOI. The SOI coupling produces
an excess of thermally excited positive Skyrmions over
negative ones. This imbalance leads to a net uniform
“magnetic field” b (anti)parallel to M , and the AHE.
In this scenario, ρxy is predicted to attain a maximum
slightly below Tc, before falling exponentially to zero as
T → 0.

The Hall effect in the hopping regime has been dis-
cussed by Holstein (Holstein, 1961) in the context of
impurity conduction in semiconductors. Since the en-
ergies εj and εk of adjacent impurity sites may differ sig-
nificantly, charge conduction must proceed by phonon-
assisted hopping. To obtain a Hall effect, we consider 3
non-collinear sites (labelled as i = 1, 2 and 3). In a field
H, the magnetic flux φ piercing the area enclosed by the
3 sites plays the key role in the Hall response. Accord-
ing to Holstein, the Hall current arises from interference
between the direct hopping path 1 → 2 and the path
1 → 3 → 2 going via 3 as an intermediate step. Taking
into account the changes in the phonon number in each
process, we have

(1, Nλ, Nλ′) → (1, Nλ ∓ 1, Nλ′)→ (2, Nλ ∓ 1, Nλ′ ∓ 1),
(1, Nλ, Nλ′) → (3, Nλ ∓ 1, Nλ′)→ (2, Nλ ∓ 1, Nλ′ ∓ 1),

(2.6)

where Nλ, Nλ′ are the phonon numbers for the modes
λ, λ′, respectively.

In a field H, the hopping matrix element from Ri to
Rj includes the Peierls phase factor exp[−i(e/c)

∫Rj

Ri
dr ·

A(r)]. When we consider the interference between the
two processes in Eq. (2.6), the Peierls phase factors
combine to produce the phase shift exp(i2πφ/φ0) where
φ0 = hc/e is the flux quantum. By the Aharonov-Bohm
effect, this leads to a Hall response.

As discussed, this idea was generalized for the mangan-
ites by replacing the Peierls phase factor with the Berry
phase factor in Eq. (2.4) (Lyanda-Geller et al., 2001).
The calculated Hall conductivity is

σH = G({ε}) cos(θij/2) cos(θjk/2) cos(θki/2) sin(Ω/2),
(2.7)

where {ε} is the set of the energy levels εa (a = i, j, k),
and θij is the angle between ni and nj . When the aver-
age of σH over all directions of na is taken, it vanishes
even for finite spontaneous magnetization m. To obtain
a finite σxy, it is necessary to incorporate SOI.

Assuming the form of hopping integral with the SOI
given by

Vjk = V orb
jk (1 + iσ · gjk), (2.8)

the Hall conductivity is proportional to the average of

[gjk · (nj × nk)][n1 · n2 × n3]. (2.9)
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FIG. 17 Comparison between experiment and the theoreti-
cal prediction Eq.(2.10). Scaling behavior between the Hall
resistivity ρH and the magnetization M is shown. The solid
line is a fit to Eq.(2.10); the dashed line is the numerator of
Eq.(2.10) only. There are no fitting parameters except the
overall scale. [From Ref. Chun et al., 2000.]

Taking the average of n’s with m = M/Msat where Msat

is the saturated magnetization, we finally obtain

ρxy = ρ0
xy

m(1−m2)2

(1 +m2)2
. (2.10)

This prediction has been tested by the experiment of
Chun et al. (Chun et al., 2000) shown in Fig. 17. The
scaling law for the anomalous ρxy as a function of |M|
obtained near TC is in good agreement with the experi-
ment.

Similar ideas have been used by Burkov and Ba-
lents (Burkov and Balents, 2003) to analyze the vari-
able range hopping region in (Ga,Mn)As. The spin-
chirality mechanism for the AHE has also been applied
to CrO2 (Yanagihara and Salamon, 2002, 2007), and the
element Gd (Baily and Salamon, 2005). In the former
case, the comparison between ρxy and the specific heat
supports the claim that the critical properties of ρxy are
governed by the Skyrmion density.

The theories described above assume large Hund cou-
pling. In the weak-Hund coupling limit, a perturba-
tive treatment in JH has been developed to relate the
AHE conductivity to the scalar spin chirality (Tatara
and Kawamura, 2002). This theory has been applied to
metallic spin-glass systems (Kawamura, 2007).

3. Lanthanum cobaltite

The subtleties and complications involved in analyz-
ing the Hall conductivity of tunable ferromagnetic ox-
ides are well illustrated by the cobaltites. Samoilov et
al. (Samoilov et al., 1998), and Baily and Salamon (Baily
and Salamon, 2003) investigated the AHE in Ca-doped
lanthanum cobaltite La1−xCaxCoO3, which displays a
number of unusual magnetic and transport properties.
They found an unusually large AHE near TC as well as

(d)

FIG. 18 Temperature dependence of the magnetization M
(a), Hall resistivity ρxy (b), Hall conductivity σxy (c), in four
crystals of La1−xSrxCoO3 (0.17 ≤ x ≤ 0.30) (all measured
in a field H = 1 T). In Panels a, b and c, the data for x
= 0.17 and 0.20 were multiplied by a factor of 200 and 50,
respectively. (d) The Hall conductivity σxy at 1 T in the four
crystals plotted against M . Results for x = 0.17 and 0.20
were multiplied by factors 50 and 5, respectively. [From Ref.
Onose and Tokura, 2006.]

at low T , and proposed the relevance of spin-ordered
clusters and orbital disorder scattering to the AHE in
the low-T limit. Subsequently, a more detailed inves-
tigation of La1−xSrxCoO3 was reported by Onose and
Tokura (Onose and Tokura, 2006). Figs. 18 a, b and
c summarize the T dependence of M , ρxy and σxy, re-
spectively in four crystals with 0.17 ≤ x ≤ 0.30. The
variation of ρxx vs. x suggests that a metal-insulator
transition occurs between 0.17 and 0.19. Whereas the
samples with x ≥ 0.2 have a metallic ρxx-T profile, the
sample with x = 0.17 is non-metallic (hopping conduc-
tion). Moreover, it displays a very large MR at low T
and large hysteresis in curves of M vs. H, features that
are consistent with a ferromagnetic cluster-glass state.

When the Hall conductivity is plotted vs. M (Fig. 18
d), σxy shows a linear dependence on M for the most
metallic sample (x = 0.30). However, for x = 0.17 and
0.20, there is a pronounced downturn suggestive of the
appearance of a different Hall term that is electron-like
in sign. This is most apparent in the trend of the curves
of ρxy vs. T in Fig. 18 b. Onose and Tokura (Onose and
Tokura, 2006) propose that the negative term may arise
from hopping of carriers between local moments which
define a chirality that is finite, as discussed above.
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4. Spin chirality mechanism in pyrochlore ferromagnets

In the examples discussed in the previous subsection,
the spin-chirality mechanism leads to a large AHE at
finite temperatures. An interesting question is whether
or not there exist ferromagnets in which the spin chirality
is finite in the ground state.

Ohgushi et al. (Ohgushi et al., 2000) considered the
ground state of the non-coplanar spin configuration in the
Kagome lattice, which may be obtained as a projection
of the pyrochlore lattice onto the plane normal to (1,1,1)
axis. Considering the double exchange model Eq. (2.2),
they obtained the band structure of the conduction elec-
trons and the Berry phase distribution. Quite similar
to the Haldane model (Haldane, 1988) or the model dis-
cussed in Eq. (3.21), the Chern number of each band be-
comes nonzero, and a quantized Hall effect results when
the chemical potential is in the energy gap.

Turning to real materials, the pyrochlore ferromag-
net Nd2Mo2O7 (NMO) provides a test-bed for exploring
these issues. Its lattice structure consists of two inter-
penetrating sublattices comprised of tetrahedrons of Nd
and Mo atoms, respectively (the sublattices are shifted
along the c-axis) (Taguchi et al., 2001; Yoshii et al.,
2000). While the exchange between spins on either sub-
lattice is ferromagnetic, the exchange coupling Jdf be-
tween spins of the conducting d-electrons of Mo and lo-
calized f -electron spins on Nd is antiferromagnetic.

FIG. 19 Anomalous Hall effect in Nd2Mo2O7. Magnetic
field dependence of (A) the magnetization and (B) the trans-
verse resistivity (ρxy) for different temperatures. [From Ref.
Taguchi et al., 2001.]

The dependences of the anomalous Hall resistivity ρxy
on H at selected temperatures are shown in Fig. 19. The
spins of Nd begin to align antiparallel to those of Mo be-
low the crossover temperature T ∗ ∼= 40 K. Each Nd spin
is subject to a strong easy-axis anisotropy along the line
from a vertex of the Nd tetrahedron to its center. The
resulting noncoplanar spin configuration induces a trans-
verse component of the Mo spins. Spin chirality is ex-

pected to be produced by the coupling Jdf , which leads to
the AHE of d-electrons. An analysis of the neutron scat-
tering experiment has determined the magnetic structure
(Taguchi et al., 2001). The tilt angle of the Nd spins is
close to that expected from the strong limit of the spin
anisotropy, and the exchange coupling Jfd is estimated
as Jfd ∼ 5 K. This leads to a tilt angle of the Mo spins of
∼5o. From these estimates, a calculation of the anoma-
lous Hall conductivity in a tight-binding Hamiltonian of
triply degenerate t2g bands leads to σH ∼ 20 (Ωcm)−1,
consistent with the value measured at low T . In a strong
H, this tilt angle is expected to be reduced along with
ρxy. This is in agreement with the traces displayed in
Fig. 19.

The T dependence of the Hall conductivity has also
been analyzed in the spin-chirality scenario by incorpo-
rating spin fluctuations (Onoda and Nagaosa, 2003). The
result is that frustration of the Ising Nd spins leads to
large fluctuations, which accounts for the large ρ ob-
served. The recent observation of a sign-change in σxy in
a field H applied in the [1, 1, 1] direction (Taguchi et al.,
2003) is consistent with the sign-change of the spin chi-
rality.

In the system Gd2Mo2O7 (GMO), in which Gd3+ (d7)
has no spin anisotropy, the low-T AHE is an order-
of-magnitude smaller than that in NMO. This is con-
sistent with the spin-chirality scenario (Taguchi et al.,
2004). The effect of the spin chirality mechanism on
the finite-frequency conductivity σH(ω) has been inves-
tigated (Kezsmarki et al., 2005).

In another work, Yasui et al. (Yasui et al., 2006,
2007) performed neutron scattering experiments over a
large region in the (H,T )-plane with H along the [0, 1̄, 1]
and [0, 0, 1] directions. By fitting the magnetization
MNd(H,T ) of Nd, the magnetic specific heat Cmag(H,T ),
and the magnetic scattering intensity Imag(Q,H, T ), they
estimated Jdj ∼= 0.5 K, which was considerably smaller
than estimated previously (Taguchi et al., 2001). Fur-
thermore, they calculated the thermal average of the spin
chirality 〈Si ·Sj ×Sk〉 and compared its value with that
inferred from the AHE resistivity ρxy. They have empha-
sized that, when a 3-Tesla field is applied in the [0, 0, 1]
direction (along this direction H cancels the exchange
field from the Mo spins), no appreciable reduction of ρxy
is observed. These recent conclusions have cast doubt on
the spin-chirality scenario for NMO.

A further puzzling feature is that, with H applied in
the [1, 1, 1] direction, one expects a discontinuous transi-
tion from the two-in, two-out structure (i.e. 2 of the Nd
spins point towards the tetrahedron center while 2 point
away) to the three-in, one-out structure for the Nd spins.
However, no Hall features that might be identified with
this cancellation have been observed down to very low T .
This seems to suggest that quantum fluctuations of the
Nd spins may play an important role, despite the large
spin quantum number (S = 3

2 ).
Machida has discussed the possible relevance of

spin chirality to the AHE in the pyrochlore Pr2Ir2O7
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FIG. 20 Plot of AHE conductivity σAHE vs. conduc-
tivity σ for anatase Ti1−xCoxO2−δ (triangles) and rutile
Ti1−xCoxO2−δ (diamonds). Grey symbols are data taken by
other groups. The inset shows the expanded view of data for
anatase with x= 0.05 (the open and closed triangles are for
T > 150 K and T < 100 K, respectively. [From Ref. Ueno
et al., 2007.]

(Machida et al., 2007a,b). In this system, a novel “Kondo
effect” is observed even though the Pr3+ ions with S = 1
are subject to a large magnetic anisotropy. The magnetic
and transport properties of R2Mo2O7 near the phase
boundary between the spin glass Mott insulator and fer-
romagnetic metal by changing the rare earth ion R has
been studied (Katsufuji et al., 2000).

5. Anatase and Rutile Ti1−xCoxO2−δ

In thin-film samples of the ferromagnetic semiconduc-
tor anatase Ti1−xCoxO2−δ, Ueno et al. (Ueno et al.,
2008) have reported scaling between the AHE resistance
and the magnetization M . The AHE conductivity σAHxy
scales with the conductivity σxx as σAHxy ∝ σ1.6

xx (Fig. 20).
A similar scaling relation was observed in another poly-
morph rutile. See also Ref. Ramaneti et al., 2007 for
related work on Co-doped TiO2.

C. Ferromagnetic semiconductors

Ferromagnetic semiconductors combine semiconduc-
tor tunability and collective ferromagnetic properties in
a single material. The most widely studied ferromag-
netic semiconductors are diluted magnetic semiconduc-
tors (DMS) created by doping a host semiconductor with
a transition metal which provides a localized large mo-
ment (formed by the d-electrons) and by introducing
carriers which can mediate a ferromagnetic coupling be-
tween these local moments. The most extensively studied
are the Mn based (III,Mn)V DMSs, in which substitut-
ing Mn for the cations in a (III,V) semiconductor can
dope the system with hole carriers; (Ga,Mn)As becomes

ferromagnetic beyond a concentration of 1%.

The simplicity of this basic but generally correct model
hides within it a cornucopia of physical and materials
science effects present in these materials. Among the
phenomena which have been studied are metal-insulator
transitions, carrier mediated ferromagnetism, disorder
physics, magneto-resistance effects, magneto-optical ef-
fects, coupled magnetization dynamics, post-growth de-
pendent properties, etc. A more in-depth discussion of
these materials, both from the experimental and theoret-
ical point of view, can be found in the recent review by
Jungwirth et al (Jungwirth et al., 2006).

The AHE has been one of the most fundamental char-
acterization tools in DMSs, allowing, for example, direct
electrical measurement of transition temperatures. The
reliability of electrical measurement of magnetic prop-
erties in these materials has been verified by compari-
son with remnant magnetization measurements using a
SQUID magnetometer (Ohno et al., 1992). The relative
simplicity of the effective band structure of the carriers
in metallic DMSs, has made them a playing ground to
understand AHE of ferromagnetic systems with strong
spin-orbit coupling.

Experimentally, it has been established that the AHE
in the archetypical DMS system (Ga,Mn)As is in the
metallic regime dominated by a scattering-independent
mechanism, i.e. ρAHxy ∝ ρ2

xx (Chun et al., 2007; Edmonds
et al., 2002; Pu et al., 2008; Ruzmetov et al., 2004). The
studies of Edmonds et al., 2002 and Chun et al., 2007
have established this relationship in the non-insulating
materials by extrapolating the low temperature ρxy(B)
to zero field and zero temperature. This is illustrated in
Fig. 21 where metallic samples, which span a larger range
than the ones studied by Edmonds et al., 2002, show a
clear RS ∼ ρ2

xx dependence.

DMSs grown requires non-equilibrium (low tempera-
ture) conditions and the as-grown (often insulating) ma-
terials and post-grown annealed metallic materials show
typically different behavior in the AHE response. A
similar extrapolating procedure performed on insulating
(Ga,Mn)As seems to exhibit a somewhat linear depen-
dence of RS on ρxx. On the other hand, considerable
uncertainty is introduced by the extrapolation to low
temperatures because ρxx diverges and the complicated
magetoresistance of ρxx is a priori not known in the low
T range.

A more recent study by Pu et al. (Pu et al., 2008)of
(Ga,Mn)As grown on InAs, such that the tensile strain
creates a perpendicular anisotropic ferromagnet, has es-
tablished the dominance of the intrinsic mechanism in
metallic (Ga,Mn)As samples beyond any doubt. Measur-
ing the longitudinal thermo-electric transport coefficients
( ρxx, ρxy, αxy, and αxx where J = σE+α(−∇T )), one
can show that given the Mott relation α = π2k2

BT
3e ( ∂σ∂E )EF

and the empirical relation ρxy(B = 0) = λMzρ
n
xx, the re-

lation between the four separately measured transport
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FIG. 21 (a) Ga1−xMnxAs samples that show insulating and
metallic behavior defined by ∂ρxx/∂T near T = 0. (b) Rs

vs. ρxx extrapolated from ρxy(B) data to zero field and low
temperatures. [From Ref. Chun et al., 2007.]

FIG. 22 (Top) Zero B field ρxy and ρxx for four samples
grown on InAs substrates (i.e. perpendicular to plane easy
axis). Annealed samples, which produce perpendicular to
plane easy axes, are marked by a ∗. The inset indicates the
B dependence of the 7% sample at 10 K. (Bottom) Zero-field
Nerst coefficient αxy for the four samples. The solid red curves
indicate the best fit using Eq. (2.11) and the dashed curves
the best fit setting n=1. [From Ref. Pu et al., 2008.]

coefficients is:

αxy =
ρxy
ρ2
xx

(
π2k2

BT

3e
λ′

λ
− (n− 2)αxxρxx

)
. (2.11)

The fit to the λ′

λ and n parameters are shown in Fig. 22.
Fixing n = 1 does not produce any good fit to the data
as indicated by the dashed lines in Fig. 22. These data
excludes the possibility of a n = 1 type contribution to
the AHE in metallic (Ga,Mn)As and further verify the
validity the Mott relation in these materials.

Having established that the main contribution to the
AHE in metallic (Ga,Mn)As is scattering-independent
contributions, rather than skew-scattering contributions,
DMSs are an ideal system to test our understanding of
AHE. In the regime where the largest ferromagnetic crit-
ical temperatures are achieved ( for doping levels above
1.5% ), semi-phenomenological models that are built on
Bloch states for the band quasiparticles, rather than lo-
calized basis states appropriate for the localized regime
(Berciu and Bhatt, 2001), provide the natural starting
point for a model Hamiltonian which reproduces many
of the observed experimental effects (Jungwirth et al.,
2006; Sinova and Jungwirth, 2005). Recognizing that
the length scales associated with holes in the DMS com-
pounds are still long enough, a k · p envelope function
description of the semiconductor valence bands is appro-
priate. To understand the AHE and magnetic anisotropy,
it is necessary to incorporate intrinsic spin-orbit coupling
in a realistic way.

A successful model for (Ga,Mn)As is specified by the
effective Hamiltonian

H = HKL + Jpd
∑
I

SI · ŝ(r)δ(r −RI) +Hdis, (2.12)

where HKL is the six-band Kohn-Luttinger (KL) k · p
Hamiltonian (Dietl et al., 2001), the second term is the
short-range antiferromagnetic kinetic-exchange interac-
tion between local spin SI at site RI and the itinerant
hole spin (a finite range can be incorporated in more real-
istic models), and Hdis is the scalar scattering potential
representing the difference between a valence band elec-
tron on a host site and a valence band electron on a Mn
site and the screened Coulomb interaction of the itinerant
electrons with the ionized impurities.

Several approximations can be used to vastly simplify
the above model, namely, the virtual crystal approxima-
tion (replacing the spatial dependence of the local Mn
moments by a constant average) and mean field theory
in which quantum and thermal fluctuations of the local
moment spin-orientations are ignored (Dietl et al., 2001;
Jungwirth et al., 2006). In the metallic regime, disorder
can be treated by a Born approximation or by more so-
phisticated, exact-diagonalization or Monte-Carlo meth-
ods (Jungwirth et al., 2002a; Schliemann and MacDon-
ald, 2002; Sinova et al., 2002; Yang et al., 2003).

Given the above simple model Hamiltonian the AHE
can be computed if one assumes that the intrinsic
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Berry’s phase (or Karplus-Luttinger) contribution will
most likely be dominan, because of the large SOI of the
carriers and the experimental evidence showing the domi-
nance of scattering-independent mechanisms. For practi-
cal calculations it is useful to use, as in the intrinsic AHE
studies in the oxides (Fang et al., 2003; Mathieu et al.,
2004a,b), the Kubo formalism given in Eq. (1.2) with dis-
order induced broadening, Γ, of the band-structure (but
no side-jump contribution). The broadening is achieved
by substituting one of the (εn(k)− εn′(k)) factors in the
denominator by (εn(k) − εn′(k) + iΓ). Applying this
theory to metallic (III,Mn)V materials using both the 4-
band and 6-band k · p description of the valence band
electronic structure one obtains results in quantitative
agreement with experimental data in (Ga,Mn)As and
(In,Mn)As DMS (Jungwirth et al., 2002b). In a follow
up calculation Jungwirth et al. (Jungwirth et al., 2003), a
more quantitative comparison of the theory with experi-
ments was made in order to account for finite quasiparti-
cle lifetime effects in these strongly disorder systems. The
effective lifetime for transitions between bands n and n′,
τn,n′ ≡ 1/Γn,n′ , can be calculated by averaging quasipar-
ticle scattering rates obtained from Fermi’s golden rule
including both screened Coulomb and exchange poten-
tials of randomly distributed substitutional Mn and com-
pensating defects as done in the dc Boltzman transport
studies (Jungwirth et al., 2002a; Sinova et al., 2002). A
systematic comparison between theoretical and experi-
mental AHE data is shown in Fig. 23 (Jungwirth et al.,
2003). The results are plotted vs. nominal Mn concentra-
tion x while other parameters of the seven samples stud-
ied are listed in the figure legend. The measured σAH
values are indicated by filled squares; triangles are theo-
retical results obtained for a disordered system assuming
Mn-interstitial compensationg defects. The valence band
hole eigenenergies εnk and eigenvectors |nk〉 are obtained
by solving the six-band Kohn-Luttinger Hamiltonian in
the presence of the exchange field, h = NMnSJpdẑ (Jung-
wirth et al., 2006). Here NMn = 4x/a3

DMS is the Mn
density in the MnxGa1−xAs epilayer with a lattice con-
stant aDMS , the local Mn spin S = 5/2, and the exchange
coupling constant Jpd = 55 meV nm−3.

In general, when disorder is accounted for, the the-
ory is in a good agreement with experimental data over
the full range of Mn densities studied from x = 1.5% to
x = 8%. The effect of disorder, especially when assum-
ing Mn-interstitial compensation, is particularly strong
in the x = 8% sample shifting the theoretical σAH much
closer to experiment, compared to the clean limit the-
ory. The remaining quantitative discrepancies between
theory and experiment have been attributed to the reso-
lution in measuring experimental hole and Mn densities
(Jungwirth et al., 2003).

We conclude this section by mentioning the anoma-
lous Hall effect in the non-metallic or insulating/hopping
regimes. Experimental studies of (Ga,Mn)As digital fer-
romagnetic heterostructures, which consist of submono-
layers of MnAs separated by spacer layers of GaAs,

0 1 2 3 4 5 6 7 8 9
x (%)

0

10

20

30

40

50

60

70

σ A
H

 (
Ω

-1
 c

m
-1

)

theory (Mn-interstitials)

experiment

x=1.5 %, p=0.31 nm
-3

, e
0
=-0.065 %

x=2 %, p=0.39 nm
-3

, e
0
=-0.087 %

x=3 %, p=0.42 nm
-3

, e
0
=-0.13 %

x=4 %, p=0.48 nm
-3

, e
0
=-0.17 %

x=5 %, p=0.49 nm
-3

, e
0
=-0.22 %

x=6 %, p=0.46 nm
-3

, e
0
=-0.26 %

x=8 %, p=0.49 nm
-3

, e
0
=-0.35 %

FIG. 23 Comparison between experimental and theoretical
anomalous Hall conductivities. After Ref. Jungwirth et al.,
2003.

have shown longitudinal and Hall resistances of the hop-
ping conduction type, Rxx ∝ Tα exp[(T0/T )β ], and have
shown that the anomalous Hall resistivity is dominated
by hopping with a sublinear dependence of RAH on
Rxx (Allen et al., 2004; Shen et al., 2008), similar to
experimental observations on other materials. Studies in
this regime are still not as systematic as their metallic
counterparts which clearly indicate a scaling power of 2.
Experiments find a sublinear dependence of RAH ∼ Rβxx,
with β ∼ 0.2−1.0 depending on the sample studies (Shen
et al., 2008). A theoretical understanding for this hop-
ping regime remains to be worked out still. In previous
theoretical calculations based on the hopping conduction
with the Berry phase (Burkov and Balents, 2003) showed
the insulating behavior RAH → ∞ as Rxx → ∞ but
failed to explain the scaling dependence of RAH on Rxx.

D. Other classes of materials

1. Spinel CuCr2Se4

As mentioned in earlier sections, a key prediction of
the KL theory (and its modern generalization, based on
the Berry-phase approach) is that the AHE conductivity
σAHyx is independent of the carrier lifetime τ (dissipation-
less Hall current) in materials with moderate conductiv-
ity. This implies that the anomalous Hall resistivity ρAHyx
varies as ρ2. Moreover, σAHxy tend to be proportional to
the observed magnetization Mz. We write

σAHxy = SHMz, (2.13)

with SH a constant.
Previously, most tests were performed by comparing

ρyx vs. ρ measured on the same sample over an ex-
tended temperature range. However, because the skew-
scattering model can also lead to the same prediction
ρyx ∼ ρ2 when inelastic scattering predominates, tests
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FIG. 24 Log-log plot of the quantity |ρ′xy|/nh vs. ρ in twelve
crystals of Br-doped spinel CuCr2Se4−xBrx with nh the hole
density (ρ is measured at 5 K; ρxy is measured at 2 and 5 K).
Samples in which ρyx is electron-like (hole-like) are shown as
open (closed) circles. The straight-line fit implies |ρ′xy|/nh =
Aρα with α = 1.95 ± 0.08 and A = 2.24×10−25 (SI units).
[From Ref. Lee et al., 2004.]

at finite T are inconclusive. The proper test requires a
system in which ρ at 4 K can be varied over a very large
range without degrading the exchange energy and mag-
netization M .

In the spinel CuCr2Se4, the ferromagnetic state is sta-
bilized by 90o superexchange between the local moments
of adjacent Cr ions. The charge carriers play only a weak
role in the superexchange energy. The experimental proof
of this is that when the carrier density n is varied by a
factor of 20 (by substituting Se by Br), the Curie tem-
perature TC decreases by only 100 K from 380 K. Signif-
icantly, M at 4 K changes negligibly. The resistivity ρ at
4 K may be varied by a factor of 103 without weakening
M . Detailed Hall and resistivity measurements were car-
ried out by Lee et al. (Lee et al., 2004) on twelve crystals
of CuCr2Se4−xBrx. They found that ρyx measured at 5
K changes sign (negative to positive) when x exceeds 0.4.
At x = 1, ρyx attains very large values (' 700 µΩcm at
5 K).

Lee et al. (Lee et al., 2004) showed that the magni-
tude |ρyx|/n varies as ρ2 over 3 decades in ρ (Fig. 24),
consistent with the prediction of the KL theory.

The AHE in the related materials CuCr2S4,
CuxZnxCr2Se4 (x = 1

2 ) and Cu3Te4 has been investi-
gated by Oda et al. (Oda et al., 2001).

2. Heusler Alloy

The full Heusler alloy Co2CrAl has the L21 lattice
structure and orders ferromagnetically below 333 K. Sev-

FIG. 25 Combined plots of σxy in the Heusler alloy Co2CrAl
versus the magnetization M at selected temperatures from 36
to 278 K. The inset shows the inferred values of σAHxy ≡ σxy/M
at each T . [From Ref. Husmann and Singh, 2006.]

eral groups (Block et al., 2004; Galanakis et al., 2002)
have argued that the conduction electrons are fully spin
polarized (“half metal”). The absence of minority carrier
spins is expected to simplify the analysis of the Hall con-
ductivity. Hence this system is potentially an important
system to test theories of the AHE.

The AHE has been investigated on single crystals with
stoichiometry Co2.06Cr1.04Al0.90 (Husmann and Singh,
2006). Below the Curie temperature TC = 333 K, the
magnetization M increases rapidly, eventually saturating
to a low-T value that corresponds to 1.65 µB (Bohr mag-
neton) per formula unit. Husmann and Singh show that,
below ∼310 K, M(T ) fits well to the form [1−(T/TC)2]

1
2 .

Assuming that the ordinary coefficient R0 is negligible,
they found that the Hall conductivity σxy = ρyx/ρ

2 is
strictly linear in M (expressed as σxy = σ1

HM) over the
T interval 36–278 K (Fig. 25). They interpret the lin-
ear variation as consistent with the intrinsic AHE theory.
The value of σ1

H = 0.383 G/(4πΩcm) inferred is similar
to values derived from measurements on the dilute Ni
alloys, half Heuslers and silicides.

3. Fe1−yCoySi

The silicide FeSi is a non-magnetic Kondo insulator.
Doping with Co leads to a metallic state with a low den-
sity p of holes. Over a range of Co doping (0.05 < y <
0.8) the ground state is a helical magnetic state with
a peak Curie temperature TC ∼ 50 K. The magnetiza-
tion corresponds to 1 µB (Bohr magneton) per Co ion.
The tunability allows investigation of transport in a mag-
netic system with low p. Manyala et al. (Manyala et al.,
2004) observe that the Hall resistivity ρH increases to
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FIG. 26 Hall conductivity σxy of ferromagnetic metals and
heavy fermion materials (collected at 1 kG and 5 K unless
otherwise noted). Small solid circles represent Fe1−yCoySi
for 5 < T < 75 K and 500 G< H < 50 kG with y = 0.1
(filled circles), 0.15 (filled triangles), y = 0.2 (+), and 0.3
(filled diamonds). MnSi data (5-35 K) are large, solid squares
connected by black line. Small asterisks are (GaMn)As data
for 5< T < 120 K. The rising line σxy ∼ M is consistent
with the intrinsic AHE in itinerant ferromagnets while the
falling line σxy ∼M−3 applies to heavy fermions. [From Ref.
Manyala et al., 2004.]

∼1.5 µΩcm (at 5 K) at the doping y= 0.1. By plotting
the observed Hall conductivity σxy against M , they find
σxy = SHM with SH ∼ 0.22 G/(4πΩcm). In contrast, in
heavy fermion systems (which include FeSi) σxy ∼M−3.

4. MnSi

MnSi grows in the non-centrosymmetric B20 lattice
structure which lacks inversion symmetry. Competi-
tion between the exchange energy J and Dzyaloshinsky-
Moriya term D leads to a helical magnetic state with a
long pitch λ (∼180 Å). At ambient pressure, the heli-
cal state forms at the critical temperature TC = 30 K.
Under moderate hydrostatic pressure P , TC decreases
monotonically, reaching zero at the critical pressure Pc
= 14 kbar. Although MnSi has been investigated for
several decades, interest has been revived recently by a
neutron scattering experiment which shows that, above
Pc, MnSi displays an unusual magnetic phase in which
the sharp magnetic Bragg spots at P < Pc are replaced
by a Bragg sphere (Pfleiderer et al., 2004). Non-Fermi
liquid exponents in the resistivity ρ vs. T are observed
above Pc.

Among ferromagnets, MnSi at 4 K has a low resistivity
(ρ ∼ 2-5 µΩcm). The unusually long carrier mean-free-
path ` implies that the ordinary term σNHxy ∼ `2 is greatly

FIG. 27 (a) Hall resistivity ρyx vs. H in MnSi at selected T
from 5 to 200 K. At high T , ρyx is linear in H, but gradually
acquires an anomalous component ρ′yx = ρyx − R0B with a
prominent “knee” feature below TC = 30 K. (b) Matching of
the field profiles of the anomalous Hall resistivity ρ′yx to the
profiles of ρ2M , treating SH and R0 as adjustable parameters.
Note the positive curvature of the high-field segments. [From
Ref. Lee et al., 2007.]

enhanced. In addition, the small ρ renders the total Hall
voltage difficult to resolve. Both factors greatly compli-
cate the task of separating σNHxy from the AHE conductiv-
ity. However, the long ` in MnSi presents an opportunity
to explore the AHE in the high-purity limit of ferromag-
nets. Using high-resolution measurements of the Hall
resistivity ρyx (Fig. 27 a), Lee et al. (Lee et al., 2007)
recently accomplished this separation by exploiting the
large longitudinal magnetoresistance (MR) ρ(H). From
Eq. (2.1) and (2.13), we have ρ′yx(H) = SHρ(H)2M(H),
where ρ′yx = ρAHyx = ρyx − R0B. At each T , the field
profiles of ρ′yx(H) and M(H) are matched by adjusting
the two H-independent parameters SH and R0 (Fig. 27
b). The inferred parameters SH and R0 are found to be
T independent below TC (Fig. 28 a).

The Hall effect of MnSi under hydrostatic pressure (5–
11.4 kbar) was measured recently (Lee et al., 2008). In
addition to the AHE and OHE terms σAHxy and σNHxy , Lee
et al. observed a well-defined Hall term σCxy with an un-
usual profile. As shown in Fig. 29 (note that in the figure
σAHxy and σNHxy are labeled σAxy and σNxy respectively), the
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FIG. 28 Comparison of the anomalous Hall conductivity
σAxy and the ordinary term σNxy measured in a 1-Tesla field

in MnSi. σAxy, inferred from the measured M (solid curve)
and Eq. (2.13), is strictly independent of `. Its T dependence
reflects that of M(T ). σNxy ∼ `2 is calculated from R0. The
conductivity at zero H, σ ∼ `, is shown as a dashed curve.
[From Ref. Lee et al., 2007.]

new term appears abruptly at 0.1 T, rapidly rises to a
large plateau value, and then vanishes at 0.45 T (curves
at 5, 7 and 10 K). From the large magnitude of σCxy, and
its restriction to the field interval in which the cone angle
is non-zero, the authors argue that it arises from the cou-
pling of the carrier spin to the chiral spin textures in the
helical magnetization, as discussed in Sec. II.B. The au-
thors note that MnSi under pressure provides a very rare
example in which the three Hall conductivities co-exist
at the same T .

5. Mn5Ge3

The AHE in thin-film samples of Mn5Ge3 was investi-
gated by Zeng et al. (Zeng et al., 2006). They express
the AHE resistivity ρAH , which is strongly T depen-
dent (Fig. 30a), as the sum of the skew-scattering term
a(M)ρxx and the intrinsic term b(M)ρ2

xx, viz.

ρAH = a(M)ρxx + b(M)ρ2
xx. (2.14)

The quantity b(M) is the intrinsic AHE conductivity
σAH−int.

To separate the 2 terms, Zeng et al. plotted the quan-
tity ρAH/(M(T )ρxx) against ρxx with T as a parameter.
For T < 0.8TC , the plot falls on a straight line with
a small negative intercept (solid squares in Fig. 30b).
The intercept yields the skew-scattering term a(M)/M
whereas the slope gives the intrinsic term b(M)/M . From
the constant slope, they derive their main conclusion that
σAH−int varies linearly with M .

To account for the linear-M dependence, Zeng et
al. (Zeng et al., 2006) identify the role of long-wavelength
spin waves which cause fluctuations in the local direction
of M(x) (and hence of Ω). They calculate the reduc-
tion in σAH−int and show that it varies linearly with M
(Fig. 30 c).

FIG. 29 (Main panel) −ρyx vs. H in MnSi under hydrostatic
pressure P = 11.4 kbar at several T < TC , with H nominally
along (111). The large Hall anomaly observed (electron-like
in sign) arises from a new chiral contribution σCxy to the total
Hall conductivity. In the phase diagram (inset) the shaded
region is where σCxy is resolved. The non-Fermi liquid region
is shaded blue. [From Ref. Lee et al., 2008.]

FIG. 30 (a) The T dependence of ρAH in Mn5 Ge3 be-
fore (solid squares) and after (solid circles) subtraction of the
skew-scattering contribution. The thin curve is the resistivity
ρ. (b) Plots of ρAH/(Mρxx) vs. ρxx before (solid squares)
and after (solid circles) subtraction of skew-scattering term.
(c) Comparison of calculated σAH−int vs. Mz (open circles)
with experimental values before (squares) and after (solid ci-
cles) subtraction of skew-scattering term. [From Ref. Zeng
et al., 2006.]



24

6. Layered dichalcogenides

The layered transition-metal dichalcogenides are com-
prised of layers weakly bound by the van der Waals force.
Parkin and Friend (Parkin and Friend, 1980) have shown
that a large number of interesting magnetic systems may
be synthesized by intercalating 3d magnetic ions between
the layers.

The dichalcogenide FexTaS2 typically displays proper-
ties suggestive of a ferromagnetic cluster-glass state at
low T for a range of Fe content x. However, at the com-
position x = 1

4 , the magnetic state is homogeneous. In
single crystals of Fe 1

4
TaS2, the easy axis of M is parallel

to ĉ (normal to the TaS2 layers). Morosan et al. (Mo-
rosan et al., 2007) observed that the curves of M vs. H
display very sharp switching at the coercive field at all
T < TC (160 K). In this system, the large ordinary term
σNHxy complicates the extraction of the AHE term σAHxy .
Converting the ρyx-H curves to σxy-H curves (Fig. 31),
Checkelsky et al. (Checkelsky et al., 2008) infer that the
jump magnitude ∆σxy equals 2σAHxy by assuming that
Eq. (2.13) is valid. This method provides a direct mea-
surement of σAHxy without knowledge of R0. As shown
in Fig. 31 b, both the inferred σAHxy and measured M
are nearly T -independent below 50 K, but the former
deviates sharply downwards above 50 K. Checkelsky et
al. (Checkelsky et al., 2008) propose that the deviation
represents a large, negative inelastic-scattering contribu-
tion σinxy that involves scattering from chiral textures of
the spins which increase rapidly as T approaches T−C .
In support, they show that the curve of σinxy/M(T ) vs.
T matches (within the resolution) that of ∆ρ(T )2 with
∆ρ(T ) = ρ(T )− ρ(0).

E. Localization and AHE

The role of localization in the anomalous Hall effect is
an important issue, and there have been several works
on this subject. ( For a review of theoretical works, see
Ref. Woelfle and Muttalib, 2006.) The weak localization
effect on the normal Hall effect due to the external mag-
netic field has been studied by Fukuyama (Fukuyama,
1980), and the relation δσWL

xy /σxy = 2δσWL
xx /σxx has

been obtained where δOWL represents the correction of
the physical quantity O by the weak localization effect.
This means that the Hall coefficient is not subject to the
change due to the weak localization, i.e. δρNHxy = 0. An
early experiment by Bergmann and Ye (Bergmann and
Ye, 1991) on the anomalous Hall effect in the ferromag-
netic amorphous metals showed almost no temperature
dependence of the anomalous Hall conductivity, while
the diagonal conductivity shows the logarithmic temper-
ature dependence. Langenfeld and Woelfle (Langenfeld
and Wolfle, 1991; Woelfle and Muttalib, 2006) studied

FIG. 31 (a) Hystersis loops of σxy vs. H in Fe 1
4
TaS2 calcu-

lated from the measured ρ and ρyx curves. The linear portions
correspond to σNHxy while the jump magnitude ∆σxy equals

2σAHxy . (b) Comparison of ∆σxy with the magnetization M
measured at 0.1 T. Within the resolution, ∆σxy seems to be
proportional to M below 50 K, but deviates sharply from M
at higher temperatures, reflecting the growing dominance of
a negative, inelastic-scattering term σinxy. [From Ref. Check-
elsky et al., 2008.]

theoretically the model

H =
∑
k,σ

εkc
†
k,σck,σ

+
∑
i

∑
k,k′,σ

ei(k−k′)·Ri [V + i(k × k′) · Ji]c†k′,σ′ck,σ

(2.15)

where Ji is proportional to the angular momentum of the
impurity at Ri, and the term containing it describes the
spin-orbit scattering. They discussed the logarithmic cor-
rection to the anomalous Hall conductivity in this model,
and found that Coulomb anomaly terms vanished iden-
tically, and the weak localization correction was cut-off
by the phase-breaking lifetime τφ due to the skew scat-
tering, explaining the experiment by Bergmann and Ye
(Bergmann and Ye, 1991). Dugaev, Crepieux, and Bruno
(Dugaev et al., 2002) found that for the two-dimensional
case the correction to the Hall conductivity was loga-
rithmic in the ratio max(τtr/τSO, τtr/τφ), with τtr being
the transport lifetime and τSO the lifetime due to the
spin-orbit scattering. More recently, Mitra et al. (Mi-
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FIG. 32 The resistance (R0)-temperature dependence of the
coefficients AR and AAH defined in Eq. (2.16). Different sym-
bols correspond to different methods of sample preparation.
[From Ref. Mitra et al., 2007.]

tra et al., 2007) first observed the logarithmic tempera-
ture dependence of the anomalous Hall conductivity in
the ultrathin film of polycrystalline Fe of sheet resis-
tance Rxx less than ∼ 3 kΩ. They defined the quantities
∆N (Q) = (1/R0L00)(δQ/Q) for the physical quantity Q
with respect to the reference temperature T = T0 = 5 K
by δQ = Q(T )−Q(T0), R0 = Rxx(T0), and L00 = e2/π~.
Defining the coefficients AR and AH by

∆N (σxx) = AR ln
(
T0

T

)
∆N (σxy) = (2AR −AAH) ln

(
T0

T

)
(2.16)

Fig. 32 shows the R0-dependence of the coefficients AR
and AAH defined in the above Eq. (2.16).

The change in the interpretation comes from the fact
that the phase-breaking lifetime τφ in the Fe film is
mostly from scattering by the magnons and not from
skew scattering, which allows a temperature regime
where max(1/τs, 1/τSO, ωH) << τφ << 1/τtr ( τs: spin-
flip scattering time, ωH : internal magnetic field in the fer-
romagnet ). In this region, they found that the weak lo-
calization effect can lead to coefficient of the logarithmic
temperature dependence of σxy proportional to the factor
σSSMxy /(σSSMxy +σSJMxy ) where σSSMxy (σSJMxy ) is the contri-
bution from the skew scattering (side jump) mechanism.
Assuming that that ratio σSJMxy /σSSMxy decreases as the
sheet resistance R0 increases, they were able to explain
the sample-dependence of the logarithmic correction to
the anomalous Hall conductivity (Mitra et al., 2007).
The absence of the logarithmic term in (Bergmann and
Ye, 1991) is interpreted as being due to a large ratio of
σSJMxy /σSSMxy in their sample. It is interesting that the
ratio σSJMxy /σSSMxy can be estimated from the coefficient
of the logarithmic term.

Up to now, we have discussed the weak localization

effect. When the disorder strength increases, a metal-
insulator transition will occur. For a normal metal under
external magnetic field, the system belongs to the uni-
tary class, and in 2D all the states are localized for any
disorder (Lee and Ramakrishnan, 1985). In the quan-
tum Hall system, however, the extended states can sur-
vive at discrete energies at the center of the broadened
density of states at each Laudau level. This extended
state carries the quantum Hall current. Field theoret-
ical formulation of this localization problem has been
developed (Prange and Girvin, 1987). In the presence
of the external magnetic field, a Chern-Simons term ap-
pears in the non-linear sigma model whose coefficient is
σxy. Therefore, the scaling variables are σxx and σxy,
i.e., the two-parameter scaling theory should be applied
instead of the single-parameter scaling. It has been dis-
cussed that the scaling trajectory in the σxy − σxx plane
has the fixed point at (σxy, σxx) = ((n+ 1/2)(e2/h), σ0)
where σ0 is some finite value, and σxy scales to the
quantized value n(e2/h) when the initial value (given
by the Boltzmann transport theory) lies in the range
(n− 1/2)(e2/h) < σ

(0)
xy < (n+ 1/2)(e2/h). In contrast to

this quantum Hall system, there is no external magnetic
field or the Landau level formation in the anomalous Hall
system, and it is not trivial that the same two-parameter
scaling theory applies to this case.

Onoda and Nagaosa (Onoda and Nagaosa, 2003) stud-
ied this problem using the generalized Haldane model
(Haldane, 1988) which shows the quantum Hall effect
without the external magnetic field. They calculated the
scaling function of the localization length in the finite-
width stripe sample in terms of the iterative transfer
matrix method by MacKinnon (MacKinnon and Kramer,
1983), and found that two-parameter scaling holds even
without an external magnetic field or Landau level for-
mation. For the experimental realization of this quan-
tized anomalous Hall effect, the |σ(0)

xy | given by Boltz-
mann transport theory (without the quantum correction
) is larger than e2/(2h), and the temperature is lower
than TLoc ∼ εF e−cσ

(0)
xx /σ

(0)
xy , where εF is the Fermi energy

and c is a constant of the order of unity. Therefore, the
Hall angle σ(0)

xy /σ
(0)
xx should not be so small, hopefully of

the order of 0.1. However, in the usual case, the Hall an-
gle is at most 0.01, which makes the quantized anomalous
Hall effect rather difficult to realize.

III. THEORETICAL ASPECTS OF THE AHE AND
EARLY THEORIES

In this section, we review recent theoretical develop-
ments as well as the early theoretical studies of the AHE.
First, we give a pedagogical discussion on the difference
between the normal Hall effect due to the Lorentz force
and the AHE (Sec. III.A). In Sec. III.B we discuss the
topological nature of the AHE. In this Sec. III.C we
present a wide survey of the early theories from a modern
viewpoint in order to bring them into the context of the
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present linear transport theory formalisms now used as
a framework for AHE theories.

A. Symmetry considerations and analogies between normal
Hall effect and AHE

Before describing these recent developments, we pro-
vide an elementary discussion that may facilitate under-
standing of the following sections.

The Hall effect is one of the fundamental transport
phenomena in solid-state physics. Its occurrence is a
direct consequence of broken time-reversal symmetry in
the ferromagnetic state, T . The charge current J is T -
odd,i.e., it changes sign under time reversal. On the
other hand, the electric field E is T -even. Therefore,
Ohm’s law

J = σE (3.1)

relates two quantities with different T -symmetries, which
implies that the conductivity σ must be associated with
diispative irreversible processes, and indeed we know that
the Joule heating Q = σE2/2 always accompanies the
conductivity in Eq. (3.1). This irreversibility appears
only when we consider macroscopic systems with contin-
uous energy spectra.

Next, we consider the other aspect of the T -symmetry,
i.e., the consequences of the T -symmetry of the Hamil-
tonian which governs the microscopic dynamics of the
system. This important issue has been formulated by
Onsager, who showed that the response functions satisfy
the following relation (Landau et al., 1984)

Kαβ(ω; , r, r′;B) = εαεβKβα(ω; , r′, r;−B), (3.2)

where Kαβ(ω; , r, r′;B) is the response of a physical quan-
tity α at position r to the stimulus conjugate to the quan-
tity β at position r′ with frequency ω. Here εα(εβ) = ±1
specifies the symmetry property of α (β) with respect
to the T -operation. B suggests a magnetic field, but
represents any time-reversal breaking field. In the case
of a ferromagnet B can be associated with the magne-
tization M , the spontaneously generated time-reversal
symmetry breaking field of a ferromagnet. The conduc-
tivity tensor σab at a given frequency is proportional to
the current-current response function. We can there-
fore make the identification α → Ja, β → Jb, where Ji
(i = x, y, z) are the components of the current operator.
Since, εα = εβ = −1, we can conlcude that

σab(ω;B) = σba(ω;−B). (3.3)

Hence, we conclude that σab is symmetric with respect
to a and b in systems with T -symmetry. The anti-
symmetric part σab(ω) − σba(ω) is finite only if T -
symmetry is broken.

Now we turn back to irreversibility for the general form
of the conductivity σab, for which the dissipation is given

by (Landau et al., 1984)

Q =
∑
ab

1
4

(σ∗ab + σba)EaE∗b

=
1
4

∑
ab

[Re(σab + σba)Re(EaE∗b )

+ Im(σab − σba)Im(EaE∗b )]. (3.4)

The real part of the symmetric combination σab + σba
and the imaginary part of the antisymmetric combination
σab − σba contribute to the dissipation, while the imagi-
nary part of σab + σba and the real part of σab− σba rep-
resent the dispersive (dissipationless) responses. There-
fore, Re(σab − σba), which corresponds to the Hall re-
sponse, does not produce dissipation. This means that
the physical processes contributing to this quantity can
be reversible, i.e., dissipationless, even though they are
not necessarily so. This point is directly related to the
controversy between intrinsic and extrinsic mechanism
for the AHE.

The origin of the ordinary Hall effect is the Lorentz
force due to the magnetic field H:

F = −e
c
v ×H, (3.5)

which produces an acceleration of the electron perpen-
dicular to its velocity v and H. For free electrons
this leads to circular cyclotron motion with frequency
ωc = eH/(mc). The Lorentz force leads to charge accu-
mulations of opposite signs on the two edges of the sam-
ple. In the steady state, the Lorentz force is balanced by
the resultant transverse electric field, which is observed as
the Hall voltage VH . In the standard Boltzmann-theory
approach, the equation for the electron distribution func-
tion f(p,x) is given by (Ziman, 1967):

∂f

∂t
+ v · ∂f

∂x
+ F · ∂f

∂p
=
(
∂f

∂t

)
coll.

, (3.6)

where p and x are the momentum and real space coor-
dinates, respectively. Putting F = −e(E + v

c ×H), and
using the relaxatin time approximation for the collision
term, − 1

τ (f − feq), with feq being the distribution func-
tion in thermal equilibrium, one can obtain the steady
state solution to this Boltzmann equation as

f(p) = feq(p) + g(p), (3.7)

with

g(p) = −τe∂feq

∂ε
v ·
(
E − eτ

mc
H ×E

)
, (3.8)

where order H2 terms have been neglected and the mag-
netic field Hz is assumed to be small, i.e. ωcτ � 1. The
current density J = −e

∫
d3p

(2π)3
p
mf(p) is obtained from

Eq. (3.8) to order O(E) and O(EH) as

J = σE + σHH ×E, (3.9)



27

where

σ = −1
3

∫
d3p

(2π)3
v2e2τ

∂feq

∂ε
(3.10)

is the conductivity, while

σH =
1
3

∫
d3p

(2π)3
v2e2τ

∂feq

∂ε

eτ

mc
(3.11)

is the ordinary Hall conductivity.
Now let us fix the direction of the electric and magnetic

fields as E = Eyey and H = Hzez. Then the Hall
current is along the x-direction and we write it as

Jx = σHEy, (3.12)

with the Hall conductivity σH = ne3τ2Hz/m
2c with n

being the electron density. The Hall coefficient RH is
defined as the ratio VH/JxHz, and from Eqs. (3.10) and
(3.11), one obtains

RH = − 1
nec

. (3.13)

This result is useful to determine the electron density
n experimentally, since it does not contain the relax-
ation time τ . Note here that for fixed electron density
n, Eq. (3.13) means σH ∝ Hσ2

xx and that ρH ∝ H, in-
dependent of the relaxation time τ (or equivalently σxx).
In other words, the ratio |σH |/σxx = ωcτ � 1. This
relation will be compared with the AHE case below.

What happens in the opposite limit ωcτ � 1? In
this limit, the cyclotron motion is completed many times
within the lifetime τ . This implies the closed cyclotron
motion is repeated many times before being disrupted
by scattering. When treated quantum mechanically the
periodic classical motion leads to kinetic energy quantiza-
tion and Landau level formation, which leads in turn to
the celebrated quantum Hall effect. As is well known,
in the 2D electron gas realized in semiconductor het-
erostructures, Landau-level quantization leads to the cel-
ebrated quantum Hall effect (Prange and Girvin, 1987).
If we consider the free electrons, i.e. completely neglect-
ing the potential (both periodic and random) and the
interaction among electrons, one can show that σH is
given by e2

h ν where ν is the filling factor of the Landau
levels. In combination with electron localization, gaps
at integer filling factors lead to quantization of σH . For
electrons in a two-dimensional cyrstal, the Hall quantiza-
tion is still quantized, a property which can be traced to
the topological properties of Bloch state wavefunctions
discussed below. (Prange and Girvin, 1987).

Now let us consider the magnetic field effect for elec-
trons under the influence of the periodic potential. For
simplicity we study the tight-binding model

H =
∑
ij

tijc
†
i cj . (3.14)
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FIG. 33 Tight-binding model on a square lattice under
the magnetic flux φ for each plaquette. We choose the
gauge where the phase factor of the transfer integral along
x-direction is given by e−iφiy with iy being the y-component
of the lattice point position i = (ix, iy).

The magnetic field adds the Peierls phase factor to the
transfer integral tij between sites i and j, viz.

tij → tij exp[iaij ], (3.15)

with

aij =
ie

~c

∫ j

i

dr ·A(r). (3.16)

Note that the phase factor is periodic with the period 2π
with respect to its exponent. Since the gauge transfor-
mation

ci → ci exp[iθi] (3.17)

together with the redefinition

aij → aij + θi − θj (3.18)

keeps the Hamiltonian invariant, aij itself is not a phys-
ical quantity. Instead, the flux φ = aij + ajk + akl + ali
per square plaquette is the key quantity in the problem
(see Fig.33 )

For example, one may choose a gauge in which tij
along the directions ±ŷ is a real number t, while tii+x =
t exp[−iφiy] to produce a uniform flux distribution φ in
each square plaquette. Here iy is the y-component of the
lattice point position i = (ix, iy)). The problem is that
the iy-dependence breaks the periodicity of the Hamil-
tonian along the y-axis, which invalidates the Bloch the-
orem. This corresponds to the fact that the vector po-
tential A(r) = (−Hy, 0) for the uniform magnetic field
H is y-dependent, so that momentum component py is
no longer conserved. However, when φ/(2π) is a rational
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number n/m, where n and m are integers that do not
share a common factor, one can enlarge the unit cell by
m times along the y-direction to recover the periodicity,
because exp[−iφ(iy+m)] = exp[−iφiy]. Therefore, there
appear m sub-bands in the 1st-Brillouin zone, each of
which is characterized by a Chern number related to the
Hall response as will be described in section III.B (Thou-
less et al., 1982). The message here is that an external
commensurate magnetic field leads to a multiband struc-
ture with an enlarged unit cell, leading to the quantized
Hall response when the chemical potential is within the
gap between the sub-bands. When φ/(2π) is an irrational
number, on the other hand, one cannot define the Bloch
wavefunction and the electronic structure is described by
the Hofstadter butterfly (Hofstadter, 1976) .

Since flux 2π is equivalent to zero flux, a commensu-
rate magnetic field can be equivalent to a magnetic field
distribution whose average flux is zero. Namely, the to-
tal flux penetrating the m-plaquettes is 2πn, which is
equivalent to zero. Interestingly, spatially non-uniform
flux distributions can also lead to quantum Hall effects.
This possibility was first considered by Haldane (Hal-
dane, 1988), who studied a tight-binding model on the
honeycomb lattice. He introduced complex transfer inte-
grals between the next-nearest neighbor sites in addition
to the real one between the nearest-neighbor sites. The
resultant Hamiltonian has translational symmetry with
respect to the lattice vectors, and the Bloch wavefunction
can be defined as the function of the crystal momentum
k in the first Brillouin zone. The honeycomb lattice has
two sites in the unit cell, and the tight-binding model
produces two bands, separated by the band gap. The
wavefunction of each band is characterized by the Berry
phase curvature, which acts like a “magnetic field” in
k-space, as will be discussed in sections III.B and IV.A.

The quantum Hall effect results when the Fermi en-
ergy is within this band gap. Intuitively, this can be
interpreted as follows. Even though the total flux pen-
etrating the unit cell is zero, there are loops in the unit
cells enclosing a nonzero flux. Each band picks up the
flux distribution along the loops with different weight
and contributes to the Hall response. The sum of the
Hall responses from all the bands, however, is zero as ex-
pected. Therefore, the “polarization” of Hall responses
between bands in a multiband system is a general and
fundamental mechanism of the Hall response, which is
distinct from the classical picture of the Lorentz force.

There are several ways to realize a flux distribution
within a unit cell in momentum space. One is the rela-
tivistic spin-orbit interaction given by

HSOI =
~e

2m2c2
(s×∇V ) · p, (3.19)

where V is the potential, s the spin, and p the momentum
of the electron. This Hamiltonian can be written as

HSOI = ASOI · p, (3.20)

withASOI = ~e
2m2c2 (s×∇V ) acting as the effective vector

potential. Therefore, in the magnetically ordered state,

i.e., when s is ordered and can be regarded as a c-number,
ASOI plays a role similar to the vector potential of an
external magnetic field. Note that the Bloch theorem is
valid even in the presence of the spin-orbit interaction,
since it preserves the translational symmetry of the lat-
tice. However, the unit cell may contain more than two
atoms and each atom may have multiple orbitals. Hence,
the situation is very similar to that described above for
the commensurate magnetic field or the Haldane model.

The following simple model is instructive. Let us con-
sider the tight-binding model on a square lattice given
by

H = −
∑

i,σ,a=x,y

tss
†
i,σsi+a,σ + h.c.

+
∑

i,σ,a=x,y

tpp
†
i,a,σsi+a,a,σ + h.c.

+
∑

i,σ,a=x,y

tsps
†
iσpi+a,a,σ + h.c.

+ λ
∑
i,σ

σ(p†i,x,σ − iσp
†
i,y,σ)(pi,x,σ + iσpi,y,σ).

(3.21)

On each site, we put the 3 orbitals s, px and py, asso-
ciated with the corresponding creation and annihilation
operators. The first three terms represent the transfer
of electrons between the neighboring sites as shown by
Fig. 34. The signs in front of t’s are determined by the
relative sign of the two orbitals connected by the trans-
fer integrals, and all t’s are assumed to be positive. The
last term is a simplified SOI in which the z-component
of the spin moment is coupled to that of the orbital mo-
ment. This 6-band model can be reduced to a 2-band
model in the ferromagnetic state when only the σ = +1
component is retained. By the spin-orbit interaction, the
p-orbitals are split into

|p±〉 =
1√
2

(|px〉 ± i|py〉) (3.22)

at each site, with the energy separation 2λ. There-
fore, when only the lower energy state |p−〉 and the
s-orbital |s〉 are considered, the tight-binding Hamilto-
nian becomes H =

∑
k ψ
†(k)h(k)ψ(k) with ψ(k) =

[sk,σ=1, pk,−,σ=1]T and

h(k) =
[
εs − 2ts(cos kx + cos ky)

√
2tsp(i sin kx + sin ky)√

2tsp(−i sin kx + sin ky) εp + tp(cos kx + cos ky)

]
.

(3.23)
Note that the complex orbital |p−〉 is responsible for

the complex off-diagonal matrix elements of h(k). This
produces the Hall response as one can easily see from the
formula Eq. (1.5) and Eq. (1.6) in section I.B. When the
Fermi energy is within the band gap, the Chern number
for each band is ±1 when εs−4ts < εp+2tp, and they are
zero otherwise. This can be understood by considering
the effective Hamiltonian near k = 0, which is given by

h(k) = ε̄+mσz +
√

2tsp(kyσx − kxσy), (3.24)
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FIG. 34 Tight-binding model on a square lattice for a 3 band
model made from s and px− ipy orbitals with polarized spins.
The transfer integrals between s and px− ipy orbitals become
complex along the y-direction in a way that is equivalent to
effective magnetic flux

with ε̄ = [(εs − 4ts) + (εp + 2tp)]/2 and m = (εs −
4ts) − (εp + 2tp), which is essentially the Dirac Hamil-
tonian in (2+1)D. One can calculate the Berry curvature
b±(k) = ∓bz(k⊥)ez defined in Eq. (1.6) for the upper(+)
and lower (−) bands, respectively as

bz(k⊥) =
m

2[k2
⊥ +m2]3/2

. (3.25)

The integral over the two dimensional wavevector k⊥ =
(kx, ky) leads to Hall conductance σH = 1

2 sgn(m)e2/h in
this continuum model when only the lower band is fully
occupied (Jackiw, 1984). The distribution Eq. (3.25) in-
dicates that the Berry curvature is enhanced when the
gap m is small near this avoided band crossing. Note
that the continuum model Eq. (3.24) cannot describe
the value of the Hall conductance in the original tight-
binding model since the information is not retained over
all the first Brillouin zone. Actually, it has been proved
that the Hall conductance is an integer multiple of e2/h
due to the single-valudeness of the Bloch wavefunction
within the first Brillouin zone. However, the change of
the Hall conductance between positive and negative m
can be described correctly.

Onoda and Nagaosa (Onoda and Nagaosa, 2002)
demonstrated that a similar scenario emerges also for
a 6-band tight binding model of t2g-orbitals with SOI.
They showed that the Chern number of each band can
be nonzero leading to a nonzero Hall response arising
from the spontaneous magnetization. This suggests that
the anomalous Hall effect can be of topological origin,
a reinterpretation of the intrinsic contribution found by
Karplus-Luttinger (Karplus and Luttinger, 1954). An-
other mechanism which can produce a flux is a non-
coplanar spin structure with an associated spin chirality
as has been discussed in section II.B.

The considerations explained here have totally ne-
glected the finite lifetime τ due to the impurity and/or

phonon scattering, a generalization of the parameter ωcτ
which appeared in the case of the external magnetic field.
A full understanding of disorder effects usually requires
the full power of the detailed microscopic theories re-
viewed in Sec. IV. The ideas explained in this section
though are sufficient to understand why the intrinsic
Berry phase contribution to the Hall effect can be so
important. The SOI produces an effective vector poten-
tial and a “magnetic flux distribution” within the unit
cell. The strength of this flux density is usually much
larger than the typical magnetic field strength available
in the laboratory. In particular, the energy scale “~ωc”
related to this flux is that of the spin-orbit interaction for
Eq. (3.20), and hence of the order of 30 meV in 3d tran-
sition metal elements. This corresponds to a magnetic
field of the order of 300 T. Therefore, one can expect that
the intrinsic AHE is easier to observe compared with the
quantum Hall effect.

B. Topological interpretation of the intrinsic mechanism:
relation between Fermi sea and Fermi surface properties

The discovery and subsequent investigation of the
quantum Hall effect led to numerous important concep-
tual advances (Prange and Girvin, 1987). In particular,
the utility of topological considerations in understanding
electronic transport in solids was first appreciated. In
this section, we provide an introduction to the applica-
tion of topological notions such as the Berry phase and
the Chern number to the AHE problem, and explain the
long-unsuspected connections between these considera-
tions and KL theory. A more elementary treatment is
given in Ref. Ong and Lee, 2006.

The topological expression given in Eq. (1.5) was first
obtained by Thouless, Kohmoto, Nightingale and Nijs
(TKNN) (Thouless et al., 1982) for Bloch electrons in a
2D insulating crystal lattice immersed in a strong mag-
netic field H. These authors showed that each band is
characterized by a topological integer called the Chern
number

Cn ≡ −
∫
dkxdky
(2π)2

bzn(k). (3.26)

According to Eq. (1.5), the Chern number Cn gives the
quantized Hall conductance of an ideal 2D insulator, viz.
σxy = e2Cn/h. As mentioned in prior sections, these
topological arguments were subsequently applied to semi-
classical transport theory (Sundaram and Niu, 1999) and
the AHE problem in itinerant ferromagnets (Jungwirth
et al., 2002b; Onoda and Nagaosa, 2002), and the equiva-
lence to the KL expression (Karplus and Luttinger, 1954)
for σH was established. (Note however, that in multiband
systems, induced interband coherence among states with
the same crystal momentum is a possibility.)

Although the intrinsic Berry-phase effect involves the
entire Fermi sea, as is clear from Eq. (1.5), it is usu-
ally believed that transport properties of Fermi liquids
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at low temperatures relative to the Fermi energy should
be dependent only on Fermi-sruface properties. This is
a simple consequence of the observation that at these
temperatures only states near the Fermi surface can be
excited to produce non-equillibirium transport.

The apparent contradiction between conventional
Fermi liquid theory ideas and the Berry phase theory
of the AHE was resolved by Haldane (Haldane, 2004),
showed that the Berry phase contribution to the AHE
could be viewed in an alternate way. Because of its topo-
logical nature, the intrinsic AHE, which is most naturally
expressed as an integral over the occupied Fermi sea, can
be rewritten as an integral over the Fermi surface. Let us
start with the topological properties of the Berry phase.
The Berry-phase curvature bnk is gauge-invariant and
divergence-free except at quantized monopole and anti-
monopole sources with the quantum ±2π, i.e.,

∇k · bnk =
∑
i

qniδ
3(k − kni), qni = ±2π. (3.27)

These monopoles and anti-monopoles appear at isolated
k points in three dimensions. This is because in com-
plex Hermitian eigenvalue problems, accidental degener-
acy can occur by tuning the three parameters of k.

To gain further insight on the topological nature of 3D
systems, it is useful to rewrite Eq. (1.5) as

σij = εij`
e2

h

K`

2π
, (3.28)

where

K =
∑
n

Kn, (3.29)

Kn = − 1
2π

∫
F.B.Z.

d3k f(εnk) bnk. (3.30)

We note that if the band dispersion εnk does not cross εF ,
K`
n is quantized in integer multiples (Cna) of a primitive

reciprocal lattice vector Ga at T = 0. We have

Kn =
∑
a

CnaGa, (3.31)

where the index a runs over the three independent prim-
itive reciprocal lattice vectors (Kohmoto, 1985).

We next discuss the non-quantized part of the anoma-
lous Hall conductivity. In a real material with multiple
Fermi surface (FS) sheets indexed by α, we can describe
each sheet by k(α)

F (s), where s = (s1, s2) is a parame-
terization of the surface. It is convenient to redefine the
Berry-phase connection and curvature as

ãi(s) = a(k(s)) · ∂sik(s), (3.32)

b̃(s) = εij∂si ã
j(s), (3.33)

with εij the rank-2 antisymmetric tensor.
By integrating Eq. (3.30) by parts, eliminating the in-

tegration over the Brillouin zone boundary for each band,

and dropping the band indices, we may write (at T = 0)
the vector K in Eq. (3.29) as

K =
∑
a

CaGa +
∑
α

Kα, (3.34)

Kα =
1

2π

∫
Sα

ds1 ∧ ds2 b̃(s)k(α)
F (s)

+
1

4π

∑
i

Gαi

∫
∂Siα

ds · ã(s). (3.35)

Here, Ca is the sum of Cna over the fully occupied bands,
α labels sheets of the Fermi surface Sα, and δSiα is the
intersection of the Fermi surface Sα with the Brillouin
zone boundary i where k(α)

F (s) jumps by Gαi. Note that
the quantity

1
2π

∫
Sα

ds1 ∧ ds2 b̃(s) (3.36)

gives an integer Chern number. Hence gauge invariance
requires that ∑

α

1
2π

∫
Sα

ds1 ∧ ds2 b̃(s) = 0. (3.37)

The second term in Eq. (3.35) guarantees that Kα is un-
changed by any continuous deformation of the Brillouin
zone into another primitive reciprocal cell.

C. Early theoretical studies of the AHE

1. Karplus-Luttinger theory and the intrinsic mechanism

The pioneering work of Karplus and Luttinger (KL)
(Karplus and Luttinger, 1954) was the first theory of the
AHE fully based on Bloch states ψnk. As a matter of
course, their calculations uncovered the important role
played by the mere existence of bands and the associated
overlap of Bloch states. The KL theory neglects all lattice
disorder, so that the Hall effect it predicts is based on an
intrinsic mechanism.

In a ferromagnet, the orbital motion of the itinerant
electrons couples to spin ordering via the SOI. Hence all
theories of the AHE invoke the SOI term, which, as we
have mentioned, is described by the Hamiltonian given
by Eq. 3.19, where V (r) is the lattice potential. The SOI
term preserves lattice translation symmetry and we can
therefore define spinors which satisfy Bloch’s theorem.
When SO interactions are included the Bloch Hamilto-
nian acts in a direct product of orbital and spin-space.
The total Hamiltonian HT can be separated into contri-
butions as follows:

HT = H0 +HSOI +HE (3.38)

where H0 is the Hamiltonian in the absence of SOI and
HE the perturbation due to the applied electric field E.
In simple models the consequences of magnetic order can
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be represented by replacing the spin operator in Eq.(3.19)
by the ordered magnetic momentMs as s→ ~

2
Ms

M0
, where

M0 is the magnitude of the saturated moment. The ma-
trix element of HE = −eEbxb can be written as

〈nk|HE |n′k′〉 = −eEb
(
iδn,n′

∂

∂kb
δk,k′ + iδk,k′J

nn′

b (k)
)
,

(3.39)
where the “overlap” integral

Jnn
′

b (k) =
∫

Ω

dr u∗nk(r)
∂

∂kb
un′k(r) (3.40)

are regular functions of k. In hindsight, Jnn
′

b (k) may
be recognized as the Berry-phase connection an(k) dis-
cussed in Sec. I.B.1.

We next divide HE into Hr
E + Ha

E , where Ha
E (Hr

E)
corresponds to the first (second) term on the right hand
side of Eq. (3.39). Absorbing Hr

E into the unperturbed
Hamiltonian, i.e., Hp = H0 + HSOI + Hr

E , KL treated
the remaining term Ha

E as a perturbation. Accordingly,
the density matrix ρ was written as

ρ = ρ0(Hp) + ρ1 (3.41)

where ρ0(Hp) is the finite-temperature equilibrium den-
sity matrix and ρ1 is the correction. KL assumed that ρ1

gives only the ordinary conductivity, whereas the AHE
arises solely from ρ0(Hp). Evaluating the average veloc-
ity v̄a as v̄a = Tr[ρ0va], they found that

v̄a = −ieEb
∑
n,k

ρ′0(Epnk)Jnna (k), (3.42)

where ρ′0 is the derivative with respect to the energy. As
it is clear here, this current is the dissipationless current
in thermal equilibrium under the influence of the external
electric field, i.e., Hr

E . The AHE contribution arises from
the interband coherence induced by an electronic field,
and not from the more complicated rearrangements of
states within the partially occupied bands.

A second assumption of KL is that, in 3d metals, the
SOI energy HSO � εF (the Fermi energy) and W (the
bandwidth), so that it suffices to consider HSO to lead-
ing order. Using Eq. (3.19), the AHE response is then
proportional to |Ms|, consistent with the empirical rela-
tionship Eq. (2.1). More explicitly, to first-order inHSOI ,
KL obtained

v̄ = − e

m∆2

∑
k,n

ρ0(εnk)[E · vnk]Fnk, (3.43)

where εnk is the energy of the Bloch state for H0, ∆ is the
averaged value of interband energy separation, and Fnk

is the force i〈nk|[HSOI ,p]|nk〉. This gives the anomalous
Hall coefficient

Rs ∼=
2e2HSO

m∆2
δ
〈 m
m∗

〉
ρ2, (3.44)

where |F | ∼= (e/c)HSOv, m∗ is the effective mass, δ is
the number of incompletely filled d-orbitals, and ρ is the
resistivity.

Note that the ρ2-dependence implies that the off-
diagonal Hall conductivity σH is independent of the
transport lifetime τ , i.e., it is well-defined even in the
absence of disorder, in striking contrast with the diag-
onal conductivity σ. The implication that ρH = σHρ

2

varies as the square of ρ was immediately subjected to
extensive experimental tests, as described in Sec. I.A.

An important finding in the KL theory is that inter-
band matrix elements of the current operator contribute
significantly to the transport currents. This contrasts
with conventional Boltzmann transport theory, where
the current arises solely from the group velocity vn,k =
∂εn,k/∂k.

In the Bloch basis

〈r|ψnk〉 = eik·r〈r|unk〉, (3.45)

the N -orbital Hamiltonian (for a given k) may be decom-
posed into the 2N × 2N matrix h(k), viz.

h(k) =
∑
n,m

〈nk|h(k)|mk〉 a†n(k)am(k). (3.46)

The corresponding current operator for a given k is

Jµ(t,k) =
∑
n,m

〈nk|∂h(k)
∂~kµ

|mk〉 a†n(k)am(k). (3.47)

According to Hellman-Feynman’s theorem

〈nk|∂h(k)
∂kµ

|nk〉 =
∂εn(k)
∂k

, (3.48)

the diagonal contribution to the current is (with n = m)

J intra
µ (t) = −e

∑
nk

vg(k)Nn(k), (3.49)

where Nn(k) = a†n(k)an(k) is the occupation number
in the state |nk〉. Eq. (3.49) corresponds to the ex-
pression in Boltzmann transport theory mentioned be-
fore. The inter-band matrix element 〈nk|∂h(k)

∂kµ
|mk〉 with

n 6= m corresponds to inter-band transitions. As shown
by KL, the inter-band matrix elements have profound
consequences for the Hall current, as has become appar-
ent from the Berry-phase approach.

2. Extrinsic mechanisms

a. Skew scattering

In a series of reports, Smit (Smit, 1955, 1958) mounted
a serious challenge to the basic findings of KL. In
the linear-response transport regime, the steady-state
current balances the acceleration of electrons by E
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against momentum relaxation by scattering from impu-
rities and/or phonons. Smit pointed out that this bal-
ancing was entirely absent from the KL theory, and pur-
ported to show that the KL term vanishes exactly. His
reasoning wasa that the anomalous velocity central to
KL’s theory is proportional to the acceleration k̇ which
must vanish on average at steady state because the force
from E cancels that from the impurity potential.

More significantly, Smit proposed the skew-scattering
mechanism (Fig. 3) as the source of the AHE (Smit, 1955,
1958). As discussed in Sec. I.B.2, in the presence of SOI,
the matrix element of the impurity scattering potential
reads

〈k′s|V |k, s〉 = Ṽk,k′

(
δs,s′ +

i~2

4m2c2
(〈s′|σ|s〉 × k′) · k)

)
.

(3.50)
Microscopic detailed balance would require that the tran-
sition probability Wn→m between states n and m is
identical to that proceeding in the opposite direction
(Wm→n). It holds, for example, in the Fermi’s golden-
rule approximation

Wn→m =
2π
~
|〈n|V |m〉|2δ(En − Em), (3.51)

where V is the perturbation inducing the transition.
However, microscopic detailed balance is not generic. In
calculations of the Hall conductivity, which involve the
second Born approximation (third order in V ), detailed
balance already fails. In a simple N=1 model, skew scat-
tering can be represented by an asymmetric part of the
transition probability

WA
kk′ = −τ−1

A k × k′ ·Ms. (3.52)

When the asymmetric scattering processes is included
(dubbed skew scattering), the scattering probability
W (k→ k′) is distinct from W (k′ → k).

Physically, scattering of a carrier from an impurity in-
troduces a momentum perpendicular to both the incident
momentum k and the magnetization M . This leads to a
transverse current proportional to the longitudinal cur-
rent driven by E. Consequently, the Hall conductivity
σH and the conductivity σ are both proportional to the
transport lifetime τ . Equivalently, ρH = σHρ

2 is propor-
tional to the resistivity ρ.

As mentioned in Sec. I and in Sec. II, this prediction –
qualitatively distinct from that in the KL theory – is con-
sistent with experiments, especially on dilute Kondo sys-
tems. These are systems which are realized by dissolving
magnetic impurities (Fe, Mn or Cr) in the non-magnetic
hosts Au or Cu. (At higher concentrations, these systems
become spin glasses.) Although these systems do not ex-
hibit magnetic ordering even at T as low as 0.1 K, their
Hall profiles ρH vs. H display an anomalous component
derived from polarization of the magnetic local moments
(Fig. 35 a).

Empirically, the Hall coefficient RH has the form

RH = R0 +A/T (3.53)

FIG. 35 The dependences of the Hall resistivity in AuFe on
magnetic field (Panel a) and temperature (Panel b). [After
Ref. Hurd, 1972.]

where R0 is the nominally T -independent OHE coeffi-
cient and A is a constant (see Fig. 35 b). Identifying
the second term with the paramagnetic magnetization
M = χH, where χ(T ) ∝ 1/T is the Curie susceptibility
of the local moments, we see that Eq. (3.53) is of the
Pugh form Eq. (2.1).

Many groups have explored the case in which ρ and
ρH can be tuned over a large range by changing the
magnetic-impurity concentration ci. Hall experiments
on these systems in the period 1970-1985 by and large
confirmed the skew-scattering prediction ρH ∝ ρ. This
led to the conclusion – often repeated in reviews – that
the KL theory had been “experimentally disproved”. As
mentioned in Sec. I, this invalid conclusion ignores the
singular role of TRI-breaking in ferromagnets. While
Eq. (3.53) indeed describes skew scattering, the dilute
Kondo system respects TRI in zero H. This essential
qualitative differences between ferromagnets and systems
with easily aligned local moments implies essential differ-
ences in the physics of their Hall effects.

b. Kondo theory

Kondo has proposed a finite-temperature skew-
scattering model in which spin waves of local moments at
finite T lead to asymmetric scattering (Kondo, 1962). In
the KL theory, the moments of the ferromagnetic state
are itinerant: the electrons carrying the transport current
also produce the magnetization. Kondo has considered
the opposite limit in which nonmagnetic s electrons scat-
ter from spin-wave excitations of the ordered d-band local
moments (with the interaction term JSn · s). Retaining
terms linear in the spin-orbit coupling λ and cubic in J ,
Kondo derived an AHE current that arises from tran-
sition probabilities containing the skew-scattering term
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∼ k × k′. The T dependence of ρH matches well (espe-
cially near TC) the ρH vs. T profiles measured in Ni (Jan,
1952; Jan and Gijsman, 1952; Lavine, 1961) and Fe (Jan,
1952) (Fig. 36).

FIG. 36 Comparison of the curve of ρH vs. T measured in
Fe by Jan with Kondo’s calculation [From Ref. Kondo, 1962.]

Kondo has noted that a problem with his model is
that it predicts that ρH should vanish when the d orbital
angular momentum is quenched as in Gd (whereas ρH
is observed to be large). A second problem is that the
overall scale for ρH (fixed by the exchange energies F0,
F1 and F2) is too small by a factor of 100 compared
with experiment. Kondo’s model with the s-d spin-spin
interaction replaced by a d(spin)-s(orbital) interaction
has also been applied to antiferromagnets (Maranzana,
1967).

c. Resonant skew scattering

Resonant skew scattering arises from scattering of car-
riers from virtual bound states in magnetic ions dissolved
in a metallic host. Examples are XM, where X = Cu,
Ag and Au and M = Mn, Cr and Fe. The prototypical
model is a 3d magnetic ion embedded in a broad s band,
as described by the Anderson model (Hewson, 1993). As
shown in Fig. 37, a spin-up s electron transiently occu-
pies the spin-up bound state which lies slightly below
εF . However, a second (spin-down) s electron cannot be
captured because the on-site repulsion energy U raises
its energy above εF . As seen in Fig. 37, the SOI causes
the energies Emdσ of the d orbitals (labelled by m) to be
individually resolved. Here, σ = ± is the spin of the
bound electron. The applied H merely serves to align
spin σ = + at each impurity.

The scattering of an incident wave eik·r is expressed
by the phase shifts δmls (E) in the partial-wave expansion
of the scattered wave. The phase shift is given by

cot δmls (E) =
(Emdσ − E)

∆
, (3.54)

where ∆ is the half-width of each orbital.
In the absence of SOI, δmls (E) is independent of m and

there is no Hall current. The splitting caused by SOI

FIG. 37 Sketch of the broadened virtual bound states of a 3d
magnetic impurity dissolved in a non-magnetic metallic host.
The SOI lifts the degeneracy of the d levels indexed by m,
the magnetic quantum number. [From Ref. Fert and Jaoul,
1972.]

results in a larger density of states at εF for the orbital
m compared with −m in the case where the up spin elec-
tron is more than half-filled as shown in Fig. 37. Because
the phase shift is sensitive to occupancy of the impurity
state (Friedel sum-rule), we have δmls 6= δ−mls . This leads
to a right-left asymmetry in the scattering, and a large
Hall current ensues. Physically, a conduction electron in-
cident with positive z-component of angular momentum
m hybridizes more strongly with the virtual bound state
than one with negative −m. This results in more elec-
trons being scattered to the left than the right. When
the up spin density of states are filled less than half, i.e.,
E0
d+ > 0, the direction becomes the opposite, leading a

sign change of the AHE.
Explicitly, the splitting of Emdσ is given by

Emd± = E0
d± ±

1
2
mλ±, (3.55)

where λσ is the SOI energy for spin σ. Using Eq. (3.55)
in (3.54), we have, to order (λσ/∆)2,

δm2σ = δ0
2σσ

λσm

2∆
sin2 δ0

2σ +
λ2
σm

2

4∆2
sin3 δ0

2σ cos δ0
2σ. (3.56)

Inserting the phase shifts into the Boltzmann transport
equation, we find that the Hall angle γσ ' ρσxy/ρ

σ
xx for

spin σ is, to leading order in λσ/∆,

γσ = σ
3
5
λσ
∆

sin(2δ0
2σ − δ1) sin δ1, (3.57)

where δ1 is the phase shift of the p-wave channel which is
assumed to be independent of m and s (Fert et al., 1981;
Fert and Jaoul, 1972). Thermal averaging over σ, we can
obtain an estimate of the observed Hall angle γ. Its sign
is given by the position of the energy level relative to εF .
With the rough estimate λσ/∆ ' 0.1, and sin δ1 ∼ 0.1,
we have |γ| ' 10−2. Without the resonant scattering
enhancement, the typical value of γ is ∼ 10−3.
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FIG. 38 The Hall coefficient RH in heavy electron systems.
Left panel: The T dependence of RH in CeAl3 (open triangle),
UPt3 (solid square), UAl2 (solid circle), and a single crystal
of CeRu2Si2 (circle dot symbol). The field H is along the c-
axis. Right panel: Interpretation of the RH -T curve based on
skew scattering from local moments. After Ref. Hadzicleroux
et al., 1986 and Lapierre et al., 1987. [From Ref. Fert and
Levy, 1987.]

Heavy-electron systems are characterized by a very
large resistivity ρ above a coherence temperature Tcoh
caused by scattering of carriers from strong fluctuations
of the local moments formed by f -electrons at each lat-
tice site. Below Tcoh, the local-moment fluctuations de-
crease rapidly with incipient band-formation involving
the f -electrons. At low T , the electrons form a Fermi
liquid with a greatly enhanced effective mass. As shown
in Fig. 38, the Hall coefficient RH increases to a broad
maximum at Tcoh before decreasing sharply to a small
value in the low-T coherent-band regime. Resonant skew
scattering has also been applied to account for the strong
T dependence of the Hall coefficient in CeCu2Si2, UBe13,
and UPt3 (Coleman et al., 1985; Fert et al., 1981; Fert
and Levy, 1987).

d. Side-jump

An extrinsic mechanism distinct from skew scattering
is side-jump (Berger, 1970) (Fig. 3). Berger considered
the scattering of a Gaussian wavepacket from a spherical
potential well of radius R given by

V (r) =
~2

2m
(k2 − k2

1) (r < R)

V (r) = 0 (r > R), (3.58)

in the presence of the SOI term HSO =
(1/2m2c2)(r−1∂V/∂r)SzLz, where Sz (Lz) is the
z-component of the spin (orbital) angular momentum.
For a wavepacket incident with wavevector k, Berger
found that the wavepacket suffers a displacement ∆y
transverse to k given by

∆y =
1
6
kλ2

c , (3.59)

with λc = ~/mc the Compton wavelength. For k ∼= kF ∼=
1010m−1 (in typical metals), ∆y ∼= 3×10−16 m is far too
small to be observed.

In solids, however, the effective SOI is enhanced by
band-structure effects by the factor (Fivaz, 1969)

2m2c2

m∗~
τq ∼= 3.4× 104, (3.60)

with τq = (m∗/3~2)
∑
m6=n(χξ̄ρ2/∆Enm)|〈m|q × p|n〉|2.

Here, ∆Enm ∼= 0.5 eV is the gap between adjacent
d-bands, χ ∼= 0.3 is the overlap integral, ρ ∼= 2.5 ×
10−10 m is the nearest-neighbor distance, and ξ̄ =
−(~2/2m2c2)〈(r−1∂V/∂r)〉 ∼= 0.1 eV is the atomic SOI
energy. The factor in Eq. (3.60) is essentially the ra-
tio of the electron rest mass energy mc2 to the energy
gap ∆Enm. With this enhancement, the transverse dis-
placement is ∆y ' 0.8 × 10−11 m, which renders the
contribution relevant to the AHE.

However, because the side-jump contribution to σH is
independent of τ , it is experimentally difficult to distin-
guish from the KL mechanism. We return to this issue
in Sec. IV.A.

3. Kohn-Luttinger theory formalism

a. Luttinger theory

Partly motivated by the objections raised by Smit,
Luttinger (Luttinger, 1958) revisited the AHE problem
using the Kohn-Luttinger formalism of transport the-
ory (Kohn and Luttinger, 1957; Luttinger and Kohn,
1958). Employing a systematic expansion in terms of the
impurity potential ϕ̄, he solved the transport equation for
the density matrix and listed several contributions to the
AHE current, including the intrinsic KL term, the skew-
scattering term, and other contributions. They found
that to zero-th order in ϕ̄, the average velocity is ob-
tained as the sum of the 3 terms v(11)

β , uβ and v(b)
β defined

by (Luttinger, 1958)

v
(11)
β = −ieEα

(
∂J`β
∂kα

− ∂J`α
∂kβ

)
k=0

(
εF

3niϕ̄

)
, (3.61)

uβ = −ieEα

(
∂J`β
∂kα

− ∂J`α
∂kβ

)
k=0

, (3.62)

and

v
(b)
β = ieEα

[(
∂J`β
∂kα

− ∂J`α
∂kβ

)
C − εFT (0)

αβ

]
, (3.63)

with ni the impurity concentration. (For the definition
of T (0)

αβ , see Eq. (4.27) of Ref. Luttinger, 1958).

The first term v
(11)
β is the skew-scattering contribu-

tion, while the second uβ is the velocity obtained by KL
(Karplus and Luttinger, 1954). The third term v

(b)
β is

another term of the same order as uβ .
The issues raised by comparing intrinsic vs. extrinsic

AHE mechanisms involve several fundamental issues in
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the theory of transport and quantum systems away from
equilibrium. Following Smit (Smit, 1955, 1958) and Lut-
tinger (Luttinger, 1958), we consider the wavefunction
expanded in terms of Bloch waves ψ`’s, viz.

ψ(t) =
∑
`

a`(t)ψ`, (3.64)

where ` = (n,k) stands for the band index n and
wavevector k. The corresponding expectation value of
the position operator x̄β is given by

x̄β = i
∑
`

∂a`
∂kβ

a∗` + i
∑
`,`′

a`′a
∗
`J

`,`′

β (3.65)

where J`,`
′

β was defined in Eq. (3.40). Taking the
quantum-statistical average using the density matrix
(ρT )`′,` = 〈a`′a∗` 〉, the expectation value can be written
as

〈x̄β〉 = i
∑
`

∂(ρT )`,`
∂kβ

|k=k′ + i
∑
`,`′

(ρT )`′`J
`,`′

β . (3.66)

It may be seen that the second term in Eq. (3.66) does not
contribute to the current because it is a regular function
of k, and the expectation value of its time-derivative is
zero. Finally, one obtains the expression

〈v̄β〉 = i
∑
`

∂(ρ̇T )`,`
∂kβ

|k=k′ (3.67)

by taking the time-derivative of Eq.(3.66).
Smit (Smit, 1955, 1958) assumed a`(t) = |a`|e−iεnkt

and obtained the diagonal part as

i(ρ̇T )`,` =
∂εnk

∂kβ
〈|a`|2〉, (3.68)

while the off-diagonal part averages to zero because of
the oscillatory factor e−i(ε`−ε`′ )t. Inserting Eq. (3.68) in
Eq. (3.67) and using (ρT )`` = 〈|a`|2〉, one obtains the
usual expression for the velocity, i.e.,

〈v̄β〉 =
∑
`

(ρT )`,`
∂εnk

∂kβ
(3.69)

which involves the group velocity, but not the anomalous
velocity. A subtlety in the expression Eq. (3.67) is clar-
ified by writing ρ = ρ0 + fest where est is the adiabatic
factor, and ρ̇T = sfest. This leads to the expression

〈v̄β〉 = is
∑
`

∂(f)nk,nk′

∂kβ
|k=k′ , (3.70)

which approaches a finite value in the limit s→ 0. This
means that ∂(f)nk,nk′

∂kβ
|k=k′ ∼ 1/s, i.e., a singular function

of s. This is in sharp contrast to f itself, which is a
regular function as s → 0, which KL estimated. They

considered the current or velocity operator instead of the
position operator, the latter of which is unbounded and
even ill-defined for periodic boundary conditions.

Luttinger (Luttinger, 1958) argued that the ratio
v

(11)
β /uβ equals εF /(3niϕ̄), which may become less than

1 for large impurity concentration ni. However, if we as-
sume ϕ̄ is comparable to εF , the expansion parameter is
εF τ/~, i.e., v(11)

β /uβ = εF τ/~.
The “metallicity” parameter εF τ/~ plays a key role

in modern quantum-transport theory, especially in the
weak localization and interaction theory (Lee and Ra-
makrishnan, 1985). Metallic conduction corresponds to
εF τ/~ � 1. More generally, if one assumes that the
anomalous Hall conductivity σH is first order in the spin-
orbit energy ∆, it can be written in a scaling form as

σH =
e2

ha
· ∆
εF
f

(
~
εF τ

)
, (3.71)

where the scaling function can be expanded as

f(x) =
∞∑

n=−1

cnx
n. (3.72)

Here, cn’s are constants of the order of unity. The leading
order term c−1x

−1 corresponds to the skew-scattering
contribution ∝ τ , while the second constant term c0 is
the contribution found by KL. If this expansion is valid,
the intrinsic contribution by KL is always smaller than
the skew scattering contribution in the metallic region
with ~/εF τ � 1. One should note however that the right
hand side of this inequality should really have a smaller
value to account for the weakness of the skew scattering
amplitude. When both are comparable, i.e., ~/εF τ ∼ 1,
one needs to worry about the localization effect and the
system is nearly insulating, with a conduction that is of
the hopping type. This issue is discussed in more detail
in Secs. II.A, II.E, and IV.D.

b. Adams-Blount formalism

Adams and Blount (Adams and Blount, 1959) ex-
pressed the KL theory in a way that anticipates the mod-
ern Berry-phase treatment by introducing the concept of
“field-modified energy bands” and the “intracell” coordi-
nate. They considered the diagonal part of the coordi-
nate matrix in the band n as

xµc = i~
∂

∂pµ
+Xnn

µ (p), (3.73)

which is analogous to Eq. (3.39) obtained by KL. The
first term is the Wannier coordinate identifying the lat-
tice site, while the second term – the “intracell” coor-
dinate – locates the wavepacket centroid inside a unit
cell. Significantly, the intracell nature of Xnn

µ implies
that it involves virtual interband transitions. Although
the motion of the wavepacket is confined to the conduc-
tion band, its position inside a unit cell involves virtual
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occupation of higher bands whose effects appear as a ge-
ometric phase (Ong and Lee, 2006). They found that the
curl ∇k×Xnn acted like an effective magnetic field that
lives in k space.

The application of an electric field E leads to an
anomalous (Luttinger) velocity, which gives a Hall cur-
rent that is manifestly dissipationless. This is seen by
evaluating the commutation relationship of xµc and xνc .
We have

[xµc , x
ν
c ] = i~

[
∂Xnn

ν

∂pµ
−
∂Xnn

µ

∂pν

]
= i~εµνλBn(p)λ, (3.74)

where we have defined the field Bn(p) = ∇p ×Xnn(p).
This is analogous to the commutation relationship among
the components of π = p+ (e/c)A in the presence of the
vector potential,i.e., [πµ, πν ] = i~εµνλ[∇r × A(r)]λ =
i~Bλ(r). The anomalous velocity arises from the ficti-
tious “magnetic field” Bn(p) (which lives in momentum
space), and non-commutation of the gauge-covariant co-
ordinates xµc ’s. This insight anticipated the modern idea
of Berry phase curvature (see Secs. III.B and IV.A for
details).

Taking the commutator between xµc and the Hamilto-
nian Hnn = En(p)− F νxνc , we obtain

vnn = −i[xc, Hnn] =
∂En(p)
∂p

− F ×Bn(p). (3.75)

The second term on the right hand side is called the
anomalous velocity. Adams and Blount reproduced the
results of Luttinger (Luttinger, 1958) and demonstrated
it for the simple case of a uniform field Bn(p) = D.
As recognized by Smit (Smit, 1955, 1958), the currents
associated with the anomalous velocities driven by E and
by the impurity potential mutually cancel in steady state.
However, D introduces corrections to the “driving term”
and the “scattering term” in the transport equation. As
a consequence, the current J is

J = ne2
∑
k

(
−2

3
E
df (0)

dE

)
×
[
F τ

m
− F ×D

~
+
(
τ2k2

3mτA

)
(F ×D)

]
.(3.76)

Note that the current arises entirely from the average
of the “normal current”. However, the second term in
Eq. (3.76) is similar to the anomalous velocity and is
consistent with the conclusions of KL (Karplus and Lut-
tinger, 1954) and Luttinger (Luttinger, 1958). The con-
sensus now is that the KL contribution exists. However,
in the clean limit τ → ∞, the leading contribution to
the AHE conductivity comes from the skew-scattering
term. A more complete discussion of the semiclassical
treatment is in Sec. IV.A.

c. Nozieres-Lewiner theory

Adopting the premises of Luttinger’s theory (Lut-
tinger, 1958), Nozieres and Lewiner (Nozieres and
Lewiner, 1973) investigated a simplified model comprised
of one conduction and one valence band to derive all the
possible contributions to the AHE. The Fermi level εF
was assumed to lie near the bottom of the conduction
band. Integrating over the valence band states, Nozieres
and Lewiner derived an effective Hamiltonian for a state
k in the conduction band. The derived position operator
is reff = r+ ρ, where the new term ρ which involves the
SOI parameter λ is given by

ρ = −λk × S. (3.77)

This polarization or effective shift modifies the transport
equation to produce several contributions to σH . In their
simple model, the anomalous Hall current JAHE (besides
that from the skew scattering) is

JAHE = 2Ne2λE × S̄, (3.78)

where N is the carrier concentration, and S̄ is the aver-
aged spin polarization. The sign is opposite to that of the
intrinsic term Jintrinsic = −2Ne2λE × S̄ obtained from
the SOI in an ideal lattice. They identified all the terms
as arising from the spin-orbit correction to the scattering
potential, i.e., in their theory there is no contribution
from the intrinsic mechanism. However, one should be
cautious about this statement because these cancellations
occur among the various contributions and such cancel-
lations can be traced back to the fact that the Berry cur-
vature is independent of k. In particular, it is often the
case that the intrinsic contribution survives even when
µ lies inside an energy gap, i.e., N = 0 (the side-jump
contribution is zero in this case). This issue lies at the
heart of the discussion of the topological aspect of the
AHE.

IV. LINEAR TRANSPORT THEORIES OF THE AHE

In this section we describe the three linear response
theories now used to describe the AHE. All three theories
are formally equivalent in the εF τ � 1 limit. The three
theories make nearly identical predictions; the small dif-
ferences between the revised semiclassical theory and the
two formalism of the quantum theory are thoroughly un-
derstood at least for several different toy model systems.
The three different approaches have relative advantages
and disadvantages. Considering all three provides a more
nuanced picture of AHE physics. Their relative corre-
spondence has been shown analytically in several simple
models (Sinitsyn, 2008; Sinitsyn et al., 2007). The gen-
eralized semiclassical Boltzmann transport theory which
takes the Berry phase into account is reviewed in Sec.
IV.A; this theory has the advantage of greater physi-
cal transparency, but it lacks the systematic character of
the microscopic quantum-mechanical theories whose ma-
chinery deals automatically with the problems of inter-
band coherence. Another limitation of the semiclassical
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Boltzmann approach is that the “quantum correction” to
the conductivities, i.e., the higher order terms in ~/εF τ ,
which lead to the Anderson localization and other inter-
esting phenomena (Lee and Ramakrishnan, 1985) cannot
be treated systematically.

The microscopic quantum-mechanical linear response
theories based on the Kubo formalism and the Keldysh
(non-equiliribrum Green’s function) formalism are re-
viewed in Sec. IV.B.1 and Sec. IV.C, respectively. These
formulations of transport theory are organized differently
but are essentially equivalent in the linear regime. In
the Kubo formalism, which is formulated in terms of the
equilibrium Green’s functions, the intrinsic contribution
is more readily calculated, especially when combined with
first-principles electronic structure theory in applications
to complex materials. The Keldysh formalism can more
easily account for finite lifetime quantum scattering ef-
fects and take account of the broadened quasiparticle
spectral features due to the self-energy, while at the same
time maintaining a structure more similar to that of semi-
classical transport theory (Onoda et al., 2006a). AWe
contrast these techniques by comparing their applications
to a common model, the ferromagnetic Rashba model in
two-dimensions (2D) which has been studied intensively
in recent years (Sec.IV.D).

A. Semiclassical Boltzmann approach

As should be clear from the complex phenomenology of
the AHE in various materials classes discussed in Sec. II,
it is not easy to establish a one-size-fits-all theory for
this phenomenom. From a microscopic point of view the
AHE is a formidable beast. In subsequent sections we
outline systematic theories of the AHE in metallic sys-
tems which employ Keldysh and Kubo linear response
theory formalisms and are organized around an expan-
sion in disorder strength, characterized by the dimen-
sionless quantity ~/εF τ . A small value for this parame-
ter may be taken as a definition of the good metal. We
start with semiclassical theory, however, because of its
greater physical transparency. In this section we out-
line the modern version (Sinitsyn, 2008; Sinitsyn et al.,
2007) of the semiclassical transport theory of the AHE.
This theory augments standard semiclassical transport
theory by accounting for coherent band-mixing by the
external electric field (which leads to the anomalous ve-
locity contribution) and by a random disorder potential
(which leads to side jump). For simple models in which
a comparison is possible, the two theories (i.e. (i) the
Boltzmann theory with all side-jump effects (formulated
now in a proper gauge-invariant way) and the anoma-
lous velocity contribution included and (ii) the metallic
limit of the more systematic Keldysh and Kubo formal-
ism treatments) give identical results for the AHE. This
section provides a more compact version of the material
presented in the excellent review by Sinitsyn (Sinitsyn,
2008), to which we refer readers interested in further de-

tail. Below we take ~ = 1 to simplify notation.
In semiclassical transport theory one retreats from a

microscopic description in terms of delocalized Bloch
states to a formulation of transport in terms of the dy-
namics of wavepackets of Bloch states with a well defined
band momentum and position (n,kc, rc) and scattering
between Bloch states due to disorder. The dynamics of
the wavepackets between collisions can be treated by an
effective Lagrangian formalism. The wavepacket distri-
bution function is assummed to obey a classical Boltz-
mann equation which in a spatially uniform system takes
the form (Sundaram and Niu, 1999):

∂fl
∂t

+ ~k̇c ·
∂fl
∂kc

= −
∑
l′

(ωl′,lfl − ωl,l′fl′). (4.1)

Here the label l is a composition of band and momenta
(n,kc) labels and Ωl′,l, the disorder averaged scattering
rate between wavepackets defined by states l and l′, is to
be evaluated fully quantum mechanically. The semiclas-
sical description is useful in clarifying the physical mean-
ing and origin of the different mechanism contributing to
the AHE. However, as explained in this review, contribu-
tions to the AHE which are important in a relative sense
often arise from inter-band coherence effects which are
neglected in conventional transport theory. The tradi-
tional Boltzmann equation therefore requires elaboration
in order to achieve a successful description of the AHE.

There is a substantial literature (Berger, 1970; Jung-
wirth et al., 2002b; Smit, 1955) on the application of
Boltzmann equation concepts to AHE theory (see Sec.
III.C). However stress was often placed only on one of
the several possible mechanisms, creating a lot of confu-
sion. A cohesive picture has been lacking until recently
(Sinitsyn, 2008; Sinitsyn et al., 2006, 2005). In particu-
lar, a key problem with some prior theory was that it in-
correctly ascribed physical meaning to gauge dependent
quantities. In order to build the correct gauge-invariant
semiclassical theory of AHE we must take the following
steps (Sinitsyn, 2008):

i) obtain the equations of motion for a wavepacket
constructed from spin-orbit coupled Bloch elec-
trons,

ii) derive the effect of scattering of a wave-packet
from a smooth impurity, yielding the correct gauge-
invariant expression for the corresponding side-
jump,

iii) use the equations of motion and the scattering
rates in Eq. (4.1) and solve for the non-equillibirum
distribution function, carefully accounting for the
points at which modifications are required to ac-
count for side-jump,

iv) utilize the non-equilibrium distribution function to
calculate the dc anomalous Hall currents, again ac-
counting for the contribution of side-jump to the
macroscopic current.



38

The validity of this approach is partially established in
the following sections by direct comparison with fully mi-
croscopic calculations for simple model systems in which
we are able to identify each semiclassically defined mech-
anisms with a specific part of the microscopic calcula-
tions.

1. Equation of motion of Bloch states wave-packets

We begin by defining a wavepacket centered at position
rc with average momentum kc:

Ψkc,rc(r, t) =
1√
V

∑
k

wkc,rc(k)eik·(r−rc)unk(r). (4.2)

A key aspect of this wavepacket is that the complex func-
tion, sharply peaked around kc, must have a very specific
phase factor in order to have the wavepacket centered
around rc. This can be shown to be (Marder, 2000; Sun-
daram and Niu, 1999):

wkc,rc(k) = |wkc,rc(k)| exp[i(k − kc) · an], (4.3)

where an ≡ 〈unk|i∂kunk〉 is the Berry’s connection of the
Bloch state (see Sec. I.B). We can generate dynamics for
the wavepacket parameters kc and rc by constructing
a semiclassical Lagrangian from the quantum wavefunc-
tions:

L = 〈Ψkc,rc |i
∂

∂t
−H0 + eV |Ψkc,rc〉

= ~kc · ṙc + ~k̇c · an(kc)− E(kc) + eV (rc).(4.4)

All the terms in the above Lagrangian are common to
conventional semiclassical theory except for the second
term, which is a geometric term in phase space depending
only on the path of the trajectory in this space. This term
is the origin of the momentum-space Berry phase (Berry,
1984) effects in anomalous transport in the semiclassical
formalism. The corresponding Euler-Lagrange equations
of motion are:

~k̇c = −eE (4.5)

ṙc =
∂En(kc)
∂kc

− ~k̇c × bn(kc) (4.6)

where bn(kc) = ∇ × an is the Berry’s curvature of
the Bloch state. Compared to the usual dynamic equa-
tions for wave-packets formed by free electrons, a new
term emerges due to the non-zero Berry’s curvature of
the Bloch states. This term, which is already linear
in electric field E, is of the Hall type and as such will
give rise in the linear transport regime to a Hall cur-
rent contribution from the entire Fermi sea, i.e., jintHall =
−e2E × 1

V

∑
k f0(Enk)bn(k).

2. Scattering and the side-jump

From the theory of elastic scattering we know that the
transition rate ωl,l′ in Eq. (4.1) is given by the T -matrix

element of the disorder potential:

ωl′l ≡ 2π|Tl′l|2δ(εl′ − εl). (4.7)

The scattering T -matrix is defined by Tl′l = 〈l′|V̂ |ψl〉,
where V̂ is the impurity potential operator and |ψl〉 is
the eigenstate of the full Hamiltonian Ĥ = Ĥ0 + V̂
that satisfies the Lippman-Schwinger equation |ψl〉 =
|l〉+(εl − Ĥ0 + iη)−1V̂ |ψl〉. |ψl〉 is the state which evolves
adiabatically from |l〉 when the disorder potential is
turned on slowly. For weak disorder one can approxi-
mate the scattering state |ψl〉 by a truncated series in
powers of Vll′ = 〈l|V̂ |l′〉:

|ψl〉 ≈ |l〉+
∑
l′′

Vl′′l
εl − εl′′ + iη

|l′′〉+ . . . (4.8)

Using this expression in the above definition of the T-
matrix and substituting it into Eq. (4.7), one can expand
the scattering rate in powers of the disorder strength

ωll′ = ω
(2)
ll′ + ω

(3)
ll′ + ω

(4)
ll′ · · · , (4.9)

where ω(2)
ll′ = 2π〈|Vll′ |2〉disδ(εl − εl′),

ω
(3)
ll′ = 2π

(∑
l′′

〈Vll′Vl′l′′Vl′′l〉dis
εl − εl′′ − iη

+ c.c.

)
δ(εl − εl′),

(4.10)
and so on.

We can always decompose the scattering rate into
components that are symmetric and anti-symmetric in
the state indices: ω

(s/a)
l′l ≡ (ωll′ ± ωl′l)/2. In conven-

tional Boltzmann theory the AHE is due solely to the
anti-symmetric contribution to the scattering rate (Smit,
1955).

The physics of this contribution to the AHE is quite
similar to that of the longitudinal conductivity. In par-
ticular, the Hall conductivity it leads to is proportional
to the Bloch state lifetime τ . Since ω(2)

l′l is symmetric, the
leading contribution to ω(a)

l′l appears at order V 3. Partly
for this reason the skew scattering AHE conductivity con-
tributions is always much smaller than the longitudinal
conductivity. (It is this property which motivates the
identification below of additional transport mechanism
which contribute to the AHE and can be analyzed in
semiclassical terms.) The symmetric part of ω(3)

ll′ is not
essential since it only renormalizes the second order re-
sult for ω(2)

l′l and the antisymmetric is given by

ω
(3a)
ll′ = −(2π)2

∑
l′′
δ(εl − εl′′)Im〈Vll′Vl′l′′Vl′′l〉disδ(εl − εl′).

(4.11)
This term is proportional to the density of scatterers, ni.
Skew scattering has usually been associated directly with
ω(3a), neglecting in particular the higher order term ω

(4a)
ll′

which is proportional to n2
i and should not be disregarded

because it gives a contribution to the AHE which is of
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the same order as the side-jump contribution considered
below. This is a common mistake in the semiclassical
analyses of the anomalous Hall effect (Sinitsyn, 2008).

Now we come to the interesting side-jump story. Be-
cause the skew scattering conductivity is small, we have
to include effects which are absent in conventional Boltz-
mann transport theory. Remarkably it is possible to pro-
vide a successful analysis of one of the main additional
effects, the side-jump correction, by means of a careful
semiclassical analysis. As we have mentioned previously
side jump refers to the microscopic displacement δrl,l′
experienced by a wave-packets formed from a spin-orbit
coupled Bloch states, when scattering from state l to
state l′ under the influence of a disorder potential. In
the presence of an external electric field side jump leads
to an energy shift ∆Ul,l′ = −eE · δrl,l′ . Since we are
assuming only elastic scattering, an upward shift in po-
tential energy requires a downward shift in band energy
and vice-versa. We therefore need to adjust Eq. (4.1) by
adding

∑
l′ ω

s
l,l′

∂f0(εl)
εl

eE · δrl,l′ to the r.h.s.
But what about the side-jump itself? An expression for

the side-jump δrl,l′ associated with a particular transi-
tion can be derived by integrating ṙc through a transition
(Sinitsyn, 2008). We can write

ṙc =
d

dt
〈Ψkc,rc(r, t)|r|Ψkc,rc(r, t)〉 =

d

dt

{∫
dr

V

∫
dk∫

dk′w(k)w∗(k′)e−ik
′·r (reik·r)u∗nk′(r)

unk(r)ei(E(k′)−E(k))t/~
}

=
dEn(kc)
dkc

+ (4.12)

d

dt

{∫
cell

dr

∫
dkw∗(k)unk(r)

(
i
∂

∂k
w(k)unk(r)

)}
This expression is equivalent to the equations of motion
derived within the Lagrangian formalism; this form has
the advantage of making it apparent that in scattering
from state l to a state l′ a shift in the center of mass
coordinate will accompany the velocity deflection. From
Eq. (4.12) it appears that the scattering shift will go ap-
proximately as:

δrl′,l ≈ 〈ul′ |i
∂

∂k′
ul′〉 − 〈ul|i

∂

∂k
ul〉. (4.13)

This quantity has usually been associated with the side-
jump, although it is gauge-dependent and therefore arbi-
trary in value. The correct expression for the side jump
is similar to this one, at least for the smooth impurity po-
tentials situation, but was derived only recently by Sinit-
syn et al. (Sinitsyn et al., 2006, 2005):

δrl′l = 〈ul′ |i
∂

∂k′
ul′〉 − 〈ul|i

∂

∂k
ul〉 − D̂k′,karg[〈ul′ |ul〉],

(4.14)
where arg[a] is the phase of the complex number a and
D̂k′,k = ∂

∂k′ + ∂
∂k . The last term is essential and makes

the expression for the resulting side-jump gauge invari-

ant. Note that the side-jump is independent of the de-
tails of the impurity potential or of the scattering pro-
cess. As this discussion shows, the side jump contribu-
tion to motion during a scattering event is analogous to
the anomalous velocity contribution to wave-packet evo-
lution between collisions, with the role of the disorder
potential in the former case taken over in the latter case
by the external electric field.

3. Kinetic equation for the semiclasscial Boltzmann distribution

Equations (4.7) and (4.14) contain the quantum me-
chanical information necessary to write down a semiclass-
cial Boltzmann equation that takes into account both
the change of momentum and the coordinate shift dur-
ing scattering in the presence of a driving electric field E.
Keeping only terms up to linear order in the electric field
the Boltzmann equation reads (Sinitsyn et al., 2006):

∂fl
∂t + eE · v0l

∂f0(εl)
∂εl

= −
∑
l′
ωll′ [fl − fl′ − ∂f0(εl)

∂εl
eE · δrl′l],

(4.15)
where v0l is the usual group velocity v0l = ∂εl/∂k. Note
that for elastic scattering we do not need to take account
of the Pauli blocking which yields factors like fl(1− fl′)
on the r.h.s. of Eq. (4.15), and that the collision terms
are linear in fl as a consequence. (For further discus-
sion of this point see Appendix B in Ref. Luttinger and
Kohn, 1955.) This Boltzmann equation has the standard
form except for the coordinate shift contribution to the
collision integral explained above. Because of the side-
jump effect, the collision term does not vanish when the
occupation probabilities fl are replaced by their ther-
mal equilibrium values when an external electric field is
present: f0(εl)−f0(εl−eE ·δrll′) ≈ −∂f0(εl)

∂εl
eE ·δrl′l 6= 0.

Note that the term containing ωl,l′fl should be written
as ω(s)

l,l′fl − ω
(a)
l,l′ fl. In making this simplification we are

imagining a typical simple model in which the scattering
rate depends only on the angle between k and k′. In
that case,

∑
l′ ω

(a)
l,l′ = 0 and we can ignore a complication

which is primarily notational.
The next step in the Boltzmann theory is to solve for

the non-equilibrium distribution function fl to leading
order in the external electric field. We linearize by writ-
ing fl as the sum of the equilibrium distribution f0(εl)
and non-equilibrium corrections:

fl = f0(εl) + gl + gadistl , (4.16)

where we split the non-equilibrium contribution into two
terms gl and gadist in order to capture the skew scatter-
ing effect. gl and gadist solve independent self-consistent
time-independent equations (Sinitsyn et al., 2006):

eE · v0l
∂f0(εl)
∂εl

= −
∑
l′

ωll′(gl − gl′) (4.17)
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and∑
l′

ωll′

(
gadistl − gadistl′ − ∂f0(εl)

∂εl
eE · δrl′l

)
= 0.

(4.18)
In Eq. (4.14) we have noted that δrl′l = δrll′ . To solve
Eq. (4.17) we further decompose gl = gsl + ga1

l + ga2
l so

that∑
l′

ω
(3a)
ll′ (gsl − gsl′) +

∑
l′

ω
(2)
ll′ (ga1

l − ga1
l′ ) = 0, (4.19)

∑
l′

ω
(4a)
ll′ (gsl − gsl′) +

∑
l′

ω
(2)
ll′ (ga2

l − ga2
l′ ) = 0. (4.20)

Here gsl is the usual diagonal non-equilibrium distribu-
tions function which can be shown to be proportional to
n−1
i . From Eq. (4.11) and ω

(3a)
ll′ ∼ ni, it follows that

g3a
l ∼ n−1

i . Finally, from ω
(4a)
ll′ ∼ n2

i and Eq. (4.20), it
follows that g4a

l ∼ n0
i ; illustrating the dangers of ignoring

the ω(4a)
ll′ contribution to ωl,l′ . One can also show from

Eq. (4.18) that gadistl ∼ n0
i .

4. Anomalous velocities, anomalous Hall currents, and
anomalous Hall mechanisms

We are now at the final stage where we use
the non-equilibrium distribution function derived from
Eqs. (4.17)-(4.20) to compute the anomalous Hall cur-
rent. To do so we need first to account for all contri-
butions to the velocity of semiclassical particles that are
consistent with this generalized semiclassical Boltzmann
analysis. In addition to the band state group velocity
v0l = ∂εl/∂k, we must also take into account the veloc-
ity contribution due to the accumulations of coordinate
shifts after many scattering events, another way in which
the side-jump effect enters the theory, and the veloc-
ity contribution from coherent band mixing by the elec-
tric field (the anomalous velocity effect) (Nozieres and
Lewiner, 1973; Sinitsyn, 2008; Sinitsyn et al., 2006):

vl =
∂εl
∂k

+ bl × eE +
∑
l′

ωl′lδrl′l. (4.21)

Combining Eqs. (4.16) and (4.21) we obtain the total
current

j = e
∑
l

flvl = e
∑
l

(f0(εl) + gsl + ga1
l + ga2

l + gadistl )

×(
∂εl
∂k

+ ~Ωl × eE +
∑
l′

ωl′lδrl′l) (4.22)

This gives five non-zero contributions to the AHE up to
linear order in E:

σtotalxy = σintxy + σadistxy + σsjxy + σsk1
xy + σsk2−sj

xy . (4.23)

The first term is the intrinsic contribution which should
be by now familiar to the reader:

σintxy = −e2
∑
l

f0(εl)bz,l. (4.24)

Next are the effects due to coordinate shifts during scat-
tering events (for E along the y-axis):

σadistxy = e
∑
l

(gadistl /Ey)(v0l)x (4.25)

follows from the distribution function correction due to
side jumps while

σsjxy = e
∑
l

(gl/Ey)
∑
l′

ωl′l(δrl′l)x (4.26)

is the current due to the side-jump velocity, i.e., due to
the accumulation of coordinate shifts after many scatter-
ing events. Since coordinate shifts are responsible both
for σadistxy and for σsjxy, there is, unsurprisingly, an inti-
mate relationship between those two contributions. In
most of the literature, σadistxy is usually considered to be
part of the side-jump contribution, i.e., σadistxy + σsjxy →
σsjxy. We distinguish between the two because they are
physically distinct and appear as separate contributions
in the microscopic formulation of the AHE theory.

Finally, σsk1
xy and σsk2−sj

xy are contributions arising from
the asymmetric part of the collision integral (Sinitsyn,
2008):

σsk1
yx = −e

∑
l

(ga1
l /Ex)(v0l)y ∼ n−1

i , (4.27)

σsk2−sj
yx = −e

∑
l

(ga2
l /Ex)(v0l)y ∼ n0

i . (4.28)

According to the old definition of skew scattering both
could be viewed as skew scattering contributions because
they originate from the asymmetric part of the collision
term (Smit, 1955). However, if instead we define skew-
scattering as the contribution proportional to n−1

i , i.e.
linear in τ , as in Sec. I.B, it is only the first contribu-
tion, Eq. (4.27), which is the skew scattering (Leroux-
Hugon and Ghazali, 1972; Luttinger, 1958). The second
contribution, Eq. (4.28), was generally discarded in prior
semiclassical theories, although it is parametrically of the
same size as the side-jump conductivity. Explicit quanti-
tative estimates of σsk2−sj

yx so far exist only for the mas-
sive 2D Dirac band (Sinitsyn et al., 2007). In parsing
this AHE contribution we will incorporate it within the
family of side-jump effects due to the fact that it pro-
portional to n0

i , i.e. independent of σxx. However, it is
important to note that this ”side-jump” contribution has
no phyiscal link to the side-step experienced by a semi-
classcial quasiparticle upon scattering. An alternative
terminology for this contribution is intrinsic skew scat-
tering to distinguish its physical origin from side-jump
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deflections (Sinitsyn, 2008), but, to avoid further confu-
sion, we simply include it as a contribution to the Hall
conductivity which is of the order of σ0

xx and originates
from scattering.

As we will see below, when connecting the microscopic
formalism to the semiclasscial one, σintxy , can be directly
identified with the single bubble (Kubo formalism) con-
tribution to the conductivity, σadistxy + σsjxy + +σsk2

xy con-
stitute the usually termed ladder-diagram vertex correc-
tions to the conductivity due to scattering and there-
fore it is natural to group them together although their
physical origins are distinct. σsk1

xy is identified directly
with the three-scattering diagram used in the literature.
This comparison has been made specifically for two sim-
ple models, the massive 2D Dirac band (Sinitsyn et al.,
2007) and the 2D Rashba with exchange model (Borunda
et al., 2007).

B. Kubo formalism

1. Kubo technique for the AHE

The Kubo formalism relates the conductivity to the
quilibrium current-current correlation function (Kubo,
1957). It provides a fully quantum mechanical formally
exact expression for the conductivity in linear response
theory (Mahan, 1990). We do not review the formal ma-
chinery for this approach here since can be found in many
textbooks. Instead, emphasize the key issues in studying
the AHE within this formalism and how it relates to the
semiclassical formalism described in the previous section.

For the purpose of studying the AHE it is best to re-
formulate the current-current Kubo formula for the con-
ductivity in the form of the Bastin formula (see appendix
A in (Crépieux and Bruno, 2001)) which can be manipu-
lated into the more familiar form for the conductivity of
the Kubo-Streda formula for the T = 0 Hall conductivity
σxy = σ

I(a)
xy + σ

I(b)
xy + σIIxy where:

σI(a)
xy =

e2

2πV
Tr〈v̂xGR(εF )v̂yGA(εF )〉c, (4.29)

σI(b)xy = − e2

4πV
Tr〈v̂xGR(εF )v̂yGR(εF )+v̂iGA(εF )v̂jGA(εF )〉c,

(4.30)

σIIxy =
e2

4πV

∫ +∞

−∞
dεf(ε)Tr[vxGR(ε)vy

GR(ε)
dε

−vx
GR(ε)
dε

vyG
R(ε) + c.c.]. (4.31)

Here the subscript c indicates a disorder configuration
average. The last contribution, σIIxy, was first derived by
Streda in the context of studying the quantum Hall effect
(Str̆eda, 1982). In these equations GR/A(εF ) = (εF−H±
iδ)−1 are the retarded and advanced Green’s functions
evaluated at the Fermi energy of the total Hamiltonian.

Looking more closely σIIxy we notice that every term
depends on products of retarded Green’s functions only
or products of advanced Green’s functions only. It can
be shown that only the disorder free part of σIIxy is impor-
tant in the weak disorder limit, i.e. , this contribution
is zeroth order in the parameter 1/kF lsc. The only ef-
fect of disorder on this contribution (for metals) is to
broaden the Green’s functions (see below) through the
introduction of a finite lifetime (Sinitsyn et al., 2007).
It can therefore be shown by a similar argument that in
general σIbxy, is of order 1/kF lsc and can be neglected in
the weak scattering limit (Mahan, 1990). Thus, impor-
tant disorder effects beyond simple quasiparticle lifetime
broadening are contained only in σIaxy. For these reasons,
it is standard within the Kubo formalism to neglect σIbxy
and evaluate the σIIxy contribution with a simple lifetime
broadening approximation to the Green’s function.

Within this formalism the effect of disorder on the
disorder-configuration averaged Green’s function is cap-
tured by the use of the T-matrix, defined by the integral
equation T = W +WG0T , where W =

∑
i V0δ(r− ri) is

a delta-scatterers potential and G0 are the Green’s func-
tion of the pure lattice. From this one obtains

Ḡ = G0 +G0TG0 = G0 +G0ΣḠ. (4.32)

Upon disorder averaging we obtain

Σ = 〈W 〉c + 〈WG0W 〉c + 〈WG0WG0W 〉c + ... (4.33)

To linear order in the impurity concentration, ni, this
translates to

Σ(z,k) = niVk,k +
ni
V

∑
k

Vk,k′G0(k′, z)Vk′,k + · · · ,

(4.34)
with Vk,k′ = V (k−k′) being the Fourier transform of the
single impurity potential, which in the case of delta scat-
terers is simply V0 (see Fig. 41 for a graphical reprenta-
tion). Note that Ḡ and G0 are diagonal in momentum
but, due to the presence of spin-orbit coupling, non-
diagonal in spin-index in the Pauli spin-basis. Hence,
the blue lines depicted in Fig. 39 represent Ḡ and are in
general matrices in band levels.

One effect of disorder on the anomalous Hall conduc-
tivity is taken into account by inserting the disorder av-
eraged Green’s function, ḠR/A, directly into the expres-
sions for σIaxy and σIIxy, Eq. (4.29) and Eq. (4.31). This
step captures the intrinsic contribution to the AHE and
the effect of disorder on it, which is generally weak in
metallic systems. This contribution is separately identi-
fied in Fig. 39 a.

The so-called ladder diagram vertex corrections, also
separately identified in Fig. 39, contribute to the AHE
at the same order in 1/kF l as the intrinsic contribution.
It is useful to define a ladder-diagram corrected velocty
vertex ṽα(εF ) ≡ vα + δṽα(εF ), where

δṽα(εF ) =
niV

2
0

V

∑
k

ḠR(εF )(vα + δṽα(εF ))ḠA(εF ),

(4.35)
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FIG. 39 Graphical representation of the Kubo formalism ap-
plication to the AHE. The solid blue lines are the disorder
averaged Green’s function, Ḡ, the red circles the bare velocity
vertex vα = ∂Ĥ0/∂~kα, and the dashed lines with crosses rep-
resent disorder scattering (niV

2
0 for the delta-scatter model).

(b) δvy is the velocity vertex renormalized by vertex correc-
tions.

as depicted in Fig. 39 b. Note again that ṽα(εF ) and vα =
∂Ĥ0/∂~kα are matrices in the spin-orbit coupled band
basis. The skew scattering contributions are obtained by
evaluating, without doing an infinite partial sum as in
the case of the ladder diagrams, third order processes in
the disorder scattering shown in Fig. 39.

As may seem obvious from the above machinery, calcu-
lating the intrinsic contribution is not very difficult, while
calculating the full effects of the disorder in a systematic
way (beyond calculating a few diagrams) is challenging
for any disorder model beyond the simple delta-scattering
model.

Next we illustrate the full use of this formalism for the
simplest nontrivial model, massive 2D Dirac fermions,
with the goals of illustrating the complexities present
in each contribution to the AHE and the equivalence
of quantum and semiclassical approaches. This model
is of course not directly linked to any real material re-
viewed in Sec. II and its main merit is the possibility of
obtaining full simple analytical expressions for each of
the contributions. A more realistic model of 2D fermions
with Rashba spin-orbit coupling will be discussed in Sec.
IV.C. The ferromagnetic Rashba model has been used to
propose a minimal model of AHE for materials in which

band crossing near the Fermi surface dominate the AHE
physics (Onoda et al., 2008).

The massive 2D Dirac fermion model is specified by:

Ĥ0 = v(kxσx + kyσy) + ∆σz + Vdis, (4.36)

where Vdis =
∑
i V0δ(r − Ri), σx and σy are Pauli

matrices and the impurity free spectrum is ε±k =
±
√

∆2 + (vk)2 where k = |k| and the labels ± distin-
guish bands with positive and negative energies. We
ignore in this simple model spin-orbit coupled disorder
contributions which can be directly incorporated through
similar calculations as in Crepieux et al (Crépieux and
Bruno, 2001). Within this model the disordered aver-
aged Green’s function is

ḠR = 1
1/GR0 −ΣR

= εF+iΓ+v(kxσx+kyσy)+(∆−iΓ1)σz
(εF−ε++iΓ+)(εF−ε−+iΓ−) ,

(4.37)
where Γ = πniV

2
0 /(4v

2), Γ1 = Γ cos(θ), γ± = Γ0 ±
Γ1 cos(θ), and cos θ = ∆/

√
(vk)2 + ∆2. Note that within

this disorder model τ ∝ 1/ni. Using the result in
Eq. (4.37) one can calculate the ladder diagram correc-
tion to the bare velocity vertex given by Eq. (4.35):

ṽy = 8vΓ cos θ
(1 + cos2 θ)

λ(1 + 3 cos2 θ)2
σx+

(
v + v

sin2 θ

(1 + 3 cos2 θ)

)
σy,

(4.38)
where θ is evaluated at the Fermi energy. The details of
the calculation of this vertex correction is described in
Appendix A of Ref. Sinitsyn et al., 2007. Incorporating
this result in σIaxy we obtain the intrinsic and side-jump
contributions to the conductivity for εF > ∆

σintxy = e2

2π~V
∑

k Tr [vσxGvσyG] = − e
2 cos θ
4~π , (4.39)

σsjxy = e2

2π~V
∑

k Tr [vσxGδṽyG]

= − e
2 cos θ
4π~

(
3 sin2 θ

(1+3 cos2 θ) + 4 sin2 θ
(1+3 cos2 θ)2

) . (4.40)

The direct calculation of the skew-scattering diagrams of
Fig. 39 is σskxy = − e2

2π~nV0

(vkF )4∆
(4∆2+(vkF )2)2 and the final total

result is given by

σxy = − e2∆

4π~
√

(vkF )2+∆2
[1 + 4(vkF )2

4∆2+(vkF )2

+ 3(vkF )4

(4∆2+(vkF )2)2 ]− e2

2π~nV0

(vkF )4∆
(4∆2+(vkF )2)2 . (4.41)

2. Relation between the Kubo and the semiclassical formalisms

When comparing the semiclassical formalism to the
Kubo formalism one has to keep in mind that in the

semiclassical formalism the natural basis is the one that
diagonalize the spin-orbit coupled Hamiltonian. In the
case of the 2D massive Dirac model this is sometimes
called chiral basis in the literature. On the other hand
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FIG. 40 Graphical representation of the AHE conductivity in the chiral (band eigenstate) basis. The two bands of the two-
dimensional Dirac model are labeled ”±”. The subset of diagrams that correspond to specific terms in the semiclassical
Boltzmann formalism are indicated.

in the application of the Kubo formalism it is simplest to
compute the different Green’s functions and vertex cor-
rections in the Pauli basis and take the trace at the end
of the calculation. In the case of the above model one
can apply the formalism of Sec. IV.A and obtain the
following results for the five distinct contributions: σintxy ,
σadistxy , σsjxy, σsk2−sj

xy and σsk1
xy . Below we quote the results

for the complicated semiclassical calculation of each term
(see Sec. IV of Sinitsyn et al. (Sinitsyn et al., 2007) for
details):

σintrxy = − e2∆
4π~

√
∆2 + (vkF )2

; (4.42)

σsjxy = σadistxy = − e2∆k2
F

2π~
√
k2
F + ∆2(k2

F + 4∆2)
; (4.43)

σsk−sjxy = − e23∆(vkF )4

4π~
√

(vkF )2 + ∆2[4∆2 + (vkF )2]2
; (4.44)

σskxy = − e2

2π~niV0

(vkF )4∆
(4∆2 + (vkF )2)2

. (4.45)

The correspondance with the Kubo formalism results
can be seen after a few algebra steps. The contribu-
tions σintxy and σsk1

xy are equal in both cases (Eq. (4.39)
and Eq. (4.41)). As expected, the intrinsic contribution,
σintrxy , is independent of disorder in the weak scattering
limit and the skew scattering contribution is inversely

proportional to the density of scatterers. However, recall
that in Sec. I.B we have defined the side-jump contri-
bution as the disorder contributions of zeroth order in
ni, i.e., τ0, as opposed to being directly linked to a side-
step in the scattering process in the semiclassical theory.
Hence, it is the sum of the three physically distinct pro-
cesses σadistxy + σsjxy + σsk2−sj

xy which can be shown to be
identical to Eq. (4.40) after some algebraic manipula-
tion. Therefore, the old notion of associating the skew
scattering directly with the asymmetric part of the col-
lision integral and the side-jump with the side-step scat-
tering alone leads to contradictions with their usual as-
sociation with respect to the dependence on τ (or equiv-
alenty 1/ni). We also note, that unlike what happens in
simple models where the Berry’s curvature is a constant
in momentum space, e.g., the standard model for elec-
trons in a 3D semiconductor conduction band (Nozieres
and Lewiner, 1973), the dependence of the intrinsic and
side-jump contributions are quite different with respect
to parameters such as Fermi energy, exchange splitting,
etc.

C. Keldysh formalism

Keldysh has developed a Green’s function formalism
applicable even to the nonequilibrium quantum states,
for which the diagram techniques based on Wick’s the-
orem can be used (Baym and Kadanoff, 1961; Kadanoff
and Baym, 1962; Keldysh, 1965; Mahan, 1990; Rammer
and Smith, 1986). Unlike with the thermal (Matsubara)
Green’s functions, the Keldysh Green’s functions are de-
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fined for any quantum state. The price for this flexibility
is that one needs to introduce the path-ordered prod-
uct for the contour from t = −∞ → t = ∞ and back
again from t = ∞ → −∞. Correspondingly, four kinds
of the Green’s functions GR, GA, G< and G> need to be
considered, although only three are independent (Baym
and Kadanoff, 1961; Kadanoff and Baym, 1962; Keldysh,
1965; Mahan, 1990; Rammer and Smith, 1986). There-
fore, the diagram technique and the Dyson equation for
the Green’s function have a matrix form.

In linear response theory, one can use the usual thermal
Green’s function and Kubo formalism. Since approxima-
tions are normally required in treating disordered sys-
tems, it is important to make them in a way which at
least satisfies gauge invariance. In both formalisms this
is an important theoretical requirement which requires
some care. Roughly speaking, in the Keldysh formal-
ism, GR and GA describe the single particle states, while
G< represents the non-equilibrium particle occupation
distribution and contains vertex corrections. Therefore,
the self-energy and vertex corrections can be treated in a
unified way by solving the matrix Dyson equation. This
facilitates the analysis of some models especially when
multiple bands are involved.

Another and more essential advantage of Keldysh for-
malism over the semiclassical formalism is that one can go
beyond a finite order perturbative treatment of impurity
scattering strength by solving a self-consistent equation,
as will be discussed in the next subsection. In essence,
we are assigning a finite spectral width to the semiclassi-
cal wave packet to account for an important consequence
of quantum scattering effects. In the Keldysh formalism,
the semiclassical limit corresponds to ignoring the history
of scattering particles by keeping the two time labels in
the Greens functions identical.

We restrict ourselves below to the steady and uniform
solution. For more generic cases of electromagnetic fields,
see Ref. Sugimoto et al., 2007. Let x = (t,x) be the
time-space coordinate. Green’s functions depend on two
space-time points x1 and x2, and the matrix Dyson equa-
tion for the translationally invariant system reads (Ram-
mer and Smith, 1986):

(ε− Ĥ(p)− Σ̂(ε,p))⊗ Ĝ(ε,p) = 1,

Ĝ(ε,p)⊗ (ε− Ĥ(p)− Σ̂(ε,p)) = 1, (4.46)

where we have changed the set of variables (x1;x2) to
the center-of-mass and the relative coordinates, and then
proceeded to the Wigner representation (X; p) by means
of the Fourier transformation of the relative coordinate;

(X,x) ≡
(
x1 + x2

2
, x1 − x2

)
→
∫
dt

∫
dx ei(εt−p·x)/~ · · · ,

(4.47)
with p = (ε,p). In this Dyson equation, the product ⊗ iis
reserved for matrix products in band indices, like those
that also appear in the Kubo formalism.

In the presence of the external electromagnetic field

Aµ, we must introduce the mechanical or kinetic energy-
momentum variable

πµ(X; p) = pµ + eAµ(X). (4.48)

replacing p as the argument of the Green’s function, as
shown by Onoda et al (Onoda et al., 2006b). In this rep-
resentation, Ĝ<(X;π)/2πi is the quantum-mechanical
generalization of the semi-classical distribution function.
When an external electric field E is present, the equa-
tion of motion, or equivalently, the Dyson equation, re-
tains the same form as Eq. (4.46) when the product ⊗
is replaced by the so-called Moyal product (Moyal, 1949;
Onoda et al., 2006b) given by

⊗ = exp
[
i~(−e)

2
E · (
←−
∂ ε
−→
∇p −

←−
∇p
−→
∂ ε)

]
. (4.49)

Henceforth,
−→
∂ and

←−
∂ denote the derivatives operating

on the right-hand and left-hand sides, respectively, and
the symbol p = (ε,p) is used to represent the mechanical
energy-momentum π. In this formalism, only gauge in-
variant quantities appear. For example, the electric field
E appears instead of the vector potential A.

Expanding Eq. (4.49) in E and inserting the result in
Eq. (4.46), one obtains the Dyson equation to linear order
in E, corresponding to linear response theory. The linear
order terms ĜαE and Σ̂αE in E are decomposed into two
parts as

Ĝ<E = Ĝ<E,I∂εf(ε) +
(
ĜAE − ĜRE

)
f(ε), (4.50)

Σ̂<E = Σ̂<E,I∂εf(ε) +
(

Σ̂AE − Σ̂RE
)
f(ε). (4.51)

Here, f(ε) represents the Fermi distribution function. In
these decompositions, the first term on the r.h.s. cor-
responds to the nonequilibrium deviation of the distri-
bution function due to the electric field E. The second
term, on the other hand, represents the change in quan-
tum mechanical wavefunctions due to E, and arises due
to the multiband effect (Haug and Jauho, 1996) through
the noncommutative nature of the matrices.

The corresponding separation of conductivity contri-
butions is: σij = σIij + σIIij with

σIij = e2~2

∫
dd+1p

(2π~)d+1i
Tr
[
v̂i(p)Ĝ<Ej ,I(p)

]
∂εf(ε), (4.52)

σIIij = e2~2

∫
dd+1p

(2π~)d+1i
Tr
[
v̂i(p)

(
ĜAEj (p)− Ĝ

R
Ej (p)

)]
f(ε).

(4.53)

This is in the same spirit as the Strĕda version (Str̆eda,
1982) of the Kubo-Bastin formula (Bastin et al., 1971;
Kubo, 1957). The advantage here is that we can use the
diagrammatic technique to connect the self-energy and
the Green’s function. For dilute impurities, one can take
the series of diagrams shown in Fig. 41 corresponding
to the T -matrix approximation. In this approximation,
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the self-consistent integral equation for the self-energy
and Green’s function can be solved and the solution used
to evaluate the first and second terms in Eq. (4.50) and
Eq. (4.51).

FIG. 41 Diagrammatic representation of the self-energy in
the self-consistent T -matrix approximation in the Keldysh
space, which is composed of the infinite series of multiple
Born scattering amplitudes. [From Ref. Onoda et al., 2008.]

In general, Eqs. (4.52) and (4.53), together with the
self-consistent equations for GR,GA, and G< (Onoda
et al., 2008) defines a systematic diagrammatic method
for calculating σij in the Strĕda decomposition (Str̆eda,
1982) of the Kubo-Bastin formula (Bastin et al., 1971;
Kubo, 1957).

D. Two-dimensional ferromagnetic Rashba model – a
minimal model

A very useful model to study fundamental aspects
of the AHE is the ferromagnetic two-dimensional (2D)
Rashba model (Bychkov and Rashba, 1984):

Ĥ(p)tot =
p2

2m
− λp× σ̂ · ez −∆0σ̂

z + V̂ (x). (4.54)

Here m is the electron mass, λ is the Rashba spin-orbit
interaction strength, ∆0 is the mean field exchange split-
ting, σ̂ = (σ̂x, σ̂y, σ̂z) and σ̂0 are the Pauli and identity
matrices, ez is the unit vector in the z direction, and
V̂ (x) = V0

∑
i δ(r−ri) is a δ-scatterer impurity potential

with impurity density ni. Quantum transport properties
of this simple but non-trivial model have been intensively
studied in order to understand fundamental properties of
the AHE in itinerant metallic ferromagnets. The metal-
lic Rashba is a simple, but its AHE has both intrinsic
and extrinsic contributions and both minority and ma-
jority spin Fermi surfaces. It therefore captures most of
the features that are important in real materials with a
minimum of complicating detail. The model has there-
fore received a lot of attention (Borunda et al., 2007;
Dugaev et al., 2005; Inoue et al., 2006; Kato et al., 2007;
Kovalev et al., 2009, 2008; Nunner et al., 2007; Onoda
et al., 2006b, 2008).

The bare Hamiltonian has the band dispersion:

εσ(p) =
p2

2m
− σ∆p, ∆p =

√
λ2p2 + ∆2

0, (4.55)

illustrated in Fig. 42 a, and Berry-phase curvature

bzσ(p) = ~2 [∇p × (i〈p, σ|∇p|p, σ〉)]z =
λ2~2∆0σ

2∆3
p

,

(4.56)

where σ = ± labels the two eigenstates |p, σ〉 at momen-
tum p.

With this we can then obtain the intrisic contribution
to the AHE by integrating over occupied states at zero
temperature (Culcer et al., 2003; Dugaev et al., 2005):

σAH−int
xy =

e2

2h

∑
σ

σ

[
1− ∆0

∆pσ

]
θ(µ− εσ(pσ)), (4.57)

where p± denotes the Fermi momentum for the band σ =
±.

An important feature of σAH−intxy is its enhancement
in the interval of ε0,+ < µ < ε0,−, where it approaches a
maximum value close to e2/2h, no matter how small ∆0

is (provided that it is larger than ~/τ). Near p = 0 the
Berry curvatures of the two bands are large and opposite
in sign. The large Berry curvatures translate into large
intrinsic Hall conductivities only when the chemical po-
tential lies between the local maximum of one band and
the local minimum of the other. This enhancement of
the intrinsic AHE near avoided band crossings is illus-
trated in Fig. 42 b, where it is seen to survive moderate
disorder broadening of several times ∆0. This peaked fea-
ture arises from the topological nature of σAH−intxy . As
a consequence it is important to note that the result is
non-perturbative in SOI; only a perturbative expansion
on ~/εF τ is justified.

Cucler et al. (Culcer et al., 2003) were the first to study
this model, obtaining Eq. (4.57). They were was followed
by Dugaev et al. (Dugaev et al., 2005) where the intrinsic
contribution was calculated within the Kubo formalism.
Although these studies found a non-zero σAH−intxy , they
did not calculate all the contributions arising from disor-
der (some aspects of the disorder treatment in (Dugaev
et al., 2005) where corrected by these authors in (Sinit-
syn et al., 2007)). The intrinsic AHE σAH−intxy comes
form both σIxy and σIIxy. The first part σIxy contains the

intra-band contribution σ
I(a)
xy which is sensitive to the

impurity scattering vertex correction.
The calculation of σI(a)

xy incorporating the effects of dis-
order using the Kubo formalism, i.e., incorporating the
ladder vertex corrections (”side-jump”) and the leading
O(V 3

0 ) skew-scattering contributions (Sec. IV.B.1), yields
a vanishing σAHxy for the case where εF is above the gap
at p = 0 (i.e. both subbands are occupied), irrespec-
tive of the strength of the spin-independent scattering
amplitude (Borunda et al., 2007; Inoue et al., 2006; Nun-
ner et al., 2008). On the other hand, when only the
majority band σ = + is occupied, σI(a)

xy is given by the
skew-scattering contribution (Borunda et al., 2007),

σI(a)
xy ≈ −

e2

h

1
nimpuimp

λ2p4
+D+(µ)∆0∆p+

(3∆2
0 + ∆2

p+)2
, (4.58)

in the leading-order in (1/nimp).
Some properties of the ferromagnetic Rashba model

appear unphyiscal in the limit τ → ∞ (Onoda et al.,
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(a)

FIG. 42 (a) Band dispersion of the ferromagnetic 2D Rashba
model in the clean limit. (b) The intrinsic anomalous Hall
conductivity of the Hamiltonian Eq. (4.54) as functions of
the Fermi level εF measured from the bottom of the majority
band and ~/τ ≡ mnimpV

2
0 /~2, which is the Born scattering

amplitude for λ = ∆0 = 0. This figure is for the parameter
set ∆0 = 0.1, 2mλ = 3.59, and 2mV0/~2 = 0.6, with energy
unit has been taken as ε0,−. [From Ref. Onoda et al., 2006b.]

2008): σxy vanishes discontinuously as the chemical po-
tential µ crosses the edge ε0,− of the minority band
which leads to a diverging anomalous Nernst effect at
µ = ε0,−, irrespective of the scattering strength, if one as-
sumes the Mott relation to be valid for anomalous trans-
port (Smrc̆ka and Str̆eda, 1977). However, this unphys-
ical property does not really hold, in fact, σxy does not
vanish even when both subbands are occupied, as shown
by including all higher-order Born scattering amplitudes
as it is done automatically in the numerical Keldysh ap-
proach (Onoda et al., 2006a). In particular, the skew-
scattering contribution arises from the odd-order Born
scattering (i.e., even order in the impurity potential) be-
yond the conventional level of approximation, O(V 3

0 ),
that gives rise to the normal skew scattering contribu-
tions (Kovalev et al., 2008). This yields the uncon-
ventional behavior σAH−skewxy ∝ 1/nimp independent of
V0 (Kovalev et al., 2008). The possible appearance of
the AHE in the case where both subbands are occupied
was also suggested in the numerical diagonalization cal-
culation of the Kubo formula (Kato et al., 2007). The
influence of spin-dependent impurities has also been an-
alyzed (Nunner et al., 2008).

A numerical calculation of σAHxy based on the Keldysh
formalism using the self-consistent T -matrix approxima-
tion, shown in Fig. 43, suggests three distinct regimes for

FIG. 43 Total anomalous Hall conductivity vs. σxx for
the Hamiltonian Eq. (4.54) obtained in the self-consistent
T -matrix approximation to the Keldysh approach (Kovalev
et al., 2009; Onoda et al., 2006b, 2008). Curves are for a
variety of disorder strengths. The same parameter values
have been taken as in Fig. 42 with the chemical potential
being located at the center of the two subbands. The dashed
curves represent the corresponding semiclassical results. [Af-
ter Ref. Kovalev et al., 2009.]

the AHE as a function of σxx at low temperatures (Onoda
et al., 2006a, 2008). In particular, it shows a crossover
from the predominant skew-scattering region in the clean
limit (σxy ∝ σxx) to an intrinsic-dominated metallic re-
gion (σxy ∼ constant). In this simple model no well
defined plateau is observed. These results also suggests
another crossover to a regime, referred to as the inco-
herent regime by (Onoda et al., 2008), where σxy de-
cays with the disorder following the scaling relation of
σxy ∝ σnxx with n ≈ 1.6. This scaling arises in the cal-
culation due to the influence of finite-lifetime disorder
broadening on σAH−intxy , while the skew-scattering contri-
bution is quickly dimished by disorder as expected. Ko-
valev et al. (Kovalev et al., 2009) revisited the Keldysh
calculations for this model, studying them numerically
and analytically. In particular, their study extended
the calculations to include the dependence of the skew-
scattering contribution on the chemical potential µ both
for µ < ε0,− and for µ > ε0,− (as shown in Fig. 43). These
authors demonstrated that changing the sign of the im-
purity potential changes the sign of the skew-scattering
contribution. The data collapse illustrated in Fig. 43
then fails, especially near the intrinsic-extrinsic crossover.
Data collapse in σxy vs. σxx plots is therefore not a gen-
eral property of 2D Rashba models and should not be
expected in real materials. There is, however, a suffi-
cient tendency in this direction to motivate analyzing
experiments by plotting data in this way.

Minimal model– The above results have the following
implications for the generic nature of the AHE (Onoda
et al., 2006b, 2008). The 2D ferromagnetic Rashba model
can be viewed as a minimal model that takes into ac-



47

count both the “parity anomaly” (Jackiw, 1984) asso-
ciated with an avoided-crossing of dispersing bands, as
well as impurity scattering in a system with two Fermi
surface sheets. Consider then a general 3D ferromag-
net. When the SOI is neglected, majority and minority
spin Fermi surfaces will intersect along lines in 3D. For
a particular projection kx of Bloch momentum along the
magnetization direction, the Fermi surfaces will touch at
points. SOI will generically lift the band degeneracy at
these points. At the k-point where the energy gap is a
minimum the contribution to σAH−intxy will be a maxi-
mum and therefore the region around this point should
account for most of σAHxy , as the first-principles calcula-
tions seem to indicate (Fang et al., 2003; Wang et al.,
2007, 2006; Yao et al., 2004, 2007). We emphasize that
the Berry phase contributions from the two bands are
nearly opposite, so that a large contribution from this
region of k-space accrues only if the Fermi level lies be-
tween the split bands. Expanding the Hamiltonian at
this particular k-point, one can then hope to obtain an
effective Hamiltonian of the form of the ferromagnetic
Rashba model. Note that the gap ∆0 in this effective
model Hamiltonian, Eq. (4.54), comes physically from
the SOI splitting at this particular k-point, while the
”Rashba SOI” λ is proportional to the Fermi velocity
near this crossing point. In 3D, the anomalous Hall con-
ductivity is then given by the 2D contribution integrated
over pz near this minimum gap region, and remains of
order of e2/ha (a the lattice constant) if no accidental
cancellation occurs.

We point out that a key assumption made in the above
reasoning is that the effective Hamiltonian obtained in
this expansion is sufficiently similar to the ferromagnetic
Rashba model. We note that in the Rashba model it
is ∆0 and not the SOI which opens the gap, so this
is already one key difference. The SO interactions in
any effective Hamiltonian of this type should in general
contain at least Rashba-like and Dresselhaus-like contri-
butions. Further studies examining the crossing points
more closely near these minimum gap regions will shed
further light on the relationship between the AHE in real
materials and the AHE in simple models for which de-
tailed perturbative studies are feasible.

The minimal model outlined above suggests the pres-
ence of three regimes: (i) the superclean regime domi-
nated by the skew-scattering contribution over the intrin-
sic one, (ii) the intrinsic metallic regime where σxy be-
comes more or less insensitive to the scattering strength
and σxx, and (iii) the dirty regime with kF ` = 2εF τ/~ .
1 exhibiting a sublinear dependence of ρxy ∝ ρ2−n

xx , or
equivalently σxy ∝ σnxx with n ≈ 1.6. It is impor-
tant to note that this minimal model is based on elas-
tic scattering and cannot explain the scaling observed
in the localized hopping conduction regime as σxx is
tuned by changing T . Nevertheless, if we multiply the
2D anomalous Hall conductivity by a−1 with the lat-
tice constant a ∼ 5 Å for comparison to the experi-
mental results on three-dimensional bulk samples, then

an enhanced σAHxy of the order of the quantized value
e2/h in the intrinsic regime should be interpreted as
∼ e2/ha ∼ 103 Ω−1 cm−1. This value compares well with
the empirically observed cross over seen in the experimen-
tal findings on Fe and Co, as discussed in Sec. II.A.

V. CONCLUSIONS: FUTURE PROBLEMS AND
PERSPECTIVES ON AHE

In this concluding section, we summarize what has
been achieved by the recent studies of the AHE and what
is not yet understood, pointing out possible directions for
future research on this fascinating phenomenon. To keep
this section brief, we exclude the historical summary pre-
sented in Sec. I.A and Sec. III.C which outline the early
debate on the origin of the AHE. We avoid repeating all
thel points highlighted already in Sec. I.A and focus on
the most salient ones. Citations are kept to a minimum
as well and we refer mostly to the sections in which the
material was presented.

a. Recent developments

The renewed interest in the AHE, which has lead to
a richer and more cohesive understanding of the prob-
lem, began in 1998 and was fueled by other connected
developments in solid state physics. These were: i) the
development of geometrical and topological concepts use-
ful in understanding electronic properties such as quan-
tum phase interference and the quantum Hall effect. (Lee
and Ramakrishnan, 1985; Prange and Girvin, 1987), ii)
the demostration of the close relation between the Hall
conductance and the toplogical Chern number revealed
by the TKNN formula (Thouless et al., 1982), iii) the
development of accurate first-principles band structure
calculation which account realistically for SOI, and iv)
the association of the Berry-phase concept (Berry, 1984)
with the noncoplanar spin configuration proposed in the
context of the resonating valence bond (RVB) theory of
cuprate high temperature superconductors (Lee et al.,
2006).
Intrinsic AHE– The concept of an intrinsic AHE, debated
for a long time, was brought back to the forefront of the
AHE problem because of studies which successfully con-
nected the topological properties of the quantum states
of matter and the transport Hall response of a system. In
Sec. I.B.1 we have defined σAH−intxy both experimentally
and theoretically. From the latter, it is rather straight-
forward to write σAH−intxy in terms of the Berry curvature
in the k-space, from which the topological nature of the
intrinsic AHE can be easily recognized immediately. The
topological non-perturbative quality of σAH−intxy is high-
lighted by the finding that for simple models with spon-
taneous magnetization and SOI, bands can have nonzero
Chern numbers even without an external magnetic field
present. This means that expansion with respect to SOI
strength is sometimes dangerous since it lifts the degen-



48

eracy between the up- and down-spin bands, leading to
avoided band crossings which can invalidate such expan-
sion.

Even though the interpretations of the AHE in real
systems are still subtle and complicated, the view that
σAH−intxy can be the dominant contribution to σAHxy in
certain regimes has been strengthened by recent compar-
isons of experiment and theory. The intrinsic AHE can
be calculated from first-principles calculations or, in the
case of semiconductors, using k · p theory. These calcu-
lations have been compared to recent experimental mea-
surements for several materials such as Sr1−xCaxRuO3

(section II.B), Fe (section II.A), CuCr2Se4−xBrx (section
II.D), and dilute magnetic semiconductors (section II.C).
The calculations and experiments show semi-quantitative
agreement. More importantly however, violations of the
empirical relation σH ∝ M have been established both
theoretically and experimentally. This suggests that the
intrinsic contribution has some relevance to the observed
AHE. On the other hand, these studies do not always
provide a compelling explanation for dominance of the
intrinsic mechanism
Fully consistent metallic linear response theories of the
AHE – Important progress has been achieved in AHE
theory. The semiclassical theory, appropriately modi-
fied to account for interband coherence effects, has been
shown to be consistent with fully microscopic theories
based on Kubo and Keldysh formalisms. All three the-
ories have been shown to be equivalent in the εF τ � 1
limit, with each having their advantages and disadvan-
tages (Sec. IV). Much of the debate and confusion in
early AHE literature originated from discrepancies and
farraginous results from earlier inconsistent application
of these linear response theories.

A semiclassical treatment based on the Boltzmann
transport equation, but taking into account the Berry
curvature and inter-band coherence effects, has been for-
mulated (Sec. IV.A). The physical picture for each pro-
cess of AHE is now understood reasonably well in the
case of elastic impurity scattering.

More rigorous treatments taking into account the
multi-band nature of the Green’s functions in terms of
Kubo and Keldysh formalism have been developed fully
(section IV.C). These have been applied to a particu-
lar model, i.e., the ferromagnetic Rashba model, with a
static impurity potential which produces elastic scatter-
ing. The ferromagnetic Rashba model has an avoided
crossing which has been identified as a key player in the
AHE of any material. These calculations have shown a
region of disorder strength over which the anomalous Hall
conductivity stays more or less constant as a function
of σxx, corresponding to the intrinsic-dominated regime.
The emergence of this regime has been linked to the topo-
logical nature of the intrinsic contribution, analogous to
the topologically protexted quantized Hall effect.
Emergence of three empirical AHE regimes— Based on
the large collections of experimental results and indi-
cations from some theoretical calculations, it is now

becoming clear that there are at least three different
regimes for the behavior of AHE as a function of σxx:
(i) (σxx > 106 (Ωcm)−1) A high conductivity regime in
which σAHxy ∼ σxx, skew scattering dominates σAHxy , and
the anomalous Hall angle σH/σxx is constant. In this
regime however the normal Hall conductivity from the
Lorentz force, proportional to σ2

xxH, is large even for
the small magnetic field H used to align ferromagnetic
domains and separating σAHxy and σNHxy is therefore chal-
lenging. (ii) (104 (Ωcm)−1 < σxx < 106 (Ωcm)−1) An in-
trinsic or scattering-independent regime in which σAHxy is
roughly independent of σxx. In this intermediate metallic
region, where the comparison between the experiments
and band structure calculations have been discussed, the
intrinsic mechanism is assumed to be dominant as men-
tioned above. The dominance of the intrinsic mechanism
over side-jump is hinted at in some model calculations,
but there is no firm understanding of the limits of this
simplifying assumption. (iii) (σxx < 104 (Ωcm)−1) A
bad-metal regime in which σAHxy decreases with decreas-
ing σxx at a rate faster than linear. In this strong dis-
order region, a scaling σH ∝ σnxx with 1.6 < n < 1.7
has been reported experimentally for a variety of materi-
als discussed in Sec.II. This scaling is primarily observed
in insulating materials exhibiting variable range hopping
transport and where σxx is tuned by varying T . The ori-
gin of this scaling is not yet understood and is a major
challenge for AHE theory in the future. For metallic ul-
trathin thin films exhibiting this approximate scaling, it
is natural that σH is suppressed by the strong disorder
(excluding weak localization corrections). Simple con-
siderations from the Kubo formula where the energy de-
nominator includes a (~/τ)2 is that σH ∝ τ−2 when this
broadening is larger than the energy splitting between
bands due to the SOI. Since in this large broadening
regime σxx is usually no longer linear in τ , an upper limit
of β = 2 for the scaling relation σH ∝ σβxx is expected.
The numerical Keldysh studies of the ferromagnetic 2D
Rashba model indicates that this power is β ∼ 1.6, close
to what is observed in the limited dirty-metallic range
considered in the experiments. It is a surprising feature
that this scaling seems to hold for both the metallic and
insulating samples.

b. Future challenges and perspectives

In the classical Boltzmann transport theory, the resis-
tivity or conductivity at the lowest temperature is simply
related to the strength of the disorder. However, quan-
tum interference of the scattered waves gives rise to a
quantum correction to the conductivity and eventually
leads to the Anderson localization depending on the di-
mensionality. At finite temperature, inelastic scattering
by electron-electon and/or electron-phonon interactions
give additional contributions to the resistivity, while sup-
pressing localization effects through a reduction of the
phase coherence length. In addition one needs to con-
sider quantum correction due to the electron-electon in-
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teraction in the presence of the disorder. These issues,
revealed in the 80’s, must be considered to scrutinize the
microscopic mechanism of σxx or ρxx before studying the
AHE. This means that it seems unlikely that only σxx(T )
characterizes the AHE at each temperature. We can de-
fine the Boltzmann transport σBxx only when the residual
resistivity is well defined at low temperature before the
weak localization effect sets in. Therefore, we need to
understand first the microscopic origin of the resistivity.
Separating the resistivity into elastic and inelastic con-
tributions via Mathhiessen’s rule is the first step in this
direction.

To advance understanding in this important issue, one
needs to develop the theoretical understanding for the ef-
fect of inelastic scattering on AHE at finite temperature.
This issue has been partly treated in the hopping the-
ory of the AHE described in section II.B where phonon
assisted hopping was assumed. However, the effects of
inelastic scattering on the intrinsic and extrinsic mech-
anisms are not clear at the moment. Especially, spin
fluctuation at finite T remains the most essential and dif-
ficult problem in the theory of magnetism, and usually
the mean field approximation breaks down there. The
approximate treatment in terms of the temperature de-
pendent exchange splitting, e.g., for SrRuO3 (Sec. II.B),
needs to be reexamined by more elaborated method such
as the dynamical mean field theory, taking into account
the quantum/thermal fluctuation of the ferromagnetic
moments. These type of studies of the AHE may shed
some light on the nature of the spin fluctuation in fer-
romagnets. Also the interplay between localization and
the AHE should be pursued further in the intermediate
and strong disorder regimes. These are all vital issues
for quantum transport phenomena in solids in general,
as well as for AHE specifically.

Admitting that more work needs to be done, in Fig.
44 we propose a speculative and schematic crossover di-
agram in the plane of diagonal conductivity σxx of the
Boltzmann transport theory (corresponding to the dis-
order strength) and the temperature T . Note that a
real system should move along the y-axis as tempera-
ture is changed, although the observed σxx changes with
T. This phase diagram reflects the empirical fact that
inelastic scattering kills off the extrinsic skew scattering
contribution more effectively, leaving the intrinsic and
side-jump contributions as dominant at finite tempera-
ture. We want to help stress that the aim of this figure
is to promote further studies of the AHE and to iden-
tify the location of each region/system of interest. Of
course, the generality of this diagram is not guaranteed
and it is possible that the crossover boundaries and even
the topology of the phase diagram might depend on the
strength of the spin-orbit interaction and other details of
the system.

There still remain many other issues to be studied in
the future. First-principles band structure calculations
for AHE are still limited to a few number of materi-
als, and should be extended to many other ferromag-
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FIG. 44 A speculative and schematic phase diagram for the
anomalous Hall effect in the plane of the diagonal conductivity
σxx and the temperature T .

nets. Especially, the heavy fermion systems are an im-
portant class of materials to be studied in detail. Con-
cerning this point, a more economical numerical tech-
nique is now available (Marzari and Vanderbilt, 1997).
This method employs the maximally localized Wannier
functions, which can give the best tight-binding model
parameters in an energy window of several tens of eV’s
near the Fermi level. The algorithm for the calculation of
σxy in the Wannier interpolation scheme has also been de-
veloped (Wang et al., 2006). Application of these newly
developed methods to a large class of materials should
be a high priority in the future.

AHE in the dynamical regime is a related interest-
ing problem. The magneto-optical effects such as the
Kerr/Faraday rotation have been the standard experi-
mental methods to detect the ferromagnetism. These
techniques usually focus, however, on the high energy re-
gion such as the visible light. In this case, an atomic or
local picture is usually sufficient to interpret the data,
and the spectra are not directly connected to the d.c.
AHE. Recent studies have revealed that the small energy
scale comparable to the spin-orbit interaction is relevant
to AHE which is typically ∼ 10 meV for 3d transition
metal and ∼ 100 meV in DMSs (Sinova et al., 2003).
This means that the dynamical response, i.e., σxy(ω),
in the THz and infrared region will provide important
information on the AHE.

A major challenge for experiments is to find exam-
ples of a quantized anomalous Hall effect. There are
two candidates at present: (i) a ferromagnetic insula-
tor with a band gap (Liu et al., 2008), and (ii) a disorder
induced Anderson insulator with a quantized Hall con-
ductance (Onoda and Nagaosa, 2003). Although theo-
retically expected, it is an important issue to establish
experimentally that the quantized Hall effect can be re-
alized even without an external magentic field. Such a
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finding would be the ultimate achievement in identify-
ing an intrinsic AHE. The dissipationless nature of the
anomalous Hall current will manifest itself in this quan-
tized AHE; engineering systems using quantum wells or
field effect transistors is a promising direction to realize
this novel effect.

There are many promising directions for extensions of
ideas developed through studies of the AHE. For exam-
ple, one can consider several kinds of “current” instead
of the charge current. An example is the thermal/heat
current, which can be also induced in a similar fashion
by the anomalous velocity. The thermoelectric effect has
been discussed briefly in Sec. II.C, where combining all
the measured thermoelectric transport coefficients helped
settle the issue of the scaling relation σAHxy ∼ σ2

xx in
metallic DMSs (Pu et al., 2008). Recent studies in Fe al-
loys doped with Si and Co discussed in Sec. II.A followed
a similar strategy (Shiomi et al., 2009). From the temper-
ature dependence of the Lorentz number, they identified
the crossover between the intrinsic and extrinsic mech-
anisms. Further studies of thermal transport will shed
some light on the essence of AHE from a different side.

Spin current is also a quantity of recent great inter-
est. A direct generalization of AHE to the spin current
is the spin Hall effect (Kato et al., 2004; Murakami et al.,
2003; Sinova et al., 2004; Wunderlich et al., 2005), which
can be regarded as the two copies of AHE for up and
down spins with the opposite sign of σxy. In this effect,
a spin current is produced perpendicular to the charge
current. An interesting recent development in spin Hall
effect is that the quantum spin Hall effect and topological
insulators have been theoretically predicted and experi-
mentally confirmed. We did not include this exciting
new and still developing topic in this review article. In-
terested readers are referred to the original papers and
references therein (Bernevig et al., 2006; Kane and Mele,
2005; Koenig et al., 2007).
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