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Optimal Error Correction in Topological Subsystem Codes

Ruben S. Andrist,1 H. Bombin,2 Helmut G. Katzgraber,3,1 and M. A. Martin-Delgado4
1Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland

2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
3Department of Physics and Astronomy, Texas A&M University,College Station, Texas 77843-4242, USA
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A promising approach to overcome decoherence in quantum computing schemes is to perform active quantum
error correction using topology. Topological subsystem codes incorporate both the benefits of topological and
subsystem codes, allowing for error syndrome recovery withonly 2-local measurements in a two-dimensional
array of qubits. We study the error threshold for topological subsystem color codes under very general external
noise conditions. By transforming the problem into a classical disordered spin model, we estimate using Monte
Carlo simulations that topological subsystem codes have anoptimal error tolerance of5.5(2)%. This means
there is ample space for improvement in existing error-correcting algorithms that typically find a threshold of
approximately2%.

PACS numbers: 03.67.Pp, 75.40.Mg,75.10.Nr, 03.67.Lx

Quantum computing promises to fundamentally further the
bounds of computability, particularly in such fields as com-
plexity theory and cryptography, and, in particular, the simula-
tion of chemical and physical systems. Unfortunately, imple-
mentations of quantum computing proposals require precise
manipulations of quantum systems which are highly suscepti-
ble to external noise. The technical feasibility of any quantum
computer design thus heavily relies on efficient quantum error
detection and recovery. This can be achieved, for example,
by redundantly encoding quantum information in a code sub-
space of many physical qubits [1–3]. Such a suitable subspace
is defined in terms of stabilizer operators [4, 5]—products of
individual Pauli operators—and their corresponding eigenval-
ues.

Because stabilizers need to be measured during the error re-
covery procedure, geometric locality of the involved qubits is
essential for practicality. Topological error correctingcodes
[6–11] achieve this by arranging qubits on a topologically
nontrivial manifold with stabilizers acting only on neighbor-
ing qubits. These codes promise a reliable approach to quan-
tum computing, because of their stability to errors [12–18]:
A sizable fraction of physical qubits needs to fail before the
logical information encoded in the system is lost beyond error
correction.

To determine the error stability of topologically protected
quantum computing proposals it is customary to map the
error correction procedure onto the thermodynamic behav-
ior of a disordered classical (statistical-mechanical) spin sys-
tem [12, 14, 19]. There is a fruitful synergy between quan-
tum computation and statistical mechanics: On the one hand,
the stability of quantum computing proposals can be studied
with the well-established machinery from statistical physics
of complex systems, and on the other hand, it also opens the
door to exotic applications of statistical models.

Unfortunately, there is one caveat: The stabilizers for sur-
face codes (such as the Kitaev code [6]) and topological color
codes [7] involve multiple qubits—four in the case of the Ki-

FIG. 1: (Color online) Graphical representation of the qubit arrange-
ment for topological subsystem color codes on a regular triangular
lattice. Each of the triangular unit cells (large gray triangles) con-
tains three physical qubits (red balls). The two-qubit gauge genera-
torsσw

⊗ σw are shown in green (w = x), yellow (w = y) and blue
(w = z). These are the lines connecting the qubits (red balls). They
are arranged such that each physical qubit has two generators of z
type, one ofx type and one ofy type. See main text for details.

taev code, six or eight for color codes. This immensely com-
plicates physical realizations. However, in stabilizer subsys-
tem codes [20, 21] some of the encoded logical qubits are
“gauge qubits” where no information is encoded. This pro-
vides ancilla qubits to absorb decoherence effects and, in par-
ticular, allows breaking up the required measurements for er-
ror recovery into several individual measurement that involve
a smaller number of qubits [20, 21], e.g., two. Hence, physi-
cal realizations are more feasible at the price of requiringad-
ditional qubits. Note that extensions and variants have also
been proposed [22, 23].

A true advantage is given bytopologicalsubsystem codes
[9] which combine the robustness of topologically based im-
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FIG. 2: (Color online) (a) A regular triangular lattice satisfies the
vertex three-colorability requirement (indicated by A, B,C). (b) To
construct a topological subsystem code, we place three qubits (red
balls) inside each of the triangular unit cells and connect them with
σz

⊗ σz gauge generators (dotted blue lines). The links between
these triangles are assignedσx

⊗ σx andσy
⊗ σy gauge generators

(yellow and green solid lines, respectively). (c) For the mapping,
gauge generators represented by colored lines in (b) are associated
with Ising spinssx,y,z and the qubits with interactions. (d) Introduc-
ing new Ising spin variablesszz = szs′z allows for the removal of
localZ2 symmetries.

plementations with the simplicity of subsystem codes where
only measurements of neighboring qubits are required for re-
covery. As in the case of surface and color codes, the ideal
error stability for topological subsystem codes can be com-
puted by mapping the error recovery problem onto a classi-
cal statistical-mechanical Ising spin system where the disorder
corresponds to faulty physical qubits. Here, using large-scale
Monte Carlo simulations we compute the ideal error correc-
tion threshold for topological subsystem color codes affected
by depolarizing noise. Our results show error correction is
feasible up to5.5(2)% faulty physical qubits. Remarkably,
existing error correcting algorithms only reach a threshold of
approximately2% [24, 25], leaving ample room for improve-
ment.

Topological subsystem codes and mapping.—A stabilizer
subsystem code is defined by its gauge groupG. Its ele-
ments are Pauli operators that, by definition, do not affect en-
coded states. Namely, two statesρ andρ′ are equivalent if
ρ =

∑

i giρg
′
i with gi andg′i elements in the algebra gener-

ated byG.
Topological subsystem color codes [9] are constructed by

starting from a two-dimensional lattice with triangular faces
and three-colorable vertices. Here we consider the triangular
lattice shown in Figs. 1 and 2(a). As indicated in Figs. 1 and
2(b), there are three physical qubits per triangle and the gauge
group has 2-local generatorsGi of the formσw ⊗ σw, where
w = x, y, andz.

Any family of topological codes shows a finite threshold for

a given local noise source. In other words, when the intensity
of the noise is below the threshold, we can correct errors with
any desired accuracy at the price of choosing a large enough
code in the family. We are interested in the error threshold of
topological subsystem codes under the effects of depolarizing
noise, where each qubit is affected by a channel of the form

Dp(ρ) = (1− p)ρ+
p

3

∑

w=x,y,z

σwρσw . (1)

Hereρ represents the density matrix describing the quantum
state of the qubit andp ∈ [0, 1] its the probability for an error
to occur. The depolarizing channel plays a fundamental role
in quantum information protocols where the effects of noise
need to be considered, e.g., in quantum cryptography [26, 27],
quantum distillation of entanglement [28], and quantum tele-
portation [29].

It is expected that there exists a threshold valuep = pc such
that in the limit of large codes, forp < pc error correction suc-
ceeds with probability 1 and forp > pc the result is entirely
random. Remarkably, for topological codes in general, one
can relatepc to a phase transition in a suitably-chosen classi-
cal disordered Ising spin model, as we detail next.

To construct the related classical statistical-mechanical sys-
tem, we place an Ising spinsi = ±1 for each gauge generator
Gi. Single qubit Pauli operatorsσw are mapped onto interac-
tion terms according to the generatorsGi with which they do
not commute, giving rise to a Hamiltonian of the general form

Hτ (s) := −J
∑

j

∑

w=x,y,z

τwj
∏

i

s
gw
ij

i . (2)

Herei enumerates all Ising spins andj all physical qubit sites,
respectively. For each spinsi the exponentgwij ∈ {0, 1} is 0
[1] if σw

j [anti]commutes withGi. The signs of the couplings
τwj = ±1 are then quenched random variables satisfying the
constraintτxj τ

y
j τ

z
j = 1. For eachj, they are all positive with

probability1−p and the other three configurations have prob-
ability p/3 each.

In our specific case the Hamiltonian has the geometry de-
picted in Fig. 2(c) and thus takes the form

H = −J

n
∑

j

(τxj s
y
j + τyj s

x
j )s

z
j s̄

z
j + τzj s

x
j s

y
j , (3)

wherej enumerates qubit sites and spins are labeled, for each
j, as shown in Fig. 2. Notice thatz-labeled spins are arranged
in triangles, and that flipping each of these triads of spins to-
gether does not change the energy of the system. Therefore,
there is aZ2 gauge symmetry. We fix theZ2 gauge symmetry
and at the same time simplify the Hamiltonian by introduc-
ing new Ising variablesszzj = szj s̄

z
j . Notice that these spins

are constrained: Ifj, k, l are three-qubit sites in a triangle,
szzj szzk szzl = 1. The simulated Hamiltonian therefore reads
[30]

H = −J

n
∑

j

τxj s
x
j s

zz
j + τyj s

y
j s

zz
j + τzj s

x
j s

y
j . (4)
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Note that the Hamiltonian in Eq. (4) has no local symmetries,
but a globalZ2 × Z2 symmetry. Indeed, we can color spins
according to their nearest colored vertex in the original lattice
[Fig. 2(a)], producing three sublattices A, B, and C. Flipping
the spins of two of these sublattices together leaves the energy
invariant, giving rise to the indicated symmetry.

We are thus left with a random spin system with two param-
eters,T andp. It is expected that for lowT andp the system
will be magnetically ordered. In the ground states each sub-
lattice has aligned spins and thus the sublattice magnetization
is a good order parameter:

m =
1

NP

∑

i∈P

si , (5)

whereNP = L2/3 (L the linear system size) represents the
number of spins in one of the sublattices. The thresholdpc
for topological subsystem codes is recovered as the critical p
along the Nishimori line [31]

4βJ = ln
1− p

p/3
(6)

where the ferromagnetic phase of a sublattice is lost [12].
Numerical details.— We investigate the critical behavior

of the classical Ising spin model [Eq. (4)] via large-scale par-
allel tempering Monte Carlo simulations [32, 33]. Both spin
states and interaction terms are bit encoded to allow for effi-
cient local updates via bit masking. Detecting the transition
temperatureTc(p) for different fixed amounts of disorder al-
lows us to pinpoint the phase boundary in thep–T phase di-
agram (Fig. 4).

We choose periodic boundary conditions keeping in mind
the colorability requirements. Then we can use the magnetiza-
tion defined in Eq. (5) to construct the wave-vector-dependent
magnetic susceptibility

χm(k) =
1

NP

〈(

∑

i∈P

Sie
ik·Ri

)2〉

T

, (7)

where〈· · ·〉
T

denotes a thermal average andRi is the spatial
location of the spinsi. From Eq. (7) we construct the two-
point finite-size correlation function,

ξL =
1

2 sin(kmin/2)

√

[χm(0)]
av

[χm(kmin)]av
− 1 , (8)

where[· · ·]
av

denotes an average over disorder andkmin =
(2π/L, 0) is the smallest non-zero wave vector. Near the tran-
sition ξL is expected to scale as

ξL/L ∼ X̃[L1/ν(T − Tc)] , (9)

whereX̃ is a dimensionless scaling function. Because at the
transition temperatureT = Tc, the argument of Eq. (9) is zero
(up to scaling corrections) and hence independent ofL, we
expect lines of different system sizes to cross at this point. If,
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FIG. 3: (Color online) Crossing of the correlation functionξL/L
with a disorder rate ofp = 0.048. The data exhibit a clear crossing at
a transition temperature ofTc(p) ≈ 1.251(8) [30]. The shaded area
corresponds to the error bar in the estimate ofTc(p). Note that error
bars are calculated using a bootstrap analysis of 500 resamplings.
Corrections to scaling are minimal at this disorder rate, but increase
closer to the error threshold.

TABLE I: Simulation parameters:p is the error rate for the depo-
larizing channel,L is the linear system size,Nsa is the number of
disorder samples,teq = 2b is the number of equilibration sweeps,
Tmin [Tmax] is the lowest [highest] temperature, andNT the number
of temperatures used.

p L Nsa b Tmin Tmax NT

0.000 – 0.020 9, 12 3 200 17 1.40 2.50 24

0.000 – 0.020 18 1 600 18 1.40 2.50 24

0.000 – 0.020 24 400 19 1.40 2.50 28

0.030 – 0.040 9, 12 4 800 18 1.25 2.40 28

0.030 – 0.040 18 2 400 19 1.25 2.40 28

0.030 – 0.040 24 800 20 1.25 2.40 32

0.045 – 0.060 9, 12 9 600 19 0.9 2.20 32

0.045 – 0.060 18 4 800 21 0.9 2.20 36

0.045 – 0.060 24 2 400 24 0.9 2.20 48

however, the lines do not meet, we know that no transition
occurs in the studied temperature range.

When determining the transition temperatureTc(p) for a
given disorder ratep, the correlation functionsξL/L are ob-
tained by averaging over several disorder realizations (gov-
erned byp) for every system sizeL. Because we are only able
to investigate limited system sizesL < ∞, a careful analysis
of finite-size effects is required when estimating the transition
temperature in the thermodynamic limit.

In all simulations, equilibration is tested using a base-2 log-
arithmic binning of the data: Once the data for all observables
agree for three logarithmically sized bins within error bars we
deem the Monte Carlo simulation for that system size to be in
thermal equilibrium. The simulation parameters can be found
in Table I.

Results.— For the pure system (p = 0) there is a sharp
transition visible directly in the sublattice magnetization. The
transition temperatureTc,pure ≈ 1.65(1) has not been com-
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FIG. 4: (Color online) Computed phase diagram for the classical
disordered spin model shown in Eq. (3). Each data pointTc(p) on the
phase boundary (dashed curve separating white and shaded regions)
is calculated by locating the crossing in correlation function ξL/L
for different system sizesL at a fixed disorder ratep. The Nishimori
line (blue solid line) indicates where the requirement for the mapping
[Eq. (6)] holds. The error thresholdpc ≈ 0.055(2) is found where
the Nishimori line intersects the phase boundary between the ordered
phase (shaded) and the disordered phase (not shaded, largerT andp).
Below pc ≈ 0.055(2) error correction is feasible. The (red) shaded
vertical bar corresponds to the statistical error estimatefor pc.

puted before. For larger amounts of disorder, a possible transi-
tion can be located precisely by means of the two-point finite-
size correlation function [Eq. (8)]. Sample data for a disorder
strength ofp = 0.048 (i.e., this would mean that on average
4.8% of the physical qubits have failed) are shown in Fig. 3,
indicating a transition temperature ofTc(p) = 1.251(8). At
p = 0.055(2), the lines only touch marginally such that both
the scenario of a crossing as well as no transition are compat-
ible within error bars. For error ratesp > pc, the lines do not
meet, indicating that there is no transition in the temperature
range studied.

The crossing of the critical phase boundaryTc(p) with the
Nishimori line [Eq. (6)] determines the error threshold to de-
polarization. Our (conservative) estimate ispc ≈ 0.055(2).
Our results are summarized in Fig. 4, which shows the esti-
mated phase diagram.

Summary.— We have calculated numerically the error re-
silience of topological subsystem codes to the depolarizing
channel by mapping the error correction procedure onto a
statistical-mechanical Ising spin model with disorder. The
large critical error rate ofpc = 5.5(2)%, combined with a
streamlined error recovery procedure that requires only two-
qubit interactions, constitutes a promising implementation
concept for quantum computing.
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