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A promising approach to overcome decoherence in quanturpating schemes is to perform active quantum
error correction using topology. Topological subsystemesoincorporate both the benefits of topological and
subsystem codes, allowing for error syndrome recovery wiitly 2-local measurements in a two-dimensional
array of qubits. We study the error threshold for topologszdosystem color codes under very general external
noise conditions. By transforming the problem into a cleasilisordered spin model, we estimate using Monte
Carlo simulations that topological subsystem codes havepémal error tolerance d5.5(2)%. This means
there is ample space for improvement in existing errorezimg algorithms that typically find a threshold of
approximately2%.

PACS numbers: 03.67.Pp, 75.40.Mg,75.10.Nr, 03.67.Lx

Quantum computing promises to fundamentally further th P
bounds of computability, particularly in such fields as com-
plexity theory and cryptography, and, in particular, theda-
tion of chemical and physical systems. Unfortunately, eapl
mentations of quantum computing proposals require preci
manipulations of quantum systems which are highly suscepti
ble to external noise. The technical feasibility of any quam
computer design thus heavily relies on efficient quantumrerr
detection and recovery. This can be achieved, for example
by redundantly encoding quantum information in a code sub
space of many physical qubits [1-3]. Such a suitable sulespa
is defined in terms of stabilizer 0perat|I|4, 5]—produdts o
individual Pauli operators—and their corresponding eigén
ues.

Because stabilizers need to be measured during the error re-

covery procedure, geometric locality of the involved gsilfist ~ FIG. 1: (Color online) Graphical representation of the ¢jabiange-

essential for practicality. Topological error correctiogdes  ment for topological subsystem color codes on a regulangdtiéar

[6-121] achieve this by arranging qubits on a topologicallylattice. Each of the triangular unit cells (large gray tghes) con-

nontrivial manifold with stabilizers acting only on neigitp  {@ins three physical qubits (red balls). The two-qubit gaggnera-

ing qubits. These codes promise a reliable approach to quaf’s? @2 are shown in green( = z), yellow (w = y) and biue
e . . - (w = z). These are the lines connecting the qubits (red balls)y The

tum computing, because of their stability to err [12:18] 4re arranged such that each physical qubit has two gereratter

A sizable fraction of physical qubits needs to fail before th type, one of: type and one of type. See main text for details.

logical information encoded in the system is lost beyondrerr

correction.

To determine the error stability of topologically protatte taev code, six or eight for color codes. This immensely com-
quantum computing proposals it is customary to map thelicates physical realizations. However, in stabilizebsts-
error correction procedure onto the thermodynamic behavtem codeséﬂl] some of the encoded logical qubits are
ior of a disordered classical (statistical-mechanicaif) sgs-  “gauge qubits” where no information is encoded. This pro-
tem [12,14/19]. There is a fruitful synergy between quan-vides ancilla qubits to absorb decoherence effects andirin p
tum computation and statistical mechanics: On the one handicular, allows breaking up the required measurementsrfor e
the stability of quantum computing proposals can be studiedor recovery into several individual measurement thatlieo
with the well-established machinery from statistical gbys a smaller number of qubits [20.]21], e.g., two. Hence, physi-
of complex systems, and on the other hand, it also opens theal realizations are more feasible at the price of requisidg
door to exotic applications of statistical models. ditional qubits. Note that extensions and variants have als

Unfortunately, there is one caveat: The stabilizers for surbeen DFOPOSGmEIB]-
face codes (such as the Kitaev cade [6]) and topologicakcolo A true advantage is given kyppologicalsubsystem codes
codes|I_|7] involve multiple qubits—four in the case of the Ki- [|§] which combine the robustness of topologically based im-
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' a given local noise source. In other words, when the intgnsit
(a) (b) Q; . """""" @ of the noise is below the threshold, we can correct errois wit
W %, £ ' any desired accuracy at the price of choosing a large enough
FA . :.~"' "".! code in the family. We are interested in the error threshbld o
[ - @ [ S topological subsystem codes under the effects of depalgriz
B /Q\ | | noise, where each qubit is affected by a channel of the form

LA Dy(p) = (1— p+— > ovpo” 1)

W=T,Y,z

Q
(c) &~ OO @ " Herep represents the density matrix describing the quantum
S 2! state of the qubit ang € [0, 1] its the probability for an error

©®© O 5 OC to occur. The depolarizing channel plays a fundamental role
G- OO Q) @ @ > in quantum information protocols where the effects of noise
need to be considered, e.g., in quantum cryptography [6, 27
guantum distillation of entanglemeE[ZS], and quantura-tel
portation [29].

FIG. 2: (Color online) (a) A regular triangular lattice sdi@s the Itis expected that there exists a threshold value p. such

vertex three-colorability requirement (indicated by A, ®, (b) To  thatinthe limit of large codes, for < p, error correction suc-
construct a topological subsystem code, we place threasy(ied ~ c€eds with probability 1 and fgr > p. the result is entirely
balls) inside each of the triangular unit cells and conneett with ~ random. Remarkably, for topological codes in general, one
o® ® o” gauge generators (dOtted blue lines). The links betweercan relatep, to a phase transition in a suitably-chosen classi-
these triangles are assignet ® o ando? ® o¥ gauge generators gl disordered Ising spin model, as we detail next.
(vellow and green solid lines, respectively). (c) For theppiag, To construct the related classical statistical-mech&sica
gauge generators represented by colored lines in (b) aceiatsd . .

tem, we place an Ising spiy = +1 for each gauge generator

with Ising spinss™¥>* and the qubits with interactions. (d) Introduc- . . ] .
ing new Ising spin variables*> — s°s' allows for the removal of ~G'i- Single qubit Pauli operators” are mapped onto interac-
local Zy symmetries. tion terms according to the generat6fswith which they do

not commute, giving rise to a Hamiltonian of the general form

plementations with the simplicity of subsystem codes where = —JZ Z H Sg” 2
only measurements of neighboring qubits are required for re Jow=zy,z

covery. As in the case of surface and color codes, the ideglere; enumerates all Ising spins andll physical qubit sites,
error stability for topological subsystem codes can be COMyagpectively. For each spin the exponeng?’ € {0,1} is 0
puted by mapping the error recovery problem onto a cla55|[1] if o [antilcommutes withG;. The signs of the couplings
cal statistical-mechanical Ising spin system where therdir T = il are then quenched random variables satisfying the
corresponds to faulty physical qubits. Here, using larcpdes constraintr V77 = 1. For eachj, they are all positive with
Monte Carlo simulations we compute the ideal error Correcprobablhtyl “p and the other three configurations have prob-
tion threshold for topological subsystem color codes &fec 4pjjity p/3 each.

by depolarizing noise. Our results show error correction is |, our specific case the Hamiltonian has the geometry de-

feasible up t05.5(2)% faulty physical qubits. Remarkably, picted in Fig[2(c) and thus takes the form
existing error correcting algorithms only reach a thregtuadl

approximately2% [@,@], leaving ample room for improve- _JZ TISy n T )s38% 4 77 st
ment.
Topological subsystem codes and mapping.A-stabilizer
subsystem code is defined by its gauge grgup Its ele-  wherej enumerates qubit sites and spins are labeled, for each
ments are Pauli operators that, by definition, do not affeet e j, as shown in Fid.]2. Notice thatlabeled spins are arranged
coded states. Namely, two statesind p’ are equivalent if in triangles, and that flipping each of these triads of spiRs t
p = >, 9ipg. with g; andg; elements in the algebra gener- gether does not change the energy of the system. Therefore,
ated byg. there is &, gauge symmetry. We fix th&, gauge symmetry
Topological subsystem color codés [9] are constructed bynd at the same time simplify the Hamiltonian by introduc-
starting from a two-dimensional lattice with triangulacés  ing new Ising variables?* = s35%. Notice that these spins
and three-colorable vertices. Here we consider the triangu are constrained: Ij, k, l are three-qubit sites in a triangle,
lattice shown in Figd.]1 arfd 2(a). As indicated in Figs. 1 ands?*sj*sj* = 1. The simulated Hamiltonian therefore reads
[2(b), there are three physical qubits per triangle and thgga [@
group has 2-local generatat of the forme® @ o, where
w = z,y, andz. = —JZ [sisit T s st + 1] s]s] (4)
Any family of topological codes shows a finite threshold for '

is;.



Note that the Hamiltonian in Ed.J(4) has no local symmetries, 8 _SIL/L
but a globalZ, x Z, symmetry. Indeed, we can color spins
according to their nearest colored vertex in the origintide 7
[Fig.[24(a)], producing three sublattices A, B, and C. Flippi

the spins of two of these sublattices together leaves thrggne
invariant, giving rise to the indicated symmetry.

We are thus left with a random spin system with two param- o r
eters, T andp. It is expected that for loW"” andp the system
will be magnetically ordered. In the ground states each sub- p = 0.048
lattice has aligned spins and thus the sublattice magtietiza 4 [ 7.(p) ~ 1.251(3)
is a good order parameter:

|
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. . FIG. 3: (Color online) Crossing of the correlation functigp/L
_ 712
whereNp = L*/3 (L the linear system size) represents thewith adisorder rate gb = 0.048. The data exhibit a clear crossing at

number of spins in one of the sublattices. The threspold 5 transition temperature @t.(p) ~ 1.251(8) [30]. The shaded area
for topological subsystem codes is recovered as the drjiica corresponds to the error bar in the estimat&dfp). Note that error

along the Nishimori IineIEl] bars are calculated using a bootstrap analysis of 500 réisaysp
Corrections to scaling are minimal at this disorder rate jimcrease
1—
48] = In /3p (6) closer to the error threshold.
p

where the ferromagnetic phase of a sublattice is lost [12]. TABLE I: Simulation parametersp is the error rate for the depo-
Numerical details.— We investigate the critical behavior larizing channel,L is the linear system sizéY.. is the number of

of the classical Ising spin model [Ed] (4)] via large-scade-p disorder samples,., = 2° is the number of equilibration sweeps,

allel tempering Monte Carlo simulatio 33]. Both spin Lmin [Tmax] is the lowest [highest] temperature, aid: the number

states and interaction terms are bit encoded to allow for ef'fiof temperatures used.

cient local updates via bit masking. Detecting the traositi :
. . . p L N, sa b Tmm Trnax N T
temperaturd.(p) for different fixed amounts of disorder al-  0.000-0.020 9,12 3200 17  1.40 2.50 24
lows us to pinpoint the phase boundary in theT" phase di- 0.000 - 0.020 18 1600 18  1.40 2.50 24
agram (Figlh). 0.000 —0.020 24 400 19 140 250 28
We ch iodic bound diti keeping in ming ©030-0:040 9,12 4800 18 125 240 28
e choose periodic boundary conditions keeping in mind 439 _ 040 18 2400 19 125 240 28
the colorability requirements. Then we can use the magmetiz  0.030-0.040 24 800 20  1.25 2.40 32
tion defined in Eq[{5) to construct the wave-vector-depande 0.045-0.060 9,12 9600 19 09 220 32
; P 0.045 —0.060 18 4800 21 09 220 36
magnetic susceptibility 0.045 —0.060 24 2400 24 0.9 220 48

2
), o
icP " however, the lines do not meet, we know that no transition
occurs in the studied temperature range.
When determining the transition temperatdigp) for a
given disorder rate, the correlation functiong;, /L are ob-
tained by averaging over several disorder realizations-(go

xm(k) = Nip <<Z Sieik'Ri'

where(- - ). denotes a thermal average aRgl is the spatial
location of the spins;. From Eq. [¥) we construct the two-
point finite-size correlation function,

erned byp) for every system siz&. Because we are only able
& = — 1 \/ () 1, (8) toinvestigate limited system sizés< oo, a careful analysis
28in(kmin/2) \| [Xm (Kmin)],, of finite-size effects is required when estimating the titéors

. temperature in the thermodynamic limit.
where|[- -] denotes an average over disorder &nd, =

9 /L.0) isth llest tor. Near the t In all simulations, equilibration is tested using a baseg? |
(. 7.T/ ) ) IS the smallest non-zero wave vector. Neartne ranz, i, mic binning of the data: Once the data for all obserwsbl
sition £y, is expected to scale as

agree for three logarithmically sized bins within errordae
€r/L ~ X[Ll/u(T ~ 1), (9) deem the Mpptg Carlo sim_ulatior_1 for that system size to be in
thermal equilibrium. The simulation parameters can be doun
whereX is a dimensionless scaling function. Because at thén Tablel.
transition temperaturg = T, the argument of Eq.{9) is zero  Results.— For the pure systenp(= 0) there is a sharp
(up to scaling corrections) and hence independent,ofve  transition visible directly in the sublattice magnetipati The
expect lines of different system sizes to cross at this péfint transition temperaturé. ., ~ 1.65(1) has not been com-
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