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The Vortex Phase Qubit: Generating Arbitrary, Counter-Rotating, Coherent

Superpositions in Bose-Einstein Condensates via Optical Angular Momentum Beams
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We propose a scheme for generation of arbitrary coherent superposition of vortex states in Bose-
Einstein condensates (BEC) using the orbital angular momentum (OAM) states of light. We devise a
scheme to generate coherent superpositions of two counter-rotating OAM states of light using known
experimental techniques. We show that a specially designed Raman scheme allows transfer of the
optical vortex superposition state onto an initially non-rotating BEC. This creates an arbitrary and
coherent superposition of a vortex and anti-vortex pair in the BEC. The ideas presented here could
be extended to generate entangled vortex states, design memories for the OAM states of light, and
perform other quantum information tasks. Applications to inertial sensing are also discussed.

PACS numbers:

Generation and manipulation of macroscopic superpo-
sitions as well as entangled states is of paramount interest
to the field of quantum information [1]. In this regard,
Bose-Einstein condensates (BEC) [2, 3, 4] come across
as ideal candidates. BECs correspond to highly-coherent
macroscopic ground-states of the confining potentials.
Moreover, vortex states of BECs, which are topological
states with special phase structure, have been realized ex-
perimentally [5]. Stirring a BEC cloud with laser beams
leads to the nucleation of vortex lattices in the BEC.
These vortex states are fairly stable and could be can-
didates for qubits in quantum information processors, if
appropriate means to manipulate them are developed.

In an entirely different area of optical physics, tremen-
dous progress has been made in creation [6, 7, 8, 9],
manipulation [10], detection [11, 12, 13], and applica-
tion [14] of the orbital angular momentum (OAM) states
of light. The OAM states have a corkscrew type helical
phase structure. To illustrate, an OAM state with an-
gular momentum h̄ℓ has |ℓ| azimuthal phase singularities
across a cut taken in the beam path. The sign of ℓ corre-
sponds to the sense of rotation of the phase fronts around
the beam axis. Each photon in the OAM beam carries an
orbital angular momentum of h̄ℓ. The quantum nature
of these OAM states has been demonstrated recently by
showing that a photon pair created in parametric down-
conversion process is entangled in the orbital angular mo-
mentum space along with the usual polarization entan-
glement [16].

Excitation of vortices in BECs, using the optical vor-
tex beams, has been proposed recently [17, 18]. In this
letter we introduce a scheme for creation of macroscopic
superpositions of BEC vortex states through transfer of
angular momentum of light from specially prepared OAM

state superpositions.
Generation of the superposition of gaussian beams

with OAM states of light has been demonstrated [19].
Our interest, however, lies in creating an arbitrary su-
perposition of two counter-rotating optical vortices.

The OAM states of light have unique amplitude and
phase structures. To illustrate, monochromatic OAM
beams have an azimuthal phase dependence of the type
exp(i ℓφ). Laguerre-Gaussian (LG) laser modes are an
example of such OAM states [20]. The normalized LG
mode at the beam waist (z = 0) and beam size w0 at the
waist is given in cylindrical coordinates (ρ, φ, z) by

LGl
p(ρ, φ) =

√

2p!

π(|ℓ| + p)!

1

w0

(√
2ρ

w0

)|ℓ|

L|ℓ|
p

(

2ρ2

w2
0

)

exp (−ρ2/w2
0) exp (i ℓφ) (1)

where Ll
p(ρ) are the associated Laguerre polynomials,

L|ℓ|
p (ρ) =

p
∑

m=0

(−1)m (|ℓ| + p)!

(p−m)!(|ℓ| +m)!m!
ρm ; (2)

w0 is the beam width, p is the number of non-axial ra-
dial nodes of the mode, and the index ℓ, referred to as the
winding number, which describes the helical structure of
the wave front around a phase dislocation. For further
discussion we consider only pure LG modes with charge ℓ
and p = 0, we denote such a state of the light field by |ℓ〉
such that 〈r|ℓ〉 = LGℓ

0(ρ, φ). Thus it can be easily seen
that the states |+ℓ〉 and |−ℓ〉, with ℓ being a whole num-
ber, differ only in the sense of the winding of the phase
either clockwise or counter-clockwise. Our aim is to cre-
ate a general superposition of the OAM states of light
of the kind: (a+ |ℓ〉 + a− |−ℓ〉), with |a+|2 + |a−|2 = 1.
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It is well known that creation of superposition of OAM
states of the kind

∑

ℓ cℓ |ℓ〉 is a fairly straightforward pro-
cedure by using computer generated holographs [8] or
phase plates [9]. Moreover, a sorter of these OAM states
has also been demonstrated [12] that can distinguish and
separate different OAM components. Thus, by using a
mixed OAM-state generator and a OAM-sorter in con-
junction one can easily obtain a pure OAM state |ℓ〉.

We note that dove prisms can be used to change the
handedness of light beams passing through them [21].
Consequently, the sense of the phase winding of an LG
beam would be reversed as it passes through a dove
prism. Using this, we devise a Mach-Zender type con-
figuration as shown in Fig. 1 to generate a general su-
perposition (t̃ |ℓ〉 + r̃ |−ℓ〉) at one of the output ports of
the interferometer. The first beam splitter is taken to
be a special beam splitter with the ratio of ĩ t : r̃ for the
transmitted and the reflected amplitudes at its output
ports. The second beam splitter is a usual 50:50 beam
splitter. The operation of the Mach-Zender configuration

FIG. 1: Scheme for creation of superposition of the OAM
states. The first beam splitter (BS) at the input is a |r̃|2/|t̃|2

beam splitter as r̃ and i t̃ are the reflection and transmis-
sion amplitudes. The second beam-splitter is taken to be
50:50, with the mirrors (M) perfectly reflecting. The dove
prism (DP) transforms a right handed coordinate-system into
a left handed one; thus it performs the operation |ℓ〉 → |−ℓ〉.
Choosing φ = π, and discarding the output at the output port
2, one obtains (t̃ |+ℓ〉 + r̃ |−ℓ〉) at output port 1.

of Fig. 1 can be described through the matrix representa-
tion of beam splitter operation [22], such that the initial
state (|ℓ〉 , 0)T transforms into

1√
2

(

t̃ |ℓ〉 + r̃ |−ℓ〉
i (r̃ |−ℓ〉 − t̃ |ℓ〉)

)

(3)

at the exit ports 1 and 2 of the Mach Zender Interfer-
ometer, respectively with the choice of φ = π. Thus, by
ignoring port 2 and renormalizing the state from port 1
we obtain the required superposition state t̃ |ℓ〉 + r̃ |−ℓ〉,
as |r̃|2 + |t̃|2 = 1. In the following we present our scheme
for transfering this optical vortex state superposition to
BEC vortex superpositions.

Highly detuned optical fields in a Raman configura-
tion have been used to coherently manipulate and cre-
ate various superpositions of different atomic levels [23].
Similar optical manipulation techniques exist to couple

BEC clouds in different internal states. Moreover, the
OAM states of light have also been shown to be useful
for excitation of vortices in BEC through time-dependent
linearily varying two-photon detuning [17] and through
the STIRAP [24] type scheme [18]. In the following we
discuss a Raman type scheme to generate superposition
of vortex states in BEC.

The level scheme for our model is depicted in Fig. 2.
Initially nonrotating state |0〉 is coupled optically via
two Raman type configurations of the external fields,
(Ω+,Ωc) and (Ω−,Ωc), through internal states |i〉 and
|i′〉. The polarizations of the optical fields are taken as
shown in the figure; thus the internal quantum numbers
of the final states |+〉 and |−〉 are the same. The Rabi
frequencies Ω+ and Ω− are due to the coupling of the
BEC cloud with the two counter-rotating components of
the special optical vortex state generated through the
configuration discussed in Fig. 1

FIG. 2: The level scheme for generation of vortex state su-
perposition. A non-rotating state |0〉 is coupled to the vortex
states |+〉 and |−〉 through the optical vortex field components
providing coupling strengths Ω+, Ω− and a strong drive field
with Rabi frequency Ωc. The optical vortex beam is σ+ polar-
ized, whereas the drive field is σ− polarized such the hyperfine
quantum number mF is the same for the components |0〉, |±〉.
The vorticity of the |±〉 states is ±ℓ, respectively

Noting that the optical fields are highly detuned, the
intermediate states (|i〉 and |i′〉) are sparingly popu-
lated, Thus, they can be adiabatically eliminated from
the equations. Within this adiabatic approximation we
can write a modified set of Ginzburg-Pitaevskii-Gross
(GPG) [25] equations for the multi-component BEC
trapped by the cigar-shaped trapping potential V =
(m/2) (ω2

⊥r
2 + ωzz

2), where ω⊥ and ωz are the trans-
verse and longitudinal trapping frequencies respectively.
Also m is the mass of the individual atoms in the BEC
cloud. We note that r =

√

x2 + y2 is the transverse ra-
dial coordinate and φ would be the azimuthal angle in
the x-y plane that would be required later to describe
the phase structure of the rotating BECs. The configu-
ration space representations of the states |0〉 , |+〉 and |−〉
shown in Fig. 2 are taken to be Ψ0,Ψ+ and Ψ− respec-
tively. Thus, including the Raman-type optical couplings
arising from the adiabatic elimination of the intermedi-
ate state, we arrive at the modified GPG equations for
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the three relevant components of the BEC cloud

i h̄Ψ̇0 = H Ψ0 +
h̄

∆

(

∑

i=±

|Ωi|2Ψ0 +
∑

i=±

Ω∗
i Ωce

−i∆tΨi

)

i h̄Ψ̇± = H Ψ± +
h̄

∆

(

|Ωc|2Ψ± + Ω±Ω∗
ce

i∆tΨ0

)

(4)

where H = T +V −µ+ η(|Ψ0|2 + |Ψ+|2 + |Ψ−|2) is the
self-energy operator which includes the kinetic (T ), po-
tential (V ), and the interaction energy operators for the
BEC states. Here η = 4πh̄ascN/m signifies the strength
of the inter-particle interactions of the N -particle BEC
cloud, through the scattering cross-section asc. Using
the LG beam mode function Eq. (1), the Rabi frequen-
cies corresponding to the coupling between the optical
vortex beam superposition a+ |ℓ〉+a− |−ℓ〉 and the BEC
cloud can be written as

Ω±(r) = a±Ω0 e−r2/w2

(
√

2r/w)|ℓ|e±i ℓφei kz (5)

with Ω0 is the usual atom-field interaction Rabi fre-
quency. The amplitudes a± are respectively t̃ and r̃
corresponding to the first beam splitter transmission
and reflection amplitudes of the configuration shown in
Fig. 1. With the size of the condensate chosen to be
much smaller than the Laguerre Gaussian beam waist,
the exponential dependence on the radial coordinate in
Eq. (5) can be ignored. Now we make an ansatz that the
topological structure of the states |0〉, |±〉 are given by

Ψ0(r, t) = α(t) exp[i (µ/h̄− κ)t]ψg(r) ,

Ψ±(r, t) = β±(t) exp[i (δ + µ/h̄− κ)t]ψv±(r) , (6a)

where the nonrotating component ψg(r) and the rotating
vortex components ψv±(r) are given by

ψg(r) = exp{−(1/2)[(r/L⊥)2 + (z/Lz)
2]}/π3/4L⊥L

1/2
z

ψv±(r) = (x± i y)|ℓ|/
√

|ℓ|!L|ℓ|
⊥ ψg(r) . (6b)

Here L⊥ and Lz are the size parameters of the condensate
in the x-y plane and the z directions respectively and δ
is the two-photon detuning as shown in Fig. 2. Thus, the
time dependence of the populations of different compo-
nents (|α(t)|2, |β±(t)|2) can be studied by projecting the
rate equations (4) on to the topological states (6). So far
the equations are very general and no restriction exists
on the OAM quantum number ℓ. Hereafter, for conve-
nience, we resort to a particular value of ℓ = 2. However,
one may note that the general idea would remain valid
for any given ℓ. Thus, taking the projections onto the
specified rotating or non-rotating states we arrive at

i α̇(t) = 3κ|α(t)|2α(t) + ω⊥

(

a∗+β+(t) + a∗−β−(t)
)

i β̇±(t) = (δ + 2ω⊥ +
κ

2

∑

i=±

|βi(t)|2)β±(t) + ω⊥ a± α(t)

(7)

Here, the interparticle interaction strength appeares
through the parameter κ = πh̄ascN/[m(2π)3/2L2

⊥Lz].
This set of equations can be solved numerically, using
the experimental parameters for a 87Rb BEC [26] (i.e.,
ω⊥ = 132 Hz, asc = 5 nm, L⊥ = 2.35 µm, Lz = 1.4 µm),
so that κ = 422 Hz. The results of our numerical studies
are summarized in Figures 3 and 4. We define a transfer
function f(t) = |α(t)|2 − |β+(t)|2 − |β−(t)|2, which signi-
fies the amount of population transferred from state |0〉
to states |±〉. Initially f(t = 0) = 1 as all the popula-
tion resides in the non-rotating ground state. If complete
transfer is achieved to an appropriate superposition of
the |±〉 states then f(t) → −1. This transfer function is
plotted for various values of the two-photon detuning δ
in Fig. 3. The result to be noted is that only a continuous
time variation of the detuning leads to complete popula-
tion transfer at the steady state. This can be understood
as the interaction terms in the dynamical equations effec-
tively lead to a time-dependent stark shift of the different
states, and only a time varying detuning maintains effec-
tive two-photon resonance to give complete population
transfer. It can be shown that the final state obtained
at steady state is a∗+ |+〉+ a∗− |−〉 where we started with
the optical vortex state a+ |ℓ〉 + a− |−ℓ〉, i.e., the phase
relation between the BEC vortex components is closely
related to the optical vortex components. In figure 4 we
show generation of various superposition of the vortex
states |±〉 for the time varying detuning.

FIG. 3: Transfer function f(t) for various detunings. (a)
δ = 0, (b) δ = 900 , (c) δ = 380, (d) linearly varying detun-
ing δ(t) = 3000 − 4002t. All detunings are given in Hz. The
complete population transfer to the vortex state, correspond-
ing to f(t) = −1 for sufficiently large t, is possible only with
time-dependent detuning.

These vortex states could be detected, for example, by
following the proposal of Bolda and Walls [27], which in-
volves observing a distinctive interference pattern of the
vortex state with a non-rotating BEC cloud. However,
such a measurement can not distinguish the sense of ro-
tation the BEC cloud. We propose scattering of light
incident on the cloud perpendicular to the rotation axis
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FIG. 4: Various superpositions of the vortex states. The steady state population ratios are give in the notation |β+|
2 : |β−|2

The vertical axis on all the plots correspond to the populations of various states and the horizontal axis is the time measured
in seconds.

to observe a Doppler shift of the scattered light. Such
a measurement scheme would detect the sense of rota-
tion of the vortex state and would collapse the state to
either of the two counter-rotating components. We con-
jecture that such a coherent superposition of two counter-
rotating vortex states would be ideally suited for gy-
ropscopy and other forms of inertial sensing. An entan-
gled state of these vortices would also be interesting ob-
jects to study. Further discussions of these and related
issues will be presented elsewhere.

To conclude, we have devised a scheme to generate su-
perposition of two counter-rotating optical vortices. We
have designed a Raman type scheme to transfer the op-
tical vortex superposition onto a superposition of vor-
tices in BEC. These macroscopic superpositions of two
counter-rotating vortices are very interesting objects. We
suggest a detection scheme based on rotational Doppler
shift of a light field to sense the sense of rotation.
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