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Chapter 1

Introduction

Ionic liquids hold great potential for a number of applications across several industries and

applications, from electrochemical energy storage and electrocatalysis to biofuel processing and

CO2 storage. Common to each of these and any future applicaitons is that a molecular-scale un-

derstanding of the behavior of ionic liquids is necessary to make intelligent design decisions at the

application scale. This includes, but is not limited to, the structure, transport, and thermodynamics

of ionic liquids in the bulk phase, at interfaces with solid materials, and in confinement.

The work comprising this thesis is based around using molecular simulations to understand the

behavior of ionic liquids at the molecular scale. The primary computational tool is classical atom-

istic molecular dynamics simulation, although some other techniques are also used. Experimental

results are integrated throughout; in some cases, simulations are used to understand experimental

results, and in others, simulations predict trends that are later explored in experiment. In Chap-

ter 2, energy storage devices and their components, including ionic liquids electrolytes and several

electrode materials, are discussed for context. Chapter 3 reports the development of an atomistic

model for porous carbon, including comparisons to several structural properties measured in ex-

periment. The dissolution of ionic liquids in organic solvents is thoroughly examined in Chapter 4

via computational screening techniques supported by neutron scattering experiments. Chapter 5

presents to studies aimed at understanding the effects of added water content of ionic liquid-based

supercapacitors. Next, Chapter 6 examines the accuracy of the molecular models commonly used

in molecular simulation studies. Some early work on MXenes is described in Chapter 7. Finally,

Chapter 8 summarizes the presented results and adds further suggestions for future studies.
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Chapter 2

Background

2.1 Energy Storage Devices

Among the grandest challenges of the energy sector is how to efficiently and sustainably store

harvested energy in a manner that it can be used later. Nature readily provides large amounts of

energy — e.g. in the form of solar irradiation or the kinetic energy of wind — typically much more

energy than society demands. A fundamental issue with these energy harvesting technologies,

however, is the transience of their sources: the sun does not shine all day nor does the wind blow

constantly. Municipal energy grids also have a long-standing interest in storing energy to balance

energy demands over the course of a day. Demand is greater during the day than at night, but coal-

fired power plants are unable to be turned on or off quickly enough. Global climate change induced

by the burning of fossil fuels has pushed many applications, large and small, toward electrification.

In comparison to fossil fuels, which can easily be stored in tanks of pressurized gasses or liquids,

there is no simple manner in which to store electrical energy.

Many small devices (cell phones, wearable technology, IoT, drones,1 cars, etc.) are also lim-

ited in overall utility by the performance of their energy storage components.2 Batteries are the

most-widely used energy storage devices, now almost ubiquitous in consumer electronics, but are

not feasible for storing electrical energy at the grid scale.3,4 There are also some fundamental as-

pects of battery technology that limit their use today and raise concerns5 about their use in future

decades as more powerful computing hardware is developed, decentralized technologies mature,

and infrastructure in the developing world becomes more electrified.

By contrast, supercapacitors store energy in a fundamentally different manner.6 They are some-

times referred to as electrochemical capacitors or electrochemical double layer capacitors. The

primary charge storage mechanism is the physical adsorption of ions at electrically charged in-

terfaces. There is conventionally no chemical reactions as a part of this process. While Faradaic
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reactions are not necessarily slow processes, they establish a rate-limiting step in the charging and

discharging of electrochemical devices. A lack of such reactions leaves only the kinetics of the

adsorption process, which are much faster, as a limiting step in charge storage. However, the en-

ergetics of physical adsorption are much weaker than that of Faradaic reactions. These differences

are manifested as the scale of device performance in drastically higher power density compared to

batteries but similarly lower energy density. For example, an electric car fueled primarily by com-

mercially available supercapacitors instead of batteries only could have a more powerful engine

than what is on the market today, but it would have orders of magnitude less range. Such a car

may be interesting to test or race but, like other potential applications of supercapacitors, it would

not be functional in its main purpose (a safe and sustainable means of long-range transportation).

Ragone plots, such as Fig. 2.1 are used to compare these and other devices.

3



101 102 103 104 105 106

Power density, Wkg

10 2

10 1

100

101

102

103

En
er

gy
 d

en
sit

y, 
W

h
kg

Conventional
Capacitors

Fuel
Cells

Batteries

Electrochemical
Capacitors

3.6 ms

0.36 s

36 s

1 h

Figure 2.1: Ragone plot comparing the energy and power densities of classes of electrochemical
energy storage devices. Diagonal lines approximate the time required to fully charge or discharge
a device. For further details and some specific examples of such systems, see refs2,7–13

Another difference is their greater stability and lifetimes; batteries exhibit large drops in per-

formance after a few hundred cycles and tend to become nearly unusable after a few thousand.

Supercapacitors, however, through tests of millions of charge-discharge cycles, have been shown

to retain nearly all of their energy storage capacity.14–17 Their higher power densities — or, equiv-

alently, shorter charge and discharge times — means they will likely go through more cycles than

batteries, but should still be considered stable for longer device lifetimes.

While supercapacitors have found commercial use in some distinct applications18,19 (regener-

ative braking, uninterruptible power supplies, and some small consumer electronics) their use is

vastly dwarfed by batteries. If supercapacitors are to meet the energy storage challenges of today
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and the future, they need to be designed with greatly increased energy density (although further in-

creases in power density could be useful as well). The energy and power density of supercapacitors

are characterized as follows:7

E =
1
2

CV 2 (2.1)

P =
V 2

4R
(2.2)

where E and P are energy and power density, respectively, C is the specific capacitance, V is the

operating potential window, and R is the resistance of the device. These relationships provide

clues to how devices can be designed with greater performance: increases in the potential window

increase energy density, decreases in resistance increase power density, and increases in specific

capacitance simultaneously increase both.

2.2 Ionic Liquids

Ionic liquids (ILs) are organic salts that exist in the liquid state near ambient conditions.20–22

They are sometimes referred to as room temperature ionic liquids (RTILs) if their melting point is

near or below room temperature. Following this convention, an IL is a salt with a melting point

below 100 ◦C and an RTIL is one with a melting point below room temperature. Their discovery is

cited as taking place more than a century ago23 although they were virtually ignored until the turn

of the millennium. Interest from academia and industry has rapidly grown in the past two decades

for three primary reasons.

First, the physiochemical properties of ionic liquids are both unique and remarkable. Their

strong intermolecular interactions, primarily electrostatic in nature, are a robust driving force that

mostly prevents them from escaping liquid state. Ionic liquids are sometimes stated to have no

vapor pressure; while this is not strictly true, it is a reasonable approximation.24 Some works

involving rigorous Monte Carlo simulations25 and careful experiments26–29 has been done to char-

acterize their vapor pressure, broadly finding negligible vapor near ambient conditions but vapor-

5



ization without needing to access extreme conditions. This is a notable contrast to conventional

electrolytes with low boiling points (water: 100 ◦C, acetonitrile 82 ◦C) that can partially vaporize

during typical operation if exposed to the atmosphere. This low volatility is an appealing property

for relatively safe and environmentally friendly operation.

Ionic liquids are often claimed to be thermally stable to high temperatures (i.e. 400 ◦C or

higher) whereas, in reality, many decompose closer to 200 ◦C.30 Much like their volatility, their

chemical stability in most operating conditions is both a valid selling point and commonly over-

sold,31,32 as operating electrochemical devices at such high temperatures is not typical. For some

narrower applications, ionic liquids with legitimately high melting points have been developed.33

Second, these properties have manifested themselves in an extensive and growing list of ap-

plications at various stages along the technological pipeline.21,34,35 This includes, but is far from

limited to, cellulose dissolution,36 liquid and gas separation,27,37–40 chemical41 and biological sen-

sors, and energy storage.2,18,42 A popular application in the past few years has been their use as

electrolytes in supercapacitors.2,43–47 Putting aside for a moment the crucial selection of electrode

material, these are appealing electrolytes because of a scaling law characteristic of supercapacitors.

The energy density of a device is proportional to the capacitance of the system times the square of

its operating voltage window. The relationship between energy density (E), the capacitance C, and

the operating potential window (V ) was described above:

E =
1
2

CV 2. (2.3)

This provides an opportunity to exploit the remarkably wide voltage windows of ionic liquids

which sometime exceed 4 V in operating conditions or even 6 V in the lab. This is a notable

increase over aqueous electrolytes (approximately 1.2 V); despite generally exhibiting a smaller

specific capacitance, the overall energy density can be improved.

Third, their chemical structure is amenable to an extremely vast number of potential species. In

order to have low melting points and prevent crystallization, ionic liquids are composed of intricate
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structures, typically including asymmetric functional groups built off a core structure. A common

such structure is the imidazolium cation functionalized with alkyl groups at its two nitrogen atoms.

One chain is typically a methyl group and the other is typically longer, sometimes much longer,

to inhibit crystallization. The number of neat ionic liquids — those with one cation, one anion,

and no other components — was estimated on the order of billions almost two decades ago and

estimates of as high as 1018 have been suggested since then. Consideration of mixtures of ionic

liquids with other ionic liquids or solvents grows this figure by many orders of magnitude. This

chemical space is vastly unexplored; even the set of commonly studied species is limited to a select

few (on the order of 10 to 1000).

A key feature of ionic liquids is their strong ion pairing.48,49 In water, conventional electrolytes

are solvated by several water molecules and, at molecular length scales, tend not to come in direct

contact with other ions, although this is mostly a consequence of water’s strong screening over-

coming the coulombic interactions of the ions. In ionic liquids, however, whether or not there is a

solvent, the molecular structure includes strong ion pairing. This behavior persists even when ionic

liquids are dissolved in polar solvents.50 This inherently limits ionic conductivity as bound ions

are poor charge carriers compared to free ions. Watanbe et al.51 pioneered a quantification of this

effect in experiment by introducing the concept of ionicity, which compares Λimp, the conductivity

measured by electrochemical impedance, to ΛNMR, a value predicted by molecular diffusivities

and assuming no ion pairing. The ratio of these conductivities Λimp
ΛNMR

defines ionicity and charac-

terizes the extent of ion pairing. In an ideal system this ratio would be unity and smaller values

indicate stronger ion pairing effects. In many neat ionic liquids, this pairing manifests itself as

nanometer-scale ordering,52–57 often interpreted as molecular-scale polar and non-polar domains.

However, ionic liquids have some concerning limitations that need to be discussed. The most

relevant issue in most applications is their generally slow transport properties in comparison to

conventional electrolytes: high viscosity, low molecular diffusivity, and low ionic conductivity.

This is largely a consequence of their strong intermolecular attractions but large molecular weights

are also a factor. As a result, engineering ionic liquids to exhibit faster transport coefficients is
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difficult; while many other properties can be engineered with intelligent organic chemistry, we

may already be at the upper limit of transport properties of neat ionic liquids. However, mixing

ionic liquids in organic solvents can produce electrolytes with greater transport properties while

maintaining many of the appealing physical properties of neat ionic liquids. This parameter space

had not been explored much in the literature until a few years ago, but Chapter 4 includes several

such contributions.

2.3 Electrode Materials for Supercapacitors

2.3.1 Porous Carbons

At the molecular scale, the charge storage mechanism of supercapacitors is the physical ad-

sorption of ions at the surface of a charged electrode. As with other surface phenomena, the

resulting macroscopic properties are believed to scale as the surface area available to partake in

such phenomena. Therefore, a common approach toward designing supercapacitors with high en-

ergy storage is the use of porous carbons with high specific surface areas. Conveniently, there

already exists a rich history, including a century of scientific papers and major components of

chemical industries, dedicated to using such materials to promote surface phenomenon for other

applications. Many porous materials are well-studied for their ability to adsorb and/or separate gas

molecules at high capacity or catalyze industrially relevant chemical reactions, but electrode ma-

terials for energy storage must also be electrochemically stable and conducting. Porous carbons fit

these requirements and more; certain classes of porous carbons have specific surface areas on the

order of hundreds or thousands of square meters per gram of material and, under proper synthesis

specifications, they are electrochemically stable to large amounts of cycling. Porous carbons also

tend to be less expensive to manufacture than other novel nanostructured materials, and it has been

demonstrated in many cases that food or other plant-based biomass otherwise considered waste

can viably be used as precursors.

Further, some porous carbons can be engineered toward particular porosities, even some toward

8



particular pore size distributions. This is particularly relevant in the case of designing supercapac-

itors in which control over pore sizes and their dispersity is crucial to device design.

2.3.2 Exohedral Electrodes

Non-porous carbon materials are also appealing electrodes for supercapacitor applications. In-

cluded are some other carbon allotropes, such as carbon aerogels, fullerene-like carbon onions, and

carbon nanotubes (in which ion adsorption is typically exohedral). While the specific surface area

of these materials is much lower than that of porous carbons, it is still high, on the order of a few

hundred m2/g. However, nearly the entirety of the exohedral surface is accessible to electrolytes,

in contrast to porous carbons which often include inaccessible porous domains. As a result, these

materials generally exhibit more electrical conductivity than porous carbons and have been shown

to increase the conductivity of electrodes even as an additive to a porous material. Because of these

differences, these electrodes are preferred for applications in which power density and fast cycling

is desirable.

2.3.3 2–D Materials

The past decade or so of materials research has seen rapid growth in the interest of 2-D mate-

rials. These materials are typically one or a few atoms thick in one dimension and several orders

of magnitude longer in the other two dimensions. Aspect ratios on the order of 103-109 are not

uncommon. Because of their unique structure, their properties can differ greatly from comparable

bulk materials. The seminal 2D material is graphene, defined in a strict sense as single atom-thick

layers of sp2-hybridized carbon, which has seen use or interest in innumerable applications. Other

materials, such as hBN, phosphorous black, and metal dichalcogenides like MoS2, have also seen

similar interest. Perhaps the most popular of a second wave of 2-D materials are MXenes. MXenes

are a class of 2-D metal carbides with high conductivity and large planar surfaces terminated by

redox-active functional groups. They have demonstrated potential as electrodes in Faradaic (batter-

ies), non-Faradaic (supercapacitors) and semi-Faradaic (psuedocapacitors) energy storage devices
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in addition to a variety of other applications.

2.4 Confinement Effects

The use of porous carbons in combination with ionic liquids has defined a generation of re-

search into capacitive energy storage. Much of this recent interest in supercapacitors can be traced

back to a groundbreaking study from Chmiola et al..58 They reported a dramatic increase in ca-

pacitance as the characteristic pore size of an electrode dropped from a few nanometers (the order

of a few ion sizes) to less than a nanometer, or approximately the size of a single ion. Follow-up

studies, both experimental47,59,60 and computational61–67 in nature, have corroborated this specific

finding of high capacitance when ion and pore sizes are comparable, and, more generally, eluci-

dated the effects of ion and pore size on capacitive performance. One important difference is that

these computational studies predict oscillations of capacitance with pore size, i.e. multiple decay-

ing peaks at different pore widths, whereas only the first peak has been observed in experiments.

This has mostly been attributed to the difficulty of synthesizing porous materials with narrow pore

size distributions at arbitrary targets. However, some studies have raised questions about these

relationships due to limits in the confidence of porosimetry measurements from adsorption ex-

periments and the Brunauer–Emmett–Teller (BET) equation and density functional theory (DFT)

methods used to estimate surface area.68,69

A valid criticism of this thrust of research is that, while clear performance increases have been

demonstrated, they are insufficient to close the energy density gap with batteries. The greatest

increases in capacitance suggested by simulations reflect roughly a doubling of performance. Con-

sidering again Fig. 2.1, performance increases of multiple orders of magnitude are needed for

supercapacitors to compete with batteries in practical applications. Further, given that there is

more academic and industrial backing of battery research, batteries will plausibly continue to grow

in their energy (and power) density as well.

Nonetheless, this has opened a growing field of research focused on understanding the struc-

ture and dynamics of highly confined (i.e. nanoconfined) electrolytes. Because ionic liquids lack
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a solvation shell — or, more strictly speaking, can exist both in solvated and de-solvated states -

existing theories (and our intuition) needed to be revised. For example, there was a minor contro-

versy in the literature on the topic of whether ionic liquids behave as dilute electrolytes (i.e. most

ions strongly and permanently pair to form neutral supramolecular-like species) or dissociated

ions, floating around in solution and interacting with many neighbors but lacking any permanent

associations. The overwhelming bulk of evidence from experiments and simulations is consistent

with the latter. This topic has not been a primary focus of this thesis, however some work late in

Chapter 4 builds on this view of ionic liquid structure.

As with other fluids, things become both more physically complex and practically useful when

moving from bulk ionic liquids to those at interfaces and in confinement. Of particular interest to

energy storage, as discussed above, is the confinement of ionic liquids in porous carbon consisting

of nanometer-sized pores. While some ionic liquid molecules are large, the lack of a solvation shell

works in their favor. First, while conventional alkali metal halide ions are small single atoms, their

effective size when considering a solvation shell of water molecules is larger. Second, stripping this

solvation shell away from an ion is thermodynamically disfavorable process. In neat ionic liquids,

there is no large energetic barrier70 and ionic liquids readily fill pores not much larger than their

own molecular sizes. The structure and dynamics of confined ionic liquids have been thoroughly

studied with many experimental probes and computational techniques since the landmark study of

Chmiola et al.58 While many groups have dedicated much effort and novel experimental71–79 and

computational63,65,80–83 techniques to understanding the structure and dynamics of confined ionic

liquids, many results contradict each other and a comprehensive view remains elusive.84

Molecular simulation in general and molecular dynamics (MD) simulation in particular is well-

suited to studying ionic liquids in confinement. Any reasonable conception of the electric double

layer concerns itself with the length scale of several Angstroms to a few nanometers. These push

the boundaries of what first-principles electronic structure calculations can access, yet the molec-

ular structure is too complex43,85 to be captured by equilibrium models. Coarse-grained molecular

models are useful in a limited sense, but the chemistry of ionic liquids is too diverse to feasi-

11



bly be captured by these simpler models. Instead, recent development86 of polarizable models

that attempt to bridge the gap of expensive ab initio molecular dynamics (AIMD) simulations

and polarizable MD simulations may prove the most useful in the future, although these models

are difficult to derive and the corresponding simulations are more expensive. Thus, most of the

work included in this thesis uses molecular dynamics simulations to interrogate many fundamental

scientific questions relevant to numerous applications but with a focus on energy storage.
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Chapter 3

An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched

Molecular Dynamics

3.1 Introduction

Porous carbons have been ubiquitous materials for energy applications since the Iron Age

(burning charcoal for energy), through the 20th century (separation processes in chemical plants),

and may be into the future (energy storage). They have high surface areas (typically hundreds to

thousands of square meters of active surface area per gram of material), can be derived from sus-

tainable precursors such as biomass, and, in comparison to other nanomaterials, are inexpensive to

produce at scale. In terms of energy storage, carbide-derived carbons have been an exciting sub-

strate with which to probe relationships between ion and pore size because they can be synthesized

to specific, narrow porosities.

Molecular simulation is a valuable tool for understanding the molecular phenomena govern-

ing these and other energy-relevant systems. In particular, atomistic molecular dynamics (MD)

simulations can describe the structure and dynamics of confined ions and how these properties

give rise to their behavior in devices. However, these studies necessitate valid structural models of

porous carbon. Many nanomaterials have well-defined crystal structures whereas porous carbons

are amorphous and include a variety of structural motifs. Additionally, experimental probes tend

to be limited to global-averaged properties and therefore have historically been less able to isolate

local structure. In this chapter, we employ several experimental probes (X-ray scattering, electron

microscopy, and adsorption experiments) to supplement the development of an atomistic model

for the in silico generation of CDC structures. This work has been featured in an article in C1 (a

new MDPI journal) and is supplemented by a GitHub repository2 that includes input files for im-

plementing the model in LAMMPS. Experimental contributions to this chapter are from Hsiu-Wen

Wang of Oak Ridge National Laboratory (ORNL) (ex situ X-ray total scattering), Boris Dyatkin
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of Drexel University and ORNL (material synthesis, nitrogen adsorption experiments, and ex situ

X-ray total scattering), and Xiahan Sang and Raymond R. Unocic of ORNL (electron microscopy

and spectroscopy).

3.2 Background

Carbide-derived carbons (CDCs) are a class of porous carbons with well-ordered porosities

and heterogeneous, short-range graphitic ordering.3 The most common synthesis approach uses

halogen gas (typically Cl2) to selectively etch out the metal phase of a metal carbide (e.g., TiC,4

Mo2C,5 or TiAlC2
6) at high temperatures (200 ◦C–1200 ◦C).7 They have high surface areas (typi-

cally 1000 m2 g−1–2000 m2 g−1) and tunable pore size distributions in the microporous and meso-

porous regimes.4,8–10 These properties, in addition to the chemical, thermal, and electrical stability

of carbon, make CDCs an appealing electrode material for electrochemical energy storage4,11–14

and other applications such as a substrate for gas4,15–17 and protein18,19 separation and storage.

Carbide precursor, particle size,20 and synthesis conditions influence the resulting porosities,

carbon bonding and graphitic defects, and surface chemistries of CDCs.21 Low-temperature syn-

thesis typically yields micropores with narrow pore diameter distributions. In particular, 600 ◦C–

800 ◦C Cl2 etching of SiC and TiC yield predominantly sub-nanometer pores;13 their dimensions

match the sizes of electrosorbed ions and yield exceptionally high energy densities as electro-

chemical capacitors.22 Different carbide precursors and pore diameters yield slit or cylindrical

pore shapes with different curvatures.8,23 While most carbon ordering in CDCs is a heterogeneous

mixture of short-ranged sp2 and sp3 bonding, graphitization (and resulting electron transport prop-

erties) directly depends on synthesis temperature.24 Thermal treatment above 1000 ◦C typically

increases the prevalence of graphitic features, such as ribbons, barrels, and nanotubes.9 These fea-

tures define concentrations of structural defects (vacancies, Stone–Wales transformations, etc.25),

pore topography and geometric roughness,26 and degree of long-range ordering in the [100] and

[002] (sheet stacking) directions.27 In turn, these properties govern the contribution and relative in-

fluence of quantum capacitance on total charge storage densities of these materials as electrodes.28
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Finally, post-Cl2 treatment methods (H2 or NH3 600 ◦C annealing) and exposure to air introduces

various functional groups on pore surfaces.29 These moieties also influence electrosorption dy-

namics30 and capacitance.31,32 Many of these properties are convoluted and difficult to quantify in

experimental systems. Therefore, subsequent optimization of these materials requires a detailed

computational model.

Even though nanoporous carbons have non-uniform structure, they are often modeled as slit

pores directly in contact with a bulk fluid or electrolyte. Additional models also consider cylin-

drical, spherical, and other morphologies.23,33–35 Nonetheless, the slit pore model remains com-

mon for the study of porous systems, even for studying advanced properties such as gas adsorp-

tion36,37 and separation,38 capacitance,26 and the structure and dynamics of confined ions39,40 and

molecules.41 In such model systems, parallel sheets of graphene are separated by the character-

istic widths of the nanopores found in experiment, typically defined as the peak in the pore size

distribution. These models capture, to a first approximation, the effect of confinement on fluid

behavior, but leave out many other effects. CDCs and other nanoporous materials have structural

heterogeneities such as surface curvature and a distribution of pore widths, which have qualitative

and quantitative effects on the performance of CDCs as electrodes in supercapacitors42,43 or as

adsorbents of gas molecules.44 Furthermore, direct exposure of a nanopore to a bulk fluid ignores

entrance effects and dynamics associated with transport through a complex pore architecture.45

Therefore, to better understand the fundamentals of gas sorption, electric double layer structure,

and electrolyte dynamics in CDCs, a structurally valid model for CDCs that captures these effects

is needed.

Reverse Monte Carlo (RMC)46,47 and Hybrid reverse Monte Carlo are approach that has been

used to create structurally relevant nanoporous models.48–51 These models are created in an itera-

tive process of fitting simulated radial distribution functions (RDFs) to those obtained from scatter-

ing experiments. While CDC structures have been generated that reproduce experimental RDFs,

fits of empirical information to an RDF with an RMC routine have inherent limitations. Some

studies added other physical constraints, such as prohibiting the formation of three-membered
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rings51 or moves that would generate non-physical interatomic distances..49 Structural features on

the order of a few nanometers, particularly porosity and surface curvature, are not typically well-

captured with RDFs, which usually decay to unity in a few angstroms. Additionally, while RMC is

capable of producing robust fits to experimental data, many unique three-dimensional models may

be generated from a single, one-dimensional RDF. Subsequently, results derived using RMC can-

not formally be considered unique.52–54 Furthermore, as with many Monte Carlo-based methods,

accessible system size may be limited due to the challenges of deploying algorithms to parallel

computing architectures. Small systems on the order of a few hundred or thousand atoms are suf-

ficient for capturing short-range features such as bonding, ring formations, and a small number of

structural features and pores. Larger system sizes on the order of tens or hundreds of thousands of

atoms are needed to better sample a range of structural heterogeneities and pore size distributions.

As an alternative approach, quenched molecular dynamics (QMD) has viably reproduced atom-

istic models of amorphous and/or porous carbons,55–57 silica,58–60 and metals.61,62 QMD generates

metastable structures by lowering the temperature of a system over the course of a simulation. Al-

though this process lacks a direct physical analog (i.e., in practice, CDCs are typically formed via

chemical etching), QMD is, nonetheless, capable of generating realistic atomistic models of porous

materials. This technique allows quench rate and initial and final temperatures to be modulated in

order to control some of the structural properties of the CDC, such as porosities and RDFs. The

inherent parallel nature of molecular dynamics simulations allows them to explore large system

sizes. Previous QMD results have used force fields such as the Adaptive Intermolecular Reactive

Empirical Bond Order (AIREBO),63 the Environment-Dependent Interatomic Potential (EDIP),64

the Reactive Summation State (RSS),55 and the Tersoff potential65 to generate nanoporous carbon

structures for use in molecular simulation. While many impactful studies51,54,56,57,66–68 have been

done with these force fields, the generated structures have often failed to accurately reproduce ex-

perimental pore size distributions and always depend, at least in part, on the accuracy of the force

field itself. Carbon-based materials, and CDCs in particular, present a unique challenge for these

force fields because of their nanoscale heterogeneity. Individual force fields can sufficiently de-
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scribe specific structural moeities, such as short-range graphitization at low density,69 but are often

not sufficient to capture the full range of non-ideal features observed in CDCs.70

One possible way to increase the accuracy of computationally derived CDC structures is to

employ sophisticated reactive force fields, such as ReaxFF.71,72 ReaxFF uniquely includes three-

and four-body, non-bonded van der Waals, and electrostatic interactions in conjunction with a

long-range bond order concept, where parameter sets are trained to reproduce a range of first-

principles data describing reaction energies as well as reaction barriers. This allows ReaxFF to

largely approach the accuracy of first-principles calculations, but at significantly (several orders

of magnitude) reduced computational cost, although, we note more costly than other reactive and

non-reactive force fields.54 The use of ReaxFF for the formation of CDC structures is limited,

with only a single recent study73 examining the formation of amorphous carbon structures using

QMD. This study examined the carbon hybridization, ring formation, and pore size distribution as a

function of density and quench rate, and demonstrated the potential that ReaxFF could be effective

in generating model CDCs; however, the study was not explicitly focused on the formation of

experimentally relevant CDCs. EDIP, which has been shown to exhibit similar behavior to ReaxFF

at low density,69 has been used to generate CDCs via removal of metal atoms from a carbide lattice

and subsequent annealing at the target density, showing close agreement with experimental pore

size distributions.

In this chapter, we further explore the use of the ReaxFF force field to develop novel, struc-

turally relevant atomistic models of CDCs. Our combined computational and experimental ap-

proach directly compares experimentally derived structural information to properties of models

derived from simulation. Here, we examine the effects of quench rate on CDC structure, includ-

ing a slower rate than was used in prior ReaxFF studies.73 We also investigate the role of a novel

post-quenching compression step as a means to adjust pore size distribution. CDC structure is

examined, including pore size distributions, pair distribution functions, and ring sizes. These anal-

yses make comparisons to X-ray scattering, nitrogen sorption, and electron microscopy results.

We demonstrate close agreement between experiment and simulation, including pore size distribu-
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tions, for our approach. This chapter includes major contributions from experimental collaborators

at Oak Ridge National Laboratory and other institutions. This work was been published in the

MDPI journal C in 2017.74

3.3 Computational Methods

3.3.1 Quenched Molecular Dynamics Simulations

Reactive molecular dynamics simulations were performed using the ReaxFF71,75,76 force field

implemented in the LAMMPS77 simulation package (Version 27-Jul-2013, Sandia National Lab-

oratory, Albuquerque, NM, USA). ReaxFF is a reactive potential that models the breaking and

formation of chemical bonds through bond order, which is calculated from interatomic distances

and used in calculating a bond energy. Three- and four-body, non-bonded van der Waals, and elec-

trostatic interactions are also included. Parameter sets are developed by fitting to structural and

thermodynamic properties to quantum density functional theory (DFT) data. The specific ReaxFF

parameter set used in this study was optimized for modeling carbon materials.72

Initial configurations were generated by assigning 20,000 carbon atoms to random positions in

a periodic simulation cell of length 7.488 nm. This corresponded to a bulk density near 0.95 g
cm3 ,

consistent with previous studies.51,57 In an attempt to mitigate biases arising from an initial config-

uration, random positions give the system a fluid-like initial state. Quenched molecular dynamics

simulations were performed from an initial temperature of 3500 K to a final temperature of 3000 K.

The use of temperature ranges higher than used in experiment is a common approach in ReaxFF

studies to bring reaction kinetics into a time scale accessible in molecular simulation.72,78,79 This

temperature range is near the phase transition from liquid carbon to graphite at low pressures re-

ported by experiment.80,81 While the melting point was not rigorously examined with this force

field, the transition appears to occur within the range expected from experiment. In simulations of

the lengths considered here, major structural changes do not occur after the system has condensed

from a fluid to solid state, so additional quenching below 3000 K was not considered. In order to

explore the effects of quench rate, simulations varied from 5 ps to 500 ps in length, giving quench
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rates between 1 and 100 K
ps . These rates are studied for their effects on the structures and are not to

be interpreted physically or compared directly to synthesis parameters. Temperature was controlled

using a Nosé–Hoover thermostat with a damping constant of 10 fs. All quenching simulations were

performed in the canonical (NVT) ensemble and a 0.5 fs time step was used throughout. This is

a larger timestep than what is normally used in ReaxFF studies (0.25 fs); however, these systems

include only carbon atoms and therefore lack any O-H or C-H vibrations, which are much faster

than C-C vibrations and typically constrain the timestep to smaller values.

For select samples, an additional compression step was applied after the quenching step using

the NPT ensemble. The NPT integrator follows the work of Shinoda et al.,82 combining the work

of Martyna et al.83 and Parrinello and Rahman,84 as implemented in LAMMPS. The ReaxFF force

field was again applied with a time step of 0.5 fs. Isothermal temperature control and isobaric

pressure control at 3000 K and 20000 atm were used with damping constants of 10 fs and 100 fs,

respectively. Selection of this pressure is discussed in the Appendix, including a relationship

between system density and compression pressure. Like the quenching step, there is no direct

physical analog to this step, but it was used to drive structural properties toward the experimental

target. Effects of the post-quenching compression step are discussed in context below. For both

compressed and non-compressed samples, no additional structural relaxation was performed.

3.3.2 Grand Canonical Monte Carlo Simulations

In order to study the properties of QMD-generated CDC models as adsorbent materials, grand

canonical Monte Carlo (GCMC) simulations of nitrogen isotherms were performed with LAMMPS.

A single-site nitrogen model was utilized as the fluid and both fluid–fluid and fluid–solid interac-

tions were described with 12–6 Lennard–Jones potentials. A cut-off distance of 15Å was used

with no long-range corrections. Carbon and nitrogen atoms were described using εC = 28.0K,

εN = 95.2K, σC = 3.4Å, and σN = 3.75Å. Lorentz–Berthelot mixing rules85,86 were used, giving

εC/N = 51.6K and σC/N = 3.575Å. The carbon substrate was fixed in position; only moves involv-

ing nitrogen sites were considered. Construction of simulated isotherms for each carbon structure
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involved many short simulations of 2×106 translation attempts and 2×106 insertion/deletion at-

tempts. At a fixed temperature of 77 K, a range of 40 pressures ranging from 1×10−6 atm to

1 atm for the bulk fluid were considered. Beginning with a bare carbon structure at the minimum

pressure of 1×10−6 atm, the aforementioned short simulations were repeated at the same pressure

until changes in the number of nitrogen atoms in the system were sufficiently close to zero to be

considered at equilibrium. Subsequent pressure values incremented by a small amount and this

process repeated until all pressures in the prescribed range were considered.

3.4 Experimental Methods

3.4.1 CDC Synthesis and Annealing

Porous CDC particles were synthesized using a previously described procedure.7 Silicon car-

bide (SiC) particles (1.0 µm–5.0 µm diameter, 99.1+ % purity, Alfa Aesar, Haverhill, MA, USA)

were placed into a quartz boat and loaded into a tube furnace. The furnace ramped up to 900 ◦C

under flowing Ar gas. Once the system reached this temperature, pure Cl2 gas flowed over the

furnace at a rate of 0.5 Lmin−1 for 4 h and etched away the metal carbide using the following

reaction:87

2Cl2(g)+SiC(s)−−→ SiCl4(g)+C(s).

Subsequently, the system cooled down to 600 ◦C and H2 gas annealed the leftover carbon par-

ticles for 2 h.29 Finally, the material cooled down to room temperature under flowing Ar.

The material was placed into a graphite crucible and loaded into a vacuum furnace (Solar Atmo-

spheres, Souderton, PA, USA). The furnace outgassed for 24 h until a high vacuum (1×10−6 torr)

was reached.9 Under continuously pulled vacuum, the furnace ramped up at a 10 ◦Cmin−1 rate up

to 700 ◦C, held at that isothermal condition for 11 h, and, subsequently, cooled to room temper-

ature.88 This step removed all non-carbon functional groups, impurities, and moieties (adsorbed

from air exposure or byproducts of CDC synthesis) from the CDC surface.
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3.4.2 Gas Sorption and Porosimetry

Gas sorption measurements were carried out using Quadrasorb sorption analyzer (Quantachrome

Instruments, Boynton Beach, FL, USA). Samples (0.050 g–0.075 g) were loaded into glass cells

and outgassed at 120 ◦C for 24 h prior to analysis. The instrument collected gas adsorption and des-

orption isotherms (adsorbed volume vs. relative pressure) using N2 adsorbate gas in the 0.00075 P
P0

–

0.9995 P
P0

range (P0 = 760 torr). Measurements were collected at a 77 K isothermal condition using

a liquid N2 coolant bath. The Brunauer–Emmett–Teller equation (BET) was used to calculate the

BET specific surface area (SSA) of the CDCs.89 The equation was calculated using a linear regres-

sion for 0.05–0.30 P
P0

values and normalized by the sample mass to obtain m2 g−1 values.

Quenched Solid Density Functional Theory (QSDFT) data reduction analysis provided infor-

mation on a secondary (DFT-derived) SSA value, cumulative pore volume cm3 g−1 values), and

pore size distributions (PSDs, pore diameter vs. dV
dr plots).33 The data reduction used only the ad-

sorption isotherms and assumed slit pore configurations.90 Quantachrome’s Quadrawin software

(Version 5, Quantachrome Instruments, Boynton Beach, FL, USA) provided all BET calculations

and DFT data modeling kernels and computational analysis.

3.4.3 Ex Situ X-Ray Total Scattering

Synchrotron X-ray total scattering data were collected at the 11-ID-B beamline at the Advanced

Photon Source (APS) at Argonne National Laboratory (Lemont, IL, USA). Ground powder sam-

ples were loaded into polyimide capillaries (1 mm inner diameter) and measured in transmission

mode at ambient conditions (photon energy 58.65 keV, 0.2114 Å) using an amorphous silicon im-

age plate detector (Perkin Elmer, Fremont, CA, USA). Scattering data of a CDCs annealed at

700 ◦C were collected for a total of 15 min and parasitic scattering from an empty polyimide con-

tainer (duplicating the assembly without a sample) and an Ni powder standard (99.99%, Sigma

Aldrich, Saint Louis, MO, USA) were collected using the same setup. The program Fit2D91 was

used to calibrate the sample to detector distance and detector alignment with data from a CeO2
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powder standard. Raw scattering data was integrated into Q-space spectra, applying a mask and

polarization correction during integration. The normalized total scattering patterns, S(Q) were

produced in PDFgetX292 (Version 1.0, Michigan State University, East Lansing, MI, USA) by

subtracting polyimide container scattering, utilizing the appropriate sample composition, and ap-

plying standard corrections for the area detector setup.93 Pair distribution function patterns, PDF

G(r), were calculated via Fourier transformation of the total scattering data utilizing a Q range

of 1.0 Å
−1

(Qmin) to 26.0 Å
−1

(Qmax) for the Ni dataset, and was fit in PDFgui94 in the range

1 Å–50 Å to calibrate the instrument Qdamp = 0.038(1) and Qbroad = 0.021(1) effects on real-space

data. The same Q range was used for sample data. Because the diffractometer is only capable of

capturing a small portion of such pore signals with the limitation of Qmin near 0.5 Å
−1

, a Fourier

transform with Qmin of 0.5 Å
−1

will thus result in a weak oscillating signal with a wavelength of

approximately 13 Å in the real-space domain from the 2π

Q inverse relationship. For the purpose

of comparing PDFs to QMD-generated models without complications arising from incomplete

measurements of pore structures, a Qmin value of 1.0 Å was selected.

3.4.4 Abberation Corrected Scanning Transmission Electron Microscopy

The structure of the CDC was characterized using an abberation corrected Nion UltraSTEM

(Nion Company, Kirkland, WA, USA) operating at 60 kV. Scanning transmission electron mi-

croscopy (STEM) imaging provides95,96 atomic resolution characterization of the overall CDC

morphology following the chlorine heat treatment and subsequent vacuum annealing.

3.5 Results and Discussion

A quenched molecular dynamics routine was used to generate atomistic models for CDCs.

Images provide qualitative analyses of sample morphology and structural properties, while quanti-

tative characterization includes pair distribution functions, pore size distributions, ring size distri-

butions, and ring neighbor correlations. Comparisons of QMD-generated CDC models to experi-

mental results are made in appropriate corresponding discussions.
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A summary of the models is listed in Table 4.4. Throughout, models generated through sim-

ulation named ‘QMD-x’ where ‘x’ is the quench rate used to produce it (in units of 1 Kps−1–

100 Kps−1). A ‘c’ is appended to the name if a post-quench compression step was included. The

experimental sample is referred to as ‘Expt.’.

Table 3.1: Summary of sample structures. Models are named ‘QMD-x’ where ‘x’ is the quench rate
used to produce it (in units of Kps−1). A ‘c’ is appended to the name if a post-quench compression
step was included. Q: Quench rate, Kps−1; p̄: mean pore size, nm; L: Box length, nm; ρ: Particle
density, gcm−3.

Sample Q, K ps −1 p̄, nm L, nm ρ , g cm −3 Compression

QMD-100 100 0.50 7.488 0.950 No

QMD-10 10 0.97 7.488 0.950 No

QMD-1 1 1.40 7.488 0.950 No

QMD-10c 10 0.56 6.489 1.467 Yes

QMD-1c 1 0.91 6.733 1.311 Yes

3.5.1 Imaging and Spectroscopy of CDC Structures

Before evaluating QMD-generated CDC structures, we first consider imaging of these struc-

tures from experiments. Figure 3.1 shows representative annular dark-field (ADF) STEM images

of the CDC structure. They reveal that the CDC structure is composed primarily of high curvature

graphene sheets. The STEM images also show regions where the graphene sheets come together

along their edges to form slit-like geometric configuration. Moreover, due to the atomic-scale

chemical sensitivity of ADF STEM imaging, single atoms with an atomic number greater than car-

bon are clearly visible in the CDC. Shown in the Appendix, Electron Energy Loss Spectroscopy

(EELS) measurements from these brighter atoms confirm that these are silicon atoms, likely the

result of incomplete chlorine treatment. Raman spectra were also collected on the experimental

CDC sample and presented in The Appendix. Prominent D and G bands, characteristic of disor-

dered carbon, are observed.
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Figure 3.1: Representative Annular Dark-Field (ADF) Abberation-Corrected Scanning Transmis-
sion Electron Microscopy (STEM) images of carbide-derived carbons (CDCs) from experiment.
CDC samples were subjected to heat treatment at 700 ◦C for 11 h. Left: regions of highly-curved
graphene sheets; Right: regions where the graphene sheets form slit-like configurations. The bright
atoms with the CDC structure are residual silicon atoms as confirmed through Electron Energy
Loss Spectroscopy (EELS).

3.5.2 QMD-Generated CDC Structures

Snapshots of final-state structures produced with QMD are shown in Figure 3.2 and can be

compared to representative STEM images of experimental samples shown in Figure 3.1. Simula-

tion boxes are cubic with characteristic lengths near 7 nm. Therefore, while mesoscale features

cannot be analyzed, properties on the order of few Ångstrom can be considered. In particular, we

focus on the aggregation of hexagonal and non-hexagonal rings into sheet-like networks and the

size distribution of pores. These properties are quantified in Figures 3.3–3.5.

Clear trends with respect to quench rate are observed: faster quenches produce more amor-

phous structures and slower quenches produce more ordered structures. This is in agreement

with prior QMD studies of amorphous carbons.55,57,73 Shown in Figure 3.2a, a quench rate of

100 Kps−1 generates a highly amorphous structure with many stringy domains and few rings.

Only a small number of rings are found, as quantified in Figure 3.4, and no specific ring size dom-

inates the distributions. This low quantity prevents the formation of large sheets with graphitic
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features, which had been observed in CDCs synthesized at high temperature and that had exhib-

ited prominent graphitic domains. The pore size distribution (Figure 3.3) shows that all porosity

is below 1 nm and most pores are approximately 0.5 nm. Despite this, the observed nature of the

carbon bonding indicates that these nanopores are not necessarily directly representative of those

found in synthesized CDCs.

Slowing the quench rate gives more time for rings to form, as seen in Figure 3.2b, and some

networks begin to reach the size of several rings and resemble small graphene-like sheets. Rings

are mostly hexagonal, but a number of Stone–Wales and similar defects are observed. Stringy

domains are not eliminated but appear at notably smaller frequency. The overall structure remains

amorphous, but the greater quality of ring networks generates pores of greater definition. These

pores are also larger, as seen in Figure 3.3. Many pores are sub-nanometer, but there is also a broad

shoulder between 1 and 2 nm.

As shown in Figure 3.2c, further reducing the quench rate by a factor of 10 to 1 Kps−1 generates

a more ordered structure. Most carbon atoms assemble into hexagonal rings, which aggregate

into large, curved sheets that enclose nanopores. Some sheets collapse onto each other and form

domains reminiscent of [002] stacking in graphite, but most sheets are single-layer and comprise

pore walls. These pores exhibit a wider size distribution. While a fraction of pores is in the

sub-nanometer diameter range, Figure 3.3 shows similar quantities of pores up to 2.5 nm in size.

This emergence of larger pores with decreasing quench rate has been observed in previous QMD

studies.57,73,97 It bears repeating that quench rate in simulation lacks a direct physical analog;

therefore, this trend cannot directly be attributed to any features of synthesis via halogen etching

despite how physically realistic the generated structures may be.
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(a) QMD-100 (b) QMD-10 (c) QMD-1

(d) QMD-10c (e) QMD-1c

Figure 3.2: Sample structures produced via quenched molecular dynamics (QMD) at quench rates
and comparison to STEM of Si-CDC from experiment. Simulation boxes are between 6.5 and 7.5
nm in length and include 20,000 atoms. Each scale bar is 10 Å or 1 nm long.

In summary, slower quenches produce structures with physically realistic carbon bonding but

larger pores. Because the small pore size of CDCs gives rise to many important physical properties,

it is worth attempting to modify the structures generated from slow quenches to have smaller pores.

To this end, we applied a post-quench compression step to the QMD-10 and QMD-1 structures via

NPT simulations at 20000 atm and 3000 K, generating structures QMD-10c (Figure 3.2b) and

QMD-1c (Figure 3.2e).

Comparisons between Figure 3.2b,d and Figure 3.2c,e shows that the compression step qualita-

tively decreases pore sizes, particularly of larger pores. Some rearrangement is observed in Figure

3.2d, but for the most part, and particularly in Figure 3.2e, pores are modified without collapsing

existing pores and/or forming new ones. Qualitative visual observations do not show any alter-

ations of ring bonding. Thus, the combination of ReaxFF with a post-compression step results in
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pore size distributions that more closely match experiments as well as a recent study that generated

CDCs using the EDIP force field and, rather than QMD, annealing of a system after removal of

metal atoms from a carbide lattice.67 Specifically, this compression step combines properties of

QMD-generated models at different quench rates: the local bonding structure is dominated by six-

membered rings, but the pore size distribution does not largely extend in the mesoporous regime.
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3.5.2.1 Pore Size Distributions

Pore size distributions of QMD samples are shown in Figure 3.3. Consistent with previous

QMD studies,57,97 the pore size and dispersity increase with slower quench rates. The compression

steps (samples QMD-10c and QMD-1c) are shown to quantitatively increase the population of

sub-nanometer pores and, to a lesser extent, decrease the dispersity. Although the post-quenching

compression step fails to fully reach the monodisperse sub-nanometer target, agreement with the

experimental pore size distribution is improved, most notably for QMD-10c.

We note that, while experimental characterization results demonstrate a strong predominance

of sub-nanometer pores, a small shoulder at 1–1.5 nm and a small peak between 2.0 and 2.5 nm

are observed. As such, the larger pore size distributions observed in some of our or systems may

indeed be realistic. However, they may form in higher frequency than in experimentally produced

CDCs.

3.5.2.2 Ring Size Distributions

Although a robust quantification of the number of non-hexagonal rings is not currently accessi-

ble via empirical characterization of experimental systems, it can be quantified in simulation. The

relative quantities of rings of sizes 4 through 8 in QMD-generated structures are shown in Figure

3.4. Ring counts are normalized to the number of hexagonal rings in a fully graphitic sample of

the same size (10,000 rings in these 20,000 atom systems). By comparing compressed and non-

compressed samples, the compression step is shown to have a small impact on the number of rings

but little impact on the distribution. On the left are ring size distributions from samples produced

by QMD alone and on the right are ring size distributions from samples that also underwent a

post-quench compression step.

The quench rate is shown to have a significant impact on the quantity of ring formation and type

of rings formed. At the fastest quench rate, few rings are formed with no particular size dominating

the distribution. At the slowest quench rate, the total number of rings approaches the graphitic limit
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and hexagonal rings are the most common. The ring size distribution for the samples of medium

quench rate mixes properties of the limits: the total number of rings is large and hexagonal rings

are the most common, but not by a large margin. For all QMD-generated structures, the number

of four-membered rings is negligible and the number of eight-membered rings is non-zero but

not significant. For all quench rates, the number of five- and seven-membered rings is similar,

indicating that their existence may be structurally coupled.

To further investigate the relationships between non-hexagonal rings, neighbor–neighbor cor-

relations of non-hexagonal rings were analyzed and shown in Figure 3.5. For example, the number

of 7-membered rings neighboring a 5-membered rings was counted and shown as a ‘5-7’ neigh-

bor type. With slower quench rate, 5-7 and 7-7 neighbor types increased in quantity while 5-5

neighbor types decreased in quantity. This trend is consistent with common graphene defects such

as the Stone–Wales 55-77 defect98 and the 555-777 divacancy.43 Other common non-hexagonal

defects found in graphene follow a consistent theme of 7-membered rings neighboring each other

and 5-membered rings, but rarely 5-membered rings neighboring each other.99

3.5.3 Sorptive Loading

Nitrogen isotherms generated from GCMC simulation are shown in Figure 3.6 and compared

to a representative experimental isotherm. Characteristic Type I isotherms are observed: most

loading occurs at low relative pressures and little change in loading occurs at moderate relative

pressures. A partial condensation phase transition is only observed in the QMD-1 sample, which is

expected to be the result of mesopores. The loading spikes in experimental samples near P = Pvap

are the result of larger non-porous features formed from the packing of the CDC nanoparticle and

not the result of mesopores found in bulk CDC phases. The lower loadings in compressed samples

compared to non-compressed samples is a result of an artificially high density, although the shapes

of the isotherms are not noticeably affected.
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Figure 3.6: Nitrogen isotherms generated from grand canonical Monte Carlo (GCMC) simulation
in comparison to experimental isotherms.

3.5.4 X-Ray Total Scattering

Further structural analysis relies on a synchrotron X-ray source for total scattering/pair distribu-

tion function analysis. The S(Q) of an annealed CDC sample is shown in Figure 3.7 and compared

to simulated data of an ideal graphene sheet of 10 × 10 unit cells. We note here that the large

intensity uptake observed in the low Q region arises from the surface scattering and pore structures

present in the CDCs. Comparisons to QMD-generated structures in real space are discussed below.

Most of the peaks observed in the experimental sample correspond well to the diffraction pattern

of the graphene structure, the exceptions being peaks at 1.4(1)Å
−1

and 1.83(2)Å
−1

(∼3.43 Å and

∼4.5 Å in real space). The 1.83(2)Å
−1

peak corresponds to graphite (002) reflection typically

observed at 26deg2θ with Cu-Kα radiation. This peak, however, is not completely resolved and

sits alongside a broad diffuse peak centered at 1.4(1)Å
−1

. Such features suggest the presence of

poorly coordinated graphene sheets, to which this peak is attributed. In addition, as mentioned in
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the experimental section, the large intensity uptake at Q < 1 Å
−1

by surface and/or pore structure

scattering is omitted for subsequent PDF analysis.

The PDF G(r) is related to the RDF g(r) as

G(r) = 4πrρ(g(r)−1); (3.1)

therefore, a PDF, unlike an RDF, may fall below zero for some values of r. The length scale over

which PDFs provide strong resolution (a few Å), corresponds to carbon atoms separated by a small

number of bonds.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scattering Vector Q, 1/Å

0

1

2

3

4

5

X-
ra

y S
tru

ctu
re

 F
ac

to
r S

(q
), 

a.
u.

SiC-CDC-700
Single-layer graphene (10)

Figure 3.7: Comparison between experimental structure factor of CDC and simulated data of single
graphene layer (10 × 10 unit cells).

Pair distribution functions from QMD-generated structures are shown in Figure 3.8. The soft-

ware package DISCUS100 (Version 4.2, Michigan State University, East Lansing, MI, USA) used

in these calculations in order to include the effects of some biases in the experimental apparatus, in-

cluding Qmax, Qdamp, and Qbroad . For the local carbon bonding comparisons, only a small isotropic

thermal displacement factor is introduced (Biso = 0.2Å
2
, approximately 0.05 Å mean-square dis-
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placement) because the QMD-generated structures are large enough to contain the desired static

disorder. The overall intensity scale factor is also adjusted to compare with observed PDF. To

maintain consistency, all simulated PDFs used the same parameters.

The peaks of these PDFs correspond well to the distances between carbons in an idealized

graphene-like structure and follows previous interpretation in which no strong correlation can

be observed between different sheets and/or pore walls.101,102 The first three peaks at 1.43(2),

2.45(2) and 2.83(2)Å correspond to neighbors in a hexagonal ring and peaks at 3.75(5), 4.28(5)

and 4.97(8)Å correspond to the location of carbon atoms in neighboring rings. The well-ordered

nature of these peaks indicates, as expected, that hexagonal rings are favored. However, significant

peak asymmetry and broadening observed at the third and further peaks do indicate the presence of

non-hexagonal rings and the resulting sheet curvature effects. Together, these define the extent of

structural coherence (approximately 15 Å) in the experimental PDF data. Compared to simulated

PDFs, slower quenches provide better agreement with experiment, though QMD-1 is not able to

totally capture graphitic ordering at distances greater than ∼5 Å. Consistent in both experimen-

tal and simulated PDFs is the general feature in peak broadening and the lack of graphite [002]

correlation near 3.43 Å, the latter indicating a lack of sheet–sheet stacking despite other graphitic

properties.
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3.5.5 Effects of Initial Density

We consider the effects of initial density on the final structure. The QMD-10c sample, which

has an initial density of 0.95 gcm−3, was considered as a reference. Simulations were performed

with identical inputs with the exception of the initial density. Values of 0.8 and 0.9 gcm−3 were

considered. After compression, these two systems reached densities of 1.56 and 1.55 gcm−3,

respectively, as compared to 1.467 gcm−3 for the system originally at 0.95 gcm−3.

The pore size distributions of each of sample, before and after compression at 20000 atm, are

shown in Figure3.9. Pore size distributions of samples compressed at other pressures are shown

in The Appendix. For all un-compressed samples, the distribution is broad, covering the range

0.3 nm–2.0 nm. There is also a small increase in the mean pore size as the density decreases. The

compressed samples, however, exhibit similar pore size distributions. Each has a peak near 0.5 nm
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and a shoulder that disappears near 1.0 nm. The uniformity of these distributions suggested that the

initial density does not strongly impact the porosity of the structure after compression, for these

relatively high density systems, as quench rate is likely to be the dominant factor for structural

evolution.

We also consider the pair distribution functions of these samples, shown in Figure 3.10. For

samples with a range of initial densities, compression has a small impact. Peak heights are not

noticeably changed, but compression shifts each peak slightly to the left. This is attributed to the

high pressure needed to increase the density of each sample and not differences in the nature of

the carbon bonds. Comparisons of samples before and after compression show that density has no

noticeable impact on the pair distribution functions. In summary, compression is shown to have

negligibly small impacts on short-range carbon interactions while driving most of the pore size

distribution below 1 nm.

We should note, however, that they are still quite small compared to experiments.
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Figure 3.9: Pore size distributions of samples with decreased initial density, before and after com-
pression.
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Figure 3.10: Pair distribution functions of samples with decreased initial density, before and after
compression.

As shown in Figure 3.1, experimental samples include a variety of highly amorphous domains

and features such as graphitic slit pores and single, isolated graphene sheets, in addition to other

heterogeneous nanoscale domains. As a result, experimental samples will show localized variation

in structure and density. Furthermore, experimental CDC samples could be thought of as a col-
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lection of individual structures comprising larger particles. The models generated here represent a

separate collection of structures that may overlap with those found in experiments. Thus, prudent

studies of the behavior of CDCs should consider the collective behavior of a range of nanoscale

structures to better understand the resulting physical properties observed in experiments.

3.6 Conclusions

The use of the ReaxFF reactive force field in generating an atomistic model for carbide-derived

carbons was explored using a quenched molecular dynamics (QMD) scheme. The effects of

quench rate and system compression were explored. Comparisons were made to an experimen-

tal carbide-derived carbon (CDC) material with similar structural properties. These models that

use ReaxFF and employ a post-quenching compression step provide clear improvement upon prior

CDC models generated using QMD in terms of local bonding and pore size distribution and also

closely match those recently published using a process involving removal of metal atoms from a

carbide and subsequent annealing.67

Slower quench rates and a compression step yield good agreement with experimental pore

size distributions (PSDs), pair distribution functions (PDFs), and qualitative morphological fea-

tures in abberation-corrected scanning transmission electron microscopy (STEM) images. The

sorptive behavior closely matches CDCs and typical nanoporous adsorbents. The prevalence of

non-hexagonal rings and their neighbor correlations are also explored. System compression, after

the quenching step, is shown to decrease average pore size toward a sub-nanometer distribution

without disrupting short-range features such as ring size. Overall, QMD-10c and QMD-1c are

presented as viable atomistic models for CDCs.

This work provides the framework for use of these structures as model adsorbents and elec-

trodes in molecular simulation of adsorption and electrochemical capacitors, respectively. Specifi-

cally, use of these models introduces non-idealities such as pore size dispersity, surface curvature,

and non-hexagonal rings.
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3.7 Future Work

I will conclude this chapter by describing a few other models that coupld be explored: synthesis-

mimetic simulation, templating porosities, and hybrid reverse Monte Carlo.

All existing models in the literature, the above work included, work around the physical pro-

cess by which CDCs are synthesized and instead attempt to match the properties of the resulting

structure. Another approach is so-called synthesis-mimetic simulation (SMS) in which simulations

try to actually model the process by which some experimental synthesis takes place. For example,

Black et al. generated amorphous silica surfaces in simulations with a scheme that follows ex-

perimental treatment of silica surfaces with piranha (H2SO4 and H2O2)103 This reaction happens

quickly on a lab scale and was therefore feasibly accessible with reasonable molecular models

(in that case, the reactive force field ReaxFF71). The synthesis of CDCs via chemical etching,

however, takes place on the time scale of a few hours for a characteristic length on the scale of a

micron. A reasonably sized molecular model of 5 nm would take several nanoseconds to etch in

simulation. The 500 ps simulations in the above work took two full days on modern supercomput-

ing architecture using highly parallelized software running on 48 cores. However, while a given

ReaxFF force field parameter set can sufficiently capture the physical properties it is tuned to, it is

less trustworthy for exploring new chemical processes, such as this chlorination reaction that has

not been given much attention in other theoretical studies. A rigorous treatment of the reaction

would require extremely expensive AIMD simulations. These take approximately 1 min per 1 fs

step per atom per core used; a 500 ps simulation on the same number of CPU cores as above (48)

would take approximately 400 years, so more CPU core would be needed and the system size

and simulation length would need to be drastically reduced. Other recent advancements in com-

putational chemistry attempt to bridge this gap of chemical accuracy and computational cost but

have not, to my knowledge, focused on carbon-carbon interactions. All in all, an SMS approach

to CDCs would provide valuable insight into how the chlorination reaction guides the physical

properties of the carbon structure, but some model development and/or significant investment of

computational resources are necessary for it to be a tractable approach.
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A limitation of QMD, HRMC, and other techniques is that their focus on short-range struc-

tural properties only assures good agreement with respect to short-range properties (on the order

of a few Angstroms) and some slightly longer scales (a few nanometers). Past some intermediate

distance, agreement with experiment becomes uncontrolled. One example of this is the connec-

tivity of pore structures. It is difficult to characterize with experiment but the high loadings of

adsorbed gasses, electrolytes, or other fluids implies that at least most of the pore volume inside of

CDC particles is accessible. There is some evidence that characteristic pore paths on the order of

hundreds of microns are readily accessed by electrolyte.104 Conversely, there is no guarantee that

pores in model CDCs are connected at all. It is easy to conceive of porous structures that perfectly

match experimentally measured pore size distributions yet consist of distinct and separate pores

that are not connected at all. Pore accessibility is often induced artificially by slicing a sample

across a PBC boundary, see the structures of Palmer et al. commonly used by Merlet, Sallane, and

co-workers105–111 and a similar model used by Pak et al.35 In addition to fundamentally improving

the accuracy of a model at small scales, studying process crucial to energy storage (ion adsorption,

desorption, and exchange in individual pores, diffusive behavior in larger particles, and filling ca-

pabilities in tortuous materials) requires models with more realistic pore networks at larger slaces.

A simple approach to this may be templating a QMD or HRMC process with solid components,

i.e. rigid rods, that bias the system toward containing some amount of longer, inter-connected

networks. This ideas is inspired by many porous carbon synthesis techniques that use zeolites or

mesoporous silica as temporary templates for well-controlled carbon structures.

Lastly, as discussed above, an alternative to QMD is HRMC, which attempts to reconstruct an

atomistic structure via many Monte Carlo moves that drive the system toward a target objective.

This can be thought of as reverse engineering at the molecular scale. The primary appeal of this

technique is that the target can be an defined arbitrarily with any objective function (or, in HRMC

jargon, error norm). The simplest is attempting to minimize the error between an RDF computed

on-the-fly and a target RDF that can be generated from experimental data or otherwise by any

other desired theoretical method. For better convergence and model accuracy, it is often useful
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to add other terms that constrain the system to some physically reasonable configurations.54 (This

distinguishes HRMC from simple RMC.) Different approaches, such as adding an overall potential

energy term,51 its square112 or other terms that drive C-C-C angles toward 120° instead of 60° and

under-coordination have been explored. These ideas can be expanded upon to include terms that

refine structure on larger length scales, such as fitting to small-angle X-ray or neutron sacttering

(SAXS8 or SANS) data or calculating on-the-fly some metric that characterizes the global connec-

tive of the pores. It is difficult to perscribe in detail such an objective function, but it would be

invaluable in efforts to accurately model nanoporous carbons.
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Chapter 4

Structure, Dynamics, and Thermodynamics of Solvated Ionic Liquids

Ionic liquids have many appealing physical properties, from their thermal, chemical, and elec-

trochemical stability to their vast chemical functionality that enable utility in numerous applica-

tions. Across many applications, however, the inherently slow dynamics of ionic liquids provide

some limitations. As electrolytes in energy storage devices, for example, the low molecular diffu-

sivity of ionic liquids can limit the rate-handling capabilities and power densities of electrical de-

vices.1 In heterogeneous catalysis, slow dynamics as solvent can impact the rates at which reagents

are transferred to and reaction products removed from a catalytic surface. Relevant to energy ap-

plications broadly, their slow dynamics (and large non-polar constituencies) result in relatively low

ionic conductivities for a class of molecules that are purely ionic.

Therefore, for applications in which transport properties are particularly important, ionic liq-

uids are sometimes dissolved in organic solvents. This chapter includes a years-long investigation

into the impacts of mixture concentration and solvent properties on the dynamics of ions in such

mixtures. This work has been published in three peer-reviewed manuscripts,2–4 another currently

in review5 and one more in progress.

4.1 Background

A major drawback of using ionic liquids in energy-relevant applications is their inherently

slow dynamic properties.6–11 Compared to conventional electrolytes such as aqueous electrolytes

based on alkali metal halides, ionic liquids have lower ionic conductivity,12 which limits their

rate handling capabilities in the case of supercapacitors.1 They also exhibit low molecular diffu-

sivity,13–15and high viscosity,16 which similarly limits their potential uses in other applications.

One approach to mitigating these slow dynamics is by dissolving ionic liquids in organic solvents

such as acetonitrile and propylene carbonate.2,17–22 This solvation significantly enhances transport
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properties, thus increasing power density and possibly rate-handling capabilities. Energy den-

sity can be impacted by a narrowed electrochemical window, but some studies indicate that the

voltage window is still wide - sometimes even as wide as the neat ionic liquids themselves - but

consistently much wider than aqueous electrolytes.23–26 Pech et al. compared four different su-

percapacitor designs, each using a solvated RTIL and a different electrode, and found that they

exhibited three to five orders of magnitude greater power density than Li-ion batteries, with varied

energy density performance.27 Lewandowski et al. studied four ionic liquids solvated in acetoni-

trile and propylene carbonate and found that, compared to their neat state, they exhibited slightly

decreased energy density (∼5-30% less) but greatly increased power density, up to an order of

magnitude in improvement.28 Other studies25,29 have offered similar comparisons of the dynamic

performance of supercapacitors based on neat and solvated RTILs, again showing that solvation

greatly increases power density. A review article by Zhong et al. provides a comprehensive (if

somewhat outdated) summary of the performance of many supercapacitors and comparisons be-

tween aqueous and organic electrolytes.

These preliminary studies each indicate that ionic liquids in organic solvents can be used to de-

sign supercapacitors with high power density and energy density. To date, however, relationships

between solvent properties and device performance are poorly understood, largely due to practical

scope limitations. With nanoscale materials that push the known limits of energy and power den-

sity, it is easier to conceive of interesting electrolytes than rigorously synthesize, characterize, and

fully understand the property-performance relationships relevant to device design. Most electro-

chemical studies28,30 select acetonitrile or a carbonate-based solvent such as propylene carbonate

and comparatively little work has been done to thoroughly explore novel solvents31,32 or under-

stand connections between physiochemical properties of the solvent and electrolytes and device

performance. Solvent selection appears to be a matter of what is on hand or what is traditionally

used and less about what produces ionic liquid mixtures with optimal properties. This chapter

encompasses a set of studies aimed at exploring these relationships using molecular simulation,

neutron experiments, and a screening approach. We consider only one ionic liquid, 1-butyl-3-
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methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM+][TF2N-]), but 22 unique (neu-

tral) solvents (vide infra). Future studies, perhaps guided by enhancements in computational per-

formance, may evaluate a greater set of ionic liquids as well.

The work included in this chapter encompasses several manuscripts, two of which have been

been published in peer-reviewed journals,,2,3 two more that are currently in review,4,5 and another

that is in the early stages of preparation.

4.2 Methods

4.2.1 Scope of Study

The initial set of systems investigated how cation diffusivity was impacted by two mixture

properties: solvent concentration and chemical identity of the solvent. Four mixtures were used to

study each trend, for a total of seven unique physical statepoints (one system covered both).

Ionic liquid were dissolved in four solvents: acetonitrile (ACN), dichloromethane (DCM),

methanol (MeOH), and tetrahydrofuran (THF). These solvents are all polar (ionic liquids tend to

phase separate in non-polar species33–37) but represent a range of physiochemical properties, sum-

marized in Table 4.1. The same ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

([BMIM+][TF2N-]) was used throughout and the composition was held fixed at 0.50 mass fraction

in order to best compare across solvents of different sizes. Additionally, four mixture concen-

trations (0.25, 0.50, 0.75, and 1.0 mass fraction ionic liquid) in acetonitrile were considered to

examine the effect of composition alone. Identical systems were used in experiments and simula-

tions.
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Table 4.1: Solvents used in the first study and some physical properties. The same four solvents
were used in MD simulations and QENS experiments.

Solvent Abbreviation Dipole moment, Debye Dielectric constant

Acetonitrile ACN 3.92 37.5

Methanol MeOH 2.87 32.7

Tetrahydrofuran THF 1.75 7.58

Dichloromethane DCM 1.60 8.93

A second set of systems, studied with molecular simulations only, is summarized below and

described in detail vide infra.
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Table 4.2: Solvents used in the expanded study and some physical properties.

Solvent Dipole moment, Debye Dielectric constant

Acetonitrile 3.92 37.5

Butyronitrile 69.12 20.7

Adiponitrile 3.76

Benzonitrile 4.18 26

Methanol 1.69 32.7

Ethanol 1.69 24.5

Butanol 1.66 17.8

Octanol 1.76 10.3

Dichloromethane 1.60 8.93

1,2-dichloroethane 0.87 10.36

Chlorobenzene 1.60

Ethylene carbonate 4.81 95.3

Propylene carbonate 4.94 64

Acetone 2.91 20.7

Cyclohexanone 2.90 18.2

Dimethylsulfoxide 3.96 46.7

N,N-dimethylformamide 3.86 36.7

Dimethylacetamide 3.72 37.8

Tetrahydrofuran 1.63 7.58

Glyme 2.68 42.5

Diglyme

1,4-Dioxane 2.2
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4.2.2 Force Fields

Throughout this chapter, ionic liquid molecules were described with the popular CL&P force

field of Canongia Lopes & Pádua et al..38–40 This force field was derived from the even more

popular OPLS-AA force field of Joregensen and many co-workers41–43 which largely reproduces

many physical properties of organic molecules. This design choice of the CL&P authors allows it

to stand on the shoulders of giants; by using common functional forms and matching parameters

when chemically sensible, the two force fields can be mixed - applied to separate components in a

single system - with reasonable confidence in the accuracy of the resulting properties. We chose

to do just this; all solvent molecules were described with the OPLS-AA force field and the cross-

interactions between them and ionic liquid molecules were inferred by GROMACS according to

traditional Lorentz–Berthelot mixing rules.44,45 For all simulations, partial charges on ionic liquid

molecules were scaled by a factor of 0.8.46

4.2.3 Classical Molecular Dynamics Simulations

As this story has evolved, two sets of molecular dynamics simulations were collected. In

the first part, atomistic classical molecular dynamics (MD) simulations of bulk of ionic liquid

mixtures were performed in the software package GROMACS 5.1.47 Initial configurations were

generated via PACKMOL48 For each system, the initial cubic box length was 7 nm. 200 ion pairs of

[BMIM+][TF2N-] were added and then solvent molecules were added such that that mass fraction

of ionic liquid in each box was 0.50. Ionic liquid concentrations and final box sizes are summarized

in Table 1. Steepest-descent energy minimization was performed for 1000 steps to relax any initial

unfavorable interactions as PACKMOL does not include energetic considerations. Then, NPT

simulation was performed for 30 ns with a 1 fs timestep. The reference temperature and pressure

were 300 K and 1 bar, respectively. Temperature was controlled with the v-rescale thermostat and

pressure was controlled with the Berendsen barostat. Data was sampled from the final 10 ns of

each trajectory, ensuring that only equilibrium states were sampled. Diffusion coefficients were
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calculated via the 3-D mean-square displacement relationship using GROMACS’s built-in tools as

<r2> = 6Dt. Selections of the solvent, total IL, and cation were considered.

In the second set of simulations, each followed a similar routine with small differences minimal

enough to not be expected to affect the interpretation of the results. The same force fields as

before were used, system sizes were similar, and systems were controlled with the same reference

temperature and pressure of 300 K and 1 bar. The barostat was changed to Parrinello-Rahman,

2000 steps of energy minimization were performed, and a more rigorous equilibration routine was

added. Previously, there were no issues with vapor-liquid equilibria expanding the box to a gas

phase, so a single NPT simulation was sufficient. Here, to keep these systems in the liquid phase

during equilibration, we began with a 100 ps NVT simulation followed up by a 1 ns simulation at

10 bar and then a a 1 ns simulation at 1 bar. Finally, the production run remained at 30 ns in length

but a timestep of 1.5 fs was used and the entire trajectory was used in statistical analysis (instead

of only the final 10 ns).

4.2.4 Free Energy Calcuations

Two sets of free energy calculations were carried out as part of this story. Both attempt to

reconstruct the same free energy profile but employ different methods. Free energy methods, in

general, attempt to calculate the free energy associated with a thermodynamic transition across

some reaction coordinate. This reaction coordinate can be a simple variable such as intermolecular

distance or an arbitrarirly complex set of collected variables. In this case our reaction coordinate

is the intermolecular separation of a single cation and a single anion in solvent at infinite dilution.

This characterizes the thermodynamics of ion dissociation in solution, or equivalently, the solvation

energy of this ionic liquid in solvent.

The first set of calculation uses the weighted histogram analysis method WHAM49,50 method

to determine a free energy profile. First, a set of configurations along the path of the reaciton

coordinate must be generated; in this case that means a set of configurations in which a single

ion pair is separated by different distances, from directly in contact (center-of-mass spacing of
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approximately 0.5 nm) to sufficiently large distances that their interactions have decayed to small

values. For most molecluar models approximately 2-3 nm is considered sufficient as it exceeds the

cutoff values of typical pair potentials. The pull code in GROMACS 5.147 was used to generate the

discrete configurations starting from two ions in a paired state to 3.5 nm in separation. At each of

these configurations, a spring along the reaction coordinate was used to bias the configurations in

place during short sampling simulations. From each of these simulations, histograms of frequency

along this path were generated; in this case that corresponds to histograms of interatomic positions.

The wham module within GROMACS was used to collect these histogram and invert them into a

free energy profile.

A second of free energy calculations used the recent Accelerated Weight Histogram (AWH)

method of Lidmar et al.51 as implemented in GROMACS by Lindahl et al..52 AWH builds on the

same principles of WHAM but is both more robust and simpler to implement. Instead of building

set of N discrete configurations, applying springs to bias each configuration in place, and sampling

from these N simulations, AWH involves running only one simulation. AWH adaptively guides

the simulation along the reaction coordinate, generating the free energy profile on-the-fly and pe-

riodically directing the system toward under-sampled regions. Note that while traditional WHAM

simulations involve many simulations with different springs, these springs typically have the same

force constant. Effectively, AWH does in a single long simulation what WHAM alone would take

tens or perhaps hundreds of shorter simulations. This is not necessarily an inherently cheaper

method, but in practice can be much cheaper by more intelligently sampling the thermodynamic

space.

4.3 Experimental Methods

4.3.1 Quasi-Elastic Neutron Scattering

Quasi-elastic neutron scattering (QENS) experiments were conducted by Naresh C. Osti and

Eugene Mamontov of Oak Ridge National Laboratory (ORNL). These experiments utilized the

67



BASIS backscattering spectrometer15 at ORNL. The scattering of neutrons are particular sensitive

to hydrogens, moreso than other atomic species. The selected ionic liquid anion contains no hy-

drogens but the cation contains many. In order to isolate the behavior of the cations, deuterated

solvents were used.

In short, QENS experiments involve directing a neutron beam at a sample and detecting the

scattered neutrons. In the regime of the so-called elastic approximation, there is a small amount

of energy transferred to the sample. The amount of energy can be computed from differences in

the wave vectors of the scattered neutrons, as measured from the detector, and incoming neutrons.

The frequency, of scattered neutrons, as a function of energy gained or lost during scattering can

be used to back out diffusivities of the sample using Lorentzian fits. QENS is commonly used

for studying slow dynamic processes in viscous fluids but is particularly useful compared to other

methods, i.e. NMR, because it can detect molecular motion in confined systems.

Table 4.3: Solvents used in the second set of QENS experiments and some physical properties.
Note these are a subset of the solvents used in the computational screening study, see Table 4.2.

Solvent Abbreviation Dipole moment, Debye Pure solvent diffusivity, 10−10m2 s−1

dichloromethane DCM 1.60 15.7

octanol Octanol 1.68 0.4

butanol BuOH 1.66 2.7

tetrahydrofuran THF 1.75 8.5

4.3.2 Ionic Conductivity Measurements

Conductivity experiments on the same samples were conducted by Katherine L. Van Aken of

Drexel University. Conductivity of the [BMIM+][TF2N-] in four solvents was measured using an

EP357 Conductivity isoPOD (eDAQ, USA) which was first calibrated with a 0.1 moldm−3 solution

of KCl. The different concentrations of [BMIM+][TF2N-] in each four solvents were determined

by calculating mass fraction [BMIM+][TF2N-] in a total solution volume of 0.75 mL.

68



4.4 Results of Initial Systems

Table 4.4: Summary of cation diffusivities as predicted by QENS and MD.

Solvent DMD DQENS

Acetonitrile 9.367 11.8

Methanol 7.764 6.39

Tetrahydrofuran 3.414 5.12

Dichloromethane 3.396 2.99

Representative snapshots of MD systems are provided in Fig. 4.1 and Fig. 4.2.

4.4.1 Concentration-Dependent Ion Dynamics

We first consider the relationship between mixture composition and ion diffusivities. Our re-

sults indicate that cation diffusivity depends strongly and monotonically on mixture composition.

A summary, including results from both MD simulations and QENS experiments, is presented in

Fig. 4.3. Cation diffusivity is greater in all mixtures than in a neat ionic liquid and and increases

smoothly as the composition of ionic liquid decreases. We interpret this on the basis that solvents

disrupt the strong ion-ion interactions that produce slow dynamics, allowing for greatly enhanced

ion mobility. There is also some contribution from the simple nature of a solute diffusing in a

solvent medium (small organic solvents) that is more mobile than another (bulky ionic liquids).
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Figure 4.1: ]

Representative snapshot of bulk [BMIM+][TF2N-] rendered using Visual Molecular Dynamics

(VMD).53,54 The cubic box is approximately of length 4.6 nm. Atoms are drawn with spheres

scaled approximately to their Van der Waals radii. Colors roughly follow traditional CPK

coloring: hydrogen (white), carbon (cyan), nitrogen (blue), oxygen (red), fluorine (pink), sulfur

(yellow).
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Figure 4.2: Representative snapshot of [BMIM+][TF2N-] solvated in acetonitrile at an ionic liquid
mass fraction of 0.25. Box lengths are approximately 5.4 nm. Ionic liquid molecules are repre-
sented the same as in Fig. 4.1 but, to highlight the structure of the ionic liquid molecules, solvent
molecules are drawn with thin silver cylinders representing their bonds.
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Figure 4.3: [BMIM+] diffusivity in acetonitriles as a function of ionic liquid composition, as pre-
dicted by MD (black spheres) and measured by QENS (red spheres).

4.4.2 Solvent-Dependent Ion Dynamics

In an attempt to determine how to best promote ion mobility via selection of solvent, we also

investigated how solvation in each of the four solvents affects ion dynamics. It is not generally

useful to plot a smooth, continuous variable against a categorical variable, so we selected a solvent

property in order to investigate possible trends. We chose the polarity of the solvent, measured by

the dipole moment in units of Debye. Fig. 4.4 shows cation diffusivity in these four solvents as a

function of the dipole moment of the solvent, using reference values. With this available data, it

was concluded that solvent polarity governs ion mobility in these mixtures. We hypothesize that,

similar to concentration effects, this is because solvents of greater polarity are more capable of

screening the coulombic interactions between ions, freeing them up to diffuse in a more mobile

manner.
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Figure 4.4: [BMIM+] diffusivity in select solvents at 0.50 mass fraction, as predicted by MD (black
spheres) and measured by QENS (redspheres). Dashed lines indicate linear fits to each set of data.

4.4.3 Free Energies of Ion Solvation

In order to understand these trends, we turned to free energy calculations. The WHAM method

was used to generate potentials of mean force (PMFs), which in this case attempt to describe

the free energy associated with interatomic separation. Studying free energy along this reaction

coordinate is a viable proxy for thermodynamics of solvation and desolvation. The same force

fields used in the bulk simulations were used here. The systems, however, included only a single

ion pair in order isolate the effect of solvent and not the interactions with other ions. These PMFs,

up to a separation of 3 nm, are shown in Fig. 4.5. There is a clear correlation between energy

barriers and ion dynamics; solvents with lower solvation energies produce mixtures with greater

ion diffusivity. From lower to greater cation diffusivity, the order of solvents is THF ~DCM <

MeOH < ACN and from and from higher to lower energies the order is DCM > THF > MeOH >

ACN. These results provide thermodynamic data supporting the hypothesis that screening ion-ion

interactions is responsible for the enhancement of ion mobility in organic solvents.
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Figure 4.5: Free energy profiles, expressed as potentials of mean force (PMFs), as a function of
the cation-anion, derived from MD simulations. A single [BMIM+][TF2N-] ion pair was mixed in
each solvent at infinite dilution. The energy scale is defined such that the minimum energy is zero.
The energy associated with separating an ion pair correlates with the dipole moment of the solvent.

4.5 Results of Computational Screening

A limitation of the above work is the small scope of study. While the trends were smooth and

consistent with a reasonable physical interpretation, each conclusion was drawn from a limited (4)

number of samples. This is common in science given the cost of collecting large amount of data. It

is useful, whenever possible, to interrogate observed physical phenomena by gathering more data

and evaluating whether or not prior trends hold true.

There has been a major push in the past few years to move molecular simulation toward auto-

mated screening. Many scientific findings are improved by finer stepping-through within a param-

eter space and replacing discrete, disparate points in this parameter space with smoother curves.

This is especially true for chemistry given the vastness of the possible physical statepoints in chem-

ical space. While this sort of grand screening is difficult to do in most experimental probes (at best,

most systems experiments have a linear scale-up of cost as a function of statepoints, although some
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fields have made use of robots to challenge this) there are fewer fundamental limitations for the

automated screening of this space to be done with computational models.

The portion of chemical space encompassed by systems containing ionic liquids is vast and

largely unexplored. The number of neat ionic liquids - those with one cation, one anion, and no

other components - was estimated on the order of billions almost two decades ago55 and estimates

of as high as 1018 have been suggested.56 Consideration of mixtures of ionic liquids with other

ionic liquids or solvents grows this figure by many orders of magnitude.56 Unsurprisingly, most

existing literature, even review papers, covers an extremely small subset of this space. The scale

of this problem necessitates computational approaches; even modest ventures into this space are

not feasible to do with experiments alone. Synthesis at high purities can be difficult for ionic

liquids, especially novel ones, and to date, only a small fraction of possible ionic liquids have

been synthesized at all. Additionally, the amount of characterization necessary to understand their

structure, dynamics, and thermodynamics via experiments is virtually intractable. Computational

screening can provide preliminary searches through this space, providing predictions of molecular

and macroscopic physical properties that experiments can later examine. Efforts in this direction

have already begun.57–61

To accomplish this screening approach for our solvent systems, we have employed the Molec-

ular Simulation and Design Framework (MoSDeF) software suite.

4.5.1 Revisiting Concentration-dependent Ion Dynamics

Bulk diffusivities were computed from mean squared displacements (MSDs) using the same

Einstein relation used above. It is useful to evaluate individual components of each system. There-

fore, in addition to the mixture as a whole, we consider the solvent, each ion, and the overall

ionic liquid as selections. We previously isolated cation dynamics from our molecular dynamics

simulations because the QENS experiments exclusively track the cations (the [TF2N-] anion has

no hydrogens but the [BMIM+] cation has several). For the case of [BMIM+][TF2N-], which was

used in both that study and this one, the cation and anion exhibit nearly identical bulk diffusivities.

75



Therefore, the cation, anion, and overall ion dynamics can be interpreted interchangeably with

each other, though this relationship should not be regarded as a general feature of ionic liquids.

Here we will consider the overall ion dynamics.

Two diffusivities were computed for each selection: one from an MSD of the entire 30 ns

trajectory and another when slicing it into 20 sections, each 1.5 ns slice comprising a shorter MSD,

and averaging the diffusivities from each slice. This was done to gather statistics on the sampling

error for each diffusivity. The two methods produce similar results and are further discussed in the

Appendix.

First, we revisit one of the two major conclusions of our prior work, which is a monotonic

increase in cation diffusivity as the composition of solvent is increased. This result is consistent

with intuition given the slow dynamics of neat ionic liquids relative to the pure organic solvents,

but the structural and energetic complexity of these interactions should cast doubt on how strongly

such physiochemical relationships should hold. That being said, we observe, using our larger

parameter set, the same trend as before, summarized in Fig. 4.6.

It is worth noting that this trend is monotonic over the entire composition range, and no plateaus

or discontinuities are obesrved. Given the tendency for many ionic liquids to phase separate into

nanostructural domains62–64 in neat and in polar solvents and completely phase separate in non-

polar species,33–37 this observation implies that the transition from dilute ions and/or ion pairs

to neat ionic liquids is smooth and lacks any discontinuous transition, i.e. there is no critical

composition at which pairs move from dense ionic liquid phases to dissociated ion pairs. Chemical

intuition would suggest polar solvents are better than non-polar solvents at dissolving ionic liquids

and these results support that idea.
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Figure 4.6: Ion diffusivity as a function of mixture composition. Mixtures are grouped by the
chemical family of the solvent, which is used to color the lines and markers. Error bars are included
as vertical lines, though many are smaller than the width of the dots. Straight line segments are
drawn connecting data points with common solvents. The grey star indicates the diffusivity of the
neat ionic liquid.
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4.5.2 Revisiting Solvent-Dependent Ion Dynamics

Next, we revisit the relationship between solvent polarity and ion diffusivity that was the fo-

cus of our prior study.2 Previously, we considered acetonitrile, methanol, dichloromethane, and

tetrahydrofuran and found that solvents with greater solvent polarity produced mixtures that ex-

hibited greater ion diffusivity. A more rigorous summary of our larger data, which considers 22

solvents, set is presented in Fig. 4.7.

While a general trend of increasing solvent polarity as a function of dipole moment is observed

for subsets of the data, there exists no strong correlation when considering the entire data set.

One could isolate the solvents we previously used as see they do not generally follow the same

trend as this data set. Mixtures with acetonitrile (D = 3.92) exhibited the largest diffusivity of all

solvents, but mixtures with DMSO (D = 3.96) and propylene carbonate (D = 4.94) each exhibited

slower diffusivity than acetonitrile despite their similar and higher molecular dipole moments,

respectively. Further, mixtures with methanol (D = 2.87 D) and acetone (D = 2.91 D) exhibited high

diffusivity with lower polarity. These results imply that solvent polarity is not the only contribution

to ion transport in ion liquid mixtures and in order to better inform design of ionic liquid mixtures

with enhanced transport properties, other solvent properties must be considered.

Note that solvent polarity is only one solvent property; others could be better predictors of the

properties of ionic liquid-solvent mixtures. We first chose to look at a simple solvent property,

molecular weight, for the possiblity it correlates better with ion diffusivity than polarity. Shown

in Fig. 4.8, this relationship appears to be much stronger: solvents with greater molecular weight

tend to produce mixtures with slower ion diffusivity.

We next looked at correlations with the dielectric constant of the solvents. We used the built-in

tools of GROMACS47 to estimate the dielectric constants for each of the 22 unique solvents stud-

ied. Specifically, the dielectric constants are estimated by computing the dipole-dipole correlation

function which determines the total dipole moment of the system.65 Using the total dipole moment,
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Figure 4.7: Ion diffusivity as a function of solvent polarity. Data points are arranged from top to
bottom in order of increasing ionic liquid composition — for any species, the highest diffusivity
corresponds to the most dilute mixture mixture and the lowest value corresponds to the most con-
centrated (0.1 and 0.95 mass fraction). The dashed horizontal line indicates the ion diffusivity of
the neat ionic liquid.
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the dielectric constants are calculated with the following equation:

ε−1
3

2εr f +1
2εr f + ε

=
〈M2〉

9ε0V kBT
(4.1)

where ε0 is the vacuum permittivity, V is the volume, kB is Boltzmann’s constant, T is tempera-

ture, 〈M2〉 is the total dipole moment, and εr f is the dielectric permittivity of the continuum. Ion

diffusivities are plotted as a function of solvent dielectric constants in Fig. 4.9. A stronger trend

than other solvent properties is observed.

Next, we investigated the relationship between ion diffusivity and solvent diffusivity, computed

from pure solvent simulations. In Fig. 4.10, we observe a more robust trend between ion diffusivity

Dion and pure solvent diffusivity Dsolvent . Note that these solvent diffusivities are extracted from

independent simulations of pure solvent, not the solvent component of the ionic liquid mixture

simulations. This result is intuitively reasonable; sluggish ionic liquid molecules are more likely

to exhibit increased molecular diffusivity in an environment of molecules with faster motion. The

results are consistent with a Stokes-Einstein picture of ion mobility. According to Stokes-Einstein

theory, Dion should scale as the inverse of the solvent viscosity ηsolvent - i.e., Dion ∼ η
−1
solvent . How-

ever, liquid diffusivity generally scales inversely with viscosity, so in particular for these solvents,

Dsolvent ∼ η
−1
solvent , thus leading to Dion ∼ Dsolvent , as we observe from the simulation results.
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Figure 4.8: Ion diffusivity as a function of solvent molecular weight. Data points are arranged
from top to bottom in order of increasing ionic liquid composition. The dashed line indicates the
ion diffusivity of the neat ionic liquid.
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Figure 4.9: Ion diffusivity as a function of solvent dielectric constant. Data points are arranged
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diffusivity corresponds to the most dilute mixture mixture and the lowest value corresponds to
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Figure 4.10: Ion diffusivity as a function of pure solvent diffusivity. Data points are arranged from
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4.5.3 Ionic Conductivity

Next, we consider the ionic conductivities of these mixtures in an effort to investigate how

solvent properties impact bulk electrical performance. In accordance with previous works, we

began by estimating the conductivity by using the ideal ionic conductivity as a proxy. This can be

computed from known values via the Nernst-Einstein (NE) equation:

σNE =
N

kBV T
(q2

+D++q2
−D−) (4.2)

where N is the number of ion pairs, kB is Boltzmann’s constant, V is the volume of the system, T

is absolute temperature, q+,q− are molecular charges and D+,D− the diffusivities of the positive

and negative ions, respectively.

A more rigorous method for computing the ionic conducivity is the the Einstein-Helfand (EH)

equation:

σEH =
1

6V kBT
lim
t→∞

d
dt
〈[ ~MJ(t)− ~MJ(0)]2〉 (4.3)

where translational dipole moment is defined as:

~MJ(t) = ∑
i

qiri(t) (4.4)

and ri is the center of mass position of ion i and qi is the charge of ion i. Furthermore, 〈[ ~MJ(t)−

~MJ(0)]2〉 is equal to ∑i [ ~MJ(t)− ~MJ(0)]
N . Unlike the NE equation, the EH equation considers the ef-

fects of correlated ion motions on conductivity..66–69 Where σNE can be thought of an ideal ionic

conductivity, it is reasonable to consider σEH a more direct measure of ionic conductivity, i.e.

what would be measured in an experimental setup. Nonetheless, NE is a sufficient approxima-

tion to use for the purpose of qualitatively evaluating trends and is commonly employed in the

literature.10,70,71

A summary of the relationship between ideal ionic conductivity and mixture composition is

presented in Fig. 4.11. In agreement with prior works, including our own,2 the maximum con-
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Figure 4.11: Ideal ionic conducivity as a function of ionic liquid composition. Ideal ionic conduc-
tivity is highest at intermidate ionic liquid compositions.

ductivity is observed at intermediate compositions. This is due to the counterplay between faster

ion dynamics resulting from greater solvation and, by definition, the decrease in ionic density that

results in fewer charge carriers: neat ionic liquids exhibit moderate conductivity; however, in the

limit of infinite dilution, ion dynamics approach bulk solvent dynamics, but the capacity to carry

charge is inherently lost. In most solvents, conductivity maxima are observed near equimass com-

positions of ionic liquid and solvent. Notable here is that acetonitrile-based mixtures exhibit the

greatest conductivity of any mixture over the entire range. This implies that acetonitrile should

remain a popular solvent for electrochemical applications. However, these results indicate the

existence of viable alternatives if acetonitrile is to be avoided.

Next, we look at the ionic conductivity estimated through the EH formalism, shown in Fig. 4.12.

The noise in the data is a consequence of the calculation methods: NE is a per-molecule method

that allows for averaging over each atom in the system whereas EH is a global measure of the
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Figure 4.12: Einstein-Helfand conductivity as a function of ionic liquid composition. Like Nernst-
Einstein, the Einstein-Helfand conductivity is highest at intermediate compositions.

entire systems and thereforce produces noiser statistics. The EH conductivities follow the same

trend as NE conductivities with maxima located roughly in the range of 0.3-0.6 mass fraction

[BMIM+][TF2N-]. The solvent mixtures with the highest ionic conductivities as calculated by EH

are those containing acetonitrile, methanol, and acetone. These are the same solvents that pro-

duced mixtures with the highest ideal ionic conductivity, as measured by NE earlier. While there

are quantitative differences between these two methods, the qualitative conclusions are similar.

However, it can be useful to quantatively compare the methods using the ratio α , defined as

α = σNE/σEH (4.5)

where σNE and σEH are the conductivities calculated by Nernst-Einstein and Einstein-Helfand,

respectively. Consistent with similar studies, this ratio is less than 1.0 for most systems; equiva-

lently, σNE > σEH . The Einstein-Helfand formalism is considered more rigorous and is believed to
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produce more accurate esimates of ionic conductivity, so we take NE conductivities as an overesti-

mate. This error is typically attributed to the assumption that ion motion is decorrelated; see earlier

discussions of ionicity as reported by both simulations and experiments. It is worth pointing out,

despite the large amount of noise in this data, that some groupings according to the chemical fam-

ilies of each solvent. The lowest α values are obseved for some halocarbons (yellow) and glymes

(red), implying ion pairing is stronger in these than other solvents.

There are a small number of mixtures in Fig. 4.13 with α > 1. While this is not commonly

observed in ionic liquids, Salanne et al. found it in viscious mixtures of the molten salts LiF

and BeF2.69 They attributed this observation to cooperative motion as promoted by channel-like

structures formed in the solvent. Rather than hindering their motion, this view implies that the

correlated nature of ions can actually improve conductivity. Although the σEH data, and therefore

α values, are somewhat noisy, it is evident that the most common cases of α > 1 occur with two

of the most viscous solvents, adiponitrile and diglyme. This is consistent with the interpretation of

Salanne et al., however, given the inherently slow dynamics of these mixtures it is difficult to take

advantage of this effect in viscous solvents compared to solvents with lesser viscosity. This may

be useful in other applications in which design contraints force the use of viscous solvents or it is

desirable to have viscous solvents but higher ionic conductivity.

These conclusions from computational screening were evaluated by, and supported by, exper-

imental conductivity measurements. A comparison between simulation predictions and experi-

mental results for a subset of the studied solvents is presented in Fig. 4.14. We selected acetone,

dichloromethane, and methanol, which were among the solvents that produced mixtures with the

highest conductivity. The trends observed in experiment are consistent with our simulation re-

sults: a moderate composition of approximately 0.4 to 0.6 mass fraction ionic liquid produces

mixtures with the highest conductivity. In addition, the relative conductivity of [BMIM+][TF2N-]

in acetone, dichloromethane, and methanol at low mass fractions, derived from the computational

studies, (σacetone > σmethanol > σdichloromethane is also seen experimentally. Interestingly, in the

simulations there is a crossover from σacetone > σmethanol to σacetone < σmethanol occurring at an
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Figure 4.13: A ratio of Einstein-Helfand conductivity and Nernst-Einstein conductivity.

ionic liquid mass fraction of 0.4; the experiments also suggest a similar crossover, though occur-

ring at higher mass fraction. Discrepancies between values from experimental measurements and

simulation data are likely the result of inaccuracies in the force field.
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4.5.4 Liquid Density

We begin structural evaluation of these ionic liquid-solvent systems by considering their density

as a function of composition. Figs. 4.15 and 4.16 shows that these densities change monotonically

and smoothly as a function of composition. They appear to roughly follow a simple mixing rule for

all compositions outside of the dilute ionic liquid range. All solvents have lesser bulk densities than

that of the ionic liquid, and the densities of all mixtures fall between that of the the pure solvent and

ionic liquid components. After converting from thinking about liquid density to specific volume

(on a mass or molar basis), we consider a simple mixing rule to define an ideal density of mixing:

V̂expected = xILV̂IL + xsolventV̂solvent (4.6)

where V̂i and xi refer to the specific volume of the bulk liquid and the the composition of component

i, respectively. These variables can be considered on a mass or molar basis. One can also define

the excess density of mixing

V̂excess = V̂measured−V̂expected (4.7)

which characterizes deviations from ideal liquid behavior. Negative excess volumes can be inter-

preted as thermodynamically favorable interactions between species and positive values the oppo-

site. Summaries for this data set are included in Figs. 4.17 and 4.18. Numerical values (on the

order of 1 cm3 mol−1 are similar to existing works.72–75) For most mixtures the strongest devia-

tion from ideal mixing is observed at intermediate compositions of approximately 0.1 - 0.2 mol

fraction. All mixtures exhibit negative excess molar volumes, indicating their mixing is thermody-

namically favorable. There are some differences among solvents, particularly clear when grouping

solvents by chemical family. The most favorable mixing is observed in some nitriles, alcohols, and

acetone. It is worth noting that solvents producing the greatest abvolute values of V̂excess also tend

to produce the fastest transport properties (see Figs. 4.6, 4.11 and 4.12).
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Figure 4.15: Liquid density, ρ , of ionic liquid-solvent mixtures as a function of ([BMIM+][TF2N-])
mass fraction.
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Figure 4.16: Liquid density, ρ , of ionic liquid-solvent mixtures as a function of ([BMIM+][TF2N-])
mol fraction.
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Figure 4.17: Excess molar volume, V̂excess, as a function of [BMIM+][TF2N-] mass fraction.
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Figure 4.18: Excess molar volume, V̂excess, as a function of [BMIM+][TF2N-] mol fraction.
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4.5.5 Radial Distribution Functions

Next we consider the local structure as defined by radial distribution functions (RDFs), focus-

ing on pairs of cations and anions. In lieu of presenting hundreds of such plots or a single plot

with 396 curves, we present summaries in Fig. 4.19 and Fig. B.3. We track the location and mag-

nitude of the first peak, rpeak1 and gmax = g(rpeak1), respectively. These correspond to the common

cation-ion pairing structure characteristically observed in ionic liquids. The distances in r space

this is observed, rpeak1, are largely insensitive to the properties of the solvent and appear to mostly

be a function of the selection of ionic liquid, which was held constant in this study. In contrast, we

observe that heights of these peaks, gmax, depend strongly on the properties of the solvent and the

composition of the mixture. Most notably, these values spike in the limit of low ionic liquid com-

position. While the numerical values are somewhat inflated by the nature of normalizing RDFs

to dilute components, they indicate strong structuring of ionic liquid molecules. There is also

considerable variance in this behavior among different solvents. Mixtures in carbonyl-containing

compounds (i.e. propylene carbonate, ethylene carbonates, and dimethyl sulfoxide) display nearly

identical gmax values over all composition ranges and do not exhibit this spike at low concentra-

tions. Mixtures in halocarbons and glymes together make up the most structured systems and mix-

tures in nitriles, alcohols, and other glymes have this spike but of lesser magnitude. This demon-

strates that different chemical families of solvents give rise to substantially different ion structures

in these mixtures. In particular, halocarbons and glymes drive ions to pair strongly whereas other

solvents promote populations of free ions not bound to a neighboring counter-ion. This indicates

varying capacities of different solvents to screen charges: some solvents, particularly carbonates,

robustly screen ion-ion interactions, whereas others are much less effective.
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Figure 4.19: Location of the first peak of the RDF, gmax(rpeak1) as a function of ion concentration,
colored by the chemical family of the solvent.

4.5.6 Coordination Numbers

The coordination number (NC(r)) characterizes the molecular structure of a liquid by quantify-

ing the local structure around a molecule in terms of its average number of neighbors as a function

of intermolecular distance. It is defined as

NC(rC) = 4π

∫ rC

0
r2g(r)ρdr (4.8)

where NC(r) is the coordination number of some interatomic pair at some cutoff distance rC,

ρ is the bulk density of these pairs, g(r) is the corresponding radial distribution function, and r is

the intermolecular separation. Throughout we use rC = 0.8nm, which corresponds to the location

of the first well in a typical RDF, in order to focus on the nearest-neighbor ions. We also consider

only cation-anion pairs — co-ions exhibit much less coordination — and no direct correlations

with solvent molecules. A summary of the coordination numbers of these systems is presented
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Figure 4.20: Coordination numbers, NC, as a function of [BMIM+][TF2N-] mass fraction. Only
cation-anion ([BMIM+][TF2N-]) pairs are considered.

in Fig. 4.20. In all solvents, there is a monotonic increase in NC as a function of ionic liquid

composition, which is characteristic of the nature of concentrated electrolytes. It is worth pointing

out, however, all systems exhibit non-zero coordination numbers at low concentration, indicating

that all ions are neighbored by some population of ions, even in very dilute systems. Similar to

the solvents that displayed especially large gmax(r), NC varies greatly among different solvents.

At low concentrations, it is greater than 2 for some solvents and closer to 0.5 for others. At high

concentrations, solvent effects become less relevant and these curves converge toward a bulk value

near 5.

4.5.7 Ion Correlations

Ion correlations were computed for all 396 state points. We first analyzed the pairing lifetimes

of ions in solution as the ionic liquid composition is increased, shown in Fig. 4.21. We show ionic
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Figure 4.21: Ion pair lifetimes, τpair, as a function of a) mass fraction composition and b) mole
fraction composition. Straight line segments are drawn to connect data points of common solvents.

liquid composition in both units of mole fraction and mass fraction in order to better highlight the

trends with τpair. With the exception of octanol, which is one of the most viscous solvents studied,

τpair of most systems exhibit similar concentration dependence. In general, as concentration in-

creases from intermediate compositions toward the neat regime, τpair increases. This is an intuitive

result; given that ionic liquids have strong self-correlations and inherently slow dynamics, it is not

surprising that an increase in ionic liquid composition results in longer pairing lifetimes. Recall

Zhang et al. found a strong correlation between τpair and transport properties for a set of 29 neat

ionic liquids at a range of temperatures. There is, however, some amount of non-monotonic behav-

ior at low compositions. In particular, τpair increases dramatically in the dilute limit for chloroben-

zene, dichloromethane, dioxane, and cyclohexanone. These are some solvents we previously noted

as promoting strongly-structured ion pairs in solution. Other commonly-studied solvents such as

acetonitrile and propylene carbonate also show this behavior, but at a greatly lesser magnitude.

We attribute this largely to the interplay between the strong ion-ion interactions and the ability of

solvent molecules to screen them. In solvents that are less able to screen these interactions, ions

exist more often in a paired state, whereas in solvents that effectively screen them, the ions are

stable as free ions in solution.
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Figure 4.22: Ion cage lifetimes, τcage, as a function of a) mass fraction composition and b) mole
fraction composition. Straight line segments are drawn to connect data points of common solvents.

Next, we analyze the lifetime of ion casges, τcage, over the range of ionic liquid compositions,

shown in Fig. 4.24. These values are qualitatively similar to τpair, exhibiting a similar parabolic

concentration-dependence. Like τpair, the majority of τcage values have a minimum at intermediate

compositions and increase toward both the limit of dilute and neat ionic liquids. Their values

are similar at low concentration, τcage ≈ τpair, although differences between caging and pairing

lifetimes are observed at other concentrations. As composition increases, τcage increases slower,

resulting in τcage < τpair. Zhang et al. also observed this relationship for their set of neat ionic

liquids. This is largely a consequence of the definition of caging in a solvated system; in the limit

of infinite dilution, pairs and cages become equivalent. However, as more ions are added to a

system, cages are composed of more ions and there are more chances for a cage to "break" by

losing a single ion.
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Figure 4.23: Ion cage lifetimes, τcage, as a function of a) mass fraction composition and b) mole
fraction composition. Straight line segments are drawn to connect data points of common solvents.
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Figure 4.24: Ion cage lifetimes, τcage, as a function of mixture composition. Straight line segments
are drawn to connect data points of common solvents.
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4.5.8 State of Ions in Pairs

While we can compute the pairing properties above, we can also extract information about

the paired states of ions, if they are in pairs or free ions. Fig. 4.25 displays the fraction of ions

that are unpaired in each solvent as a function of [BMIM+][TF2N-] mass fraction. We first ob-

serve that each solvent displays a linear decrease in fraction of free ions as the composition of

[BMIM+][TF2N-] increases. We also observe that the differences in free ions between solvents

is greatest near the dilute regime of [BMIM+][TF2N-]. As the ionic liquid composition increases

towards the neat limit, the fractions of free ions converge. To further describe these differences

in free ions between solvents, the slopes of each curve were calculated and are shown in the sup-

plementary information. The slope of free ions versus composition for a significant portion of

solvents is roughly between -0.8 to -0.9, and at the neat limit of [BMIM+][TF2N-], most ions exist

in a paired state. There are several solvents including chlorobenzene, dichloromethane, octanol,

and 1,4-dioxane, that exhibit lower slopes. As such, a smaller fraction of ions in these solvents

are free at low compositions of ionic liquid. Through these structural analyses, we suspect that

some solvents such as dimethylsulfoxide, methanol, and acetonitrile are effective at screening ion-

ion interactions, resulting in a lower prevalence of ion pairing. Consistent with this view, these

solvents also exhibit a higher fraction of free ions. Furthermore, the solvents suspected to be less

effective at screening ion-ion interactions such as octanol, chlorobenzene, dichloromethane, and

1,4-dioxane, display a lower fraction of free ions in solution.
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Figure 4.25: The fraction of free ions in each solvent as a function of [BMIM+][TF2N-] composi-
tion.

4.5.9 Free Energy Calculations

To supplement existing transport and structural characterizaiton of these systems, we next in-

vestigate the thermodynamics of ion-ion pairing interactions in these solutions by computing PMFs

between [BMIM+] and [TF2N-]. Here, a PMF is defined as the reversible work required to bring

two molecules to separation r from infinite distance. The general formalism of a PMF is

φ(ε) =−ln
∫

π0(x)δ (ε− ε(x))dx,

where π0 is the equilibrium distribution of the system and ε is the reaction coordinate. Here,

the reaction coordinate is the intermolecular separation r. The PMFs of a single ion pair in each

solvent are displayed in displayed in Fig. 4.26. The minima of these free energy curves are also

summarized in Table 4.5. The PMF of of chlorobenzene approaches the most negative values,

meaning it requires more energy to separate a pair of [BMIM+][TF2N-] in this solution. Equiva-

lently, chlorobenzene is a poor solvent in terms of screening ion-ion interactions. In other solvents
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(octanol, dichloromethane, tetrahydrofuran, and benzonitrile) the PMFs also suggest that the inter-

actions between [BMIM+][TF2N-] ions are poorly screened. Recall that these solvents exhibited

characteristics of strong ion pairing as when looking at pair lifetimes (Fig. 4.21) and coordination

numbers (Fig. 4.20), which we attributed to the inability of these solvents to screen ion-ion inter-

actions. By comparison, the PMFs of in propyelene carbonate, ethylene carbonate, acetonitrile,

among several other solvents, are much less negative, showing that these solvents are more ef-

fective at screening ion-ion interactions. Overall, the ion-ion PMFs in solvents at infinite dilution

provides further evidence that the ability for solvents to screen ion-ion interactions significantly

impacts the prevalence of ion pairing, which drives many structural and dynamical properties of

these mixtures.

Solvent PMF Peak Minimum ( kJ
mol )

Propylene carbonate -3.16
Ethylene carbonate -5.15

Acetonitrile -6.74
Ethanol -11.24

1,2-dichloroethane -12.28
Dimethylsulfoxide -13.12

Methanol -13.54
Adiponitrile -15.81

Glyme -18.88
Acetone -19.13

Dimethylacetamide -19.67
NN-dimethylformamide -20.97

Butyronitrile -24.30
Butanol -27.74
Diglyme -36.07

Cyclohexanone -41.87
Tetrahydrofuran -48.02

Benzonitrile -49.34
Dichloromethane -62.56
Chlorobenzene -79.79

Octanol -94.28
1,4-dioxane -164.89

Table 4.5: Table of solvents and PMF peak minima values ( kJ
mol ). Solvents are listed from least

negative minima to most negative minima.
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Figure 4.26: PMFs of [BMIM+][TF2N-] in various solvents at infinite dilution. The curves have
been adjusted to decay to zero energy.
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4.5.10 Dielectric Constants

We next compare ion pairing with the dielectric constants of the solvents. Consistent with the

general picture of screening coulombic interactions, trends between the molecular polarizability

of solvents and various properties of solvated ionic liquids have previously been reported. For

instance, Osti et al. suggested solvent dipole moment as being an accurate predictor of ion dynam-

ics for [BMIM+][TF2N-] solvated in 4 various solvents.2 From our previous study, we reported

from a greatly expanded parameter space that solvent diffusivity is a more accurate predictor of

ion dynamics in comparison to solvent dipole moment. McDaniel et al. similarly looked at ion

pairing and the dielectric strength of solvents for solutions of [BMIM+][BF4
-] in 4 different sol-

vents. It was reported from this study that solutions containing solvents with with lower dielectric

strength exhibit longer ion pair lifetimes. To investigate the relationship between these two prop-

erties, we used the built-in tools of GROMACS47 to estimate the dielectric constants for each of

the 22 unique solvents studied. Specifically, the dielectric constants are estimated by computing

the dipole moment for all frames of a simulation trajectory. The ion pair lifetimes are plotted as a

function of solvent dielectric constants in Fig. 4.27. Upon looking at a portion of the solutions sim-

ulated by McDaniel et al., the trend between ion pair lifetime and solvent dielectric constants holds

well. 1,2-dichloroethane has the lowest dielectric constant out of the three solvents McDaniel et

al. tested, and exhibits the highest τpair. Following the trend, acetonitrile has the highest dielectric

constant and has the lowest τpair. Additionally, there are other solvent systems with chloroben-

zene and diglyme that follow this trend. The relationship between dielectric constant and τpair is

less clear however when the entire chemical space of solvents is considered. Octanol has a higher

dielectric constant compared to 1,2-dichloroethane, but the ions in these systems have a much

higher τpair. This is simililarly the case for systems containing dimethylesulfoxide, propylene car-

bonate, and ethylene carbonate. Overall, the monotonic decrease in τpair for systems containing

1,2-dichloroethane, acetone, and acetonitrile indicate that solvent dielectric constants play a rele-

vant role in ion pairing. Despite this, the other systems do not fit this trend, signifying there are

additional solvent properties and competing interactions within these systems that influence ion
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Figure 4.27: Ion pair lifetimes, τpair, of [BMIM+][TF2N-] solvent solutions as a function of solvent
dielectric constant.

pairing.

4.5.11 Connecting Structure and Dynamic Properties

To better understand the implications of the pairing and caging properties τpair and τcage, we

attempt to connect these structural properties to transport properties. Previously-computed ion

diffusivities are plotted against τpair in Fig. 4.28. As with ionic liquid composition, two distinct

trends are observed between ion diffusivity and pair lifetimes. The same solvents that showed a

more monotonic trend between τpair and ionic liquid composition, such as acetonitrile and propy-

lene carbonate, show a roughly monotonic decrease in ion diffusivity as τpair increases. As such, it

appears that ion pairing in these solutions negatively affects the ion dynamics. Similar trends have

been observed by Zhang et al. for various ionic liquids using non-polarizable force fields71 and by

McDaniel et al. for [BMIM+][BF4
-] in four solvents at various concentrations using the SAPT po-

larizable force field.18 Also shown in Fig. 4.28 is that solutions with solvents that have the shortest
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Figure 4.28: Average ion diffusivity of [BMIM+][TF2N-] as a function of ion pair lifetimes, τpair.

ion pair lifetimes also exhibit the highest ion diffusivities. For example, we previously reported

that acetonitrile solutions exhibited the highest diffusivites from this data set;3 ion pairing analyses

now indicate that the same acetonitrile solutions also exhibit the shortest ion pair lifetimes. Con-

sistent with previous structural analyses, from screening over many solvents we observe that some

solutions, such as those containing 1,4-dioxane and chlorobenzene, do not follow this monotonic

trend in Fig. 4.28. When revisiting Fig. 4.21, the systems with strongly non-monotonic curves also

experienced the highest initial decrease in τpair as a function ionic liquid composition. The ions

in these systems are paired in large quantity and for long times at low ion compositions, but this

pairing does not appear to affect the diffusivity of these ions. In general, however, we would expect

the longer ion pairing lifetimes of these systems to negatively impact conductivity.
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4.6 Additional QENS Experiments

While QENS cannot access the scope of our data set (22 solvents at 18 compositions for a

total of 396 mixtures), there is a conflict between our recent3 and earlier2 results that should

be investigated with experiments. We brought out screening results to our experimental collab-

orators (Naresh C. Osti and Eugene Mamontov at ORNL) who devised a comparatively simple

set of experiments to isolate the effect of solvent diffusivity from solvent polarity. They se-

lected four solvents with nearly identical dipole moments (d, Debye) but greatly varying diffu-

sivities (D, m2 s−1): dichloromethane (d = 1.60 D, D = 15.7×10−10 m2 s−1), octanol (d = 1.68

D, D = 0.4×10−10 m2 s−1), butanol (d = 1.66 D, D = 2.7×10−10 m2 s−1), and tetrahydrofuran

(d = 1.75 D, D = 8.5×10−10 m2 s−1). These properties are summarized again in Table 4.3. Be-

cause concentration effects are well-understood, here we only considered equimass (0.50 mass

fraction) mixtures of [BMIM+][TF2N-] in each solvent. If solvent polarity dominated mixture

properties we would see little correlation against solvent diffusivity if solvent diffusivity domi-

nated mixture properties we would expect to see a strong correlation. We see the later, summarized

below in Fig. 4.29. The trend is stronger with the MD results than QENS data but both show a

strong dependence of cation diffusivity on pure solvent diffusivity.
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Figure 4.29: Ion diffusivity as a function of pure solvent diffusivity for selected solvents with
similar polarity.
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4.7 Conclusions

In this chapter, we have used neutron scattering experiments, conductivity measurements, free

energy calculations, and hundreds of molecular dynamics simulations to better understand the

proeprties of ionic liquids dissolved in organic solvents. This study began with a set of QENS

experiments suggesting two trends: ion diffusivity increases as its composition in the mixture

decreases and solvents with greater polarity better promote these diffusivity enhancements. MD

simulations supported each conclusion and free energy calculations helped explain the latter by

connecting bulk transport to local energetics of ions during dissolution. Then, we revisisted these

conclusions with new computational tools that enabled screening over more solvents and mixture

compositions. The trend with concentration was re-affirmed but some doubt was cast on the ob-

served relationship with solvent polarity. We evaluated other solvent properties and found that pure

ion diffusivity was the best predictor of ion diffusivities in mixtures. Finally, we tested this finding

with a new set of QENS experiments and found that solvent diffusivity impacts ion diffusivity in

mixtures more than the solvent polarity.

It is worth revisiting some of our initial motivations, which is that mixtures in the few commonly-

used solvents (acetonitrile and propylene carbonate in particular) may not be optimal electrolytes

for applications demanding faster dynamics. The sum of this work assserts that, for all composition

ranges, mixtures in acetonitrile exhibit the fastest ion mobility. Short of proposing a novel solvent

for absolutely peak dynamics, we find that other proposed solvents exhibit viable alternatives. This

is still useful given that other factors (i.e. toxicity concerns, material costs, or environmental reg-

ulations) often constrain design of applications in practice. Further, elucidating which molecular

interactions have the strongest impact on mixture properties could aid in the design of application-

specific mixtures; in the case of energy storage it is desirable to strongly screen ion-ion interactions

but other applications may seek to tune molecular interactions in a different manner.
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4.8 Future work

While the work of this chapter is a major contribution to the understanding of ionic liquids

in more diverse chemistries, it is trivially small compared to the amount of work that needs to be

done. Most obviously, only one ionic liquid was considered, whereas the design of novel elec-

trolytes necessitates studying combinations of ionic liquids in solvents - likely even mixtures of

salt as well.76,77 Effects of temperature and pressure should also be considered, as many appli-

cations require operation away from normal ambient conditions. Each added physical dimension

drastically increases the cost of any study; progress in this direction, while valuable, will still be

slow no matter the progress made in computational screening tools (or even potential analogs in

experimental setups using robots). The difference is that we are beginning to be limited by our

own capacity to intelligently process and analyze large quantities of data. Years or decades ago

we were limited by computational resources or the viability of molecular force fields; while these

still specify the bounds of what we can accomplish with molecular simulation, the boundary has

moved drastically outward.

The most straightforward extension of this work is to collect more experimental data. While

it is infeasible to consider the scope of our computational screening study in either QENS or

NMR experiments, any increase in the volume of available experimental data adds rigor to these

results. Perhaps more data will verify our results or perhaps important differences will emerge —

most likely a combination of each will occur, but it is valuable in any case. As an alternative to

gathering more diffusivity data, measuring some hundreds of conductivity data would be feasible.

The downside, however, is that ionic conductivity is a less direct characterization of the transport

behavior of electrolytes at the molecular scale.

A topic worth revisiting is the use of scaled charges on ionic liquids, particularly in dilute

solutions. While an approximation, their use in neat ionic liquids is well-studied46,78,79 and can

produce reasonable physical properties if used with care.80 Further, there is some theoretical and

physically sensible basis to this approach, as electronic structure calculations frequently produce

structures with less than the formal integer charge. This is typically understood as the manifestation
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of charge transfer effects or electronic polarization.

It is less clear, however, that this is valid for mixtures in neutral species, as was done throughout

this chapter. To my knowledge, this issue has not thoroughly been explored computationally (in

theoretical calculations or simulations). This issue is compounded by some difficulties comparing

to transport data from experiment. Since ionic liquids are relatively new as a popular topic of study,

there is a limited set of data to pull from. Much of this data deals with neat ionic liquids and a

sizable portion of the data considering solvents chooses water or non-polar solvents, which have

limits due to miscibility issues and were considered in the scope of this study. Unfortunately, of

the three transport properties considered (molecular diffusivity, viscosity, and ionic conductivity),

there is no property that is simple to measure experimentally and reliably compute from simula-

tions. Viscosity and conductivity measurements are relatively straightforward to do, provided the

compounds are available, but diffusivity data generally requires expensive QENS or NMR exper-

iments. Conversely, backing out diffusivity values from simulation is straightforward but more

involved methods are required for viscosity (long simulations analyzed with tricky autocorrelation

functions) and conductivity (due to pairing effects in ionic liquids) (vide supra). Further, molec-

ular diffusivity is the only measurement that isolates the dynamics of a single species (provided

the propert scattering lengths or isotopes are available in QENS and NMR, respectively), whereas

viscosity and conductivity are comprehensive properties of the overall mixture. On this basis, it

may not be feasible to produce a general and transferrable force field for ionic liquid mixtures, but

the hypothesis can be tested on a limited set of data. We are currently exploring the possibility that

NMR experiments can be done in sufficient volume to properly investigate the validity of charge

scaling in these molecular models.

There is also a growing need for the development of general force fields. There exist some vi-

able general force fields for simple organic species (OPLS42 and GAFF81) which provide generally

good agreement with theoretical calculations and experimental measurements of several physical

properties.43 The development and open distribution of these force fields has accelerated a gen-

eration of research by allowing researchers to commonly skip over the process of deriving new
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models for simple chemical systems. There is a similar need for the development of new general

force fields for ionic liqiuds. The popular CL&P force field, used throughout this thesis, is useful

for the set of chemistries it covers. It is the most popular ionic liquid force field to date, perhaps

because it was one of the first published but also because it covers more moeities than any other

(five and four unique types of cations and anions, respectively, for some several thousand combi-

nations of ionic liquids when considering different aklyl chian lengths). However, only some of its

"out of the box" physical properties are in good agreement with experimental measurements. By

comparison, the KPL force field of Ludwig et al.82–84 provides excellent agreement with density,

diffusivity, and enthalphy of vaporizaiton measurements but covers a much smaller number of ionic

liquids (a single cation and anion for a total of approximately 5 unique ionic liquids). To enable

the investigation of novel ionic liquid-based electrolytes, it is imperative that CL&P is revised to

be more physiochemically accurate, KPL expanded to cover more chemistries, entirely new force

fields developed, or perhaps a combination thereof.
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Chapter 5

Effects of Added Water Content on the Structure and Dynamics of Confined Electrolytes

In carefully-controlled experiments and computer models, the content of water in confined

fluids can be controlled, even completely removed. However, it is difficult to keep components

completely dry and interactions with water are a relevant topic for safety considerations in de-

vices at the application level. Therefore, it is necessary to study the effects of humidification on

supercapacitor-like systems. A fundamental understanding is necessary to inform device design,

either to avoid undesired effects or perhaps leverage them advantageously. In this chapter, two

model systems are interrogated with MD simulations and QENS experiments. Each system is

representative of devices that could be used in next-generation energy storage devices. The first

system is an ionic liquid confined in a nanoporous carbon and the second system is an ionic liquid

intercalated into a MXene. In each system, aggressive humification was used to study the effects

of added water content, including at higher concentrations than typically reported in the literature.

In each system we find the addition of water increases the dynamics of the ionic liquids, especially

at high water content in which these increases are particularly drastic. Informed by molecular

models, we attribute this speedup not only to the inherent interactions with a mobile solvent but

also rearrangement of fluids in pores. Specifically, the preferential adsorption of water at inter-

faces displaces cations toward other regions of the pore in which their dynamics are inherently

less restricted. The work presented here has been featured in two peer-reviewed publications.1,2

Included are contributions from numerous experimental collaborators particularly Naresh C. Osti

and Eugene Mamontov of Oak Ridge National Laboratory and Boris Dyatkin, Katherine L. Van

Aken and Mohamed Alhabeb of Drexel University.
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5.1 Background

Ionic liquids are highly hygroscopic, even to small amounts of water. By their nature ionic

liquids contain either species that are purely ionic (i.e. halide anions) or species with other charged

and polar functional groups, they have strongly favorable interactions with water. As a result, the

adsorption of water is virtually unavoidable in relevant contexts, i.e. synthesis and characterization

of samples in labs and manufacturing and operating devices in industrial applications..3,4 Many

ionic liquids are so hygroscopic that they will adsorb water from the wapor vapor content of air

in ambient conditions.5 Unsurprisingly, the presence of water has major implications for the phys-

iochemical properties of ionic liquids (structure, transport, thermodynamic, etc.) in bulk,5–11 at

interfaces,4,12–14 and under confinement.13,15

In bulk, the addition of water has different effects at different compositions. Some simulation

studies6,16 have investigated the effects of water sorption of water over the entire range, from di-

lute water in ionic liquid to dilute ionic liquid in water. Starting with a neat ionic liquid, the first

added water molecules are found tucked away in small pockets inside the polar domains of the

ionic liquid, seeming to favor interactions with the ionic portions of the ions. At low water con-

centrations, many bulk properties of the ionic liquid are largely unaffected; density decreases and

diffusivity increases, but only slightly. After a certain amount of water sorption, the polar domains

are essentially saturated and, in many ionic liquids, the presence of large hydrophobic functional

groups can result in miscibility issues. In some cases, self-assembly of clusters of various shapes

and sizes has been observed.17 Some narrow applications in catalysis and separations can leverage

these micelle-like structures but they are generally not desirable for electrochemical applications.

By contrast, some ionic liquids are miscible with water at all compositions; it has been proposed

that hydrogen bonding is responsible for the formation of large water networks that make this pos-

sible. At some higher composition of water, these mixtures can be understood as ionic liquid salts

in water solvent. There can still be some signatures of phase separation but many ionic liquids exist

as single pair or free ions in dilute solutions in water.7 In these mixtures, the diffusivity of ionic

liquid molecules is drastically higher than in bulk6,10,16 even within an order of magnitude of bulk
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water. These speeedups are remarkable; neat ionic liquids typically exhibit diffusivities on order

of 1×10−12 m2 s−1–1×10−13 m2 s−1, compared to 2×10−9 m2 s−1, so these factors represents

on the order of hundreds to thousands times faster transport.

Little work, comparatively, has been done to understand the effects of water sorption in ionic

liquids at interfaces and in confinement. Some studies4,13–15 have used molecular models to show

water tends to preferentially adsorb at the interface relative to the bulk. Similar effects have been

reported using AFM experiments.12 These systems are naturally suited to molecular dynamics

simulations, as their atomistic resolution provides enough low-level insights to inform relevant

properties and sufficiently representative length and timescales are accessible with modern soft-

ware and hardware. Studying the structure and dynamics of individual molecules, particularly

molecules as small as water, is more difficult in simulation. AFM probes can detect the location,

but not necessarily density, of structural layers at interfaces, but is not tractable for studying the

structure fluids in confinement. Dynamics of individual species are accessible in the bulk phase

with NMR but resolving transport in confinement is not as tractable. QENS experiments are well-

equipped to study the dynamics of confined species, especially water. The scattered waves, if the

sample is prepared properly, does not discern between species in confinement or in bulk.

5.2 Humidification of Ionic Liquids Confined in Nanoporous Carbon

5.2.1 Sample Preparation and Characterization

Mo2C CDCs were synthesized by etching a Mo2C crystal with Cl2 gas. As molybdenum

carbide-based CDCs are less common, N2 sorption experiments were conducted to understand the

pore structure of the carbon material. A Quadrasorb-I gas sorption analyzer was used to conduct

these experiments and the QSDFT kernel was implemented by the associated Quadrawin softare.

Measurements were conducted at 77 K. The specific surface area (SSA) was calculated by the

traditional Brunauer-Emmett-Teller (BET) method, which is baed on a fit to the adsorption load

in the range 0.05 - 0.3 P/P0. These powders were used in separate QENS and electrochemistry
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experiments.

For QENS experiments, [BMIM+][TF2N-] was synthesized as described by Hillesheim et

al.Hillesheim2013 was added into the pores of CDC using the previously described vacuum infil-

tration process1 Approximately 5.0 g of the RTIL were dispersed in a glass beaker in acetonitrile

(99.5+% purity, Fischer Scientific). Based on the cumulative pore volume (1.86 cm3 g−1) of CDC,

as well as the bulk density of [BMIM+][TF2N-] (∼1.5 gcm−3), a measured amount of the CDC

powder was added to the solution in a ratio that would allow the RTIL to occupy 100% of its pore

volume. The slurry was stirred (with a magnetic stir bar) at room temperature to allow acetoni-

trile to evaporate. Once visible liquid disappeared, the resulting powder dried under a low vacuum

(0.01 Torr) at 100 °Cfor 24 h. Finally, to ensure uniformity, the powder was ground up in an agate

mortar. CDC and [BMIM+][TF2N-] samples were loaded into standard aluminum QENS sample

holders of 0.25 mm thickness and left open in a plastic desiccator. A dish with excess D2O (pur-

chased from Sigma Aldrich) was placed next to the samples in the desiccator. The entire system

was sealed and outgassed for 5 minutes to create a low vacuum. It was left to sit for 4, 8, or 10 h in

order to add different amounts of water content. Each sample holder with [BMIM+][TF2N-]-filled

CDC sample was weighed prior to and after D2O vapor exposure. A baseline reference sample

was sealed in an inert environment in an Ar-filled glovebox and was, therefore, devoid of water.

5.2.2 Model

To model ionic liquids confined in CDCs, a slit pore consisting of two parallel three-layer

graphene sheets was constructed. Pore walls were separated by 2.5 nm, defined as the separation

distance between inner planes of carbon atoms. The cross-sectional area of the pore was 2.5 nm

by 5.5 nm. On either side of the pore, laterally, was a bulk region of volume 4.0 nm by 4.0 nm by

5.5 nm, which allowed for density equilibration in the pore and molecules to sample interactions

in both bulk and confinement. Because the QENS signal is believed to depend primarily on fluid

behavior in mesopores, micropores were not included in this model. All MD simulations were

performed with the MD software package GROMACS 5.0.8.18 Ionic liquid molecules were de-
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scribed with the force field of Lopes et al.,19–21 which is similar to OPLS but specifically tuned for

ionic liquids, including [BMIM+][TF2N-]Ċharges were scaled by a factor of 0.8 to better describe

transport properties.22 Water molecules were described with the TIP3P model.23 A time step of 1 fs

and the “v-rescale” thermostat24 with a time constant of 1 ps were used throughout. Carbon atoms

making up the graphitic slit pores were fixed in place. All nonbonded interactions were computed

with a cutoff of 1.1 nm. Electrostatic interactions were computed with the PME method, using a

real-space cutoff of 1.1 nm and a Fourier grid spacing of 0.1 nm. All bonds were constrained using

the LINCS algorithm. The concentrations and number of molecules used are shown in Table 5.1.

Table 5.1: Concentrations and corresponding number of molecules used in MD simulations.

Water concentration

(mol fraction)

Number of IL pairs

or water molecules

0.203 472, 120

0.382 461, 285

0.482 452, 420

0.602 436, 660

0.792 383, 1455

Pristine graphene is highly hydrophobic, yet CDCs are hydrophilic25 because of structural and

chemical defects on the surfaces of pore walls. To simply model this water-CDC wall interac-

tion, the energetic coefficient of the water-carbon interaction εwater−wall was doubled. Other cross

interactions were not changed. Initial configurations for each system were generated with PACK-

MOL.26 Because PACKMOL relies on geometric constraints and does not consider energetics, the

first step in each simulation was to perform an energy minimization. Then, systems were annealed

by heating to 600 K over 1 ns, holding at 600 K for 3 ns, and then cooling to 300 K over 5 ns. Then,

a 30 ns production run of NVT simulation at 300 K was performed. Ion diffusivities were computed

using the 3D Einstein diffusion equation. Region-specific diffusivities were computed by slicing

the last 20 of the 30 ns trajectory into 200 slices of 100 ps length. Ion selections were updated
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at the beginning of each slice and the final MSD, from which the diffusivity was computed, was

generated by averaging the MSD from all slices. Cations are separated into “wall” and “center”

groups by their position in the pore. Cations with a center of mass less than 0.75 nm from the pore

walls make up the wall region and cations with a center of mass farther than this distance from the

pore walls are considered in the center region.

5.2.3 Results

We begin by analyzing the pore structure of the CDC samples before and after filling them

with ionic liquid. These pore size distributions are shown in Fig. 5.1, with peaks at approximately

0.8 nm and 3.1 nm. Unlike many CDCs, these derived from Mo2C exhibit a bimodal pore size

distribution with similar amounts of micropore (<2 nm) and mesopore (2 nm–10 nm) volume. The

surface area of the bare carbon was 2275 m2 g−1 before loading and 0.568 m2 g−1 after loading,

indicating that the ionic liquid complete fills the pores.

Figure 5.1: Pore size distributions of Mo2-CDC samples via nitrogen adsorption experiments.
Also included are estimates of SSA from BET and SSA and pore volume from DFT. (a) Pore
size distributions before filling CDC with ionic liquid and (b) after filling. The reduction in pore
volume by approximately 2000 indicates that the CDC pores are completely filled.

These samples were next analyzed using QENS. First, using the BASIS27 backscattering spec-

trometer at ORNL, we measured the elastic intensity as a function of temperature. Similar to an

ionic liquid confined on micropores,28 the spectrum presented in Fig. 3(a) does not show any
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abrupt changes, indicating the absence of phase transitions and confirming complete confinement

of the ionic liquid inside the pores.

Next, QENS experiments were conducted at the NG-2 high flux backscattering spectrometer

(HFBS)29 at the National Institutes of Standard and Technology (NIST). Details of the experiments

are enumerated in our manuscript.30 Because the anion in this ionic liquid lacks hydrogen atoms

and the water was deuterated, the QENS signal is dominated by scattering off of cations. Spectra

for each sample, including without water (0h) and other amounts of water (4h, 8h, 10h) are shown

in Fig. 5.2. These spectra are fit to a Lorentzian jump diffusion model from which diffusivities

are backed out. These values are reported in Fig. 5.3, from which it is clear that the addition of

water enhances the diffusivity of cations. These QENS experiments report an increase in cation

diffusivity in response to added water content as measured by added mass and approximated by

D2O exposure time. With no D2O in the pores, the derived value D= 0.52±0.01×10−10 m2 s−1 is

slightly higher than the diffusion coefficient reported for bulk ( D = 0.44±0.03×10−10 m2 s−1)31

Note that the cation diffusivity in this CDC is∼5 times lower than a previously reported diffusivity

(D = 2.45±0.2×10−10 m2 s−1) in mesoporous carbon with large (∼8.8 nm) pores. This smaller

value can be attributed to the cumulative effects of the smaller pores (0.7–3.1 nm) and the limited

dynamic window of the HFBS, as evident from the raising tail of the dynamic susceptibility peak,

but not its maximum (Fig. 5), as observed for all samples.
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Figure 5.2: (a) Elastic scan of dry [BMIM+][TF2N-] in CDCs. The smooth relationship with
temperature indicates a lack of discrete phase transition. (b) Mass-normalized structure factor of
all samples showing a drop, as marked by a dotted ellipsoid, in intensity after the addition of water.
QENS spectra at (c) Q = 0.68Å

−1
and (d) Q = 1.16Å

−1
at 290 K. The symbols correspond to

the data collected at different exposure times as indicated in the figure. Solid lines are fit using
a Lorentzian function and the black dotted lines show the instrument resolution measured at 4 K.
Data have been normalized to the highest intensity for the purpose of comparison and truncated at
0.1 arbitrary units for clarity.

Figure 5.3: (a) FWHMs extracted from a single Lorentzian fit of the structure factors, shown in
Fig. 5.2, of the confined [BMIM+][TF2N-] as a function of added water content fitted to a jump
diffusion model.(b) Corresponding diffusion coefficients of cations (left y axis) and average elastic
incoherent scattering fraction (right y axis). The dotted lines are a guide to the eye.
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Since the ions are sufficiently small, [BMIM+][TF2N-] likely fills both mesopores (>1 nm) and

micropores (<1 nm). On the characteristic time scale (∼10 ns) of the HFBS experiment resolu-

tion,29 the cations inside the micropores remain immobilized due to tight packing of ions inside

the pore and contribute only to the elastic signal. Therefore, measured dynamics account solely

for the cations confined in the 3.1 nm pores.

Narrow pores (1–3.1 nm), which preclude the formation of distinct high-density (immobilized

ions at the pore wall-electrolyte interface) and low-density (center of pore) regions, may give

rise to the more bulk-like diffusion behavior of confined cations compared to the larger effect on

the dynamics in the pores of 8.8 nm size.31 The current result is consistent with the relationship

between diffusivity in bulk and in confinement observed for ILs in silica monoliths with the pore

sizes of 5–10 nm.

Even though [BMIM+] has a long hydrophobic butyl chain and absorbs 0.26 wt. % water at

59% relative humidity, remarkably, our measurements show that the confined [BMIM+][TF2N-]

absorbs significantly larger amount of water (∼10 times) compared to the bulk liquid. Such wa-

ter uptake yields a two-fold diffusion coefficient increase after 4 h of D2O exposure. This sug-

gests that water molecules predominantly adsorb onto CDC surfaces and displace some of the

adsorbed cations from their original sites on pore surfaces that leads to a decrease in elastic in-

coherent scattering fraction (EISF) (Fig. 5.3) as a function of water uptake until the CDC pores

become saturated. Those [BMIM+] ions, which had been previously immobilized in the system,

subsequently, demonstrate higher diffusivities. It is worth noting here that even in the bulk state,

addition of water increases the diffusivity of cation by reducing the cohesive attraction between

the [BMIM+][TF2N-] molecules. Therefore, overall increase in the diffusivity of cation could be

the joint effect of ion displacement, as evident from a reduction in elastic intensity (Fig. 5.5), and

a possible screening of the attraction between the ionic liquid molecules by water. Furthermore,

nearly similar values of residence times, which is in a range of the characteristic times predicted by

molecular dynamics simulations for the adsorption of ions of [BMIM+][PF6
-] on CDC,32 illustrate

that the increase in diffusivity is due to an increase in the average jump length, consistent with a
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gradual decrease of cation density on the walls of the microspores.

After increasing the D2O vapor exposure time to 8 h, D2O uptake increased from 3.5wt.%

(1.3 mol D2O per mol of IL) to 5.2wt.% (1.9 mol D2O per mol of IL). This yielded yet another

twofold diffusion coefficient increase, likely due to the same displacement effect. However, after

10 h of D2O vapor exposure and a substantially higher heavy water uptake (∼20 wt.%, or 7.6 mol

D2O per mol of IL), we did not observe any further increase in cation diffusivity. We conclude

that the ionic liquid-filled pore surfaces became saturated with D2O after 8 h of vapor exposure.

For comparison, CDCs with unfilled pores can adsorb up to 35 wt. % of water relative to their dry

mass, depending on the pore volume. Since the CDC material in this study was treated with NH3(g)

after Cl2(g) etching, it likely retained some nitrogen-containing groups (–NH3, –NH2, quaternary

nitrogen) and chemisorbed oxygen. Consequently, its surfaces were hydrophilic and accelerated

water vapor uptake. The observed increase in the microscopic diffusivity of ionic liquid with

increasing water content may explain the greater electrochemical performance of the ionic liquid

observed in water-containing pores from electrochemical measurements.

Molecular dynamics (MD) simulations were used to further investigate high water uptake in

confined [BMIM+][TF2N-] and humidity effects on cation dynamics. The simulation predicts

greater water composition in pores than in bulk and, for low and moderate water concentrations,

preferential arrangement on the pore walls due to defects introduced interactions, in contrast to

depletion of water molecules observed in defect free graphene,4 over the center of the pore.

Figure 9 shows that, for low to moderate water concentrations, water accumulates on the pore

walls and is absent from the middle regions of pores. At larger water concentrations, however, wa-

ter saturates available pore surfaces and begins to accumulate in the pore centers. At such sample

compositions, a relatively smaller fraction of ions is found on the pore walls. Accordingly, and

similar to the QENS observation, MD simulations predict greater cation diffusivity upon addition

of water. A summary is presented as an inset in Fig. 9, showing a relationship between cation

diffusivity and water concentration for a model confined system.

Comparison of the experimental cation diffusivities in Fig. 4(b) and the computed cation dif-
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fusivities in Fig. 9 inset reveals both the power and limitations of MD simulations, which compute

system parameters in accordance with the assumed system composition. While the MD cation

diffusiv- ities for Xw = 0 and Xw = 0.2, where the water molecules are near the walls (Fig. 9), are

in reasonable agreement with the experimental data, the MD cation diffusivities rise very quickly

once, at higher concentrations, the water molecules start occupying the middle of the pore (Fig. 9).

On the other hand, the saturation of the cation diffusivities observed in the experiment at higher

water concentrations suggests that, in experimental samples, the water molecules occupy sites near

the walls, but not the middle of the pores, and the progressively increasing water uptake with the

prolonged exposure to vapors is due to water molecules going elsewhere in the sample after satu-

rating the near-walls sites. The likely reason for that is the strong repulsive interactions between

water molecules and the ionic liquid. These repulsive interactions would indeed result in high

cation diffusivities, as observed in the simulations, if the water molecules could be mixed with the

ionic liquid in the middle of the pores. This can be observed in the simulation, where the system

composition is set up at will, but not necessarily in real samples, where, after the saturation of

the near-wall sites by water molecules, further water uptake from the vapor could not get water

molecules in the middle of the pores. This is in agreement with the well-documented low misci-

bility of bulk ionic liquids with water. Once the water molecules in the simulation are introduced

in sufficient concentrations to occupy the middle of the pores, the resulting cation diffusivities be-

come much higher than those observed in the experiment, thus demonstrating that the water uptake

in the real pores is limited to water molecules near the pore walls.

5.3 Humidification of Ionic Liquids Confined in MXene

5.3.1 Sample Preparation

MXene samples were sythesized by Mohammed Alhabeb at Drexel University. 10 g of Ti3C2

powder was synthesized using 10 wt % hydrofluoric acid (HF, Organic Across) according to a

previous method described in detail elsewhere.33 A mixture of 6 g of MXene, 10 mL of acetonitrile
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(Alfa Aesar), and 1.2 g of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm

Tf2N (Sigma- Aldrich)) was sonicated for 20 min. The mixture was subsequently stirred at 60 °◦C

for 12 h, and then, the temperature was gradually increased to 70, 80, 100, and, finally, 120 °◦C

to evaporate the acetonitrile. The resulting MXene/EMIm Tf2N powder was dried in a vacuum

oven at 120 °C for 12 h. The MXene powder and the MXene/ EMIm Tf2N powder were both used

directly for the experiments.

5.3.2 QENS Experiments

D2O-loaded samples were prepared by storing the three samples (pristine MXene, MXene/IL,

and the IL liquid in the bulk form) in open aluminum sample holders along with a cuvette with

excess D2O inside a glass desiccator for 12 h. The D2O absorption was calculated from the weight

uptake. MXene (1 g) and 1 g of EMIm Tf2N absorbed 0.019 and 0.036 g of D2O, respectively.

MXene EMIm Tf2N (1 g) absorbed 0.025 g ofD2O, which is close to the amount expected to

be absorbed by 1 g of 5:1 weight ratio mixture of the MXene powder and the ionic liquid. Dry

and D2O - exposed samples of MXene EMIm Tf2N, as well as pristine and D2O–exposed bulk

EMIm Tf2N liquid samples, were placed into flat aluminum sample holders with inserts providing

0.25 mm thick samples and sealed with indium wire for quasi-elastic neutron scattering (QENS)

measurement using a high-flux backscattering spectrometer (HFBS)29 at the NIST Center for Neu-

tron Research. DAVE34 software was used for data reduction and analysis.

5.3.3 Molecular Dynamics Simulations

We employ classical molecular dynamics (MD) simulations, carried out with GROMACS

5.1.4.18 We considered [EMIM+][TF2N-] confined between MXene slabs 10.47 nm apart, which

would be consistent with ions confined in the interstack space in MXene. The composition of the

corresponding samples exposed to humidity was 25 mol % water, as estimated from the D2O

weight uptake by the ionic liquid. The SPC/E model of water35 was used throughout. Ionic

liquid interactions were described using the classical force field of Canongia Lopes and Pádua
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et al..19–21 MXene interactions were described using custom parameters largely derived from

ClayFF.36 Lorentz–Berthelot mixing rules were used throughout. After systems were built, 1000

steps of energy minimization were performed. For all molecular dynamic simulations of MX-

ene channels, the NVT ensemble, the Nose-Hoover thermostat with a time constant of 1 ps, and

a integrator timestep of 0.5 fs were used throughout. For bulk simulations, a Berendsen barostat

with reference pressure 1 bar and time constant 1 ps was added and the timestep was increased

to 1 fs. Because we were focused on the dynamics of the fluid and not structural changes in the

carbide layer of the MXene, positions of the titanium and carbon atoms in the MXene were fixed,

whereas surface atoms were integrated in a regular manner. First, an equilibration step of 10 mil-

lion timesteps (5 ns) was performed. Then, a sampling trajectory of 100 million timesteps (50 ns)

was generated for analysis.

5.3.4 Results

We begin with a summary of the experimental results, summarized in Fig. 5.5, Fig. 5.4, and

Table 5.2, the details of which are enumerated more verbosely in the manuscript.1 First, the elastic

scans in Fig. 5.5 characterize the phase behavior of the fluids. Note again that the nature of the

sample synthesis, using a hydrogen-free anion and deuterated water, means the QENS signal pri-

marily represents the behavior of cations. Decrases in elastic intensity with increasing temperature

indicate increased mobility of detected species. Smooth decreases from low temperature repre-

sent typical thermal behavior whereas stepwise or other sharp changes represent other phenomena,

typically phase transitions. Elastic scans of the bulk fluids include a sharp drop that represents a

melting phase transition near 275 K. In this case, the presence of water decreases the temperature

of this change by approximately 5 K. The ionic liquid-intercalated MXenes, however, show two

transitions. There is one at approximately the same temperatures as the bulk samples, indicating

there is a relevant amount of bulk-like fluid behavior in these systems. There is also a melting tran-

sition at lower temperatures, approximately 265 K, which we attribute to the melting-like phase

transition of confined fluids. In these systems, the addition of water appears to have little to no
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effect on the melting temperature.

Based on the temperatures of the elastic scans, QENS spectra were collected at 270 K and

280 K. Single Lorentzian functions were fit to the data and a jump diffusion model was used to

back out diffusivities. Using Table 5.2 it is clear that confinement decreases the mobility of the

cations, however by a lesser amount than expected. The space between individual layers, which

can be intercalated by water, is typically on the order of a few angstroms, or only enough space for a

layer or two of water molecules. This degree of confinement usually produces a greater slowdown.

For example, the diffusivity of water in a monolayer-like structure has been reported to be on the

order of 10×10−11 m2 s−1,37 which is less than 1% of its bulk value. Diffusivity in these samples

decreased by approximatley 10% and 40% for the dry and humid samples, respectively. Therefore,

we believe the primary contribution to the QENS signal is not of cations confined between individ-

ual MXene layers (nanoconfinement) but cations in larger inter-stack regions (mesoconfinement).

Table 5.2: [EMIM+] diffusivities as measured by QENS experiments.

Dcation in 10−10m2 s−1 Dry Humidified

Sample 270 K 280 K 270 K 280 K

[EMIM+][TF2N-] in bulk 0.95±0.12 1.47±0.21

[EMIM+][TF2N-] in MXene 0.42±0.08 0.83±0.02 0.55±0.07 0.89±0.09
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Figure 5.4: X-ray diffraction pattern of MXene samples before (red) and after (black) the addition
of the ionic liquid [EMIM+][TF2N-].

Figure 5.5: Summary of QENS experiments. Elastic scans of ionic liquids (a) confined in MXenes
and (b) in bulk. (c) QENS spectra (tracking only the dynamics of the cation) of MXene systems
before and after the addition of water. (d) Jump diffusion fits for ionic liquids in bulk (red circles)
and confined in MXene (black triangles, yellow rectangles) before (open symbols) and after (closed
symbols) the addition of water.
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X-ray diffraction (XRD) patterns shown in Fig. 5.4 confirm this hypothesis. If there were

changes in the interlayer spacing after intercalation of ionic liquids, the locations of the peaks

would change significantly. However, we observe a minimal change, from 19.24 Å to 19.10 Å.

Note that this is the difference between dry MXenes and MXenes samples intercalated with ionic

liquid, before any humidification took place. The lack of any changes in the c-lattice spacing

confirms that ionic liquid molecules were sorbed into inter-stack pores, not inter-layer pores.

Building off these experimental results, we used MD simulations to better understand the ef-

fects of humidification on these ionic liquids confined in mxenes. A representative snapshot of a

simulation box is presented in Fig. 5.6. Based on the XRD and QENS data, there appears to be

little to no nanoconfinement of ionic liquid and instead most of the interfaces were in inter-stack

pores. These regions have characteristic widths on the order of a micron. At these separations,

the interfaces that define pores behave independently from the perspective of molecules interact-

ing with them. Most non-bonded interactions decay to zero within approximately 1 nm–2 nm and

coulombic interactions decay slower. However, the scale of a few hundred nm or microns is much

greater than any interaction in these systems. Therefore, we used a channel system in which two

MXene plates are separated by a sufficiently large distance that they are not interacting and the

fluid in the middle of the box exhibits bulk-like behavior. Here we chose a distance of 10.47 nm

and filled the pore with either [EMIM+][TF2N-] or [EMIM+][TF2N-] and water at a composition

in accordance with the measurements in experiment.

The structure of the fluids inside MXene channels was characterized in Fig. 5.7. In the dry

system, the ionic liquids exhibit strong ordering at the surface that decays along oscillations to

bulk-like structure in the middle of the channel. This is broadly consistent with the structure of

ionic liquids at interfaces with other planar solids such as graphene.13,38,39 In the case of strongly

humidified ionic liquid, however, the water is preferentially found on the surface. This is evident

in the number density profiles but also clearly observed in the simulation snapshots. This was

done without any modifications to the force fileds and is generally consistent with the bulk of

experimental literature focused on MXene chemistry, which indicates surface groups are believed
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to be hydrophilic. Therefore, the absorbed water molecules tend to occupy space on Ti3C2 walls,

thereby displacing the ions that can now contribute to faster diffusion in the interstack space away

from the wall.

Figure 5.6: Snapshot of a humidified ionic liquid in a MXene channel simulation. To highlight
the dilute water compoment, atoms in water molecules are drawn at approximately their Van der
Waals radii and ionic liquids are drawn with only thin bonds. The separation distance between the
two channels is approximately 10 nm.

Figure 5.7: Number density profiles for molecules in MXene channel simulations of ionic liquids
before (left) and after (right) the addition of water.

5.4 Conclusions

In this chapter we have explored, primarily with QENS experiments and MD simulations, the

effects of added water content on the behavior of ionic liquids as electrolytes in interaction with

common supercapacitor electrode materials. In each system, an imidazolium-based ionic liquid

([BMIM+][TF2N-] or [EMIM+][TF2N-]) was confined in an nanomaterial, large quantities of water

were added, and the dynamics of the confined ions were enhanced as a result. In each system,

138



QENS experiments observed these increases in ion dynamics and MD simulations helped explain

these increases by describing the structure of the ionic liquid and water molecules in confinement.

In the first system, [BMIM+][TF2N-] was confined in a micro/mesoporous CDC and the addition

of water displaced some ions from the pore wall, where they are relatively immobile, to the center

of the pores, where they are more mobile. A similar process was observed in the second system

in which [EMIM+][TF2N-] was confined in the inter-stack regions of MXene. Water molecules

primarily sorbed to the surface of the MXene and displaced some cations from the MXene surface

to the bulk-like fluid phase of the inter-stack regions, where the ions are more mobile. These results

indicate that, provided some electrochemical issues are mitigated, the addition of water can be used

to design supercapacitors with greater power density and rate-handling capabilities.
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Chapter 6

Evaluation of Molecular Models for Ionic Liquids at Interfaces

A major barrier to the widespread adoption of molecular simulation, particularly classical

molecular dynamics and Monte Carlo simulations, is the availability of reliable force fields.1 As

a matter of computational necessity, classical models describe major simplifications of complex

computational chemistry yet attain an acceptable level of accuracy in describing physical proper-

ties. The history of molecular simulation includes a push-and-pull relationship between the desire

to employ accurate models and the costs associated with developing and implementing them. Cap-

turing physically diverse properties (i.e. simultaneously describing the density and viscosity of a

liquid) is difficult to do in a general and transferable manner. Some molecular sciences, particularly

well-funded and older fields like biophysics, have more viable force fields than others. Molecular

simulation of ionic liquids is still a young topic; the first studies are 20 years old, which are espe-

cially young compared to early the first model of liquid argon published in 1964. Because ionic

liquids have fundamentally different physics than other salts or fluids, foundational work needs to

be done to build the relevant force field infrastructure.1

This chapter describes some of our efforts in this direction. We interrogate two toy systems in

an effort to understand how, if at all, force field-related shortcomings in simple physical properties

affect higher-level properties and application-scale trends. We also describe a method for tuning

fluid-solid interactions in leiu of expensive first-principles calculations. Many of the simulations

described in this chapter were prepared and run by Felix Tiet, an undergraduate researcher in our

lab from Summer 2016 to Spring 2019, under my direction.

6.1 Background

Many applications of ionic liquids involve exploiting their unique properties at interfaces and

confinement. Molecular simulation is a powerful tool and is now almost ubiquitously used for
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understanding the fundamentals that govern ion structure and dynamics at interfaces and under. In

particular, molecular dynamics is well-suited to study these systems: their slow dynamics nearly

require classical models to study transport properties and their nanoscale clustering on the order

of a few nanometers provides limitations to use first-principles methods that, for other systems,

would provide macroscopic information with unit cells of a few molecules.

However, the necessary reliance on empirical force fields casts some doubt on their conclu-

sions. The generalizability and transferability of classical force fields has been an issue for as long

as they have been used; a force field may be tuned to match one particular physical property, and

successfully so, but its accuracy with respect to another physical property is far from guaranteed; in

fact, for fundamentally different properties such as liquid density and enthalpy of vaporization, it

seems that accuracy is the exception, not the rule. Recently for some simple fluids there have been

advancements in force field derivation methodologies that do a better job at simultaneously de-

scribing disparate properties, i.e. structure, transport, and thermodynamics. However, for models

of larger, more interesting, and chemically complex systems, such as ionic liquids, this work lags

behind. A popular force field, herein referred to as KPL (named after the authors Koddermann,

Paschek, and Ludwig), has achieved this for a set of common ionic liquids, some 1-alkyl-3-methyl-

imidazoles with the bistriflamide anion. A major driver of interest in ionic liquids is their extremely

diverse chemical space; the amount of work required to develop a good model for one ionic liquid

makes it difficult to make but small progress in direction of describing much of this space. Ionic

liquid force field suffer from these same limitations. The popular CL&P force field, for example

does a good job describing liquid and crystal structure but its transport properties are not accu-

rate. Another difficulty with application-relevant systems is that it is difficult to treat fluid-solid

interactions with care. Most commonly, simulation engines use Lorentz–Berthelot mixing rules to

describe cross-interactions; not only are there limitations for chemically heterogeneous fluids but

there is little theoretical basis for using this in fluid-solid interactions. Force fields are typically

derived from simple systems, such as bulk fluids, but are applied to complex systems with differ-

ent components and heterogeneities. Even for some that do a generally good job of describing
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bulk fluid properties, there is little confidence they describe interfaces with similar accuracy. Here,

we employ a number of simple toy systems to investigate some fundamentals of the behavior of

relevant interfacial ionic liquid simulations.

6.2 Methods

6.2.1 Molecular Simulation Design Framework

Simulations were conducted using the Molecular Simulation Design Framework (MoSDeF)

suite of software tools. The process is comprised of four main steps: First, systems are built with

mBuild, placing molecules in a simulation box at random while avoiding overlapping molecules

by utilizing PACKMOL. Next, force fields are applied with foyer. Then, simulations are run,

composed of three main steps detailed in the next section. Finally, analyses are run using a variety

of python packages and custom scripts.

6.2.2 Channel Simulations

Channel and droplet simulations were performed with GROMACS 5.1.4, while AWH simula-

tions were performed with GROMACS 2018.5. Despite the difference in version numbers (GRO-

MACS changes from semantic versioning to calendar versioning midway through this study) there

are minimal differences between the releases. After initialization of the systems and application

of forcefields, three main simulation steps are run: energy minimization, equilibration, and sam-

pling. For energy minimization, all systems proceeded using 1000 steps of the steepest descent

algorithm. To generate the charged channel systems, ionic liquids were randomly placed inside a

box bounded on either side in the x-y plane by three graphene sheets. Partial charges were man-

ually added onto each carbon atom for the sheets in direct contact with the fluid, varying from

0 to ±0.02 e- in increments of 0.001. These surface charges correspond to macroscopic charge

densities of -0.7 to 0.7 Cm−2. To drive the channel systems toward equilibrium, a 20 ns NVT

simulation was performed using the Berendsen thermostat with a reference temperature of 300 K
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and a 1 fs timestep. Then, systems were sampled for 150 ns in the NVT ensemble, with a longer

timestep of 1.5 fs using the v-rescale thermostat with a reference temperature of 300 K. Multiple

force fields were explored through these simulations - graphene was described using the Amber

and Steele force fields, while the ionic liquids were described using KPL, Lopes, and Lopes with

scaled charges. Charge density and potential for the charged channel systems was then obtained

using the gmx potential command provided by GROMACS. To obtain diffusivity data, the

sampling trajectory was converted to a center of mass trajectory in which each molecule is tracked

by a single point representing its center of mass. Then, diffusion was calculated from MSD values

obtained from using the mtools software package.

6.2.3 Droplet Systems

To build the droplet systems, a sphere of ionic liquids was generated based on the desired

radius. Then, molecules were removed to achieve the specified initial contact angle. Finally, the

spherical cap was translated as needed to rest above three sheets of graphene. To equilibrate the

droplet systems, a 1.5 ns NVT simulation was performed using the Berendsen thermostat and a 1 fs

timestep. The systems were initialized at 50 K for the first 0.5 ns, and was then annealed to 300 K

over the next 0.9 ns, ending in a constant temperature of 300 K over the last 0.1 ns. Then, systems

were sampled for 225 ns in the NVT ensemble, with a longer timestep of 1.5 fs using the v-rescale

thermostat with a reference temperature of 300 K. Graphene was described using the Amber force

field, while the ionic liquids were described using Lopes with scaled charges and KPL. Contact

angles were calculated using a custom Python analysis script. First, a center of mass trajectory is

computed and transformed from cartesian coordinates to [r,z] coordinates. Then, a 2D histogram is

generated based on the r and z values. After normalizing the histogram and removing values below

a certain threshold, a contact angle is calculated by fitting a sphere to the edges of the histogram

based.
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6.2.4 AWH Systems

Channel simulations were also interrogated with free energy calculations using the Accelerated

Weight Histogram (AWH) method, similar to as described in Chapter 4. These systems were built

using the same graphene sheets as the previous charged channel systems. Two boxes were defined:

a smaller box near the surface for the ionic liquid molecule, and a larger box for the solvent

molecules. Then, mBuild was used to fill in these regions using PACKMOL, which prevents any

overlaps between the ionic liquid and solvent. Next, an index file is generated to define the two

groups to be pulled for the AWH simulation - for our purposes, we specified the EMIM cation to be

pulled away from the graphene surface. Position restraints are utilized and further detailed below

to prevent significant lateral diffusion of the cation. Before any pulling occurred, the AWH channel

systems were first equilibrated through a 1 ns NVT simulation using the Berendsen thermostat and

a 1 fs timestep. Then, systems were sampled for 300 ns in the NVT ensemble, with a longer

timestep of 1.5 fs using the v-rescale thermostat with a reference temperature of 300 K. Pulling

occured along the z-axis, with an EMIM being pulled from distances of 0.3 to 3.0 nm from the

graphene surface. The nitrogen atom connected to the longer chain was position restrained with a

force constant of 100 kJnm−2 in the x and y directions. The Amber force field was used to describe

the graphene sheets, while KPL was used for the ionic liquids and OPLS for the solvents. PMF

data for the system was then obtained using the ‘gmx awh‘ command provided by GROMACS.

6.3 Results

6.3.1 Channel Simulations

The first toy system we studied was the channel simulation, which is frequently used to study

the properties of fluid-solid interfaces broadly and has been proposed as a model system for su-

percapacitors not based on nanoporous electrodes. It consists of two parallel planar electrodes

separated by some distance and filled in between with fluid. In the supercapacitor literature the

surfaces are sheets of graphene but in other fields can be other materials, i.e. silica or mica. The
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separation distance is typically 5 nm–10 nm, large enough for the fluid to reach a bulk-like state in

the middle of the channel and, therefore, large enough for the electrodes to be considered indepen-

dent. A representative snapshot of such a system is presented in Fig. 6.1

Figure 6.1: Representative snapshot of a channel simulation. Graphitic carbons are colored grey,
[EMIM+] cations colored red, and [TF2N-] anions colored blue.

These simulations have been employed in some hundreds of studies in the supercapacitor lit-

erature, forming much of our molecular understanding of these systems. It is therefore worth

studying the details of how our force fields are implemented in them. We selected three common

ionic liquid force fields (CL&P, CL&P with scaled charges, and KPL) and two carbon parameter

sets commonly used to model graphene interactions. Some methods have been proposed to tune

the cross-interactions to a particular target. However, these are not commonly employed in MD

studies so we did not consider them. Our objective is to investigate how, if at all, the selection of

force fields affects the measured capacitance. Note that these force fields predict different values

of basic physical properties (liquid density, molecular diffusivity, enthalpy of vaporizaiton).
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Figure 6.2: Electrochemical behavior of a model supercapacitor as predicted by different force
fields. Solid lines use Amber parameters for graphitic carbon atoms and dashed lines use Steele
parameters. Colors represent the use of the KPL, Lopes, and Lopes-scaled force fields. The rela-
tionship between surface charge density and the potential drop at the EDL (left) is used to compute
the differential capacitance (right).

The results of these channel simulations are summarized in Fig. 6.2. We observe for the set of

six unique force field models remarkably similar capacitance curves. This implies that the devel-

opment of rigorous force fields, while of broad interest to the field as a whole for the prediction

of other physical properties, may not be impactful for the prediction of capacitive performance in

simple model systems. Alternatively, it may be the case that these models — all classical in nature

— each fail in some common manner as a result of their not handling other relevant physics, i.e.

the polarizability of the electrode and/or electrolyte, hydrogen bonding, charge transfer effects,

and/or long-range coulombic forces. Some efforts have been made to capture the polarizability

of the electrode applying a constant electric potential (as distinct from the common technique of

applying a constant charge) but most of these groups have not chosen to publicly release these their

code, making it difficult for other researchers to use this method in their own studies.

6.3.2 Droplet Simulations

Our next toy system is the droplet simulation (or nanodroplet, given its typical size). At the

macroscale, simply placing a fluid on a surface and — provided the liquid beads up to form dorplets
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— describing the shape of the liquid droplets has been used for decades as a simple yet powerful

technique to characterize the interacitons between the fluid and surface. They can be used to cap-

ture simple qualitative trends, i.e. if a surface is hydrophilic or hydrophobic, or more quantitative

measures using Young’s equation. Here, we use nanoscale droplets to characterize the interaction

between ionic liquid molecules and a graphene interface, given how common this interaction is in

supercapacitor studies. A representative snapshot of such a system is presented in Fig. 6.3

Figure 6.3: Representative snapshot of a droplet simulation. The surface is three-layer graphene,
represented by silver spheres. The ionic liquid is [BMIM+][TF2N-] represented by cyan and red
ball-and-stick models, respectively.

Given that most studies to not concern themselves with tuning fluid-solid interactions, we begin

by using "out-of-the-box" force fields and treatment of cross-interactions. A summary is presented

below.

As one may expect, given how sensitive the wetting behavior of droplets is to the fluid-solid

interaction, the choice of force field strongly impacts the wetting behavior of [EMIM+][TF2N-].

If one was selecting force fields based purely on simple physical properties, which are used to

derive and evaluate force fields, KPL would be the clear choice. One may also select the carbon
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parameters of Steele which are popular in the adsorption literature. The result of such choices,

however, is a droplet that rapidly wets the surface. While it is not clear precisely what contact

angle should be gleaned from experiment as a target, there is no disputing that a stable droplet

should be formed.

Next, we choose some other parameter sets and observe the results. First, we switch from

the KPL force field to the CL&P force field, which is the most commonly used ionic liquid force

field in literature (and was used extensively in this thesis). Then, we switch from the carbon

parameters of Steele to the sp2 carbon parameters in the General Amber force field (GAFF), which

are commonly used in the supercapacitor studies and similar to other commonly parameters. The

results of these switches is the formation of more stable droplets that that settle around 50° and

60° after 200 ns of simulation. Again, it is not clear precisely what value should be taken as

a representative experimental measurement, but these two results are more consistent with the

existing literature.

Ionic liquids characteristically have slow transport properties, which can cast some doubt on

how accurate the above results are. Simulations of length 200 ns are on the longer end of what is

casually accessible with classic molecular dynamics (these simulations took approximately four

days on our local cluster). From experimental studies, there is broad evidence indicating ionic

liquids have slow and perhaps complex relaxation behavior taking place on longer timescales (i.e.

compared to water). To investigate this, we biased our droplet simulations toward the final state

by initializing the droplets at different contact angles. The GAFF and CL&P parameters were

used here. We previoulsy initialized our droplets at a contact angle of approximately 90° and

observed the wetting behavior as a function of time. Given that these droplets exclusively moved

toward wetting behavior (decreasing θcontact) we initialized analogous simulations with droplets of

smaller contact angles (100°, 80°, and 60°) and ran each for 200 ns. The results, shown in Fig. 6.4,

indicate that previously results had not reached an equilibrium state. The droplet initialized at

100° appeared to stablize near 40° after 100 ns but later wetted the surface further. The droplet

initalized at 80° exhibited similar behavior at lower contact angles and completely we the surface
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at longer times. The droplet initalized at 60° wetted the surface more rapidly, fully wetting after

approximately 50°. These results indicate, at least for a particular parameter set, that nanodroplets

with a small θcontact may be metastable and, at longer timescales, completely wet the surface.

With these limitations in mind, we seek to investigate how much control we have the wetting

behavior of an ionic liquid nanodroplet on graphene. We use the same system as above but mod-

ulate the fluid-solid interaction by varying the εC parameter — that is, the energetic term of the

Lennard-Jones potential used to describe the carbon atoms in the graphene surface. GROMACS,

like most molecular simulation engines, uses Lorentz–Berthelot mixing rules2,3 by default. In leiu

of custom i− j interactions, which are typically not included in common force fields, the Lennard-

Jones interactions between atoms i and j are

σi j =
σi +σ j

2
(6.1)

and

εi j =
√

ε jε j. (6.2)

Recall from the general form of the Lennard-Jones potential

VLJ = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]

(6.3)

that the parameter ε largely controls the depth of the potential energy curve and σ controls the

location (or, similarly, the size of the atom). In most atomistic force fields, particularly those used

to model ionic liquids, there can be dozens of unique atom types and an equal number of potential

cross-interactions to tune. More rigourous techniques can leverage all of these parameters toward

control of physical properties (i.e. θcontact) but would be more difficult for other researchers to

adapt in their simulations. Our approach involves changing only one value in the GROMACS

input files. In varying εC, all fluid-solid interactions, and therefore the overall description of the

interface, are controled with a single parameter.
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We scaled εC by three values: 0.1, 0.01, 0.002, and 0.001. Note that because of the mixing

rule (), the potential energy scales as the square root of these values, or 0.3162, 0.1, 0.0447, and

0.03162. To hedge against any metastability issues, we also initialized each nanodroplet, subject

to each scaling, at angles of 80°, 100°, and 120°, for a total of 12 unique simulations. The wetting

behavior of each nanodroplet as a function of time, measured by θcontact(t), is summarized in

Fig. 6.4

Figure 6.4: Wetting behavior of droplets with different initial contact angles and fluid-solid inter-
action parameters

It is clear that scaling the parameter εC has robust control over the wetting behavior of the

nanodroplet. As evidenced by the convergence of contact angles at long time regardless of their

initial contact angles, this control also appears to be insensitive to the contact angle of the initial

configuration. The values of θcontact(t) also appear to be largely stable as a function of time,

especially when the initial and equilibrium contact angles do not differ by large amounts. While

the extremely ionophobic surfaces of εC = 0.001εC,GAFF are not realistic, these results indicate

that, particularly for large contact angles, molecular interactions can be stably tuned toward a

target value by scaling only one parameter. Without these modifications, wetting processes may

not be captured within the timescales accessible by atomistic molecular dynamics simulations.

154



6.4 Conclusions

Molecular simulation in the past decade has become a commonly used tool for modeling su-

percacitors and has been used to study other interfaces for decades prior. As with its use in most

other fields, the design, derivation, and selection of of force field is crucial to accurately model

relevant physical phenomena. In this chapter, we evaluated this relationship with a focus on ionic

liquids at interfaces. We used toy systems of graphene channels and nanodroplets to study the re-

lationships between simple and higher-level physical properties as predicted by some force fields.

We found that the differential capacitance predicted via channel simulations — and considering

no other properties — is not noticably sensitive to the selection of force fields, at least within the

context of classical, atomistic molecular dynamics simulations using the constant charge method.

This is notable given that the force fields exhibit remarkably different physical properties in the

bulk ionic liquid phase. We next employed simple nanodroplets to focus on the fluid-solid inter-

actions modeled by these force fields. We found that the force field with the best bulk ionic liquid

properties (KPL) provides physically unrealistically behavior (rapid and complete wetting) and

other force fields provide more realistic behavior (wetting to contact angles near 50°) but may be

susceptible to being trapped in metastable states. Finally, we proposed a simple method by which

a force field can be tuned to a fit a target contact angle, which is a proxy for fluid-solid interactions

more broadly.
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Chapter 7

Molecular Simulation of MXenes

MXenes are a new class of 2D materials with excellent physical properties and broad relevance

to many energy applications. In this chapter, we describe the development and testing of soft-

ware that implmements a classical model of MXenes and intercalated fluids for use in molecular

simulation.

7.1 Introduction

Much like graphene a decade ago and carbon nanotubes a decade prior, MXenes are a new and

exciting class of 2D materials. They are metal carbides composed of alternating layers of carbon

(or nitrogen) and transition metals. Their discovery was reported in 2011 by Michael Naguib

and Yury Gogotsi1 and has spawned some thousands of papers in years since. Their potential

applications are numerous, but early work has been focused on energy storage and catalysis.

To illustrate this point, simple analytics of MXene publications were compared to other popu-

lar, arguably revolutionary nanomaterials. The number of unique manuscripts over time, according

to Web of Science searches, are compared in Fig. 7.1 and Fig. 7.2. While MXenes currently oc-

cupy an early position on the technology pipeline, it is difficult to overstate the amount of interest

in them. It is clear that the number of papers concerning MXenes is growing rapidly, but as evi-

denced by Fig. 7.2. Many other materials have stalled in interest, as measured by the number of

new papers published each year, but interest in MXenes is still growing by this measure. Many

novel materials have shown promise in the lab but stalled out before making a significant impact on

society. It is a decade or so too early to evaluate MXenes on such a basis, but the early excitement

is at least on par, if not greater than, any other innovation in this generation of materials science.

MXenes are synthesized by etching the A phase out of a "MAX" precursor. These "MAX"

materials typically follow the form Mn+1AXn where M is an early transition metal, X is carbon
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Figure 7.1: Cumulative number of references to some popular nanomaterials, as per a Web of
Science search.

and/or nitrogen, and A is a group 13 or 14 element and n is 1, 2, or 3. The most common MXene

is Ti3C2, which comes from chemically etching the Al from a Ti3AlC2 precursor. The resulting

structure includes alternating and well-defined layers of metal and carbon (and/or nitrogen). One

layer of MXene is defined as a grouping of typically five (sometimes three or seven) of these

atomic layers. The Ti atoms that define the outer atomic layers are functionalized with surface

termination groups. The chemical etchant is typically HF, so these surface terminations groups are

typically F, OH, and some drpronotated OH (O). The composition of these groups appears to be

highly sensitive to synthesis conditions, as various experimental probes have provided remarkably

different stoichiometric estimates.2–4

Nonetheless, the overall nature of the surfaces appears to be hydrophilic. Upon exposure to

water, these interlayer spacings are readily intercalated with small amounts of fluid, often as small

as a monolayer quantity of water. Many experimental probes have characterized the overall struc-

ture of the resulting system by observing changes in the c-lattice parameter that can be attributed

to this intercalation.

MXenes can also be intercalated with electrolytes, both aqueous and organic in nature. The

naturally high conductivity of the carbide phase, the inherently high surface area of the 2D MXene
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Figure 7.2: Annual number of references to some popular nanomaterials, as per a Web of Science
search.

sheets, and the rich chemistry of the surfaces and adsorbed fluids have spurred interest in a variety

of applications ranging from energy storage (Faradaic, non-Faradaic, and semi-Faradaic in nature),

electrocatalysis, gas sensing and storage, lubricaiton, and water purification. Underlaying most of

these properties are the structure and transport of intercalated species (water, ions, or other species).

Provided this and the difficult nature of comphrenesively studying these systems with experiments,

it is therefore of fundamental interest to develop and deploy molecular models of MXenes in order

to understand the structure and dynamics of these confined species.

Metals in general can be tricky to study with classical molecular dynamics since their chemistry

is more diverse and their physics are not as well-described by simple potentials that work well for

organic and biological compounds. Similarly, there is a limited scope of what can be studied

by classical molecular dynamics. Many of the relevant properties, such as reaction energetics,

electronic structure, and thermal and electrical conductivity must be studied by first-principles

methods. However, classical molecular dynamics is an invaluable tool in a narrow scope, primarily

focused on the structure and dynamics of fluids and electrolytes confined in layers or "stacks"

of MXenes. To facilitate robust and reproducible applications of classical models to study the

properties of these systems, we developed a Python package in the MoSDeF ecosystem. It provides
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users, with only a few lines of Python code, the capability of building MXene systems with vast

complexity in the design space of these materials. Such parameters include system size, crystal

structure of the base lattice, chemical composition of the surface termination groups, and inter-

layer spacing.

To this end, we have implemented this force field into a larger package, MXenes, to aid in

the reproducible generation of these systems for molecular simulation. Included are functions

that handle the generation of the atomistic structure, including different surface terminations, the

parametrization according to our force field, and the writing to various file formats. This can all be

done in a scalable, scriptable manner.

7.1.1 Model

The force field was developed by Lukas Vlcek at Oak Ridge National Laboratory. He used

a rigorous fitting procedure he previously developed5 that is based on optimizing the statistical

distance between statistical mechanical systems. It attempts to capture the overall thermodynamic

description of a system with a single measure, much like an objective function, instead of selecting

a few (1-3) physical properties and tuning force field parameters to those. The target data was a

set of ab initio molecular dynamics (AIMD) simulations generated by Yu Xie, also at Oak Ridge

National Laboratory.

7.1.2 Example systems

7.1.2.1 Dry MXenes

There is some uncertainty about the surface chemistry of MXenes, particularly because syn-

thesis procedures were not standardized until recently, and still there are a number of techniques

to choose from. A comphrensive list can be found in.6 Because of this, there is some disagreement

in the few experimental studies that have attempted to quantitatively characterize the composition

of different surface chemistries.2–4 However, the general picture is that the surfaces are primarily
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hydroxylated, with some deprotonated hydroxyl groups and fluorine groups, and also sometimes

sorbed water molecules. This is similar to the surface of metal oxide materials, which have been

studied for decades.

Given that the surface chemistry is of broad interest to molecular simulation studies, it is useful

to consider model systems having surfaces of different composition. To this end, we considered

four model systems, enumerated in Table 7.1. To ensure the systems are stable, we report the

c-lattice parameter for each system. Experimental studies tend to report values near 2 nm. We

see in Fig. 7.3 that each system equilibrates to similar values. The system with 100% hydroxyl

termination has a smaller value, perhaps artificially low due to strong hydrogen bonding between

layers. Note that despite the wide variety of surface compositions reporting in experimental mea-

surements, a purely hydroxylated surface, or anything close to it, has never been reported. The

system with a surface composition as reported by Wang et al.2 is close to the reported value of

1.934 nm, which is believed to correspond to a dry (i.e. no intercalated water) system.

Table 7.1: Example systems of dry MXenes

Name xOH xO xF

Pure OH 1.0 0 0

Pure F 1.0 0 0

Mixed 0.5 0.25 0.25

Wang, 2015[2] 0.52 .06 0.42

7.1.2.2 Water in MXenes

Given that most MXene synthesis routines involve water-based etchants and many applications

rely on water-based fluids like aqueous electrolytes, it is of fundamental interst to study water

confined in MXenes. As a simple step in this direciton, we considered different amounts of water

intercalated between MXene layers: 8, 10, 15, and 20 water molecules per lattice repeat units. We

used the SPC/E water model and followed a similar procedure as above. First, we evaluate the
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Figure 7.3: Simulation box sizes over the course of a 10 ns trajectory.

structure of these systems by considering again the c-lattice parameter. It is clear from Fig. 7.4 that

the layers expand with the addition of more water content and that all systems are stable.

Next we consider the mobility of the confined waters by measuring their diffusivity in the x

and y directions. Diffusivities extracted from the MSDs shown in Fig. 7.5 are, for water quan-

tities 8, 10, 15, and 20 waters per lattice repeat unit, 2.9×10−12 m2 s−1, 1.1×10−11 m2 s−1,

6.7×10−11 m2 s−1, and 1.3×10−10 m2 s−1. Fluids generally exhibit slower transport properties

on confinement, particularly nanoconfinement, and these systems are no exception.

7.1.2.3 Large MXenes

The nature of these builder functions, the MoSDeF ecosystem, and scriptable Python-based

tools more generally is the scalability of any process. The modification of a single argument

(periods) allows for scaling to arbitrary system size with minimal modifications of downstream

scripts and interfaces with other engines and tools. To illustrate the point, we have generated a
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Figure 7.4: Simulation box sizes over the course of a 10 ns trajectory.

single large MXene system by using periods=[40, 40, 3], which generate in a matter of

minutes a large MXene system. This can then be passed to a molecular simulation engine (i.e.

LAMMPS, GROMACS, OpenMM, etc.) for equilibration and production runs. A snapshot of this

simulation is presented below.

7.1.2.4 Mixed Electrolytes Confined In MXenes

Given the broad interest in MXenes as electrodes for energy storage applications, it is useful to

consider molecular simulations of electrolytes confined in MXenes. We consdier a mixed eletrolyte

similar to the focus of Chapter 4. The ionic liquid [EMIM+][TF2N-] was mixed in acetonitrile at

a molar ratio of 1 ionic liquid per 10 solvent molecules. A total of 40 ionic liquid pairs and 400

solvent molecules were placed across 4 layers of a hydroxyl-functionalized Ti3C2 MXene. Our

force field was applied to the MXene and the CL&P and OPLS-AA force fields were applied to the

ionic liquids and solvent molecules, repsectively. We ran a single 10 ns simulation with generally
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Figure 7.5: Mean-squared displacement of water molecules molecules in the x and y directions as
a function of water content.

standard simulation parameters.

First we verify that the simulation is stable by considering the simulation box lengths in each

dimension. Unstable systems typically blow up quickly or exhibit unphysical volume changes

when in the NPT ensemble. As shown in Fig. 7.8, the system is stable in each dimension, quickly

reaching steady-state values that remain constant over the length of the 10 ns simulation. Next

we consider the diffusivity of the ionic liquid by a simple MSD analysis. Because of the nature

of confinement in a 2-D material, we consider only diffusion in the x and y dimensions. A sum-

mary is presented below in Fig. 7.9. The linear fit to the MSD produces a diffusion coefficient of

3.3×10−9 m2 s−1 which is both in line with the mobility of other dilute ionic liquids and drasti-

cally higher than comparable neat ionic liquids. The properties of energy soraged devices based

on MXenes and solvated ionic liquids have been studied more in-depth by our collaborators.7

163



Figure 7.6: Snapshot of a large MXene system. The unit cell is replicated 40 times in the x and y
directions and 3 times in the z direction producting a system of 43,232 atoms and a box lengths of
approximately 9.144 nm, 7.9 nm, and 5.7 nm in the x, y, and z directions, respectively. Here the x
axis points into the page, the y axis points to the right, and the z axis points down. A scale bar of
10 Å or 1 nm is included for reference. Atoms are colored as follows: Ti: silver, C: black, O: red,
H: white.
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Figure 7.7: Snapshot of a solvated ionic liquid confined in a MXene. The system includes 40
pairs of the ionic liquid [EMIM+][TF2N-] and 400 acetonitrile molecules. Atoms are colored
approximately with the CPK scheme: Ti: pink, C: cyan, O: red, H: white, N: blue, S: yellow.
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Figure 7.8: Simulation box sizes over the course of a 10 ns trajectory.
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Figure 7.9: Mean-squared displacement of ionic liquid molecules in the x and y directions.
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7.2 Conclusions

This chapter reports a classical model of MXenes that can be used to study a variety of systems

relevant to many applications. To our knowledge, there is no such model currently available in

the literature. Most of the computational work on MXenes has, for good reason, relied on first-

principles methods. Some groups have reported the use of classical models in some studies but

none have shared their models in detail. To validate the stability of this model, we built a few

systems that are simple, yet form the basis of basic energy research. This includes dry MXenes

with different surface termination groups, MXenes with different amounts of water intercalated

between the layers, a large MXene system, and a MXene intercalated with a solvated ionic liquid.

Thus, we have demonstrated that this model can cover a majority of the current design space in

MXenes: the selection of surface termination chemistry and intercalated fluid or electrolyte.
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Chapter 8

Conclusions

Although Walden’s discovery of ionic liquids dates back more than a century, the field is still

young and a comprehensive understanding of the physics of ionic liquids is not yet mature. Both

molecular simulation and novel experimental techniques will continue to develop as ionic liquids

progress in the technological pipeline; to date, few companies have been formed around ionic

liquids. As molecular simulations become more robust and accurate (with the development of

advanced sampling techniques and molecular force fields) and as experimental probes are better

able to simultaneously resolve the structure and dynamics at molecular scales (Å to nm and fs to

ns) a more clear understanding of the fundamental physiochemical properties of ionic liquids will

emerge. This progress cannot currently take place with either computational models or experi-

mental probes alone. The work presented in this thesis includes several such examples of how

iterations between simulations and experiments can synergistically promote better understaning of

how ionic liquids behave in contexts releveant to energy storage and other applications.

These previous chapters have presented contributions to a broad array of applications in which

ionic liquids present opportunities but need to be studied more. Chapter 3 detailed the development

and validation of a routine for generating atomistic models of porous carbons that can be used in

molecular simulations in not only energy storage devices but other applications such as gas adsorp-

tion and separation. Chapter 6 tested the reliability of "out of the box" uses of classical molecular

models, to mixed results, and provided some recommendations for general use. In Chapter 4, we

rigorously evaluated how solvents impact ion mobilities in mixtures of ionic liquids and organic

solvents and demonstrated that solvents with greater diffusivities and, secondarily, with greater ca-

pacity to screen ion-ion interactions produce the greatest enhancement of ion mobilities. Chapter 5

showed that the addition of large amounts of water to ionic liquids confined in microporous carbon

or MXene electrodes can increase ion diffusivity by displacing ions from pore walls, where they
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are generally least mobile. Finally, Chapter 7 reports the development of a MXene model that has

been used in some simple systems and can be the basis of many future studies on MXenes.

170



Appendix A

Appendix to Chapter 3

A.1 Selection of of Compression Pressure

The compression procedure described in the main text was repeated at pressures 1000 atm,

10,000 atm, 30,000 atm, 50,000 atm in addition to the selected pressure of 20,000 atm. System

densities over the course of these compressions are shown in Figure Fig. A.1. It is observed that

pressures of 1000 atm and 10,000 atm are too low to largely impact the density. A barostat of

50,000 atm is too large, as it compresses the system nearly to the graphitic limit of 2.26 gcm−3.

Intermediate pressures of 20,000 atm and 30,000 atm increase the density of the system above the

density observed in experiment but not so high that they could not be found in certain nanostruc-

tures found in CDCs.
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Figure A.1: System densities over the length of compression simulations with different reference
pressures.

A.2 Electron Energy Loss Spectroscopy

Aberration Corrected Scanning Transmission Electron Microscopy (ADF-STEM) and Electron

Energy Loss Spectroscopy (EELS) data were collected on CDC samples. Data collected on a SiC-

CDC sample vacuum annealed at 700 ◦C is shown in Figure Fig. A.2. A number of bright spots

are observed are further investigated with EELS. An EEL spectra was collected on the region

highlighted in a red box and a K-edge as 99 eV was observed. This corresponds to Si, indicating

that bright spots in the sample are residual Si atoms not fully processed during material synthesis.
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Figure S1. ADF STEM image and EELS spectra collected on a SiC-CDC sample after vacuum annealing 

at 700 ◦C. (a) ADF STEM image of SiC-CDC vacuum annealed at 700 ◦C; (b) Corresponding EELS 

spectra from SiC-CDC vacuum annealed at 700 ◦C. The K-edge at 99 eV confirms that the bright 
spots located in the region highlighted with a red box are Si atoms. 

 

Figure A.2: Annular Dark-Field (ADF) Abberation-Corrected Scanning Transmission Electron
Microscopy (STEM) image and Electron Energy Loss (EEL) spectra collected on a SiC-CDC
sample after vacuum annealing at 700 ◦C. (a) ADF STEM image of SiC-CDC vacuum annealed at
700 ◦C; (b) Corresponding EEL spectra from SiC-CDC vacuum annealed at 700 ◦C. The K-edge at
99 eV confirms that the bright spots located in the region highlighted with a red box are Si atoms.
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A.3 Raman Spectroscopy

A Raman spectrum is included in Figure Fig. A.3. The data is characteristic of disordered

carbon and shows prominent D and G bands.
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Figure A.3: Raman spectrum of experimental sample of SiC-CDC synthesized by vacuum anneal-
ing at 700 ◦C

A.4 Effects of Compression Pressure

Effects of compression pressure on pore size distribution are also explored, using methods

described in the main text and shown in Figure Fig. A.4. As implied in the densities of systems

compressed above 20,000 atm, overall pore volume is greatly reduced in systems compressed at

these pressures. Therefore, in order to minimize the loss of pore volume as a result of compression

but benefit from the reduction in average pore size, a pressure of 20,000 atm was selected.
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Figure A.4: Pore size distributions resulting from the use of barostats with high reference pressure.

A.5 Large Systems

System size effects are a common, if typically minor issue in molecular simulation. The use of

periodic boundary conditions is typically of little or no consequence, sometimes after correction

terms are included to certain analysis equations, but the use of a nanoscale simulation box can

sometimes distort molecular simulations toward non-physical states. To verify that this was not

the case, we repeated the procedure described in Chapter 3 with 200,000 atoms, or ten times

as many as was used to derive and characterize the model. I am unaware of any work in the

literature considering systems of anything close to 200,000 atoms with atomistic resolution. This

is an advantage of the ReaxFF force field; while it is more expensive than a classical model, it is

not prohibitively expensive for large systems. It is clear from Figs. A.5 and A.6 that the general

structure features are the same in systems of 20,000 and 200,000 atoms. We conclude that system

size effects do not majorly impact this model.
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Figure A.5: Large QMD-generated structure including 200,000 carbon atoms in a system size of
approximately 16 nm. Some messiness around the edges is the result of drawing bonds with the
DynamicBonds representation in VMD, which does not consider bonds crossing periodic bound-
aries.
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Figure A.6: The same structure as in Fig. A.5 but with a rotated view.
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Appendix B

Appendix to Chapter 4

B.1 Comparison of ion diffusivities

As discussed in the main text, diffusivities were computed with two methods: an MSD of the

entire trajectory and the average of MSDs from smaller sub-trajectories of the same trajectory.

Each trajectory is 30 ns (20 million timesteps of 1.5 fs) and slices of 1.5 ns were considered. As

shown in Fig. B.1, these methods produce nearly identical results. For all but a small number of

data points, the diffusivity values produced from a single trajectory falls within the errorbars of

values from multiple sub-trajectories. While 1.5 ns may not be enough for complete decorrela-

tion between configurations in all systems, we select the average diffusivity from multiple shorter

MSDs as the values to report in all other sections of this study. A more rigorous approach would

be to compute multiple independent simulations for each statepoint.1

A comparison of individual ion diffisivities, i.e. cations and anions, is shown in Fig. B.2. In our

previous work,2 the nature of neutron experiments restricted our focus to only the cations. Here,

we considered all ions at once, although the diffusivities of each ion are qualitatively (and nearly

quantitatively) interchangeable.
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B.2 Computation of Ion Correlation Lifetimes

The calculation of ion pairing and caging lifetimes were discussed briefly in the main text.

This is done so by computing the number of ion pairs in the first frame, and then computing

which of these pairs remains in the subsequent pairs. The distance criteria use to calculate pairs

was determined by the first peak displayed in the radial distribution functions (RDFs) between

[BMIM+] and [TF2N-]. Rather than display hundreds of RDFs, the first peak positions of the

[BMIM+] and [TF2N-] RDF for all systems are shown in Fig. B.3. The ratio of remaining pairs is

plotted against time, and the curve is fitted with a stretch expoential function get the pairing/caging

lifetimes. These plots are shown in Fig. B.4 and Fig. B.5. For statistical averaging, the 30 ns

trajectory (20,000 frames) is broken up into 750 frame chunks. We have experimented with longer

and shorter chunks, but the fits of the stretched exponential functions are not significantly affected.

Addtionally, the slope of the fraction of free ions as a function of [BMIM+][TF2N-] composi-

tion was computed for all solvents. The slopes are compiled into Table B.1.
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Figure B.3: Radial distribution function first peak position (nm) between [BMIM+] and [TF2N-].
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Figure B.4: Time decay of [BMIM+][TF2N-] ion pairs in methanol.
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Figure B.5: Time decay of [BMIM+][TF2N-] ion cages in methanol.
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Solvent Free Ions Slope
Ethylene carbonate -0.88

Acetonitrile -0.82
Adiponitrile -0.81

Ethanol -0.82
1,2-dichloroethane -0.76
Dimethylsulfoxide -0.91

Methanol -0.84
Glyme -0.85

Acetone -0.85
Dimethylacetamide -0.86

NN-dimethylformamide -0.87
Butyronitrile -0.77

Butanol -0.71
Diglyme -0.88

Cyclohexanone -0.72
Tetrahydrofuran -0.67

Benzonitrile -0.60
Dichloromethane -0.46
Chlorobenzene -0.38

Octanol -0.56
1,4-dioxane -0.53

Propylene carbonate -0.80

Table B.1: Table of solvents and slopes of free ions as a function of [BMIM+][TF2N-] composition.
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Appendix C

Appendix to Chapter 6

C.1 General Structure of the OPLS-AA Force Field

The Optimized potential for liquid systems (OPLS) force field, an in particular its all-atom

form (OPLS-AA) follows the typical structure of a classical force field. Interactions are the sum

of many terms, typically divided into intermolecular (non-bonded) and intramolecular (bonded)

terms. The structure of this force field was followed exacgtly or approximately for all work in this

thesis except for the ReaxFF potentials of Chapter 3.

Etotal = Enon−bonded +Enon−bonded (C.1)

Enon−bonded = ELennard−Jones +Ecoulomb (C.2)

ELennard−Jones = ∑
i

∑
j>i

[
4εi j

((
σi j

ri j

)12

−
(

σi j

ri j

)6
)]

(C.3)

Ecoulomb = ∑
i

∑
j>i

[
qiq je2

ri j

]
(C.4)

Ebonded = Ebond +Eangle +Etorsion (C.5)

Ebond = ∑
bonds

Kb (r− r0)
2 (C.6)

Eangle = ∑
angles

Kθ (θ −θ0)
2 (C.7)
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Etorsion = ∑
torsions

1
2
[K1(1+ cosφ)+K2(1− cos2φ)+K3(1+ cos3φ)−K4(1− cos4φ)] (C.8)

The non-bonded interactions are the sum of a Lennard-Jones potential, which handles short-

range Pauli repulsion and attractive long-range dispersion forces, and a coulombic potential that

describes electrostatic interactions. Intramolecular forces are the sum of harmonic springs that

represent bond stretching and bond bending and a sum of sinusoids that describe more complex

molecular twisting (torsions). Sums over i and j correspond to pairwise sums over all particles in a

system (three-body and higher-order interactions are not considered). At each step these equations

are evaluted based on ri j (the distance between atoms i and j), r (the separation distance of of a

bond), θ (the internal angle between any set of three atoms) and φ (the angle of a torsion between

four atoms, defined by the angles between planes defined by the first and last three atoms of the

quartet). Fitted parameters specific to particular interactions include Lennard-Jones parameters εi j

and σi j, the partial charges qi on any atom i, equilibrium bond distances r0, equilibrium angles θ0,

bond and angle spring constants Kb and Kθ , and diehdral force constants K1, K2, K3, and K4.

C.2 Calculation of Nanodroplet Contact Angle

To characterize the interaction of ionic liquids with a graphene surface, nanodroplets were

formed, equilibrated, and their resulting structure was analyzed. We assume that the nanodroplet

forms a well-defined droplet structure that can be approximated as a spherical cap. This approach

is commonly-used in the analysis of nanodroplets because molecular ordering at the interface pre-

vents the formation of a well-defined contact angle directly on the interface; however, the rest of

the droplet follows this approximation. This is distinct from droplets at the macro scale, in which

this molecular ordering is far too small to be noticed by cameras, and the contact angle at the in-

terface can be directly measured. Here we define a spherical cap as a segment of a sphere of radius

r formed by slicing it in a plane in xy, resulting in a spherical cap of height h. This implies the
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surface is perpindicular to the z axis, the that the droplet is smooth and well-rounded in the x and

y directions.

A simple way to implement this technique is to collect an atomistic density profile of the droplet

in the lateral (z) direction from a molecular dynamics trajectory and fit it to a spherical cap to this

density profile. Note that data within approximately the first nanometer off of the surface must

be discarded due to molecular ordering (for water or other smaller molecules, less data must be

discarded). This fit provides the radius of the sphere including the spherical cap. The height of

the cap can be computed directly from the difference between the maximum z coordinate of the

spherical cap and the z coordinate of the surface. With these two values alone, the contact angle,

in °, can be computed as

θcontact = arccos
(

R−h
R

)
(C.9)

This method has been implemented in a Python package, hosted on GitHub and distributed

under the MIT license.1
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