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Analyse de raccords de brides boulons plastiques renforcés de fibres 
 

Ali KHAZRAIYAN VAFADAR 
 

RÉSUMÉ 
 

Les composites en plastique renforcé de fibres (FRP) sont largement utilisés dans les domaines 
des appareils et tuyauterie sous pression. Les assemblages à brides boulonnées en FRP ont 
connu un développement spectaculaire dans le domaine du transport des fluides dans les 
systèmes de tuyauterie. Malgré l'utilisation accrue des composites de FRP dans les 
assemblages à brides boulonnées et la bonne connaissance de ces structures et du 
comportement de leurs matériaux, la procédure utilisée pour leur conception reste celle adoptée 
pour les brides métalliques. Cependant, les résultats sont souvent biaisés puisque celle-ci ne 
prend pas en considération le comportement anisotrope des brides en composites. Par 
conséquent, il est nécessaire de développer une approche réaliste pour procéder à une 
évaluation précise de la redistribution des charges dans l’assemblage afin de prédire l’intégrité 
des brides boulonnés en FRP. 
 
Cette thèse présente deux modèles analytiques de brides, un sans collerette et un avec 
collerette. Ces modèles sont supportés par des modèles numériques par éléments finis et des 
essais expérimentaux. L’étude traite l’intégrité structurelle et l’étanchéité des assemblages à 
brides boulonnés en FRP sur la base de l’anisotropie, ainsi qu’une analyse de la flexibilité de 
tous les éléments de joint, à savoir le joint, les boulons et les brides. Dans les modèles 
analytiques des brides avec et sans collerette, la bride en composites est subdivisée en trois 
parties principales, à savoir: l’anneau ou la plaque annulaire, la collerette et la coque 
cylindrique. L’étude expérimentale, laquelle repose une approche fiable pour évaluer le modèle 
analytique proposé, a été réalisée sur un banc d’essai (banc d’éclatement de joints HOBT). Le 
banc d’essai a été modifié pour accommoder les brides NPS 3 en FRP conçu conformément à 
la section X du code l’ASME. Des modèles numériques 3D avec des éléments à coque 
anisotrope et des éléments solides ont été réalisés pour comparer et vérifier les résultats obtenus 
par les approches analytiques et expérimentales. 
 
Malgré l'analyse mathématique rigoureuse et la complexité des brides composite stratifié, la 
comparaison des résultats a prouvé que les modèles analytiques proposés des brides en FRP 
avec et sans le moyeu sont efficaces, précis et fiables pour prédire la distribution des contraintes 
longitudinales et tangentielles dans la bride ainsi que le déplacement radial de la bride. De plus, 
les résultats ont montré que le modèle FE développé pour les brides en FRP avec et sans moyeu 
peut reproduire parfaitement le comportement des assemblages à brides boulonnés en FRP. 
 
 
Mots-clef: Plastique renforcé de fibres (FRP), assemblages à brides boulonnées, Composites, 
Anisotropie, Assemblage avec joint plat 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Analysis of fiber reinforced plastic bolted flange joints 
 

Ali KHAZRAIYAN VAFADAR 
 

ABSTRACT 
 

Fiber Reinforced Plastic (FRP) composites are extensively used in the areas of pressure vessels 
and piping and FRP bolted flange joints have experienced a spectacular development to 
provide continuity for the flow of fluid through piping systems. In spite of the increased use of 
FRP composites in bolted flange joints and the good knowledge of these structures and their 
material behavior the procedure used for their design is still that of metallic flanges. There is a 
major concern to appropriately address the anisotropic behavior of composite materials in a 
flange design. Therefore, it is necessary to make a precise evaluation of the bolt and gasket 
loads in order to be able to predict the integrity of FRP bolted flange joints.  
 
This thesis presents two analytical model cases; one with the flange hub and the other one 
without the flange hub. These models are supported by numerical finite element modeling and 
experimental test data. The study treats FRP bolted flange joints integrity and leak tightness 
based on the anisotropy and flexibility analysis of all joint elements including the gasket, bolts, 
and flanges. In the analytical models for the flange with and without the hub, the composite 
flanges are subdivided into three major categories, namely: ring flange, hub, and shell. The 
experimental study was carried out on a well-equipped test bench, used for Hot Blow out test 
of PTFE gaskets. The rig was modified to accommodate an NPS 3 FRP bolted flange joint 
designed according to ASME BPV Code Section X. Furthermore, three different numerical 
models based on 3D anisotropic layered shell and solid element models were conducted to 
compare and verify the results obtained from analytical and experimental approaches.  
 
In spite of the rigorous mathematical analysis and complexity of the laminate composite flange, 
comparing the results proved that the proposed analytical models for FRP flanges with and 
without the hub, are efficient, accurate and reliable in predicting the longitudinal and tangential 
stress distributions on the flange surface and radial displacement of the flange. Moreover, the 
results demonstrated that the FE model which is developed for FRP flanges with and without 
the hub can depict the true behavior of FRP bolted flange joints. 
 
Keywords: Fiber Reinforced Plastic (FRP), Bolted Flange Joints, Composites, Anisotropy, 
Full face gasket 
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P1    Hub to cylinder discontinuity force [N/m] 
 
P2    Flange to hub discontinuity force [N/m] 
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r  Radius considered [mm] 
 
rb  Bolt circle [mm] 
 
ri  Inside radius of the flange [mm] 
 
ro  Outside radius of the ring [mm] 
 
Sb  Allowable bolt stress at design temperature [MPa] 
 
Sya  Theoretical gasket seating stress [MPa] 
 
Sm0  Minimum operating gasket stress [MPa] 
 
Sm1  Gasket operating stress [MPa] 
 
Sm2  Gasket seating stress [MPa] 
 
Tf  Melting temperature [°C] 
 
th  Hub thickness [mm] 
 
tf  Ring thickness [mm] 
 
ts  Shell thickness [mm] 
 
Tpmin  Minimum tightness [/] 
 
U  Strain energy [J] 
 
uf  Ring radial displacement [mm] 
 
uin  Radial displacement in the initial phase [mm] 
 
uhn  Hub radial displacement [mm] 
 
usn  Shell radial displacement [mm] 
 
V  Work done by force [J] 
 
w  Axial displacement [mm] 
wf  Flange axial displacement [mm] 
 
Wm  Design bolt load [N] 
 



 

 

Wm1  Operating design bolt load [N] 
 
Wm2  Seating design bolt load [N] 
 
y  Gasket design seating stress [MPa] 

 
Superscript 
i  Refers to an initial tightening of the bolt condition  

 
f  Refers to final condition (pressurization) 
 
n  Refers to the time n 
 
Mass 
mg  Milligram 

 
kg   Kilogram 
 
 
Angel 
Deg   Degree 

 
Rad   Radian 
 
Length/Displacement 
m  Meter 

 
mm   Millimeters 
 
cm  Centimeter 
 
μs   Micro strain 
 
in   Inches 
 
Temperature 
C   Centigrade 

 
F   Fahrenheit 
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Time 
S  Second 

 
H   Hours 
 
Pressure/stress 
MPa  Mega Pascal 

 
GPa   Giga Pascal 
 
Psi   Pounds per Square Inches 
 

 
  



 

INTRODUCTION 

 
Fiber reinforced plastic composites have recently experienced a spectacular development in 

the areas of pressure vessels and piping. They are used in applications ranging from water and 

gas services to aeronautical and petrochemical industries. Their special properties have let 

these composites to take precedence over traditional materials in terms of weight, chemical 

resistance, resistance to fatigue, low maintenance cost, and even aesthetics. Because of the 

ability to resist in a corrosive environment, they are extensively used in chemical and 

petrochemical process plants. Only some type of metallic alloys such as nickel (Ni) 

molybdenum (Mo) chromium (Cr) alloys can successfully survive in these conditions.  

 

Fluid handling and transportation require safe bolted flange assemblies and pressurized 

equipment. Indeed, the main purpose of a bolted flange joint is to ensure the containment fluid 

and thus protect the immediate environment against contamination from leakage of harmful 

fluids or fluid escapes that are nauseating, toxic, and dangerous. In the first case, the loss of 

such a harmless fluid primarily results in a reduction in the efficiency of the installation, 

although such joint failure may present hazards such as leakage of steam under pressure. In the 

second case, the leak does not only represent a decline in the performance of the pressure vessel 

but also it is dangerous for the environment and humans (Bouzid et al. 2007). Therefore, a 

proper choice of materials in bolted flange joints for a particular process is an important 

responsibility of the user and the designer, in terms of compliance with laws, regulations, and 

standards of calculation. In addition, it is important to note that the performance of bolted 

flange joints depends on the interaction of the various components of the system and 

satisfactory performance of joints can only be expected if all the system components work 

together in harmony. 

 

Despite the increased use of FRP composites in pressurized tanks and piping plants, limited 

information is available on the mechanical analysis of certain components, especially in bolted 

flange joints. Even though the ASME BPV Code Section X (American Society of Mechanical 
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Engineers), ASME RTP-1 as well as other standards such as standard D4024, the British 

Standard BS 71 59 have developed rules for the design, manufacturing techniques and 

inspection of pressure vessels made of fiber-reinforced plastic, the theories that are used in the 

analysis of composite flanges are more or less modified versions of the theories used for 

metallic flanges. But the mechanical behavior of composite materials is different from metallic 

materials, because of their anisotropy and their inhomogeneity, so that the results obtained in 

using these design codes cannot explain the significant behavior of composite flanges.  

 

To investigate the behavior of fiber reinforced plastic bolted flange joints, some research has 

already been done as shown in Sun's thesis (1995), which is focused on the behavior of FRP 

flanges by proposing an analytical and numerical study. But it turns out that the analytical 

results are not in good agreement with the results obtained from the numerical model because 

of some assumptions that make some errors in the analytical model.  Blach et al. (1990) use 

the laminate theory to propose a method for a stress analysis of fiber reinforced plastic flanged 

connections with full face gaskets. They used a few assumptions to simplify their proposed 

method. Although they used rigorous mathematical analysis to describe all the complexity of 

the laminate materials, their method does not satisfy all the physical constraints associated with 

such composites. Kurz and Roos (2012), studied the mechanical behavior of floating type 

bolted flanged connections with glass reinforced plastic flanges, analytically and 

experimentally. In their study, they divided the flange into two small angular portions and 

considered as a beam clamped at one end subjected to bending. Thus, the design leads to virtual 

radial stress which only represents the usage level of the flange. The analytical model that 

Estrada and Parsons (1997) suggested in their study to describe the circumferential stresses 

and rotation shows good agreement with the results obtained from finite element simulation 

and experimentation. Campbell (1990) proposed a new technique to fabricate FRP flange that 

is the adoption of the one-piece integral flange. His design was based on the metal flange 

counterpart given by ASME B16.5. Black et al. (1995) suggested a simple design method for 

FRP flanges with full face gaskets but according to Bouzid (2011) bolts and gasket flexibility 

as well as the elastic interaction between them are neglected. It is worth noting that in designing 
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FRP flanges, the impact of temperature on the stress redistribution is not explained like with 

metal flanges (Nechache and Bouzid 2007).  

 

An overview of all researches done on FRP bolted flanged joints, shows that most of the 

proposed analytical models are based on metallic flange design. While, to have an accurate 

stress analysis in all part of FRP flange joints, it is necessary to choose a reliable method of 

design which describes the anisotropic behavior of FRP materials. Moreover, according to 

Czerwinski J (2012), very few papers deal with leak rate measurements in FRP bolted flange 

joints. 

 

The elements that influence the behavior of flanges and especially composite flanges in the 

operating conditions are countless, so it becomes necessary to study comprehensively FRP 

bolted flange joints to address specific issues related to these elements. This work aims both 

to study the actual behavior of FRP bolted flange joints and also to evaluate their performance 

compared with metal flanges in order to provide the possibility of using composite flanges as 

an alternative to metallic bolted joints with the same geometry. In order to study of FRP bolted 

flange joints comprehensively, a combination of analytical, experimental and numerical 

investigation techniques is used. 

 

The content of this thesis is organized into five chapters. All chapters have been written and 

presented in a constructive manner for ease of understanding of the reader. The first chapter is 

dedicated to the literature review and extensive and qualitative reviews of different types of 

bolted flange joints with particular focus on FRP bolted flange joints. This chapter also presents 

the properties and the anisotropic character of composite materials and exposes the peculiarity 

of the study of composite vessels in the domain of bolted flange joints. 

 

Chapter 2 outlines the analytical approaches of FRP bolted flange joints. In this chapter, two 

analytical models were developed to treat FRP bolted joint structural integrity and leak 

tightness based on anisotropic behavior and taking into account the flexibility analysis of all 

joint elements including the gasket, bolts, and flanges. Since the analytical study is the essence 
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of this research, a detailed explanation of the theories and equations for each part of the flange 

with the highest accuracy is vital. In the analytical models (one for the flange with the hub and 

one for the flange without the hub), the composite flanges are subdivided into three major 

categories, namely: ring flange, hub and shell, and the procedure for each part of the flange is 

described in detail.   

 

The numerical study of FRP bolted flange joints is elaborated in the third chapter. The 

presented numerical models of FRP bolted flange joints in this chapter are an attempt to 

develop and validate the analytical model. The finite element analysis makes it possible to 

obtain an approximate solution of a physical problem by providing algebraic stiffness 

equations to solve the problem. This chapter describes the procedure of three different finite 

element models; a flange with the hub and without the hub and a multilayer shell model using 

ANSYS Composite PrepPost.  Fiber reinforced plastic bolted flange joints of two sizes; NPS 

3 class 150 and NPS 12 class 150 flanges are treated. To create and analyzed the finite element 

models, the program ANSYS® Mechanical 16.02 and the ANSYS Composite PrepPost (ACP) 

16.2 were used. The geometry of flanges as well as laminate properties and the stacking 

sequence of the laminate used in the composite flange are presented in this chapter. 

 

It was considered necessary to set up a test rig to investigate the real behavior of FRP bolted 

flange joints and use experimental results to verify and characterize the presented analytical 

and numerical models in the second and third chapter. Thus, the fourth chapter is dedicated to 

describe the operational mechanisms of the Hot Blow Out Test Bench (HOBT) and the 

experimental procedure involved in this characterization study. FRP flange and test rig in this 

study were developed for the purpose of measuring the parameters related to the analytical and 

numerical models of this research work. 

 

Chapter five is devoted to present the results obtained from the analytical, numerical and 

experimental analysis of FRP bolted flange joints. In this chapter, discussion and comparison 

of the results shown in graphs and tables are performed.  
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Finally, this thesis concludes with a broad conclusion highlighting the main results of the work 

conducted on FRP bolted flange joints. Furthermore, a few recommendations are suggested for 

the future works in this research area.   

  





 

  





 

 
 
 

LITERATURE REVIEW 

1.1 Introduction 

Most of the research conducted on composite bolted flanged joints, especially fiber reinforced 

plastic flanges, focuses on transferring the knowledge from metallic flange designs to 

composite flange designs. Since FRP flanges do not behave like isotropic materials (Estrada, 

1997), (Hoa, 1991) designers have to rely on criteria based primarily on anisotropic designs 

and also other methods of analysis. In this chapter, some of the recent research work is 

reviewed which is one of the sources of instigation of this study objective. To present an 

extensive review of existing scientific articles and dissertations, this chapter is divided into 

four subsections:  

1- FRP flanges, standards and design codes,  

2- Analytical studies,  

3- Numerical (Finite Element) studies and,                 

4- Experimental studies. 

 

The next part presents a general introduction of FRP bolted flange joints as well as composite 

materials and the codes and standards of these materials. But before going deeper into these 

rules, especially those of ASME BPV Code Section X it is necessary to understand the different 

aspects of FRP bolted flange joints. Then, the existing analytical studies of FRP bolted flange 

joints are elaborated. The third part of this chapter presents the numerical finite element models 

used to simulate the behavior of FRP flanges. The fourth part discusses the experimental 

investigations and test procedures as well as the experimental results. 

 

1.2 Fiber reinforced plastic (FRP) 

Fiber reinforced plastics are composites made by reinforcing a resin with fibers. Using the 

Fiber reinforced plastic composite in the pressure vessels need special attention to the 
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fabrication techniques, design and testing of these structures. Pressure vessels which are made 

from metallic materials that are normally isotropic and ductile. These vessels are designed by 

using well-established allowable stresses based on measured tensile and ductility properties 

(ASME BPV Code Section X). In the form of composite like fiber reinforced plastic, a designer 

can take advantage of the propitious properties of these materials. In FRP, the strength and 

stiffness of the composite are provided by the fibers and the resin used as a binder to provide 

other favorable properties such as corrosion resistance, impact resistance and compressive 

strength. The anisotropic behavior of FRP material makes this composite separate from 

isotropic materials like metals. In an anisotropic material, the mechanical properties in each 

direction are different and it depends on the direction of the fibers.  Higher-strength and 

stiffness to weight ratios is another advantage of FRP composites that make them dominant 

compared to other materials such as steel. (Blach et al. 1987). 

 

Composites have replaced many traditional materials and provided users with longer-lasting 

equipment. These products created a history of successful field experience of long-term use of 

composites under specific conditions. Fiber reinforced plastics laminates may have a modulus 

of elasticity as low as 6894.76 MPa (1.0 x 106 psi), compared with that of ferrous materials 

which may be of the order of 20,6842.71 MPa (30 x 106 psi) (ASME BPV Code Section X). 

This low modulus characteristic requires careful consideration of vessel profile in order to 

minimize bending and avoid buckling. 

 

 Material Systems (fibers and resins) 

Thermoplastic resins are capable of being repeatedly softened and hardened by an increase and 

decrease of temperature. This change upon heating is mainly a physical rather than a chemical 

feature (Gendre, L. 2011). 

 

Because of the lower creep resistance and thermal stability, thermoplastic resins are not used 

as composite flanges. In general, thermoplastic polymers have higher strains to failure than 
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thermoset polymers, which may provide better resistance to matrix micro-cracking in a 

composite laminate. Popular types of thermoplastic resins include: 

 

• Polyvinyl chloride (PVC); 

• Chlorinated polyvinyl chloride (CPVC); 

• Polybutylene (PB); 

• Polyethylene (PE); 

• Polyvinylidene chloride (PVDC); 

• Polyvinylidene fluoride (PVDF); 

 

Thermoset plastics, do not flow under the application of heat and pressure. However, when 

exposed to heat or chemical environments, change into practically infusible and insoluble 

materials. Thermoset resins are more commonly used with FRP products and exhibit less creep 

and stress relaxation than thermoplastic polymers. They show superior thermal stability. In the 

ASME BPV Code, Section X, thermoset resins include: 

• Polyesters; 

• Epoxies; 

• Vinyl esters; 

• Phenolics; 

• Furan; 

 

In the (ASME BPV Code, Section X), reinforcements embedded in a resin matrix are a 

combination of fibers such as: 

• Glass (Type A, E, S, C); 

• Carbon; 

• Graphite; 

• Aramid; 

 

Glass fibers are used in most composite materials as reinforcement in many fields such as 

constructions, transport, optics, and sports. The reasons for these diverse applications are the 
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excellent properties they offer such as tensile strength that is twice as strong as steel, thermal 

insulation, dimensional stability, and low moisture absorption. Polyester and vinyl ester are 

corrosion resistance resins that are used in a wide range of pressure vessels such as tanks, pipes, 

ducting, chemical plant equipment because of these properties. In addition, a relatively low 

cost of glass fibers, making it competitive with other fibers. 

 

 General Fabrication Techniques 

There are several methods or manufacturing process for FRP flange production such as contact 

molding or hand lay-up, injection molding, filament winding, compression molding, resin 

transfer molding and centrifugal casting (Rosato et al. 1964). The following methods are mostly 

used in FRP flange production: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 Contact molding process (Black et al. 1995) 
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1- Contact Molding: 

In this method, cylindrical sections, heads, and attachments are fabricated by applying 

reinforcement fibers and resin to a mandrel or mold. System cure is either at room 

temperature or elevated temperature using a catalyst-promoter system. The contact 

molding process is depicted in figure 1.1. As shown in the figure each ply is applied 

one by one, paying attention to ensuring that the recommended orientation is respected 

and that no air bubbles seep into the resin. The resin is applied with a brush or a gun 

between each ply. 

 

 

 
 

 

1- Filament Winding 

In this process, continuous filaments of fiber wetted with the specified resin are wound 

in a systematic manner under controlled tension and cured on a mandrel or other 

supporting structure. The filament winding process is shown in figure 1.2. Heads and 

fittings fabricated by contact-molding methods may be attached with suitable adhesive 

resins and secondary reinforcement with the cutting of filaments as required. Heads are 

Figure 1-2 Filament winding process (Estrada 1997) 
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integrally wound and the only openings allowed are those centered on the axis of 

rotation and are wound into the vessel during fabrication.   

 

1.3 Bolted Flanged Joints 

In order to connect piping systems and pressure vessels containing fluids or gas under pressure, 

the most reliable way is to use bolted flanged joints. Flanges are used as an alternative to 

welding or threading different pipelines components and pressure vessels. In addition, bolted 

flange joints that are the alternative to welding because they can be easily assembled, 

disassembled, then reassembled when needed for shipping, inspection, maintenance, and 

replacement (Derenne et al. 2000).  

 

 
 

 
Figure 1-3 FRP Flanged Joints (Estrada 1997) 



13 

 

Due to the leakage in the large-bore threaded pipe and also threading pipe is not reliable and 

economical, flanged connections are favored over threaded connections. For these reasons, 

flanges are important components of any piping system. There are two types of the metallic 

bolted flanged joint shown in Figure. 1.3; integral flange and loose flange. 

 

Figure. 1.4 depicts two varieties of the integral flange geometry. As shown in this figure, raised 

face flanges are used for the applications at high pressure while flat face flanges are used for 

low pressures applications. Flat-faced flanges are typically used with full face gaskets and ring 

gaskets for the flanges with and without the hub respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-4 Conventional Metallic Flanged Joints (Estrada 1997) 
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Due to the greater contact area in the flanges with full face gaskets, they need greater load 

applied by the bolts to make them sealed. Therefore, to maintain the flanges sealed the gasket 

should deform plastically to close all the porosities on the flange face. The flange contact 

occurs inside the bolt circle of the raised face flanges and flat face flanges with ring gaskets. 

As a result, relatively higher flange rotation occurs when the joint is bolted leading to high 

bending stresses at the hub-to-cylinder junction.  

 

  Fiber reinforced plastic bolted flange joints 

There are commonly two types of flange known as FRP bolted joints:  

1- Stub flanges;  

2- Flat face flanges with full face gaskets;  

 

There are two general fabrication procedures used in the production of contact molded fiber 

reinforced plastic flanges; the first method is two-piece construction that the flange is laid-

up directly onto a piece of pipe or a cylindrical pressure vessel shell. The second one is 

one-piece construction that the continuous axial glass fibers wetted with resin, made a 

continuous form of the shell and hub into layers of the flange. It is necessary to mention 

that the one-piece integral flange eliminates all the problems associated with the bond of 

the two-piece construction and this method has been used successfully in industry 

application for almost two decades [Sun et al. 1995]. 

 

FRP bolted joints present more difficulties in design and operation than their metallic 

counterparts. This is because their material properties are more complex and the bolting 

requirements are different. Although the bolt holes in metallic flanges make a slight 

material discontinuity problem, drilling the bolt holes in FRP composite flanges can be 

significant, particularly in filament wound joints. In the composite flanges that are made 

with the hand lay-up manufacturing technique, this problem is solved by incorporating the 

holes in the flange during the manufacturing process. The field of application of these 

vessels varies since they are used in most industrial domains, in particular in the 
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petrochemical and nuclear industries. It is worth noting that because of their anisotropic 

behavior, the study of composite flanges is much more complex than for metal flanges. 

 

 Design codes and standards for FRP bolted flange joints 

There are two standards for fiber reinforced plastic flange joints: 
 

1.3.2.1     PS 15-69 

The first FRP flange standard from the national bureau of standards voluntary product 

standard, PS 15-69, appeared in 1969. This standard presents the minimum values of the flange 

thickness as well as the specifications for bolting system of FRP flanges including all metal 

washers, nut and bolt heads. In general, PS 15-69 covers some type of FRP flanges such as 

contact molded flanges and gives guidelines to keep their use in the safe zone with the butt-

strap joint recommended as the standard pressure vessel connections. In addition to this 

standard, ASTM added the specifications for the fabrication techniques (Filament winding and 

contact molding) of FRP flanges. However, this standard doesn’t cover flange design and only 

covers the specifications that are based on FRP flange performance. Technically, this standard 

becomes an updated version of the PS 15-69 standard. But there is a difference between these 

two standards in being proof tested and is listed in table 1.1.  The performance requires to the 

leakage test for sealing of FRP flange with the 1.5 times higher pressure of the design pressure 

and test with four times higher pressure of the design pressure period of the one-minute period 

for rupture strength. On the other hand, the composite material of contact molded flange should 

be able to resist about two times of recommended bolt torque by the manufacturer, and other 

flange construction should be able to resist 1.5 times bolt torque without visible signs of 

damage. 

 

This standard gives no specification for the gasket and bolting system, instead, it suggests to 

follow the manufacturer's recommendation. It also mentions that flanges fabricated with 

different techniques and different manufacturers with identical classification can not be 

interchangeable because the pressure vessels and piping systems need to get standardized. 
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1.3.2.2      ASME Boiler and Pressure Vessel Code Section X 

ASME code section X covers the design rules for FRP pressure vessels and piping systems. In 

this standard, the pressure vessels are qualified by two class designs:  

1. Class I design – this method qualifies the design through the destructive test of a 

prototype. 

2. Class II design – this method qualifies the design through acceptance testing by non-

destructive methods and mandatory design rules.  

 

Class II flange design rules are based on the same mandatory rules as their metallic 

counterparts. These rules are standard rated flanges and flange design calculations. Standard 

rated flange design is based on ANSI flanges as the PS 15-69 standard. Not only, the ASME 

Section X code design calcu1ation of FRP flanges is similar to that of metallic flanges known 

as Taylor Forge method but it assumes FRP materials to be isotropic as in steel. The only 

Table 1-1 FRP joint standard, PS 15-69 
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difference in design is the allowable stresses which incorporate a higher safety factor. 

According to the code, the flange design stresses vary depending on the type of stress. 

Therefore, designing the flange based on hoop strength against internal pressure, the range of 

design stress may vary from 11.03 MPa (1,600 psi) to 21.37 MPa (3,100 psi). In addition, the 

design stress for inter-plies shear strength may be as low as 0.69 MPa and also the intermittent 

loads' design stress may reach as high as 24.13 MPa (100 psi). Nevertheless, flange design 

stresses over 24.13 MPa (3,500 psi) are rare. In order to design FRP flanges using these 

methods, an additional stress check namely the radial stress at the bolt circle is used. Class II 

design recommended that the maximum pressure for vessels are limited to 0.52 MPa (75 psi) 

and the maximum inside diameter is limited to 243.84 cm (96 inches). 

 
The relevant ASME BPV code section X comprises the design rules for fiber reinforced bolted 

flange joints. The flange and nozzle dimensions in ASME BPV code section X are listed in 

table 1.2. According to this standard, there are several modulus values in the mechanical 

properties of FRP material such as hoop tensile modulus, axial tensile modulus, and an axial 

compressive modulus. It is exceedingly important that the flange designer while designing the 

flanges in particular FRP flanges takes this into account the anisotropic properties of composite 

material. Hence, understand the anisotropic behavior of FRP materials would be a proper 

assumption for a designer. No additional calculations are required when a flange is selected 

from this standard. 

 

In some applications of FRP vessels where special joints can be utilized such as downhole 

tubing, high pressures about hundreds of MPa can be attained. Design pressure is the 

permissible pressure in the vessel which is the maximum applicable pressure at the laminate 

of the vessel. In piping systems and pressure vessels of FRP materials, the temperature range 

is much smaller compared to metallic vessels and piping such as carbon and stainless steels 

and copper-nickel. Also, the design temperature is less than the interior laminate wall 

temperature expected under operating conditions for the part considered and is less than 10°C, 

or 1.667°C below the glass transition temperature of the resin, whichever is lower. 
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Table 1-2 Flange and nozzle dim
ensions, A

SM
E Boiler and Pressure V

essel Code Section X
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1.4   Analytical studies 

The analysis of FRP flanges is very complicated and the general solution always goes through 

a cumbersome computer program. Because of the anisotropic behavior of composite bolted 

flanges, there is a general use of simplifying assumptions that can sometimes affect the 

accuracy of the results obtained from the developed model. 

 

Estrada (1997) proposed a model that includes four distinct axisymmetric structural 

components that are analyzed separately. The exact model and flange geometry and loading is 

depicted in figure 1.5. He modifies the model for the composite component to account for 

orthotropic material properties using classical lamination theory. Figure 1.6 illustrates the body 

diagram of the model, flange geometry and loading. This is the simplest way to analyze this 

structure because of the complication of the boundary conditions. He performed the analyses 

on a modified stub flanged joint which is shown in figure 1.7.  

 

This GFRP (Glass Fiber Reinforced Plastic) joint is a modified version of a typical GFRP joint, 

the stub flanged joint developed by Estrada et al (1997) to address some problems particular 

to GFRP joint geometries currently in use. The pipe and the hub are filament wound and form 

an integral unit. The backing ring is metallic and is used to connect the joint to other members. 

He analyzed the flange in two parts: the stub and the pipe-hub. He modeled the stub as an 

isotropic annular plate with an inner ring stiffener and the pipe-hub as two separate orthotropic 

axisymmetric shells. 

 

Stub:  
The stub is analyzed as two distinct linear elastic isotropic components: a ring stiffener and an 

annular plate. The ring is modeled as a reinforcing ring subjected to an axial moment. In order 

to reduce the number of unknown parameters, they used the assumption that the ring stiffener 

thickness is half of the annular plate thickness. 
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Pipe-hub:  
The pipe-hub is modeled analytically by dividing into two structural sections which were 

analyzed separately. These two sections are analyzed using shell theory and the shell with 

variable thickness theory. The solutions for the two sections were obtained from classical 

laminated shell theory in terms of parameters that depend on the end conditions for each 

section. They modeled the cylindrical shell as an axisymmetric laminated shell and the tapered 

hub as an axisymmetric laminated cylindrical shell of variable thickness. Also, they reduced 

the strain-displacement relations, kinematic assumptions, equilibrium equations and 

constitutive law to a single equation.  

Figure 1-5 Exact model and flange geometry and 
loading (Estrada, 1997) 
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 Classical lamination theory 

The theory of mechanics of composite materials is based on the lamination theory which is the 

main theory used for the composite materials. In the microscopic scale, a composite is defined 

as a complex system consisting of matrix and fibers combined to make a monolithic compound. 

But the definition of composite material in this theory is a material system with enhanced 

material properties that is made from a combination of chemically distinct materials on the 

macro-scale bonded together by a distinct interface. This theory mainly used to analyze the 

composite system which is made in layers and each layer consisting of parallel fibers 

embedded in a matrix. In order to fabricate a laminate, laminae are stacked in a specified 

sequence of orientation and this sequence of orientation can allow the designer to meet the 

demanding mechanical properties of the composite. Lamination theory can be summarized as 

the development of equations that relate generalized strains to generalized forces through the 

constitutive law. According to ASTM Standard Specification D5421, the material properties 

in composites are simplified by the assumption that the properties of fiber and matrix can be 

combined into an effective transversely isotropic material layer. 

 

 

Figure 1-7 Laminate geometry for the tapered 
laminated shell (Estrada, 1997) 

Figure 1-6 Modeling stub flange  
(Estrada, 1997) 
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Some of the assumptions to simplify the calculations that are stated in this theory: 

1. The laminas in a laminate are perfectly bonded together. 

2. Each layer is of linear varying thickness. Each lamina has an equal thickness at 

the large end (g1 = nt1) and at the small end (g0 = nto) and varies linearly along 

the axial direction. 

3. Each lamina acts as a homogeneous transversely isotropic linear elastic system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Kurz and Roos (2012), conducted an analytical and experimental evaluation of the mechanical 

behavior of floating type bolted flanged connections with glass reinforced plastic flanges that 

are depicted in figure 1.8. They modeled the bolted flange connection according to                              

AD-Merkblatt N1, shown in figure 1.9.  The design is based on bending of a beam clamped at 

one end. Thus, the design leads to virtual radial stress which only represents the usage level of 

the flange. Their model describes analytically the circumferential stresses and the rotation and 

shows a good agreement with the results of the FE simulation and the experimental 

investigations. 

 

Figure 1-8 Loading situation defined 
in AD-Merkblatt N1 (Kurz et al. 2012) 

Figure 1-9 Floating type bolted flange 
connection with GRP flange (Kurz et al. 2012) 
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Blach and Hoa (1987), conducted a study on full-face FRP flanged joints. They proposed two 

design methods which can be used safely for these flanges. The first one is based on the Taylor 

Forge method (Anonymous, 1979). and the second one is based on the method of composite 

materials. They conducted a 3D finite element analysis on FRP flanges with full-faced gasket 

and tried to correlate data obtained from experimental tests. The results obtained from the 

metallic design methods and the FE modeling of FRP flanges seem to have a good agreement 

with the experimental results. In their study, some problems of FRP bolted flange joints are 

discussed, such as a certain amount of convex distortion (pullback) that can be caused in hand 

lay-up flanges due to uneven curing of the resin. If the distortion is straightened by bolt load 

alone, there would be excessive stress at the junction of the flange and cylinder.  

 

Blach and Sun (1990), proposed a method for analyzing the stresses of fiber reinforced plastic 

flanged connections with full face gaskets based on classical laminates theory, shear 

deformation laminate theory and shell theory for the different components of the flange. This 

method is simplified by using a few assumptions and is based on rigorous mathematical 

analysis. Also, this method could not satisfy all of the physical constraints due to the 

complexity of the laminate problem. They claim that the analytical developed method is much 

more accurate than that obtained by using any of the greatly simplified customary design 

method based on metallic flanges. Unfortunately, the proposed method is not suitable for 

flange designers because the solution requires the use of infinite series expansion. 

 

Sun, L. (1995) proposed two methods of stress analysis based on shear deformation laminated 

theory and classical lamination theory for the full-faced FRP bolted flange joints. In the first 

method which is based on the classical lamination theory, the transverse shear deformation is 

neglected. In the second method, the classical lamination theory is applied to the shell but the 

ring is modeled by using a formulation that accounts for transverse shear deformation. The 

method appears to represent an improvement over the approach that Waters et al. (1937) used 

in the derivation of the Taylor forge method, accounting for FRP material properties. As shown 

in figure 1. 10, in his analytical model, the flange is separated into two parts. The final solution 

is obtained by applying the boundary conditions and continuity conditions. Due to the poor 
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mesh elements used in the numerical finite element model, the results obtained from the finite 

element model and analytical model are not in good agreement. 
 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 Numerical Finite Element studies 

Estrada et al. (1997) used a finite element method to validate analytical developed models. 

Also, it is used to study the leakage behavior and to validate the ASME code formulation for 

other gasket materials and joint configurations. The analysis was carried out using two and 

three-dimension axisymmetric finite elements with an orthotropic material model. To perform 

the analysis, they used a commercial finite element package (ABAQUS). In their analyses, 

they showed that axisymmetric modeling can be used to analyze critical designs however the 

analysis did not capture the stress concentration. Figures 1.10 and 1.11 show the three-

dimensional and axisymmetric finite element models that were developed in this study. 

 

Figure 1-10 Pipe and ring used in analytical model (Sun, L. 1995) 
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Because of using the option that allowed pressure to penetrate the space where contact was 

lost, it was possible to measure more accurately the leakage in the axisymmetric case than in 

the three-dimensional case. Finally, they claimed that the results from finite element analysis 

were in an excellent agreement with the analytical results as shown in figure 1.13 and 1.14. 

Figure 1-12 Three-dimensional finite  
element model (Estrada 1997) 

Figure 1-11 Axisymmetric finite element 
model (Estrada 1997) 
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Figure 1-13 Distribution of radial displacement 
(Estrada 1997) 

Figure 1-14 Distribution of axial moments (Estrada 
1997) 
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Kurz and Roos (2012) conducted a simulation using the finite element method to investigate 

the stresses and strains of an FRP flange. They developed a linear-elastic finite element model 

for FRP bolted flange joints. In this study, the material behavior was assumed to be linear 

elastic with an isotropic Young’s modulus of 11 GPa. According to this numerical study, the 

elastic equivalent stresses were shown for the initial tightening in a segment of the loose flange 

and the collar (figure 1.14). Under the washer, the material was compressed, resulting in a 

complex, multi-axial stress state. The FE model of a bolted flange connection with loose 

flanges and collars are depicted in figure 1.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-15 Results of the FE simulation (elastic equivalent stress) 
with highly loaded areas (dark) in the loose flange (left) and collar 

(right) (Kurz and Roos 2012) 

Figure 1-16 FE model of a bolted flange connection with 
loose flanges and collars (Kurz and Roos 2012) 
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Blach and Sun (1995) compared the analytical results, with the finite element results of an FRP 

flanged connection, using 3-D anisotropic layered solid elements. Figure 1.17 depicts  

15-degree section of the flange in the FE model. With the ANSYS software, they modeled the 

composite flange as layered elements. In the FE model, axial symmetry is used to model a 15-

degree section of the flange (Figure 1.16). They observed that the results from the finite 

element method are very close to those of an analytical method. However, issues were reused 

with many assumptions made in each calculation. They concluded that the two proposed 

methods are not reliable due to the lack of sufficient experimental verification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-17 15-degree section of the 
flange in FE model (Sun 1995) 

Figure 1-18 Flange front face radial stress, Operating (Sun 1995) 
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1.6  Experimental studies 

Kurz and Roos (2012) conducted an analytical and experimental evaluation of the 

mechanical behavior of floating type bolted flanged connections with glass reinforced 

plastic flanges. In order to analyze the deformation behavior due to creep-relaxation, they 

developed an instrumented test rig (Figure 1.19) which enabled the reproducing of the real 

behavior of an FRP bolted flanged joints. During the experimental investigation, the bolt 

force, the flange rotation, the strains at selected locations of the flange surface, the internal 

pressure and the temperature were monitored continuously. The test rig was completely 

vacuum-sealed to measure the leakage tightness of the bolted flange connection using 

helium mass spectrometry. 

 

They also tested various gaskets made of rubber (EPDM) and PTFE of the bolted flange 

connection that was made of glass-fiber reinforced plastic flanges in compliance with DIN 

EN 13555. The results of an analytical design concept showed good agreement with the 

experiment results and the finite element simulation. 

 

 

Figure 1-19 Flange back face tangential stress, Operating (Sun 1995) 
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Following the design concept, the material reduction factors that lead to higher allowable 

bolt forces, can be neglected and therefore that accompanied by increased tightness and 

operational reliability of the plants.  

 

Finally, they compared the displacements due to the rotation of the loose flange as 

illustrated in figure 1.20 and showed an excellent agreement between all methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-20 Test rig for experimental investigations on bolted flange 
connections DN50 (without displacement transducers)  

(Kurz and Roos 2012) 

Figure 1-21 The displacements due to rotation of the loose flange 
(Kurz and Roos 2012) 
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Sun and Blach (1995) conducted an experimental investigation on FRP bolted flange joints 

with full-faced gasket. They attempted to demonstrate the effect of flange thickness on the 

mechanical properties of FRP flanges. Having different thicknesses at its ends, FRP flange was 

made of glass material and woven roving and was impregnated with the same resin. The 

polymer matrix is a vinyl ester. The vessel had a veil liner as a corrosive barrier. They used 

two kinds of 3 mm thick full-faced gasket. One was made of compressed asbestos and the other 

was made of synthetic rubber. The test parameters were: 

Pressure (kPa) = 0, 138, 276, 414; 

Bolt load (MPa) = 50, 100, 150; 

Temperature = Room temperature.  

 

They conducted several tests at both the bolt-up and operating conditions on a FRP flange 

joint. 

 

 

Figure 1-22 Comparison of nominal stresses from FE 
simulation, AD-Merkblatt N1 (Kurz and Roos 2012) 
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In order to obtain a smaller flange width, they machined the flange after each test to reduce its 

outside diameter. They also discussed two analytical models for FRP flange based on Taylor 

Forge method but no quantitative comparisons were made. In addition, the authors proposed 

the use of finite element analysis for FRP flanges. 

 

1.7 Conclusion 

Over the last decades, a substantial research effort has been dedicated to the study of FRP 

bolted flange joints and characterization of composite flange behavior in different conditions.  

In general, a bolted flange joint is designed to connect pressure vessels and equipment without 

leakage (Nechache and Bouzid 2007). Sealing problems are encountered during operation of 

process equipment containing fluids when flanges are the convenient method of connection for 

reasons of fabrication, transportation, assembly, inspection, production and so on. In general, 

acceptable FRP bolted flange joint design must ensure that: 

1 The stress levels in the flange joint are below the strength of the composite material. 

2 The residual gasket load is sufficient to maintain the joint leak-tight.  

 

Figure 1-24 Test Set-Up 
(Sun 1995) 

Figure 1-23 Dimensions of test 
vessel (Sun 1995) 
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The goals in bolted flanged joints are to keep a certain level of tightness and maintain reliability 

over a long period of time, especially at severe operating conditions such as elevated 

temperature and fluctuating pressure or when containing corrosive fluids.  

 

 

FRP materials are increasingly used by the industry because they provide strong resistance to 

chemical attack and have interesting mechanical properties. They have relatively long-life 

expectancy; cause less environmental concerns and offer low installation and maintenance 

costs. These qualities make FRP an attractive material for pressure vessels and piping 

components. The proper flange geometry should be designed to safely transfer the bolt loads 

to the gasket without overstressing the flange material. This problem should adequately be 

addressed to composite joints because of anisotropy behavior of composite materials which is 

depending on the materials from which FRP bolted flange joint is fabricated.  

 

Although the analysis of metal flanges has made enormous progress, the analysis of composite 

bolted flange joints remains uncomplete and its progress has been slow especially in the 

analytical domain. It is intuitively recognized that there is a problem of standardization in the 

manufacturing progress of FRP flanges so that an analytical tool can help improve structural 

integrity and pressure rating. In addition, the complex behavior of composites requires more 

efforts made by the authors on the analysis of composite flanges. 

 

Figure 1-26 Crack at hub neck of the flange 
(Dynaflow 2011) 

Figure 1-25 Crack in the flange face 
between the bolts and inside the bolt hole 

(Dynaflow 2011) 
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Although a lot of emphases is put towards studying the material parameters and geometric 

involved, a complete comprehensive model is not in sight. For example, Sun's thesis (1995), 

which is focused on the behavior of FRP flanges by proposing an analytical and numerical 

study, but the results of the analytical part are not reliable due to some errors in his analytical 

model. In addition, the numerical part can be much better developed and accurate, since the 

available software allows handling of the problem better than two decades ago. According to 

the presented literature on FRP bolted flanged joints, it appears that most of the proposed 

analytical models are based on the metallic design. Any reliable flange design should 

encompass the anisotropic behavior of FRP materials to determine the load distribution in any 

part of the flange accurately. 

 

1.8 Research project objectives 

The state of the art presented shows that the amount of research and articles on FRP bolted 

flange joints based on the anisotropic behavior of the composite flange is rare. Particularly, the 

number of studies FRP bolted flange joint analytically, numerically and experimentally is very 

limited. Moreover, the design calculations of composite bolted flanged joints are not 

adequately covered in the literature. As mentioned earlier, the material properties used in the 

FRP flange design calculations in ASME BPV Code Section X are those used for steel and the 

calcu1ations are totally based on those for metallic joints (Taylor Forge method). In their 

current form, the design calculation procedures based on metallic methodology are not 

adequate. Some adjustments are required to account for anisotropy, flexibility, rotational 

limits, bearing stresses of FRP flanges and etc. This study aims to investigate these issues and 

propose an integrated methodology to analyze theoretically, numerically and experimentally 

the stresses of FRP bolted flange joints subjected to the real operating condition of initial 

tightening and pressurization. Therefore, the main objective of this research work is: 

 To develop an analytical solution to evaluate stresses and strains in FRP bolted flanged 

joints considering anisotropic material behavior for FRP flange without the hub. 

o Incorporate the hub in a new proposed analytical model to evaluate stresses and 

strains of FRP hubbed flanges. 
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o Implement a flexibility analysis in the model to account for the elastic 

interaction between the different bolted joint components. The current design 

method considers the flange to be rigid and therefore the force in the bolt do not 

change with the application of pressure. 

o Develop different finite element models using the program ANSYS® 

Mechanical and ANSYS Composite PrepPost (ACP), for comparison with the 

analytical results and conduct validation of separate components (flange ring, 

hub, shell) 

o Conduct experimental testing to validate the analytical and numerical models 

and compare the parameters such as bolt load, flange rotation, stresses and 

strains at different locations. 

 

  





 

  





 

 
 
 

ANALYTICAL MODELING OF FRP BOLTED FLANGE JOINT 

2.1 Introduction 

In spite of the increased use of FRP composites in bolted flange joints and the good knowledge 

of these structures and their material behavior, the procedure used for their design is based on 

that of metallic flanges without any consideration of anisotropy. There is a major concern to 

appropriately address the anisotropic behavior of composite materials in a flange design. As 

indicated previously, it is necessary to make a precise evaluation of the load redistribution in 

order to be able to predict the structural integrity and leak tightness of FRP bolted flange joints.  

 

This chapter concentrates mainly on the development of an analytical model for the fiber 

reinforced plastic bolted flanged joints derived from lamination theory for composite materials, 

taking into account the anisotropic behavior of FRP bolted flanged joints. In order to use the 

lamination theory in the analysis of FRP flanges especially flanges with the hub, it is necessary 

to derive some equations from the basic principles.  

 

In general, composite flanges are subdivided into three major categories, namely: ring flange, 

hub, and cylinder. This chapter presents an analytical model to treat FRP bolted joints integrity 

and tightness based on anisotropy and flexibility analysis of all joint elements including the 

gasket, bolts and flanges and we describe the procedure for each part of the flange in detail. 

 

The objective of this analytical study is to obtain the equations of the radial displacements 

and the rotations of the flange as well as the equations giving the radial, longitudinal and 

hoop stresses at the inside and outside surface of the flange. 
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2.2 Analytical model 

FRP full-faced flanges with gasket having a prolonged surface from the inner edge up to the 

outer side of the flange, are usually characterized by rigid behavior. The wide surface of the 

joint requires high stress on the bolts so that this type of flange is mostly used in low pressure 

applications. In addition, in the full-faced flange joints soft gaskets which do not require a large 

clamping pressure to ensure tightness are used.  

 

In developing the analytical model of FRP bolted flange joints, one of the objectives was that 

the model follows the ASME code design philosophy, bearing always in mind two important 

factors that are leakage tightness and structural integrity.  

 

This part presents a theoretical approach based on a model that takes into account the 

flexibility of the gasket, bolts, and flanges as well as the elastic interaction between the 

different components of the assembly.  

 

The analytical model of the bolted joint consists of two phases related to the operating 

conditions: 

• Initial phase or phase i: in this first stage, the bolt-up of the flange is conducted resulting 

in the initial tightening of the flange. The tightening force compresses the two parts of 

the flange as well as the gasket and is characterized by a presumably uniform 

distribution of the contact pressure. Figure 2.1 (a) shows the flange in the initial phase. 

 

• Final phase or phase f: As illustrated in figure 2.1 (b), a pressure is applied on the inside 

of the vessel or pipe and consequently the flange; The inside pressure also creates a 

hydrostatic end effect which is represented by an axial stress acting on the flat surfaces 

at the end of the cylindrical shell. 

 

To simplify the analytical model of FRP bolted flange joint the following assumptions are 

made: 
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• The tightening torque during phase i is applied to the N bolts of the flange equally and 

simultaneously.    

• The tightening force resulting from the force on the N bolts is considered to act on a 

circle of constant radius of the flange known as the bolt circle radius. This assumption 

makes it possible to consider the flange as an axisymmetric case that simplifies the 

analysis. 

• A plane of symmetry is considered at the median plane of the joint as shown in figure 

2.1 this simplifies the model to study one flange rather than the pair of flanges. 
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Figure 2-1 Cross-section of FRP flange in (a) initial tightening phase,  
(b) pressurization phase 
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2.3 Theoretical analysis for FRP bolted flange joints without the hub 

In order to study FRP bolted flange joints analytically, first, we started to model FRP flange 

without the hub. FRP bolted flange joint is provided with a gasket that spreads on all its entire 

flat faces. For this type of flange with a full-face gasket, the centroid of a circular sector of unit 

width is considered to be the equilibrium pivot of the bolted joint. The model is thus considered 

symmetrical. The applied loads on each flange depend on the initial load on the bolts, the 

internal pressure and the reaction of the gasket.  

 

Due to the pre-tightening of the bolts, the gasket is considered to be compressed uniformly in 

the circumferential direction and the flanges rotate slightly around the gasket reaction 

diameter. When applying pressure from inside, the two flanges tend to separate from each other 

and results in the unloading of the gasket as well as an additional increase in the rotation of the 

flanges. However, in reality, the rotation may appear in both radial and tangential directions 

depending on the bolt spacing and the applied pressure. It is worth noting that the behavior of 

such assembly under the operating conditions, depends on many parameters (Bouzid 1994).  

 

This model consists of three essential mechanical elements, flange, bolts, and gasket. Each 

element is represented by simple elastic spring of linear stiffness kg, linear stiffness kb, and 

rotational stiffness kf for the gasket, bolts, and flange respectively. The solution of the flange 

is obtained from classical lamination theory. Basic knowledge of lamination theory for 

composite materials can be found in Ashton (1969) and R.M. Jones (1980). 

 

In order to study FRP bolted flange joint analytically, a flange without the hub is divided into 

two distinct parts which are linked together through the edge loads to satisfy equilibrium. 

Figure 2.2 (a) shows the flange in phase i or bolt-up and figure 2.2 (b) shows the flange in 

phase f or pressurization. Point 1 in the figure is considered as the junction point between the 

ring and shell. 
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 Analytical model of the shell (Cylinder theory) 

The cylinder part of the FRP flange is modeled as an axisymmetric laminated shell which is 

subjected to internal pressure 𝑝௢ and edge loads 𝑝௪. The shell is considered as a long cylinder 

of semi-infinite length i.e. the length is greater than π/b.  The thin shell theory will apply for 

cases with a thickness-to-radius ratio less than or equal to 0.1. At the finite end, the shell is 
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Figure 2-2 Analytical model of the FRP flange without the hub (a) bolt-up (b) pressurization 
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subjected to the discontinuity shear force Q and edge moment M. The long thin cylinder 

equations for the displacements, rotation, bending moments, and shearing forces in terms of 

conditions at any locations x are given by the theory of beams on elastic foundation. The 

analytical models of the shell in two phases of bolt-up and pressurization are shown in figure 

2.3. 

 

 
 

As illustrated in figure 2.3: 𝑄ଵ௜  and 𝑄ଵ௙  are the shear forces at the junction of the ring and the shell;  𝑀ଵ௜  and 𝑀ଵ௙ are the bending moment at the junction of the ring and the shell; 𝑝௢ is a pressure on the inside surface of the shell; 𝑝௪ is the effect of hydrostatic end pressure on the top surface of the shell; 𝑁௫ is the hydrostatic end force; 
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Figure 2-3 Aanalytical model of the shell (a) bolt-up and (b) pressurization 
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Due to the axial symmetry that applies to the shell and its loading forces, none of the variables 

depends on the angle θ. Consequently, all the partial derivatives with respect to θ in the 

equilibrium equations are equal to zero. 

 

As shown in figure 2.4 the equilibrium equations for the shell in 𝑥𝜃 coordinate system can be 

derived as: 

 𝑁௫ = 𝑐𝑠𝑡𝑒                (2.1) 
 ௗேೣഇௗ௫ + ଵ௥ ௗெೣഇௗ௫ = 0               (2.2) 

 ௗమெೣௗ௫మ − ேഇ௥ = −𝑝௢               (2.3) 

 

 

 

Figure 2-4 Shell element model 
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The relation between the forces and moments resultant and the strains in a thin laminate in 𝑥𝑦 

coordinate system is: 

 

⎩⎪⎪⎨
⎪⎪⎧ 𝑁௫𝑁௬𝑁௫௬𝑀௫𝑀௬𝑀௫௬⎭⎪⎪⎬

⎪⎪⎫ =
⎣⎢⎢
⎢⎢⎢
⎡𝐴௦,ଵଵ 𝐴௦,ଵଶ 𝐴௦,ଵ଺ 𝐵௦,ଵଵ 𝐵௦,ଵଶ 𝐵௦,ଵ଺𝐴௦,ଵଶ 𝐴௦,ଶଶ 𝐴௦,ଶ଺ 𝐵௦,ଵଶ 𝐵௦,ଶଶ 𝐵௦,ଶ଺𝐴௦,ଵ଺ 𝐴௦,ଶ଺ 𝐴௦,଺଺ 𝐵௦,ଵ଺ 𝐵௦,ଶ଺ 𝐵௦,଺଺𝐵௦,ଵଵ 𝐵௦,ଵଶ 𝐵௦,ଵ଺ 𝐷௦,ଵଵ 𝐷௦,ଵଶ 𝐷௦,ଵ଺𝐵௦,ଵଶ 𝐵௦,ଶଶ 𝐵௦,ଶ଺ 𝐷௦,ଵଶ 𝐷௦,ଶଶ 𝐷௦,ଶ଺𝐵௦,ଵ଺ 𝐵௦,ଶ଺ 𝐵௦,଺଺ 𝐷௦,ଵ଺ 𝐷௦,ଶ଺ 𝐷௦,଺଺⎦⎥⎥

⎥⎥⎥
⎤

⎩⎪⎪⎨
⎪⎪⎧ 𝜀௫଴𝜀௬଴𝛾௫௬଴𝜅௫𝜅௬𝜅௫௬⎭⎪⎪⎬

⎪⎪⎫
             (2.4) 

 

where: 𝐴௜௝, 𝐵௜ and 𝐷௜௝ are the stiffness coefficients and can be defined as follows:   

 𝐴௦,௜௝ = ∑ ൫𝑄௜௝൯௞(𝑧௞ − 𝑧௞ିଵ)ே௞ୀଵ                (2.5) 

 𝐵௦,௜௝ = ଵଶ ∑ ൫𝑄௜௝൯௞(𝑧௞ଶ − 𝑧௞ିଵଶ)ே௞ୀଵ                 (2.6) 

 𝐷௦,௜௝ = ଵଷ ∑ ൫𝑄௜௝൯௞(𝑧௞ଷ − 𝑧௞ିଵଷ)ே௞ୀଵ                        (2.7) 

 

According to the symmetrical laminate shell: 

 𝐴௣,ଵ଺ = 𝐴௣,ଶ଺=0 𝐴௦,ଵ଺ = 0  𝐴௦,ଶ଺ = 0  ሾ𝐵ሿ = 0, 

 

The stress resultants are further related to shell displacement: 

 𝑁௫ = 𝑐𝑠𝑡𝑒 = 𝐴௦,ଵଵ ௗ௪బௗ௫ − 𝐴௦,ଵଶ ௨௥             (2.8) 
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𝑁ఏ = 𝐴௦,ଵଶ ௗ௪బௗ௫ − 𝐴௦,ଶଶ ௨௥               (2.9) 

 𝑀௫ = −𝐷௦,ଵଵ ௗమ௨ௗ௫మ             (2.10)
  

 𝑀ఏ = −𝐷௦,ଵଶ ௗమ௨ௗ௫మ = − ஽ೞ,భమ஽ೞ,భభ 𝑀௥           (2.11)
  

 𝑀௫ఏ = − ஽ೞ,భల஽ೞ,భభ 𝑀௥             (2.12)
  
 

Combining Eqs. (2.8) and (2.9), it is possible to express 𝑁ఏ as a function of: 

 𝑁ఏ = ௨௥ ൬𝐴௦,ଶଶ − ஺ೞ,భమమ஺ೞ,భభ൰ + ஺ೞ,భమ஺ೞ,భభ 𝑁௫                     (2.13)

  

From Eqs. (2.10) and (2.13) the following is obtained : 

 𝐷௦,ଵଵ ௗర௨ௗ௫ర + ௨௥మ ൬𝐴௦,ଶଶ − ஺ೞ,భమమ஺ೞ,భభ൰ + ஺ೞ,భమ஺ೞ,భభ ே௥ೣ = 𝑝௢           (2.14) 

The radial displacement of the shell after integration is given by: 

 𝑢 = 𝐶ଵ𝑒ఉೞ௫ cos(𝛽௦𝑥) + 𝐶ଶ𝑒ఉೞ௫ sin(𝛽௦𝑥) + 𝐶ଷ𝑒ିఉೞ௫ cos(𝛽௦𝑥) + 𝐶ସ𝑒ିఉೞ௫ sin(𝛽௦𝑥)         (2.15) 

 

where  

    𝛽௦ = ൤஺ೞ,మమ஺ೞ,భభି஺ೞ,భమమସ௥ೞమ஽ೞ,భభ஺ೞ,భభ ൨ଵ/ସ
            (2.16) 

 

The general solution after simplification of Eq. (2.15) is: 
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 𝑢 = 𝑒ఉೞ௫ሾ𝐶ଵ cos(𝛽௦𝑥) + 𝐶ଶ sin(𝛽௦𝑥)ሿ + 𝑒ିఉೞ௫ሾ𝐶ଷ cos(𝛽௦𝑥) + 𝐶ସ sin(𝛽௦𝑥)ሿ         (2.17) 

 

The integral constants 𝐶ଵ, 𝐶ଶ, 𝐶ଷ and 𝐶ସ will be determined from the boundary conditions. 

Since the cylinder is considered as a long and infinite shell, the displacement of the shell is 

zero when x tends to infinity. 

 lim௫→ାஶ 𝑢 = 0              (2.18) 

 

And therefore: 

 lim௫→ାஶ ௗ௨ௗ௫ = lim௫→ାஶ ϴ = 0            (2.19) 

 

This will result in: 

 𝐶ଵ = 0  and  𝐶ଶ = 0. 

 

Substituting  𝐶ଵ and 𝐶ଶ in the Eq. (2.17), we get: 

 𝑢 = 𝑒ିఉೞ௫ሾ𝐶ଷ cos(𝛽௦𝑥) + 𝐶ସ sin(𝛽௦𝑥)ሿ          (2.20) 

 

The constants 𝐶ଷ and 𝐶ସ are determined from the compatibility and boundary conditions: 

At 𝑥 = 0, then, 𝑀 = 𝑀௃௡ and 𝑄 = 𝑄௃௡. 

 

Therefore, the displacement including the effect of pressure and rotation is given by: 

 𝑢 = ଵଶఉೞయ஽ೞ,భభ 𝑒ିఉೞ௫ൣ𝑄ଵ௡ cos(𝛽௦𝑥) + 𝛽௦ 𝑀ଵ௡ (cos(𝛽௦𝑥) − sin(𝛽௦𝑥))൧ + ஺ೞ,భభିభమ஺ೞ,భమସఉೞర஺ೞ,భభ஽ೞ,భభ 𝑝௢         
(2.21) 
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𝜓 = ௗ௨ௗ௫ = ଵଶఉೞమ஽ೞ,భభ 𝑒ିఉೞ௫ൣ𝑄ଵ௡ (cos(𝛽௦𝑥) − sin(𝛽௦𝑥)) + 2𝛽௦ 𝑀ଵ௡ (cos(𝛽௦𝑥)  ൧
          

(2.22) 

 
 

 Analytical model of the flange ring (ring theory) 

For the analytical analysis of FRP flanges, a number of theories were developed by Black 

(1994) and Sun (1995) but the theory based on the Kirchhoff-Love hypothesis can better 

characterize their behavior. In this theory, the transverse shear deformation is neglected and 

after deformation, the straight lines normal to the middle surface remain straight and undergo 

no thickness stretching. 

  

 

 

  

As shown in this figure: 𝐹஻௜  and  𝐹஻௙are the tightening force that applied through the bolts; 𝐹௜  and 𝐹௙ are the forces resulting from compressing the gasket; 𝑄ଵ௜  and 𝑄ଵ௙ are the shear forces at the junction of the ring and the shell; 
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Figure 2-5 Analytical model of the ring (a) bolt-up and (b) pressurization  
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𝑀ଵ௜  and 𝑀ଵ௙ are the bending moment at the junction of the ring and the shell; 𝑝௢ is a pressure on the inside surface of the ring; 𝑁௫ is the membrane force due to hydrostatic end effect;  

 

The ring part of the composite flange is considered to be a circular ring subjected to a moment 

in the tangential direction and ring loads in the radial and axial directions on its free inner edge 

and balanced by simple support on its outer edge. The analytical model of the ring subjected 

to bolt-up and pressurization is shown in Figure 2.5. The ring part of the composite flange is 

considered to be a circular ring subjected to a moment in the tangential direction and ring loads 

in the radial and axial directions on its free inner edge and balanced by simple support on its 

outer edge. Therefore, the theory of a thick-walled cylinder must be used to obtain the radial 

displacement of the ring. 

 

According to the theory of thin plates, the transverse displacement 𝑤 of the ring in the  

x-direction subjected to a concentrated force can be expressed as follows: 

 

 𝑤(𝑟) = ி௥మ଼గ஽೛,భభ ቀln ቀ ௥௥೚ቁ − 1ቁ − 𝐶ଶ ln ቀ ௥௥೚ቁ − ஼భ௥మସ + 𝐶ଷ           (2.23) 

 

The rotation about a tangential axis of the ring is obtained from the derivation with respect to 

r of  𝑤: 
 ψ(r) = ௗ௪ௗ௥ = ி௥଼గ஽೛,భభ ቀ2 ln ቀ ௥௥೚ቁ − 1ቁ − ஼మ௥ − ஼భ௥ଶ           (2.24) 

 

where 𝐹 is the force applied to the ring. The constants 𝐶ଵ, 𝐶ଶ and 𝐶ଷ are determined from the 

following boundary conditions: 

 

at  𝑟 = 𝑟௜ ,         𝑤 = 0                     (2.25) 
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at  𝑟 = 𝑟௜ ,        𝑀௥ = 𝑀ଵ௡ − ௧೑ଶ 𝑄ଵ௡           (2.26) 
 at  𝑟 = 𝑟௢ ,       𝑀௥ = 0             (2.27) 
 

where n is equal to i for the bolt-up and f for the pressurization.   

  𝑀௥ = 𝐷௣,ଵଵ ௗమ௪ௗ௥మ + ஽೛,భమ௥ ௗ௪ௗ௥             (2.28) 

 

Then the constants are obtained as follows: 

 𝐶ଵ = − ଵସగ஽೛,భభ൫௥೚మି௥೔మ൯൫஽೛,భభା஽೛,భమ൯ ቂ൫𝐷௣,ଵଶ − 𝐷௣,ଵଵ൯(𝑟௢ଶ − 𝑟௜ଶ)𝐹 + 2൫𝐷௣,ଵଶ +𝐷௣,ଵଵ൯𝑟௜ଶ log ቀ௥೔௥೚ቁ − 8𝜋𝑟௜ଶ𝐷௣,ଵଵ ቀ𝑀ଵ௡ − ௧೑ଶ 𝑄ଵ௡ቁቃ             (2.29) 

 𝐶ଶ = ௥೚మ௥೔మସగ஽೛,భభ൫௥೚మି௥೔మ൯൫஽೛,భభି஽೛,భమ൯ ቂ4𝜋𝐷௣,ଵଵ ቀ𝑀ଵ௡ − ௧೑ଶ 𝑄ଵ௡ቁ − ൫𝐷௣,ଵଶ + 𝐷௣,ଵଵ൯ log ቀ௥೔௥೚ቁ 𝐹ቃ       (2.30) 

 𝐶ଷ = ି௥೔మଵ଺గ஽೛,భభ(௥೚మି௥೔మ)(஽೛,భభమ ି஽೛,భమమ ) ቂ൫𝐷௣,ଵଶଶ − 3𝐷௣,ଵଵଶ + 2𝐷௣,ଵଶ𝐷௣,ଵଵ൯(𝑟௢ଶ − 𝑟௜ଶ)𝐹 − 8𝜋𝑟௜ଶ൫𝐷௣,ଵଵଶ −𝐷௣,ଵଶ𝐷௣,ଵଵ൯ ቀ𝑀ଵ௡ − ௧೑ଶ 𝑄ଵ௡ቁ − 2𝑟௢ଶ൫𝐷௣,ଵଶଶ − 𝐷௣,ଵଵଶ ൯ 𝑙𝑜𝑔 ቀ௥೔௥೚ቁ 𝐹 − 4𝑟௢ଶ൫𝐷௣,ଵଶଶ + 𝐷௣,ଵଵଶ +2𝐷௣,ଵଶ𝐷௣,ଵଵ൯ 𝑙𝑜𝑔ଶ ቀ௥೔௥೚ቁ 𝐹 − 16𝜋𝑟௢ଶ൫𝐷௣,ଵଵଶ − 𝐷௣,ଵଶ𝐷௣,ଵଵ൯ 𝑙𝑜𝑔 ቀ௥೔௥೚ቁ ቀ𝑀ଵ௡ − ௧೑ଶ 𝑄ଵ௡ቁቃ         (2.31) 

 

Therefore, substituting for the constant C’s Eq. (2.24) becomes: 

 ψ(r) = ௗ௪ௗ௥ = ௥ி଼గ஽೛,భభ ቀ2 log ቀ ௥௥೚ቁ − 1ቁ + ௥଼గ஽೛,భభ൫௥೚మି௥೔మ൯൫஽೛,భభା஽೛,భమ൯ ቆ(𝑟௢ଶ − 𝑟௜ଶ)൫𝐷௣,ଵଶ −
𝐷௣,ଵଵ൯𝐹 + 2𝑟௜ଶ൫𝐷௣,ଵଶ + 𝐷௣,ଵଵ൯ log ቀ௥೔௥೚ቁ 𝐹 − 8𝜋𝑟௜ଶ𝐷௣,ଵଵ ቀ𝑀ଵ௡ − ௧೑ଶ 𝑄ଵ௡ቁቇ +

௥೚మ௥೔మସగ௥஽೛,భభ൫௥೚మି௥೔మ൯൫஽೛,భభି஽೛,భమ൯ ቆ൫𝐷௣,ଵଶ + 𝐷௣,ଵଵ൯ log ቀ௥೔௥೚ቁ 𝐹 − 4𝜋𝐷௣,ଵଵ ቀ𝑀ଵ௡ − ௧೑ଶ 𝑄ଵ௡ቁቇ         (2.32) 
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In order to obtain the displacement of the flange ring u in the radial direction, the theory of 

thick-walled cylinder subjected to radial pressure is used. The displacement of the ring in 

different directions (r, ϴ, and x) according to the classical theory of axisymmetric bending 

plate are given as follows: 𝑢௙(𝑟, 𝑥) = 𝑢଴௙(𝑟) + 𝑥ψ(𝑟)            (2.33) 

 𝑣௙(𝑟, 𝑥) = 0              (2.34) 
 𝑤௙(𝑟, 𝑥) = 𝑤଴௙(𝑟)             (2.35) 

 

where 𝑢௙, 𝑣௙ 𝑎𝑛𝑑 𝑤௙ are the ring displacement in the r, θ  and x respectively. The subscript 0 

refers to the midplane displacement of the ring. 

 

The strain-displacement relationships in a cylindrical coordinate are as follows: 

 𝜀௥ = డ௨డ௥               (2.36) 
 𝜀ఏ = ଵ௥ డ௩డఏ + ௨௥               (2.37) 
 𝜀௫ = డ௪డ௫                (2.38) 
 𝜀௥௫ = ଵଶ ቀడ௨డ௫ + డ௪డ௥ ቁ              (2.39) 
 𝜀ఏ௫ = ଵଶ ቀడ௩డ௫ + ଵ௥ డ௪డఏቁ               (2.40) 
 𝜀௥ఏ = ଵଶ ቀଵ௥ డ௨డఏ + డ௩డ௥ − ௩௥ቁ             (2.41) 

 

The definition of the linear strain tensor is: 

 𝜀௜௝ = ଵଶ ൫𝑢௜,௝ + 𝑢௝,௜൯             (2.42) 
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According to the strain-displacement relation in a cylindrical coordinate system, the strains for 

these deformations are: 

 𝜀௥ = ௗ௨బ೑ௗ௥ + 𝑥 ௗநௗ௥               (2.43) 
 𝜀ఏ = ௨బ೑௥ + 𝑥 ந௥                (2.44) 
 𝜀௫ = 0                (2.45) 
 𝜀௥௫ = ଵଶ ൬ψ + ௗ௪బ೑ௗ௥ ൰              (2.46) 
 𝜀ఏ௫ = 0                (2.47) 
 𝜀௥ఏ = 0               (2.48) 

 

 

The principle of minimum total energy is used, in order to derive the governing equilibrium 

equations of the classic laminate plate theory. The strain energy for the circular plate is 

obtained from: 

 

𝑈 = ଵଶ ׬ ׬ ׬ (𝜎௥𝜀௥ + 𝜎ఏ𝜀ఏ + 𝜎௫𝜀௫ + 2𝜎௥ఏ𝜀௥ఏ + 2𝜎௥௫𝜀௥௫ + 2𝜎ఏ௫𝜀ఏ௫)𝑑𝑥 𝑟𝑑𝑟 𝑑𝜃೟మି೟మ௥బ௥೔ଶగ଴           (2.49) 

 

By integrating the above equation in respect to θ and considering only non-zero terms of this 

equation, the strain energy within the plate becomes: 

 

𝑈 = 𝜋 ׬ ቈௗ௨బ೑ௗ௥ ׬ 𝜎௥𝑑𝑥೟మି೟మ + ௗநௗ௥ ׬ 𝜎௫𝑥𝑑𝑥೟మି೟మ + ௨బ೑௥ ׬ 𝜎ఏ𝑑𝑥 ೟మି೟మ + ந௥ ׬ 𝜎ఏ𝑥𝑑𝑥 ೟మି೟మ + ψ ׬ 𝜎௥௫𝑑𝑥 +೟మି೟మ𝑟0𝑟𝑖
ௗ௪బ೑ௗ௥ ׬ 𝜎௥௫𝑑𝑥 ೟మି೟మ ቉ 𝑟𝑑𝑟                 (2.50) 
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Then, the in-plane force resultants are obtained: 𝑁௥ = ׬ 𝜎௥೟మି೟మ 𝑑𝑥             (2.51) 

 𝑁ఏ = ׬ 𝜎ఏ೟మି೟మ 𝑑𝑥             (2.52) 

 

The shear forces are: 

 𝑄௥௫ = ׬ 𝜎௥௫೟మି೟మ 𝑑𝑥             (2.53) 

 

And the moments are: 

 𝑀௥ = ׬ 𝜎௥𝑥೟మି೟మ 𝑑𝑥             (2.54) 

 𝑀ఏ = ׬ 𝜎ఏ𝑥೟మି೟మ 𝑑𝑥             (2.55) 

 

 

By substituting for the stresses in Eq. (2.50), the strain energy in terms of loads is obtained: 

 𝑈 = 𝜋 ׬ 𝑢଴௙ ቀ ௗௗ௥ 𝑁௥𝑟 + 𝑁ఏቁ 𝑑𝑟𝑟0𝑟𝑖 + 𝜋 ׬ ψ ቀ ௗௗ௥ 𝑀௥𝑟 + 𝑀ఏቁ 𝑑𝑟𝑟0𝑟𝑖 + 𝜋 ׬ ψ𝑄௥௫𝑟𝑑𝑟𝑟0𝑟𝑖 +𝜋 ׬ ௗௗ௥ 𝑤଴௙𝑄௥௫𝑟𝑑𝑟𝑟0𝑟𝑖                  (2.56) 

 

The work done on the ring by the different loads is given as: 

  𝑉 = (𝑝௢𝑡2𝜋𝑟𝑖)𝑢஺௙ + (𝐹 2𝜋𝑟 )𝑤௙ீ + (−𝐹஻2𝜋𝑟஻)𝑤஻௙ + (−𝑀஺2𝜋𝑟𝑖)ψ஺௙            (2.57) 

 

The work-energy theorem states that the net work done by the forces is equal to the change in 

its kinetic energy or the energy stored in the form of deformation in the system. Therefore: 
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𝑈 = 𝑉               (2.58) 

 

This may be written as: 

 𝜋 ׬ 𝑢଴௙ ቀ ௗௗ௥ 𝑁௥𝑟 + 𝑁ఏቁ 𝑑𝑟𝑟0𝑟𝑖 + 𝜋 ׬ ψ ቀ ௗௗ௥ 𝑀௥𝑟 + 𝑀ఏቁ 𝑑𝑟𝑟0𝑟𝑖 + 𝜋 ׬ ψ𝑄௥௫𝑟𝑑𝑟𝑟0𝑟𝑖 +𝜋 ׬ ௗௗ௥ 𝑤଴௙𝑄௥௫𝑟𝑑𝑟𝑟0𝑟𝑖 = (𝑝௢𝑡𝜋𝑟𝑖) × 𝑢஺௙ + (𝐹 2𝜋𝑟 ) × 𝑤௙ீ + (−𝐹஻2𝜋𝑟஻) × 𝑤஻௙ + (−𝑀஺𝜋𝑟𝑖) ×ψ஺௙                   (2.59) 

 

The equations of equilibrium are then obtained: 

 𝛿𝑢଴௙  ∶   𝑁ఏ − ௗ(௥ேೝ)ௗ௥ = 0            (2.60) 
 𝛿ψ   ∶   𝑀ఏ + 𝑟𝑄௥௫ − ௗௗ௥ (𝑟𝑀௥) = 0           (2.61) 
 𝛿𝑤଴௙ ∶   ௗௗ௥ (𝑟𝑄௥௫) = 0             (2.62)

  
 

With the following boundary conditions: 

 

At 𝑟 = 𝑟𝑖 : 𝑟𝑁௥ = 𝑟𝑖(−𝑝௢𝑡 + 𝑄)             (2.63) 
 𝑟𝑀௥ = 𝑟𝑖(𝑀 + ொ௧ଶ )             (2.64) 
 𝑟𝑄௥௫ = −𝑟𝑖𝐹              (2.65) 
 

 

At 𝑟 = 𝑟0 : 𝑁௥ = 0               (2.66) 
 𝑀௥ = 0              (2.67) 
 𝑤଴௙ = 0              (2.68) 
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By considering Hooke’s law, we get: 

 𝜀௥ = ଵாೝ (𝜎௥ − 𝜐௥𝜎ఏ)              (2.69) 
 𝜀ఏ = ଵாഇ (𝜎ఏ − 𝜐ఏ𝜎௥)             (2.70) 
 𝜀௥௫ = ଵଶீೝೣ 𝜎௥௫               (2.71) 

 

where 𝐸௥ and 𝐸ఏ are Young's modulus in the radial and tangential directions; 𝜐௥ and 𝜐ఏ are the 

Poisson coefficients (𝐸௥𝜐ఏ = 𝐸ఏ𝜐௥); 𝐺௥௫ is the shear modulus in the plane r-x. 

 

There as the stresses are obtained by: 

 𝜎௥ = 𝑄௥௥𝜀௥ + 𝑄௥ఏ𝜀ఏ             (2.72) 
 𝜎ఏ = 𝑄௥ఏ𝜀௥ + 𝑄ఏఏ𝜀ఏ             (2.73) 
 𝜎௥௫ = 𝑄௥௫𝜀௥௫              (2.74) 

 

where the elastic coefficients Q’s are: 

 𝑄௥௥ = ாೝଵିజೝజഇ              (2.75) 
 𝑄௥ఏ = ாೝజഇଵିజೝజഇ               (2.76) 
 𝑄ఏఏ = ாഇଵିజೝజഇ               (2.77) 
 𝑄௥௫ = 2𝐺௥௫               (2.78) 

 

 

Therefore, the plate forces and moments of Eqs. (2.51) to (2.55) can be expressed in terms of 

displacement and rotation: 
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𝑁௥ = ׬ ൤𝑄௥௥ ൬ௗ௨బ೑ௗ௥ + 𝑥 ௗநௗ௥ ൰ + 𝑄௥ఏ ൬௨బ೑௥ + 𝑥 ந௥ ൰൨೟మି೟మ 𝑑𝑥          (2.79) 

 𝑁ఏ = ׬ ൤𝑄௥ఏ ൬ௗ௨బ೑ௗ௥ + 𝑥 ௗநௗ௥ ൰ + 𝑄ఏఏ ൬௨బ೑௥ + 𝑥 ந௥ ൰൨೟మି೟మ 𝑑𝑥          (2.80) 

 𝑀௥ = ׬ ൤𝑄௥௥ ൬ௗ௨బ೑ௗ௥ + 𝑥 ௗநௗ௥ ൰ + 𝑄௥ఏ ൬௨బ೑௥ + 𝑥 ந௥ ൰൨ 𝑥೟మି೟మ 𝑑𝑥          (2.81) 

 𝑀ఏ = ׬ ൤𝑄௥ఏ ൬ௗ௨బ೑ௗ௥ + 𝑥 ௗநௗ௥ ൰ + 𝑄ఏఏ ൬௨బ೑௥ + 𝑥 ந௥ ൰൨ 𝑥೟మି೟మ 𝑑𝑥          (2.82) 

 𝑄௥௫ = ׬ ൤ொೝೣଶ ൬ψ + ௗ௪బ೑ௗ௥ ൰൨೟మି೟మ 𝑑𝑥             (2.83) 

 

Then, these equations can be simplified to: 

 𝑁௥ = ௗ௨బ೑ௗ௥ 𝐴௣,ଵଵ + ௗநௗ௥ 𝐵௣,ଵଵ + ௨బ೑௥ 𝐴௣,ଵଶ + ந௥ 𝐵௣,ଵଶ          (2.84) 
 𝑁ఏ = ௗ௨బ೑ௗ௥ 𝐴௣,ଵଶ + ௗநௗ௥ 𝐵௣,ଵଶ + ௨బ೑௥ 𝐴௣,ଶଶ + ந௥ 𝐵௣,ଶଶ          (2.85) 
 𝑀௥ = ௗ௨బ೑ௗ௥ 𝐵௣,ଵଵ + ௗநௗ௥ 𝐷௣,ଵଵ + ௨బ೑௥ 𝐵௣,ଵଶ + ந௥ 𝐷௣,ଵଶ          (2.86) 
 𝑀ఏ = ௗ௨బ೑ௗ௥ 𝐵௣,ଵଶ + ௗநௗ௥ 𝐷௣,ଵଶ + ௨బ೑௥ 𝐵௣,ଶଶ + ந௥ 𝐷௣,ଶଶ          (2.87) 
 𝑄௥௫ = ଵଶ ൬ψ + ௗ௪బ೑ௗ௥ ൰ 𝐴௣,ଵ଺             (2.88) 

 

where the stiffness coefficients for the ring are: 

 ൫𝐴௣,ଵଵ, 𝐴௣,ଵଶ, 𝐴௣,ଶଶ൯ = ׬ (𝑄௥௥, 𝑄௥ఏ, 𝑄ఏఏ)𝑑𝑥೟మି೟మ            (2.89) 

 ൫𝐵௣,ଵଵ, 𝐵௣,ଵଶ, 𝐵௣,ଶଶ൯ = ׬ (𝑄௥௥, 𝑄௥ఏ, 𝑄ఏఏ)𝑥𝑑𝑥೟మି೟మ          (2.90) 
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൫𝐷௣,ଵଵ, 𝐷௣,ଵଶ, 𝐷௣,ଶଶ൯ = ׬ (𝑄௥௥, 𝑄௥ఏ, 𝑄ఏఏ)𝑥ଶ𝑑𝑥೟మି೟మ          (2.91) 

 𝐴௣,ଵ଺ = ׬ (𝑄௥௫)𝑑𝑥೟మି೟మ               (2.92) 

 

When the material properties are symmetrical with respect to the plate mid-plane then: 

 𝐵௣,ଵଵ = 𝐵௣,ଵଶ = 𝐵௣,ଶଶ = 0            (2.93) 

 

The forces and moments (2.84) to (2.88) can be simplified to: 

 𝑁௥ = ௗ௨బ೑ௗ௥ 𝐴௥௥ + ௨బ೑௥ 𝐴௥ఏ             (2.94)  𝑁ఏ = ௗ௨బ೑ௗ௥ 𝐴௣,ଵଵ + ௨బ೑௥ 𝐴௣,ଵଶ               (2.95) 
 𝑀௥ = ௗநௗ௥ 𝐷௣,ଵଶ + ந௥ 𝐷௣,ଵଶ             (2.96) 
 𝑀ఏ = ௗநௗ௥ 𝐷௣,ଵଶ + ந௥ 𝐷௣,ଵଵ            (2.97) 
 𝑄௥௫ = ଵଶ ൬ψ + ௗ௪బ೑ௗ௥ ൰ 𝐴௣,ଵ଺              (2.98) 

 

Now, the equilibrium Eqs. (2.60), (2.61) and (2.62) can be rearranged as follows: 

   𝛿𝑢଴௙  ∶  𝑟ଶ ௗమ௨బ೑ௗ௥మ + 𝑟 ௗ௨బ೑ௗ௥ − ஺೛,మమ஺೛,భభ 𝑢଴௙ = 0            (2.99)

  

 

With the following boundary condition: 

 

At 𝑟 = 𝑟𝑖,  𝑟𝑄௥௫ = −𝑟𝑖𝐹           (2.100) 

Then 
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𝑟 ௗమநௗ௥మ + ௗநௗ௥ − ஽೛,మమந஽೛,భభ௥ = − 𝑟𝑖ி஽೛,భభ            (2.101) 

 

Hence, equation (2.99) becomes: 

 𝑢଴௙ = (௣೚௧ିொ)(𝑟0)೘మషభସ൫஺೛,భమାඥ஺೛,మమ஺೛,భభ൯∆ 𝑟௠భ + (ି௣೚௧ାொ)(𝑟0)೘భషభସ൫஺೛,భమିඥ஺೛,మమ஺೛,భభ൯∆ 𝑟௠మ        (2.102) 

 

where: 

𝑚ଵ = ඨ𝐴௣,ଶଶ𝐴௣,ଵଵ 

 𝑚ଶ = −𝑚ଵ 
         ∆= (2𝑟𝑜)௠భିଵ(2𝑟𝑖)௠మିଵ − (2𝑟𝑜)௠మିଵ(2𝑟𝑖)௠భିଵ                    (2.103) 

 

 

In the case of equivalent elastic properties of the ring in the radial and tangential directions, 

we get: 

 𝐴௣,ଶଶ = 𝐴௣,ଵଵ 
 𝑚ଵ = −𝑚ଶ = 1 
 ∆= 𝑟𝑜ଶ  −  𝑟𝑖ଶ2𝑟𝑜ଶ  𝑟𝑖ଶ  

 
 
Therefore, the radial displacement of the ring is given by: 

 𝑢଴௙(𝑟) = (௣೚௧ିொ)𝑟𝑖మ൫஺೛,భమା஺೛,భభ൯(𝑟𝑜మି𝑟𝑖మ) × 𝑟 + (ି௣೚௧ାொ)𝑟𝑜మ𝑟𝑖మସ(஺೛,భమି஺೛,భభ)(𝑟𝑜మି𝑟𝑖మ) × ଵ௥          (2.104) 
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2.4 Theoretical analysis of FRP bolted flange joints with the hub 

The analytical model of FRP bolted flange joint with the hub is illustrated in figure 2.6.  In 

order to study FRP flange bolted flange joint analytically, a flange with the hub is divided into 

three distinct parts which are connected to one another. Figure 2.6 (a) shows the flange in phase 

n=i or bolt-up and figure 2.6 (b) shows the flange in phase n=f or pressurization. Point 1 in the 

figure is considered as the junction point between the ring and the shell and point 2 is 

considered as the junction point between hub and shell. It is important to note that the analytical 

approach for the ring and the shell of the FRP flange with the hub is the same as the model 

elaborated in section 2.3. Therefore, in this part, the analytical model of only the hub is 

developed and elaborated in detail based on the beam on elastic foundation theory applied to 

short thin cylinders. Nevertheless, for reiteration, the theories used for the shell and ring are 

the theory of the beams on an elastic foundation for long cylinders and the theory of thin plate 

under bending respectively.  

 

As mentioned earlier, For FRP flanges with a full-face gasket the centroid of a circular sector 

of the unit width is considered to in equilibrium in all directions. To simplify the analysis 

considerably, the thickness of the hub is assumed to be small compared to the radius, then the 

mid-surface line of the hub remains almost parallel to that for the shell. It is also fair to assume 

that the model is considered symmetrical. It is intuitively recognized that the applied loads on 

each flange depend on the initial load on the bolts, the internal pressure and the reaction of the 

gasket.  

 

 Analytical model of the hub  

The analytical model of the hub can be simplified by a thin cylinder subjected to an 

axisymmetric loading. Figure 2.7 depicts the analytical model of the hub at bolt-up and 

pressurization.  
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Figure 2-6 Analytical model for the FRP flange with the hub (a) bolt-up (b) pressurization 
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In this model, the length of the hub is considered short less than π/β and the thickness of the 

hub to its radius is less than 0.1 such that thin cylinder theory can be used. At the top and 

bottom surface of the hub, it is subjected to the discontinuity shear force Q and moment M in 

addition to the hydrostatic end force 𝑁௫. 

 

As shown in figure 2.6: 𝑄ଵ௜  and 𝑄ଵ௙  are the shear forces at the junction of the ring and the shell;  𝑀ଵ௜  and 𝑀ଵ௙ are the bending moment at the junction of the ring and the shell; 𝑝௢ is a pressure on the inside surface of the shell; 𝑁௫ is the membrane force produced by the hydrostatic end force; 

 

Similar to the shell analysis, due to the axial symmetry of the hub, none of the variables 

depends on the angle θ and consequently, all the partial derivatives with respect to θ are equal 

to zero. 
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Figure 2-7 Analytical model of the hub (a) bolt-up and (b) pressurization 
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The equilibrium equations of the hub can be derived as: 𝑁௫ = 𝑐𝑠𝑡𝑒              (2.105) 
 ௗேೣഇௗ௫ + ଵ௥ ௗெೣഇௗ௫ = 0              (2.106) 

 ௗమெೣௗ௫మ − ேഇ௥ = −𝑝௢             (2.107) 

 

The relation between the stress resultants and strains are: 

 

⎩⎪⎪⎨
⎪⎪⎧ 𝑁௫𝑁௬𝑁௫௬𝑀௫𝑀௬𝑀௫௬⎭⎪⎪⎬

⎪⎪⎫ =
⎣⎢⎢
⎢⎢⎢
⎡𝐴௛,ଵଵ 𝐴௛,ଵଶ 𝐴௛,ଵ଺ 𝐵௛,ଵଵ 𝐵௛,ଵଶ 𝐵௛,ଵ଺𝐴௛,ଵଶ 𝐴௛,ଶଶ 𝐴௛,ଶ଺ 𝐵௛,ଵଶ 𝐵௛,ଶଶ 𝐵௛,ଶ଺𝐴௛,ଵ଺ 𝐴௛,ଶ଺ 𝐴௛,଺଺ 𝐵௛,ଵ଺ 𝐵௛,ଶ଺ 𝐵௛,଺଺𝐵௛,ଵଵ 𝐵௛,ଵଶ 𝐵௛,ଵ଺ 𝐷௛,ଵଵ 𝐷௛,ଵଶ 𝐷௛,ଵ଺𝐵௛,ଵଶ 𝐵௛,ଶଶ 𝐵௛,ଶ଺ 𝐷௛,ଵଶ 𝐷௛,ଶଶ 𝐷௛,ଶ଺𝐵௛,ଵ଺ 𝐵௛,ଶ଺ 𝐵௛,଺଺ 𝐷௛,ଵ଺ 𝐷௛,ଶ଺ 𝐷௛,଺଺⎦⎥⎥

⎥⎥⎥
⎤

⎩⎪⎪⎨
⎪⎪⎧ 𝜀௫଴𝜀௬଴𝛾௫௬଴𝜅௫𝜅௬𝜅௫௬⎭⎪⎪⎬

⎪⎪⎫
         (2.108) 

 

 

where: 𝐴௜௝, 𝐵௜ and 𝐷௜௝  are the stiffness coefficients and can be defined as follows:   

 𝐴௛,௜௝ = ∑ ൫𝑄௜௝൯௞(𝑧௞ − 𝑧௞ିଵ)ே௞ୀଵ             (2.109) 

 𝐵௛,௜௝ = ଵଶ ∑ ൫𝑄௜௝൯௞(𝑧௞ଶ − 𝑧௞ିଵଶ)ே௞ୀଵ              (2.110) 

 𝐷௛,௜௝ = ଵଷ ∑ ൫𝑄௜௝൯௞(𝑧௞ଷ − 𝑧௞ିଵଷ)ே௞ୀଵ             (2.111) 

 

According to the symmetrical laminate shell: 

 𝐴௣,ଵ଺ = 𝐴௣,ଶ଺=0 
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 𝐴௛,ଵ଺ = 0  𝐴௛,ଶ଺ = 0  ሾ𝐵ሿ = 0, 

 

The forces and moments resultant are further related to the shell displacement: 

 𝑁௫ = 𝑐𝑠𝑡𝑒 = 𝐴௛,ଵଵ ௗ௪బௗ௫ − 𝐴௛,ଵଶ ௨௥          (2.112) 

 𝑁ఏ = 𝐴௛,ଵଶ ௗ௪బௗ௫ − 𝐴௛,ଶଶ ௨௥             (2.113) 

 𝑀௫ = −𝐷௛,ଵଵ ௗమ௨ௗ௫మ            (2.114)
  
 𝑀ఏ = −𝐷௛,ଵଶ ௗమ௨ௗ௫మ = − ஽೓,భమ஽೓,భభ 𝑀௥           (2.115)
  

 𝑀௫ఏ = − ஽೓,భల஽೓,భభ 𝑀௥            (2.116)
  
 

It is possible to obtain 𝑁ఏ in term of 𝑁௫ such that: as: 

 𝑁ఏ = ௨௥ ൬𝐴௛,ଶଶ − ஺೓,భమమ஺೓,భభ൰ + ஺೓,భమ஺೓,భభ 𝑁௫         (2.117) 

 

From equations (2.114) and (2.117) the following is obtained : 

 𝐷௛,ଵଵ ௗర௨ௗ௫ర + ௨௥మ ൬𝐴௛,ଶଶ − ஺೓,భమమ஺೓,భభ൰ + ஺೓,భమ஺೓,భభ ே௥ೣ = 𝑝௢         (2.118) 

 
The radial displacement of the shell after integration is: 
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 𝑢 = 𝐶ଵ𝑒ఉ೓௫ cos(𝛽௛𝑥) + 𝐶ଶ𝑒ఉ೓௫ sin(𝛽௛𝑥) + 𝐶ଷ𝑒ିఉ೓௫ cos(𝛽௛𝑥) + 𝐶ସ𝑒ିఉ೓௫ sin(𝛽௛𝑥)   (2.119) 
 

The general solution after simplification of the equation is: 
 
 

 𝑢 = 𝑒ఉ೓௫ሾ𝐶ଵ cos(𝛽௛𝑥) + 𝐶ଶ sin(𝛽௛𝑥)ሿ + 𝑒ିఉ೓௫ሾ𝐶ଷ cos(𝛽௛𝑥) + 𝐶ସ sin(𝛽௛𝑥)ሿ       (2.120) 
 

The rotation θ, Moment M and shear forces Q are given as follows: 

 ϴ = ୢ୳ୢ୶              (2.121) 

 M௫ = −𝐷ଵଵ ୢమ୳ୢ୶మ            (2.122) 

 Q = ୢ୑ೣୢ୶ = −𝐷ଵଵ ୢమ୵ୢ୶మ             (2.123) 

 

The integral constants 𝐶ଵ, 𝐶ଶ, 𝐶ଷ and 𝐶ସ will be determined from the boundary conditions. 

 

At 𝑥 = 0, then 𝑀௫ = 𝑀ூ௡ and  𝑄 = 𝑄ூ௡ 
 
At 𝑥 = 𝑙௛, then 𝑀௫ = 𝑀௃௡ and 𝑄 = 𝑄௃௡ 
 

2.5 Axial compatibility: 

The equations for compatibility requiring continuity of the rotation and radial displacement 

can be used with the equations of equilibrium to form a system of equations with nine 

unknowns for the pressurization state. The final bolt load F஻௙  for the operating condition can 

be obtained from the geometric compatibility consideration in the axial direction that is the 

relation to the nut axial displacement that is equal during initial bolt-up and pressurization. 

Before applying the internal pressure, the bolt initial force F஻௜ , which is the required bolt load 

to satisfy both the requirements of seating and operating conditions, should be previously 
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defined and therefore is known. Consequently, our system of equations will be reduced by one 

unknown.  

  

Figure 2.8 illustrates the compatibility of displacement based on the axial distance traveled by 

the nut during the tightening process. It is to be noted that this distance is the sum of the 

displacement of the flange due to the rotation, the elongation of the bolt and the compression 

of the gasket all in the axial direction. 

 

 

 

The nut axial displacement corresponding to the actual number of turns necessary to achieve 

the required preload remains unchanged between the initial pre-tightening state (i) and during 

the final pressurization state (f). As a matter of fact, this axial displacement does not change 

from the initial state or bolt-up to any other state including pressure, temperature, bending and 

creep loading. As shown in figure 2.8 the sum of the axial displacement of all parts of the 

bolted flange joints is involved. At the junction of the three parts of the flange, the 

Figure 2-8 Axial compatibility of the joint a) hand tightening b) initial pre-tightening  
(Bolt-up), c) pressurization 
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displacements and rotations must be equal, based on the requirement of continuity. Therefore, 

the compatibility equations are as follows: 

The radial displacements and rotations of the ring are equal to the radial displacements and 

rotations of the hub at point 1: 

Initial pre-tightening state (i)   

 ψଵ,௣௜ = ψଵ,௛௜             (2.124) 
 uଵ,௣௜ = uଵ,௛௜             (2.125) 

 
Final pressurization state (f) 

   ψଵ,௣௙ = ψଵ,௛௙             (2.126) 
 uଵ,௣௙ = 𝑢ଵ,௛௙             (2.127) 
 

 
The radial displacements and rotations of the hub are equal to the radial displacements and 
rotations of the shell at point 2. 
 

Initial pre-tightening state (i)  
  ψଶ,௛௜ = ψଶ,௦௜             (2.128) 

 uଶ,௛௜ = uଶ,௦௜             (2.129) 
 
Final pressurization state (f)   

 ψଶ,௛௙ = ψଶ,௦௙             (2.130) 
 uଶ,௛௙ = 𝑢ଶ,௦௙             (2.131) 

 
Considering the axial equilibrium 
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Initial pre-tightening state (i)  
  F஻௜ = F௜ீ             (2.132) 
 

Final pressurization state (f)  
  F஻௙ = F௙ீ + 𝑝௢𝐴௣           (2.133) 

 

 

And according to the axial compatibility 
 
 ∑ w௜௜௠௜ୀଵ = ∑ w௜௙௠௜ୀଵ             (2.134) 

 
or   
 w஻௜ + w௜ீ + w௉௜ = w௕௙ + w௚௙ + w௣௙            (2.135) 

 

Substituting the displacements and rotations into (2.135), the following is obtained: 

 ୊ಳ೔௄ಳ + ୊ಸ೔௄ಸ + 2(r஻ − rீ)ψ୍,௣௜ = ୊ಳ೑௄ಳ + ୊ಸ೑௄ಸ + 2(r஻ − rீ)ψ୍,௣௙          (2.136) 

 

Substituting equations (2.133) and (2.134) gives: 

 F஻௙ ቀ ଵ௄ಳ + ଵ௄ಸቁ = ቀ ଵ௄ಳ + ଵ௄ಸቁ F஻௜  + 2(r஻ − rீ)(𝜓ଵ,௣௜ − 𝜓ଵ,௣௜)  +  ୅ು௄ಸ p௢         (2.137) 

 

After assembling the above equations, a system of 9 unknowns is obtained and it is possible to 

set these equations in a matrix form to solve for the unknowns.  

 ሾ𝑈ሿ = ሾ𝐶ሿ\ሾ𝑉ሿ             (2.138) 
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where ሾ𝐶ሿ is a square matrix and ሾ𝑉ሿ is a vector. The matrix ሾ𝑈ሿ is a vector the elements of 

which are the unknowns and are the edges forces and moments, the radial displacements and 

the rotations of each junction.  

 

The coefficients matrixes are defined as follows: 

 

ሾ𝐶ሿ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ ି୆ଵଵଶఉ೓యୈ೓,భభ ୆ଵଶଶఉ೓మୈ೓,భభ ୋଵଵଶఉ೓యୈ೓,భభ ୋଵଶଶఉ೓మୈ೓,భభ −1 0 0 0 0ି୆ଵଶଶఉ೓మୈ೓,భభ ୆ଶଶଶఉ೓ୈ೓,భభ ୋଵଶଶఉ೓మୈ೓,భభ ୋଶଶଶఉ೓ୈ೓,భభ 0 −1 0 0 0ିୋଵଵଶఉ೓యୈ೓,భభ ୋଵଶଶఉ೓మୈ೓,భభ ୆ଵଵଶఉ೓యୈ೓,భ ୆ଵଶଶఉ೓మୈ೓,భభ 0 0 −1 0 0ୋଵଶଶఉ೓మୈ೓,భభ ିୋଶଶଶఉ೓ୈ೓,భభ ି୆ଵଶଶఉ೓మୈ೓,భభ ି୆ଶଶଶఉ೓ୈ೓,భభ 0 0 0 −1 0ଵଶఉೞయୈೞ,భభ  ଵଶఉೞమୈೞ,భభ 0 0 −1 0 0 0 0ିଵଶఉೞమୈೞ,భభ ିଵఉೞୈೞ,భభ 0 0 0 −1 0 0 00 0 −(Lଶଵ − Lଶଶ) 0 0 0 −1 ୲೑ଶ 00 0 ୲೑ଶ Lଶ଺ −Lଶ଺ 0 0 0 −1 ୰ಳି୰ಸଶ஠୰೘ Lଶ଻0 0 0 0 0 0 0 2(r஻ − rீ) ଵ௄ಳ + ଵ௄ಸ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

      (2.139) 

 

 

 

ሾ𝑉ሿ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡ − Aℎ,11−12Aℎ,124𝛽ℎ4Aℎ,1Dℎ,11 p𝑜0− Aℎ,11−12Aℎ,124𝛽ℎ4Aℎ,1Dℎ,11 p𝑜0− A𝑠,11−12A𝑠,124𝛽𝑠4A𝑠,11D𝑠,11 p𝑜0−(L1 − L2)t𝑓p𝑜−(r𝐺 − r𝑖)(r𝐺2 + r𝑖2) p𝑜4r𝑚 L27ቀ 1𝐾𝐵 + 1𝐾𝐺ቁ 𝐹𝐵𝑖  + 2(r𝐵 − r𝐺)𝜓௃௜ + A𝑃𝐾𝐺 p𝑜 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤

            (2.140) 
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To simplify the derivations the following coefficients are defined: 

 𝐿ଶଵ = ି୰೔య(୰೚మି୰೔మ)(୅೛,భమା୅೛,భభ)           (2.141) 

 𝐿ଶଶ = ି୰೔୰೚మ(୰೚మି୰೔మ)(୅೛,భమି୅೛,భభ)           (2.142) 

 𝐿ଶଷ = ୰೔ିଶ୰೔୪୭୥ቀ ౨೔౨೚ቁ଼஠ୈ೛,భభ             (2.143) 

 𝐿ଶସ = − (୰೚మ୰೔ା୰೔య)(ୈ೛,భమିୈ೛,భభ)ାଶ୰೔య୪୭୥ቀ ౨೔౨೚ቁ(ୈ೛,భభାୈ೛,భమ)଼஠ୈ೛,భభ(୰೚మି୰೔మ)൫ୈ೛,భభାୈ೛,భమ൯           (2.144) 

 𝐿ଶହ = ି୰೚మ୰೔୪୭୥ቀ ౨೔౨೚ቁ(ୈ೛,భభାୈ೛,భమ)ସୈ೛,భభ஠(୰೚మି୰೔మ)(ୈ೛,భభିୈ೛,భమ)            (2.145) 

 𝐿ଶ଺ = 𝐿ଶଵ + 𝐿ଶଶ              (2.146) 
 𝐿ଶ଻ = 𝐿ଶଷ + 𝐿ଶସ + 𝐿ଶହ            (2.147) 

 

To obtain the final bolt force  𝐹஻ ௙ which depends on the flange parameters as well as the inside 

pressure, first the unknown vector ൣ𝑈௜൧ has to be solved for the initial bolt-up condition with a 

known initial bolt force  𝐹஻௜. The solution gives, in particular, the rotation of the flange in the 

initial tightening condition that used in the last row in ሾ𝑈௙ሿ
 
of the final condition to solve for 

the bolt force 𝐹஻ ௙ . 
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 ൣ𝑈௜൧ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡𝑄ଶ௜𝑀ଶ௜𝑄ଵ௜𝑀ଵ௜𝑢ଶ௜𝜓ଶ௜𝑢ଵ௜𝜓ଵ௜𝐹஻௜ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
             (2.148) 

ሾ𝑈௙ሿ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡𝑄ଶ௙𝑀ଶ௙𝑄ଵ௙𝑀ଵ ௙𝑢ଶ௙𝜓ଶ௙𝑢ଵ௙𝜓ଵ௙𝐹஻ ௙ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
             (2.149) 

 
 

2.6 Stress calculation 

To calculate the stresses and displacements for either the flange with the hub or without the 

hub, the solution of the two vectors ൣ𝑈௜൧  and  ሾ𝑈௙ሿ is conducted one after the other. The case 

of the flange without the hub could be treated as one with the hub having the same materials 

and thickness as the shell. In fact, these results make it possible to calculate the following 

parameters in the initial n=i and final n=f phases of the bolted flange joint: 𝑢௡(𝑥)   Radial displacement  Ѱ௡(𝑥)  Rotation   𝑀௡(𝑥)  Bending moment  𝑄௡(𝑥)  Shearing force  𝑁௟௡(𝑥)  Longitudinal force  𝑁௧௡(𝑥)  Tangential force  
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 𝜎௟,௜௡    Longitudinal stress inside surface of the flange  𝜎௧,௜௡   Tangential stress inside surface of the flange  𝜎௟,௢௡   Longitudinal stress outside the surface of the flange  𝜎௧,௢௡   Tangential stress outside the surface of the flange  

 

 Hub laminate: 

Equations (2.150) to (2.153) below are used to calculate the displacement and stresses in the 

hub: 

 𝐹ଵଵ(𝛽௛𝑥) = ଵଶ ሾcosh(𝛽௛𝑥) sin(𝛽௛𝑥) − sinh(𝛽௛𝑥) cos(𝛽௛𝑥)ሿ         (2.150) 
 𝐹ଵଶ(𝛽௛𝑥) = sin(𝛽௛𝑥) sinh(𝛽௛𝑥)            (2.151) 
 𝐹ଵଷ(𝛽௛𝑥) = ଵଶ ሾcosh(𝛽௛𝑥) sin(𝛽௛𝑥) + sinh(𝛽௛𝑥) cos(𝛽௛𝑥)ሿ         (2.152) 
 𝐹ଵସ(𝛽௛𝑥) = cosh(𝛽௛𝑥) cos(𝛽௛𝑥)            (2.153) 

 

Substituting the above equations, the lamina displacement, rotation, moment and shear, and 

membranes forces in the hub can be determined from the following relations: 

 𝑢௛௡(𝑥) = ொభ೙ଶఉ೓య஽೓,భభ 𝐹ଵଵ(𝛽௛𝑥) + ெభ೙ଶఉ೓మ஽೓,భభ 𝐹ଵଶ(𝛽௛𝑥) + టభ೙ఉ೓ 𝐹ଵଷ(𝛽௛𝑥) + 𝑢ଵ௡𝐹ଵସ(𝛽௛𝑥)      (2.154) 

 𝜓௛௡(𝑥) = 𝛽௛ ൤ ொభ೙ଶఉ೓య஽೓,భభ 𝐹ଵଶ(𝛽௛𝑥) + ெభ೙ఉ೓మ஽೓,భభ 𝐹ଵଷ(𝛽௛𝑥) + టభ೙ఉ೓ 𝐹ଵସ(𝛽௛𝑥) − 2𝑢ଵ௡𝐹ଵଵ(𝛽௛𝑥)൨ 

                 (2.155) 

 𝑀௛௡(𝑥) = 2𝛽௛ଶ𝐷௛,ଵଵ ൤ ொభ೙ଶఉ೓య஽೓,భభ 𝐹ଵଷ(𝛽௛𝑥) + ெభ೙ଶఉ೓మ஽೓,భభ 𝐹ଵସ(𝛽௛𝑥) − టభ೙ఉ೓ 𝐹ଵଵ(𝛽௛𝑥) −𝑢ଵ௡𝐹ଵଶ(𝛽௛𝑥)൨                (2.156) 
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𝑄௛௡(𝑥) = 2𝛽௛ଷ𝐷௛,ଵଵ ൤ ொభ೙ଶఉ೓య஽೓,భభ 𝐹ଵସ(𝛽௛𝑥) − ெభ೙ఉ೓మ஽೓,భభ 𝐹ଵଵ(𝛽௛𝑥) − టభ೙ఉ೓ 𝐹ଵଶ(𝛽௛𝑥) −2𝑢ଵ௡𝐹ଵଷ(𝛽௛𝑥)൨               (2.157) 

 𝑁௛,௟ ௜(𝑥) = 0         𝑎𝑛𝑑         𝑁௛,௟ ௙(𝑥) =  ௣బ௥೓ଶ           (2.158) 

 𝑁௛,௧௡(𝑥) = ൥௨೓೙(௫)௥೓ + ൬஺೓,భభିಲ೓,భమమ ൰ସఉ೓ర஺೓,భభ஽೓,భభ ௣బ௥೓൩ ൬𝐴௛,ଵଶ − ஺೓,మమమ஺೓,భభ ൰ + ஺೓,భమ஺೓,భభ 𝑁௛,௟௡(𝑥)        (2.159) 

 

The longitudinal and tangential stresses at the inside and outside surface of the hub are given 

by: 

 𝜎௛,௟,௜௡(𝑥) = ே೓,೗೙(௫)௧೓ + ଺ெ೓೙(௫)௧೓మ             (2.160) 
 
 𝜎௛,௟,௢௡(𝑥) = ே೓,೗೙(௫)௧೓ − ଺ெ೓೙(௫)௧೓మ            (2.161) 
 
 𝜎௛,௧,௜௡(𝑥) = ே೓,೟೙(௫)௧೓ + ଺஽೓,భమ஽೓,భభ ெ೓೙(௫)௧೓మ           (2.162) 
 
 𝜎௛,௧,௢௡ = ே೓,೟೙(௫)௧೓ − ଺஽೓,భమ஽೓,భభ ெ೓೙(௫)௧೓మ            (2.163) 
 
 

 Shell laminate 

Equations (2.164) to (2.167) must be used to calculate the displacement and stresses in the 

shell: 

 𝑓ଵ(𝛽௦𝑥) = 𝑒ିఉೞ௫ሾcos(𝛽௦𝑥)ሿ            (2.164) 

 𝑓ଶ(𝛽௦𝑥) = 𝑒ିఉೞ௫ሾcos(𝛽௦𝑥) − sin(𝛽௦𝑥)ሿ            (2.165) 
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𝑓ଷ(𝛽௦𝑥) = 𝑒ିఉೞ௫ሾcos(𝛽௦𝑥) + sin(𝛽௦𝑥)ሿ            (2.166) 

 𝑓ସ(𝛽௦𝑥) = 𝑒ିఉೞ௫ሾsin(𝛽௦𝑥)ሿ           (2.167) 

 

Substituting the above equations, the lamina displacement, rotation, moment and shear and 

membranes forces in the shell can be determined from the following relations: 

 𝑢௦௡(𝑥) = ொమ೙ଶఉೞయ஽ೞ,భభ 𝑓ଵ(𝛽௦𝑥) + ெమ೙ଶఉೞమ஽ೞ,భభ 𝑓ଶ(𝛽௦𝑥)          (2.168) 

 𝜓௦௡(𝑥) = 𝛽௦ ൤− ொమ೙ଶఉೞయ஽ೞ,భభ 𝑓ଷ(𝛽௦𝑥) − ெమ೙ఉೞమ஽೓,భభ 𝑓ଵ(𝛽௦𝑥)൨          (2.169) 

 𝑀௦௡(𝑥) = 2𝛽௦ଶ𝐷௦,ଵଵ ൤ ொమ೙ଶఉೞయ஽ೞ,భభ 𝑓ସ(𝛽௦𝑥) + ெమ೙ଶఉೞమ஽ೞ,భభ 𝑓ଷ(𝛽௦𝑥)൨         (2.170) 

 𝑄௦௡(𝑥) = 2𝛽௦ଷ𝐷௦,ଵଵ ൤ ொమ೙ଶఉೞయ஽ೞ,భభ 𝑓ଶ(𝛽௦𝑥) − ெమ೙ఉೞమ஽ೞ,భభ 𝑓ସ(𝛽௦𝑥)൨           (2.171) 

 𝑁௦,௟ ௜(𝑥) = 0         𝑎𝑛𝑑         𝑁௦,௟ ௙(𝑥) =  ௣బ௥ೞଶ           (2.172) 

 

𝑁௦,௧௡(𝑥) = ൥𝑢𝑠𝑛(𝑥)௥ೞ + ൬𝐴𝑠,11−𝐴𝑠,122 ൰4ఉೞర𝐴𝑠,11𝐷𝑠,11 ௣బ௥ೞ ൩ ቆ𝐴𝑠,22 − 𝐴𝑠,122𝐴𝑠,11 ቇ + 𝐴𝑠,12𝐴𝑠,11 𝑁௦,௟௡(𝑥)       (2.173) 

 

The longitudinal and tangential stresses at the inside and outside surface of the shell are given 

by: 

 𝜎௦,௟,௜௡(𝑥) = ேೞ,೗೙(௫)௧ೞ + ଺ெೞ೙(௫)௧ೞమ             (2.174) 
 
 𝜎௦,௟,௢௡(𝑥) = ேೞ,೗೙(௫)௧ೞ − ଺ெೞ೙(௫)௧ೞమ            (2.175) 
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𝜎௦,௧,௜௡(𝑥) = ேೞ,೟೙(௫)௧ೞ + ଺஽ೞ,భమ஽ೞ,భభ ெೞ೙(௫)௧ೞమ            (2.176) 
 
 𝜎௦,௧,௢௡(𝑥) = ேೞ,೟೙(௫)௧ೞ − ଺஽ೞ,భమ஽ೞ,భభ ெೞ೙(௫)௧ೞమ           (2.177) 



 



 

 
 
 

NUMERICAL (FINITE ELEMENT) MODELING 
 

3.1 Introduction 

To investigate the behavior of complicated structure like FRP flanges which is difficult to 

analyze all elements analytically one of the best techniques is the finite element model. FEM 

is a useful way to provide an acceptable prediction of the behavior of a complex structure. To 

get the highest accuracy, it requires creating a model with the fine meshing system by means 

of various elements, that reflects perfectly specifications of the system including the material 

properties, structures, and the assembly.  

 

The presented numerical models for FRP bolted flange joints in this chapter are an attempt to 

validate the analytical model. Besides this, finite element analysis cannot duplicate 

experimental testing exactly, therefore, the experimental tests have been conducted on FRP 

bolted joints to validate the results obtained from experimental, analytical and numerical 

methods. In addition, to validate the analytical model, finite element analysis gives us an 

indication of the overall behavior and performance of FRP bolted joint.  

 

This chapter describes the numerical procedure of the 3 different models of Fiber reinforced 

plastic flanges for two sizes of the flange with NPS 3 class 150 and NPS 12 class 150. To 

create and analyzed the finite element models, the program ANSYS® Mechanical 16.02 and 

ANSYS Composite PrepPost (ACP) 16.2 were used.  

 

The three finite element models considered in this chapter are: 

1- Finite element model for the flange without the hub;  

2- Finite element model for the flange with the hub; 

3- Finite element model with ANSYS Composite PrepPost (ACP). 
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Each finite element model of the bolted joint consists of two phases: 

• Initial tightening phase: the first stage is at the flange bolt-up following the initial 

tightening of the flange. The tightening force compresses the two parts of the flange as 

well as the gasket and it is represented by a uniform and horizontal distribution of the 

contact pressure. 

• Pressurization phase: A pressure is applied on the inside surface of the flange; the inside 

pressure also creates a pressure on the flat surfaces at the end of the shell of the flange. 

 

3.2 Applied loading 

The loading consists of the hydrostatic end load, internal lateral pressure, and initial bolt forces. 

The initial gasket seating is provided by the pre-load in the bolts and is referred to as the seating 

condition. In this case, the gasket deforms filling the irregularities on the flange face in order 

to make a full contact over its entire surface. The bolt load change during pressurization can 

be obtained from the compatibility of displacement. In order to study the short-term behavior 

of FRP bolted joints, the bolt load is assumed to remain constant as in practice, by retightening 

the bolts, they maintain the required load to prevent leakage. It is worth noting that in the real 

case, creep and relaxation can happen in the flange and gasket. This issue of load relaxation is 

complex to consider because of the creep of the resin and woven roving of the composite 

material, the data of which are not available. In all models, the tightening forces are applied at 

the same time and they are identical. Therefore, this hypothesis allows us to consider the bolted 

flange joint model as axisymmetric, and just 1/4 and 1/12 can be modeled for the flange with 

NPS 3 and NPS 12 respectively.     

 

 Pretension load on bolts 

In the FE model, the bolt force is applied as the pre-tension load and then the position is locked 

in the subsequent stage. The material properties of the bolts are given in table 3.1. 
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Table 3-1 Material properties of the bolts 
Properties Value Unit 

Young Modulus 210 GPa 

Poisson's ratio 0.3  

Tensile yield strength 250 MPa 

Tensile ultimate strength  460 MPa 

Density 7,850 kg/m3 

  

 

To get the proper sealing in the bolted flange joints assembly the following conditions must be 

met: 

• Sufficient compression force must be applied to fill the porosities on the face of the 

flanges.  

• A minimum compression force must be maintained on the joint during the operating 

condition to ensure the proper sealing of the joint. 

 

In order to determine the required compressive force to satisfy the above conditions, the 

following equations are used: 

 

 𝑊௠ଶ = 𝜋𝑏𝐺𝑦                (3.1) 

 𝑊௠ଵ = గସ 𝐺ଶ𝑝଴ + 2𝑏𝜋𝐺𝑚𝑝଴              (3.2) 

 

where 𝑊௠ଶ and 𝑊௠ଵ are the initial tightening bolt force and the operating bolt force 

respectively.  

 

The minimum bolt force required to seal the bolted flange joint (𝑊௠) is the maximum force 

between 𝑊௠ଶ and 𝑊௠ଵ. 

  

The pretension load on the bolts is determined from: 



78 

 

𝑆𝑏 = 𝐹𝑏𝐴𝑏                   (3.3) 

 𝐴௕ = 𝜋𝑟௩ଶ                  (3.4) 

 

where 𝑆𝑏 is the tightening stress of the bolt,  𝐹𝑏 is the bolt force and 𝐴𝑏 is the bolt stress area.  

 

According to the ASME BPV Code, Sections X, it is possible to calculate the bolt stress area as 

follow: 
 𝐴௕ = 𝜋 ቂቀௗయଶ + ௗమଶ ቁ /2ቃଶ

              (3.5) 

 𝑑3 = 𝑑𝑣 − 1.2268𝑝𝑡    𝑑2 = 𝑑𝑣 − 0.6495𝑝𝑡     
 

Then 
 𝐴௕ = 𝜋 ቂଶௗೡିଵ.଼଻଺ଷ௣௧ସ ቃଶ

               (3.6) 

 
         Table 3-2 Bolt stress and bolt force for the NPS 3 and 12 FRP bolted flange joint 

Flange size 𝐴௕ (mm2)       𝐹𝑏  (N) 

NPS 3 197.84 14580 

NPS 12  388.15 10000 

 
 

In ANSYS® Mechanical the torque load is applied through the pre-existing command called 

“bolt pretension”. To apply the axial bolt load as shown in figure 3.1, a special coordinate 

system is created at the center of the bolt. Then the bolt load is applied in two steps. In the first 

step, the pre-tightening bolt force is applied then it is locked to maintain the torque load for the 

subsequent steps.  
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Figure 3-1 Axial bolt load with a special coordinate system 
 

 Internal pressure 

When the pre-tightening bolt force is applied to each bolt on the flange, the pressurization 

phase has begun. The pressure that is applied on the internal surface of the flanges with NPS 

3 and 12 is 1.034 MPa (150 Psi) and 0.345 MPa (50 Psi).  As shown in figure 3.2 the inside 

pressure creates a pressure on the top surface of the shell in the flanges. This stress that applies 

to the end of the flange is equal for both flanges and given by: 

 𝑝𝑤 = 𝑝𝑜𝐴𝑝𝐴𝑆                   (3.7) 

 𝐴𝑝 = 𝜋𝑟𝑖2                  (3.8) 

 𝐴𝑆 = 𝜋(𝑟𝑖 + 𝑡𝑠)2 − 𝐴𝑝                 (3.9) 

Then  

 𝑝𝑤 = 𝑝𝑜𝑟𝑖2(2𝑟𝑖+𝑡𝑠)𝑡𝑠               (3.10) 
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where 𝑝௢ is the inside pressure, 𝑟௜ is the flange inside radius, 𝑡௦ is the thickness of the shell, 𝐴௣ 

is the inside surface area of the flange and 𝐴ௌ is the cross-section area of the shell. The applied 

pressure in the flanges with NPS 3 and 12 are listed in table 3.3. 

 

   Table 3-3 Inside pressure and wall pressure for NPS 3 and 12 FRP flange 

Flange size 𝑝௢   (MPa) 𝑝𝑤 (MPa) 

NPS 3 1.034 2.86 

NPS 12 with the hub 1.034 4.27 

NPS 12 without the hub 0.345 1.5 

 
 
3.3 Modeling of the gasket 

One of the key factors in successful bolted joint simulation is the modeling of the gasket 

material. The gasket compression, especially in full-face flanges, has a strong influence on the 

flange rotation and leakage performance. In full-face flanges, the gasket is compressed 
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      (a)                                        (b) 

 

Figure 3-2 Inside pressure 𝑝௢ and wall pressure 𝑝𝑤 at pressurization phase 
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unevenly and in order to resist the fluid inside pressure, the bolts must be tight enough.  In this 

model, the gasket deforms plastically under the flange surfaces, ensuring full contact over its 

entire area. The mechanical behavior of the gasket is represented by nonlinear loading and 

unloading curves obtained from load-displacement tests. Figure 3.3 depicted test data of a 

Teflon gasket that is used in this study. The geometry of the gasket for NPS 3 and 12 flanges 

are listed in table 3.4.  

 

 
 

 
 

Four critical steps are likely to occur during gasket compression from the initial tightening to 

pressurization. In composite flanges using the full-face width, the compression stresses of the 

joint are zero at the holes of bolts. As depicted in figure 2.8, flange bolt-up is conducted first 

by hand followed by tightening with a torque ranch where the gasket compression is achieved 

by a non-uniform distribution of the contact pressure. The flange joint is gradually pressurized 

and in general, a more pronounce trapezoidal distribution takes place. In this phase, the flange 

rotates while the inside region of the compressed gasket unloads. Therefore, the contact 

pressure follows a trapezoidal distribution with a minimum contact pressure at the inner radius 

Figure 3-3 Gasket compression tests 
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of the gasket and maximum contact pressure at the outer radius of the gasket. Usually, too 

much rotation will cause the loosing of the contact pressure at the bolt holes, in which case 

leakage will occur at this location. 

 
 

Table 3-4 Geometry of the gasket for the flange with NPS 3 and 12 

Flange 
size 

Inside 
diameter 

Outside 
diameter Thickness Number 

of holes 
Hole 

diameter 
Hole 
circle 

NPS 12 304.8 482.6 3 12 25.4 431.8 

NPS 3 76.2 190.5 1.59 4 19.05 152.4 

 
 
 

In order to simplify the numerical model, the gasket contact pressure distributions are 

considered to be triangular. 

 

3.4 Boundary conditions 

Because of the axisymmetry, the boundary conditions applied to the finite element models are 

the symmetry conditions to the nodes that belong to both sides of the two axial planes of the 

flange triangular portion and to those that are in the plane that passes through the middle of the 

gasket thickness. As depicted in figure 3.4 the axial displacement in the middle of the gasket 

and the bolt is zero. The nodes of the flange symmetrical plane are free to move in the radial 

direction while their rotation about any radius is fixed.  

 

Since the flange is symmetrical in nature, the cyclic symmetry is applied at two sides of the 

cut section as shown in figure 3.5. The axial displacement at the plane that passes through the 

gasket mid-thickness and cuts the bolts in two parts is constrained the flange face is expected 

to compress the gasket over the full face once the bolt load is applied. It is worth noting that 

the shell length should be long enough to eliminate the edge effects at top. This simplified 
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model limits the CPU requirements and makes the calculations faster. A standard friction 

model was used to control sliding at the bolt-flange and gasket-flange interfaces. The 

coefficient of static friction of 0.7 for rough surface and 0.15 for a smoother surface.  

 

   

Figure 3-4 Boundary condition for the static model 
 
 

3.5 3D solid finite element models 

The numerical Finite element analysis was conducted on 3 different models to compare the 

results obtained with the developed analytical FRP bolted flange model. The axisymmetric 

model assembly is made of three parts; the flange, the gasket ring, and the bolt. In the case of 

an assembly with an identical flange pair, because of symmetry with respect to a plane that 

passes through the gasket thickness, only one flange including half of the gasket thickness is 

modeled. To model the flange and bolts, 3D 8-node brick solid element (Solid185) was used. 

These elements are defined by three degrees of freedom per nodes and support plasticity, large 

deflection and high strain capabilities.  In addition, the contact pairs which consist of contact 

elements (CONTACT174) and target segment elements (TARGE170) were defined the 
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interface between the flange, gasket, and bolts. The volume elements were used to model the 

Existing space between the flange and the bolt. The flanged connection is assumed to be 

sufficiently far from the end enclosures of the vessel, such that the longitudinal and bending is 

limited only to its small adjacent portion of the vessel compared to the overall length. In order 

to conduct a direct comparison between the results obtained from the analytical model and 

numerical model, the two working conditions, initial pre-tightening (bolt-up) and 

pressurization, are analyzed.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Finite element model for the flange with NPS 12 class 150   

Two different finite element models of the NPS 12 class 150 and 50 of FRP bolted flanged 

joint were developed under the software ANSYS® Mechanical 16.02. As shown in figures 3.6 

and 3.7, the first model is the flange without the hub and the second one is the flange with the 

hub. A linear static finite element analysis was performed with these two models. The 3D 

model includes three parts; the flange, the gasket, and the bolt. In the case of an assembly with 

an identical flange pair, because of symmetry with respect to a plane that passes through the 

mid gasket thickness, only one flange including half of the gasket thickness is modeled. 

Figure 3-5 Symmetry surfaces of static model 
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3.5.1.1 Geometry of the flange 

Figure 3.8 and 3.10 illustrate the geometric features of the NPS 12 flanges with the hub and 

without the hub, that are valid for the class 150 and 50 respectively. The flange dimensions 

(table 3.5) were obtained from the ASME code section X. The thicknesses of the ring, hub, 

and shell are not definitive in the finite element model, depending on the arrangement of the 

laminate in each part of the FRP bolted flange joint. The arrangement of the laminate in the 

flange is elaborated in 3.5.1.3.  

 

 

 

Figure 3-6 Finite element model for the NPS 12 FRP flange without 
the hub 
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The flanged connection is assumed to be sufficiently far from the end enclosures of the vessel, 

such that the shear and bending loads are limited only to the small adjacent portion of the shell 

and do not influence the hub. FRP flanges with and without the hub are designed based on the 

geometry mentioned above and are drawn in Catia software.  The generated models are then 

transferred directly to ANSYS. Figure 3.9 and 3.11 show the designed flanges with Catia for 

the NPS 12 FRP flanges. 

 
According to the geometry of the flange (table 3.5 and 3.6), the thickness of the ring is equal 

to FT which is 47.62 mm and 30 mm for the NPS 12 flange with the hub class 150 and the 

NPS 12 flange without the hub respectively.  

 

Figure 3-7 Finite element model for the NPS 12 FRP flange with 
the hub 
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        Table 3-5 Dimensions of the NPS 12 flange with the hub 

 

 

 
 
 

 

 

 

 

 

 

Flange NPS 12 with the hub Flange and nozzle thickness,  

 1.034 MPa, 150 Psi 

Unit 
Inside 
dia., 

D 

Outside 
dia., 

A 

Bolt 
circle, 

B 

Bolt 
hole 
dia., 

C 

Dia. 
spot 

facing 

Bolts 
size 
dia. 

No. 
of 

bolts 
FT NT 

mm 304.8 482.6 431.8 25.4 57.1 22.2 12 47.6 16.9 

in 12 19 17 1 2 ¼ ⅞ 12 1 ⅞ ⅔ 

Figure 3-8 Geometry of the NPS 12 flange with the hub 

Figure 3-9 Geometry of FRP flange with the 
hub modeled in Catia 
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    Table 3-6 Dimensions of the NPS 12 flange without the hub 

 

 

 

 

 

 

 

 

 

 

 

Flange NPS 12 without the hub 
Flange and nozzle 

thickness,  
 0.345 MPa, 50 Psi 

Unit 
Inside 
dia., 

D 

Outside 
dia., 

A 

Bolt 
circle, 

B 

Bolt 
hole 
dia., 

C 

Dia. 
spot 

facing 

Bolts 
size 
dia. 

No. 
of 

bolts 
FT NT 

mm 300 480 425 19 57.1 16 12 30 17 

In 11.8 18.9 16.7 0.75 2.2 0.6 12 1.18 0.67 

Figure 3-10 Geometry of the NPS 12 flange without the hub 

Figure 3-11 Geometry of FRP flange without the 
hub modeled in Catia 
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3.5.1.2 Lamina properties 

FRP flanges that are used in this study are made out of laminates of E-glass fibers as a 

reinforcement and vinyl-ester as a resin. There are two types of laminates for this composite:  

 

1. Chopped strand mat: This laminate is fabricated by mixing the fibers randomly with 

the resin. The volume of the fiber in this laminate is 35% and the thickness of this ply 

is 1 mm.  

 

2. Woven roving: Continuous filaments of fiber wetted with the specified resin applied 

are wound in a systematic manner under controlled tension and cured on a mandrel or 

other supporting structure This laminate is fabricated by interlacing the wetted fibers 

in a resin, passing in one direction with other fibers at a 90-degree angle to them. The 

volume of the fiber in this laminate is about 60% and the thickness of this ply is 0.9 

mm. 

 

The elastic, mechanical and physical properties of mat and woven roving plies are given by 

Hoa (1991) listed in Table 3.7. 

 

In order to compare the analytical and numerical results of FRP bolted flange joints, the flange 

is divided into three major parts (ring, hub, and shell) and subsequently, each part has a 

different thickness and arrangement of plies but they are all composed of a mat and woven 

roving laminates. It is worth noting that in reality, FRP flange laminates are hand layered-up 

with midplane symmetry as shown in figure 3.12.  
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Table 3-7 Mechanical, physical and elastic properties of the laminates 

Properties 

M               

(Chopped strand 

Mat) 

R             

(Woven roving) 
C (C-Glass veil) Unit 

Fiber volume  30-35 50-60 10 % 

Density  1.38 1.71 1.25 g/cm3 

Thickness  0.97 0.99 0.61 mm 

Young's modulus 

 (X direction) 
7929 18791 4888 MPa 

Young's modulus 

(Y direction) 
7929 18791 4888 MPa 

Shear modulus 2985 2654 1827 MPa 

Poisson's ratio 0.34 0.15 0.34  

Tensile yield strength 

(X direction) 
121 84 73 MPa 

Tensile yield strength 

(Y direction) 
121 84 73 MPa 

Compressive yield 

strength (X direction) 
95 66 42 MPa 

Compressive yield 

strength (Y direction) 
95 66 42 MPa 

Shear strength 61 56 27 MPa 
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As mentioned previously, FRP flange is composed of three parts, ring, hub and shell, and due 

to different thickness, each part has a different arrangement of plies. There are two types of 

plies, mat and woven roving and the layer stacking sequence is symmetric for each part of the 

flange. The material and physical properties of the mat and the woven roving laminate are 

given in table 3.7. As mentioned before the thickness of the mat and woven roving layers is 

0.9 mm and 1 mm respectively. In all FE models, the inner layer of the flange is installed 

against corrosion and because of its very small thickness, this layer is neglected in the 

numerical FE model. 

 

 

Figure 3.12 illustrates the general laminates of the shell. The laminate of the shell consists of 

18 layers and the thickness of the shell is 17.1 mm.  

 

For FRP flanges modeled in this study, the following assumptions are made: 

• Chopped strand mat and woven roving fabrics that are used in laminates are considered 

macroscopically homogeneous, elastically linear and orthotropic. 
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Figure 3-12 General laminate for the shell 
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• In all interfaces and junctions, it is assumed that there is perfect adhesion and bonding 

between layers.  

• The fibers are assumed to be evenly distributed and perfectly aligned in the woven 

roving layers with good adhesion in the fiber-matrix interface. 

 

General laminate and the layer stacking sequence for the hub and ring of the NPS 12 flange 

with the hub are depicted in figures 3.14 and 3.15. The number of laminas in the hub is 44 and 

in the ring is 50 with a total thickness of the hub and the ring is 41.8 mm and 47.5 mm 

respectively.  
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Figure 3-13 General laminate for the ring of the NPS 12 flange without the hub 
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Figure 3-14 General laminate for the hub  
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Figure 3-15 General laminate for the ring of the NPS 12 flange with the hub 
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3.5.1.3 Meshing and contacts 

In ANSYS® Mechanical, all parts of the flange are modeled using Solid185 element which is 

a 3D 8-node element and exhibits quadratic displacement behavior that has three degrees of 

freedom per node. This type of element supports plasticity, hyper-elasticity, and large 

deflection. Figure 3.16 shows the mesh of the model for the NPS 12 flange without the hub.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mesh of the gasket is made with SOLID186 elements which are 3D 20-node similar 

elements to SOLID185. This element exhibits quadratic displacement behavior and has three 

degrees of freedom per node.  

 

One of the fundamental building blocks of a good simulation to reproduce the real behavior of 

the bolted flange joint is employing the correct element of the contact surface in the FE model. 

In this model, the contact between the bolt and flange ring is to be simulated with a frictional 

surface having a coefficient of friction of 0.15. As to the other contact between the ring and 

Figure 3-16 FE mesh model for NPS 12 flange  
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gasket a coefficient of friction of 0.7 is used due to the surface roughness. The contact element 

used in the model is CONTACT174 having eight nodes and used in conjunction 3D target 

interface surface elements. The element TARGE170 is employed in this case and is associated 

with CONTACT174 elements. 

 

As mentioned before in section 3.2.1 the bolt load is applied through the command 

“pretension”. In the numerical model, the element PRETS179 is involved in the application of 

bolt load pretension. This type of element can be used in a 2D or 3D model and has one degree 

of freedom that can be defined in a direction specified by the pretension force. 

 

In the second step, the pressure on the inside surface of the flange was applied while the bolt 

pretention varies as a result of the flexibility of the bolted joint. During the pressurization 

phase, the pretension bolt load is locked to maintain the torque load on the bolts. The SURF154 

elements used to simulate the hydrostatic end effect and they are defined by 8 nodes and are 

specific to surface in 3D FE models.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 Figure 3-17 Finite element model of the isotropic NPS 3 FRP flange 
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 Finite element model for the flange with NPS 3 class 150  

Two different finite element models were developed to study the behavior of the NPS 3 class 

150 FRP flange joint under the software ANSYS® Mechanical.  
 

The two FE models considered in the study are: 

 

1- FE model with an isotropic behavior: 

In this model, the material behavior of FRP flange is assumed to be linear elastic with an 

equivalent isotropic elastic modulus equal to 13927 MPa. The corresponding linear 

elastic finite element model of the isotropic FRP flange is depicted in Figure. 3.17. 

 

2- FE model with an anisotropic behavior:  

This model was developed to introduce the real anisotropic behavior of FRP flange. This 

model is basically the same as the previous model. According to the manufacturer 

drawings the material properties of the composite are listed below: 

EL = 13445 MPa 

ET = 14686 MPa. 

νL = νT = 0.28 

 

GLT = 25442 MPa. 

 

where EL and ET are the young’s moduli in longitudinal and tangential directions, νL and νT are 

the Poisson’s ratio in longitudinal and tangential directions, GLT is the shear moduli in L-T 

plane. 

 
3.5.2.1 Geometry of the flange 

Figure 3.18 and Table 3.8 illustrates the geometry and dimensions of the NPS 3 FRP flange 

with the hub. As mentioned earlier, the flanged connection is assumed to be sufficiently far 

from the end enclosures of the vessel, such that the longitudinal and bending has a local effect.  
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Table 3-8 Geometry of the NPS 3 flange (ZCL Composite Co.) 

 

The flange dimensions that are listed in Table 3.8 were obtained from ZCL Dualam Inc. 

composite flange manufacturing company. 

 

 

 
 
 

Similar to the FE model of NPS 12 FRP flange, the geometry of the NPS 3 flange is designed 

in Catia and transferred to ANSYS using IGES file format. Figure 3.19 depicts the designed 

NPS 3 FRP flange in Catia and ANSYS workbench. 

Flange NPS 3 Flange and nozzle thickness,  

 1.034 MPa, 150 Psi 

Unit 
Inside 
dia., 

D 

Outside 
dia., 

A 

Bolt 
circle, 

B 

Bolt 
hole 
dia. 

Dia. 
spot 

facing 

Bolts 
size 
dia. 

No. 
of 

bolts 
FT Hub 

TH. 
Hub 
HT. NT 

mm 76.2 190.5 152.4 19.05 36.58 15.87 4 20.65 15.42 54.33 6.35 

in 3 7.5 6 0.75 1.44 0.625 4 0.813 0.607 2.139 0.250 

Figure 3-18 Geometry of the NPS 3 flange with the hub 
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3.5.2.2 Mesh of flange and contacts 

The FE mesh model of the NPS 3 FRP bolted flanged joint is shown in figure 3.20. The 

elements used in these models are the same as those used in 3.5.1.4. The flange is modeled 

using Solid185 elements and the gasket is modelled using Solid186 elements. The contact 

elements used between flange ring and bolt head and gasket are CONTA174 associated with 

TARGE170 elements. The element PRETS179 and SURF154 are used to apply the bolt load 

pretension and hydrostatic end effect.  

 

 Finite shell element model ANSYS Composite PrepPost (ACP) 

This model is composed of layered composites represented by shell elements. In this model, 

the mesh is generated using ANSYS Workbench while the composite layup with fiber 

orientation and material details were defined in ANSYS Composite PrepPost (ACP).  ANSYS 

Composite PrepPost is an add-on module dedicated to the modeling of layered composite 

structures and provides all necessary functionalities for the analysis of layered composite 

    (a)                                       (b) 
Figure 3-19 Geometry of the NPS 3 FRP bolted flange joint in (a) ANSYS and (b) Catia 
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structures. In order to build a solid model out of shell elements in ACP, the extrusion method 

was used.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this model, it is necessary to divide the bolted flange joint into two parts. The first part is 

the flange made from composite material and the rest is the group of parts like the bolts and 

gasket that are made from none-composite materials. The flange is defined in ANSYS ACP 

which is linked to the other parts in ANSYS Workbench. In ANSYS ACP, first, the composite 

fabrics including materials and the thickness of the layers as well as the assembly and element 

orientation of laminate are defined. Then, the ply sequence for the groups of elements in the 

composite is defined. Figure 3.21 shows the structure of the numerical model in ANSYS 

Composite PrepPost (ACP). 

 

As shown in figure 3.21, in part B or ACP (Pre), the geometry of the flange, as well as the 

material properties of the laminas and the laminate arrangement and orientation of the flange, 

are defined. The non-composite parts such as bolts and gasket are modeled in parts D 

(Geometry) and E (Mechanical model). Then, by connecting parts B and E, the final model is 

Figure 3-20 FE Mesh model for the NPS 3 FRP bolted flanged joint 
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generated in part F (Static structural). Finite element model for NPS 3 FRP bolted flange joint 

in ANSYS ACP is illustrated as an example in figure 3.22. 
 

 

 

Figure 3-21 Structure of the numerical model in ANSYS Composite PrepPost (ACP) 

Figure 3-22 Finite element model for NPS 3 FRP bolted flange joint in ANSYS ACP 
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3.5.3.1 Lamina properties 

There is three types of laminas used in this composite. The elastic, mechanical and physical 

properties of M for Chopped strand Mat, R for Woven roving and C for C-Glass veil are listed 

in table 3.7. The properties of Chopped strand Mat and Woven roving laminas are explained 

in details in 3.5.1.2.  

 

The third material used in FRP flange composite is C-Glass veil which consists of fibers to 

reinforce plies and are resistant to corrosion. Thus, because of the high corrosion resistance, 

this type of ply is installed on the inside or outside surface of the composite flange that is in 

contact with the corrosive environment to protect the composite flange from chemical 

damages.  The thickness of this ply is very small and has a very low proportion of fibers that 

is about 10% of carbon. According to Conlinsk, P. (2008), C-Glass veil is followed by two or 

three layers of chopped strand mat ply to increase the corrosion resistance of the flange. 

 

3.5.3.1 Flange laminates 

The sequence of the layers used in the construction of the NPS 3 FRP flange laminate according 

to the company (ZCL Dualam Inc.) is as follows: 

Flange face sequence: CMM/2(MRMRM)/3(MRM); 

Hub sequence: CMM/MRMM/3(MRM); 

Shell sequence: CMM/MRMM. 

 

where C = C-Glass veil, M = Chopped strand mat, and R = Woven roving  

 

It is worth noting that each layer has different material properties in three directions, therefore, 

the final result is a flange with anisotropy and multilayered composite behavior. The general 

laminate layouts of all parts of the NPS 3 FRP flange are shown in figures 3.23 to 3.25. The 

number of plies in the ring is 22 with a thickness of 20.65 mm, the number of plies in the hub 

is 16 with a thickness of 15.42 mm and the number of plies in the shell is 7 with a thickness of 

6.34 mm. Figure 3.25 illustrates FRP flange laminate as modeled in ANSYS ACP. 
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Figure 3-23 General laminate for the shell 
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Figure 3-24 General laminate for the ring 

 

 



104 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mat 16
Woven roving 15
Mat 14
Mat 13
Woven roving 12
Mat 11
Mat 10
Woven roving 9
Mat 8
Mat 7
Mat 6
Woven roving t = 0.99 mm 5
Mat 4
Mat t = 0.97 mm 3
Mat 2
C-Glass veil t = 0.61 mm 1     Z0

    Z1

    Z2

    Z3

    Z4

    Z5

    Z6

    Z7

    
Z9

Z10

Z11

Z12

Z13

Z14

Z15

Z16
t/

2 
= 

7.
71

 m
m

t/
2 

= 
7.

71
 m

m

Midplane

 
Figure 3-25 General laminate for the hub 

Figure 3-26 FRP flange laminate in ANSYS ACP 
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3.5.3.2 Geometry of the flange  

The geometry of the NPS 3 FRP flange is the same as that given in 3.5.2.1. In this model, 

ANSYS Composite PrepPost (ACP) is used to define layered composites represented by shell 

elements. The extrusion method is used to build a solid model out of shell elements in ACP 

environment. Figure 3.27 shows the geometry of the flange model in ANSYS ACP.  

 

As shown in figure 3.28 the model of FRP flange begins with the shell model and after 

transferring the model to ANSYS ACP, the laminate is modeled according to the sequence of 

the layers and their thickness.  The geometry of bolts and gasket is then added as shown in 

figure 3.29. As mentioned earlier the non-composite parts of FRP bolted flange joint are 

modeled separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-28 Geometry of the flange in 
ANSYS geometry 

Figure 3-27 Geometry of the flange 
in ANSYS ACP 
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3.5.3.3 Meshing and contacts 

The complete FE mesh of the NPS 3 FRP bolted flanged joint is shown in figures 3.30. The 

elements used in this model are the same as those used in 3.5.1.4. the flange is modeled with 

ANSYS Composite PrepPost (ACP) using a different type of element layers.  Solid185 

elements are used for the flange and Solid186 elements are used for the gasket. Contact 

elements of the type CONTACT174 associated with TARGE170 elements are employed to 

model the various contact surfaces between flange ring and bolt head and gasket. The element 

PRETS179 and SURF154 are used to apply bolt load pretension and hydrostatic end effect.  
 

 

 

 

 

 

 

 

 

 

 

Figure 3-29 Geometry of the bolts and gasket 

Figure 3-30 FE mesh model for the flange  
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Figure 3-31 FE model mesh for bolts and gasket 

Figure 3-32 Final FE mesh model for the FRP bolted flange joint 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 
 
 

EXPERIMENTAL SET-UP 
 

4.1 Introduction 

The relevant experimental tests used to carry out on real fiber reinforced plastic bolted flanged 

assemblies designed according to ASME BPV Code Section X as is described in this section. 

An experimental investigation conducted on a well-equipped test rig is a reliable approach to 

evaluate the proposed numerical and analytical model for the NPS 3 FRP bolted flange joint. 

The detailed explanation of the intrigue mechanisms of the test bench used in the study of the 

bolted flange joint behavior with high-level instrumentation is vital. 

 

The primary purpose of the designed experimental test stand was to measure the real behavior 

of the composite bolted flange joint. The existing Hot Blow Out Test Bench (HOBT) was 

adapted and equipped with accurate measurement devices such as strain gauges, LVDTs, 

thermocouples, and pressure transducers to measure the different parameters of FRP flange. 

This chapter elaborates the operational mechanisms of the HOBT rig and test procedure 

involved in this study.  

 

4.2 Bolted flanged rig 

The HOBT test rig shown in figure 4.1, was used throughout the experimental investigation. 

This test rig is made of ANSI B16.5 NPS 3 Class 150 FRP full-face flanges used with a 1/16 

Teflon gasket. The HOBT rig was initially designed and built for the Static and Dynamic 

Sealing Laboratory to perform hot blowout tests of Teflon gaskets used in with a metallic raised 

face bolted flange joint configuration. This test rig was modified to accommodate for the 

analysis of FRP bolted flange joint with full-faced gasket. As depicted in figure 4.1, the general 

configuration of this test rig is composed of 8 parts to carry out the stress analysis validation 

of FRP bolted flange joint. These parts are as follows: 
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A. Proportional integral derivative (PID) controller; 

B. Data acquisition system; 

C. FRP flange with a cap; 

D. Strain gauges attached to the flange surface; 

E. Thermocouples; 

F. Bolt load measurement system;  

G.  Pressurization system; 

H. Control panel of the pressurization system and leak detection. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bottom flange of the rig is bolted to a solid shaft core that is welded to a supporting base 

in the form of a pedestal. As shown in fig 4.2 a 2000-Watt cartridge heater is inserted into the 

metal core to heat up the entire fixture from the inside surface to the outside surface of the 

flange. There are four thermocouples on the HOBT test rig one of which is connected to a 

Figure 4-1 General configuration of HOBT test rig 
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proportional integral derivative (PID) controller which continuously monitors and controls the 

temperature. In order to measure the temperature lag between the flange and bolts, one 

thermocouple is installed one of the bolts. Another thermocouple is installed in the flange to 

measure the flange temperature at the vicinity of the gasket. There is also a removable 

insulation cover to reduce heat loss to the outside boundary and provides a uniform thermal 

distribution to the flange. The test rig includes the flanges made of FRP flanges. The 

pressurization system of the test rig is designed to apply internal gas pressure of up to 3.447 

MPa (500 psi). The test rig is designed in such a way that the gasket load can easily be deduced 

from the measured bolt load.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Bolt load measurement 

The bolt load measurement system known as the extensometer is shown in figure 4.3. In order 

to tighten and seal the lower and upper mounting flanges, four UNB 5 / 8-18 (in) ASTM A193 

bolts are used. The measurement of the load through the elongation of each bolt is achieved by 

Figure 4-2 Typical cross section of 
HOBT fixture (Bouzid, 2015) 
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the extensometer which is connected to the ceramic tube and rod. As shown in the figure, the 

ceramic rod is attached to the steel rod that is inserted into the drilled hole at the center of the 

bolt. The ceramic rods are connected to a full-bridged strain gauged beam that picks up bolt 

stretch through a bending mechanism. The reason for using the ceramic rods to measure the 

bolt load and displacements is to perform the tests at high temperatures. By applying bolt 

torque, the relative movement between the bolt and the steel rod inside the bolt are picked up 

by the ceramic rod and tube that put the beam under bending to transmit the deformation to the 

strain gauges and thereby obtain the bolt force. 

 
 

 

 

 Displacement and rotation measurements 

The measurement of the gasket displacement is achieved at two diametrally opposite position 

using the extensometers that have been described previously. As shown in figure 4.4 there are 

two ball bearings which are used to transmit the axial compression from the metallic screws to 

the ceramic rods.  

Figure 4-3 HOBT bolt load measurement system and the bolt-rod assembly 
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 The data acquisition system 

The bolt load, axial displacement of the gasket, temperature, strains and time are measured and 

recorded through Agilent 34970a data acquisition system, National Instrument and PID 

controller that are is connected to the computer under the LabVIEW program. Therefore, a 

special LabView program was developed to control and monitor the experiment parameters 

and record data from the various sensors. Appendix B describes the exposed panel of the 

LabVIEW to control the HOBT test rig and monitor data. 

 

4.3 FRP flange set-up 

To evaluate the stresses three 45° strain rosettes were loaded to the outside surface of the FRP 

flange near the critical position of the hub to shell junction. A close view of the strain gauges 

bonded to the FRP flange is shown in figure 4.6. As shown in this figure, the three strain 

Figure 4-4 HOBT displacement measurement system 
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rosettes SG1 SG2 and SG3 are used to evaluate the longitudinal and tangential stress for 

comparison with the analytical and numerical models. 

 

Figure 4.7 depicted the 45º strain rosette aligned with the x-y axes. In order to convert the 

longitudinal strain from each strain gage into strain expressed in the x-y coordinates, the 

following equation is used: 

 

  ɛ௫ = ɛ௔  (4.1) 
 

  ɛ௬ = ɛ௖  (4.2) 

  ɛ௫௬ = ɛ௕ − ɛೌାɛ೎ଶ  (4.3) 

 

 
 

 
 

 

 

Figure 4-5 Strain gauges attached on 
FRP flange 
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4.4 Test procedure 

The test procedure starts by introducing the dimension of FRP flange and gasket in the 

LabVIEW program along with the test conditions. A 1/16 Teflon full-face gasket is first placed 

on the top of the bottom flange, then the top flange is mounted on the gasket and is positioned 

to make sure that the two contact screws are in line with the extensometers to measure 

displacement. Afterward, the bolts are hand tightened. This point is considered as the zero 

references for bolt load and gasket displacement.  

 

After mounting and verifying the gasket and flange position, the next step is to apply the 

desired compressive load by tightening the nuts with a torque wrench. An initial bolt load of 

3270 lb was applied gradually on each instrumented bolt based on the guidelines provided in 

the ASME code section X and the manufacturer recommendation. The detailed calculation of 

bolt load is explained in 2.1.11. Equation 4.4 gives the total bolt load according to the 

recommended torque for the NPS 3 in. FRP flange. 

 

T = K x P x D       (4.4) 

 

Figure 4-6 45º strain rosette 
aligned with the x-y axes 
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where: T= tightening torque (in-lbs), K= dynamic coefficient of friction, P= total bolt load / 

number of bolts (lbf), D= nominal bolt diameter (in). 

 

A special tightening procedure based on the criss-cross pattern was used to apply the required 

bolt load. The bolt torque sequence order followed is 1, 2, 3, 4 as illustrated in Figure 4.8. After 

applying the bolts loads, a gas pressure equal to 1.034 MPa (150 psi) is applied to the inside 

of FRP bolted flange joint through a regulator valve which is controlled by the LabView 

program.   

 

All the measuring parameters such as the bolt force, the strains at selected locations of the 

flange hub surface, the temperature and internal pressure are continuously monitored through 

the data acquisition system and the LabView program. The room temperature is held constant 

around t 22˚ C during the test. It is worth noting that all measuring sensors were calibrated at 

this temperature. 

 

 

 
 

 
 

 

  

Figure 4-7 Torque sequence (SPEARS, 2014) 



 

 
 
 

RESULTS AND DISCUSSION 

5.1 Introduction 

In order to validate the analytical model developed for FRP bolted flange joints, the stress 

distribution at the outside and inside surface of the flange as well as its radial displacements 

are compared to the results obtained from the experimental rig and the numerical finite element 

model. A MATLAB program was used to code the analytical model equations that were 

developed in chapter 2. This program and all data used in the analytical study are available in 

Appendix A. 

 

This chapter is dedicated to present by the results obtained from the analytical model, the 

numerical finite element model and the experiments under the two operating conditions of bolt-

up (pre-tightening) and pressurization (operating). It treats the three different types of flanges 

namely the NPS 3 FRP flange class 150, the NPS 12 FRP flange class 50 without the hub and 

the NPS 12 FRP flange class 150 with the hub. In addition, a comprehensive analysis, a 

comparison and a discussion of the results are provided. 

 

5.2 Results for the NPS 3 FRP flange  

In this part, the experimental and analytical results of the NPS 3 FRP flange are presented and 

compared to the numerical results obtained with the three FE models of FRP flange joints with 

three different approaches; isotropy, anisotropy and shell element anisotropy composite using 

ANSYS ACP. The analytical results were obtained using the MATLAB program as indicated 

previously. It should be noted that the experimental results are limited to the stresses related to 

the outside surface of the flange as the stresses at the internal surfaces could not be measured 

due to the difficulty in getting the wires out of the flange when the latter was pressurized.  
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 Flange stresses 

In figures 5-1 to 5-4, the longitudinal and tangential stress distributions at bolt-up are shown. 

Each graph shows five curves; three curves obtained from the different FE models and two 

other curves representing the experimental and analytical results. As mentioned before, the 

stresses at the internal surfaces could not be measured during the experimental testing however 

theses stresses are shown in figures 5-2 and 5-4 for the other methods. A similar trend of the 

distribution of stress along the hub and cylinder between the FE models, analytical model and 

the experimental result is observed. The anisotropic FE model results are very close to the 

analytical results and experimental data. 

 

 
Figure 5-1 Longitudinal stress distribution at the outside flange surface during bolt-up 

 

The graphs indicate that the results of the stress distribution at the outside surface of the flange 

obtained from the analytical model, experimental test and the anisotropic model are in good 

agreement with each other.  Due to the stress concentration at the hub to flange ring junction, 

there is a significant difference with the average around 46% between ACP model and 
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analytical model. As anticipated like metallic bolted joints at bolt-up, the stresses in the 

cylindrical part of the FRP bolted joints far away from the hub and ring junction due to the 

lack of the inside pressure are nil.  

 

The longitudinal and tangential stress distribution at 1.345 MPa inside pressure are shown in 

figures 5-5 to 5-9. In this case, the distributions of the longitudinal and tangential stresses at 

the outside surface of the flange during operation (figures 5-5 and 5-7) show a good agreement 

between the FE model, the analytical model, and the experimental data. A similar trend of the 

distribution of longitudinal and tangential stresses at the inside surface of the flange between 

the FE models are observed as indicated in figures 5-6 and 5-8. The graphs show that the FE 

anisotropic material model is more representative and the results are closer to the experimental 

data, as the difference observed between the two is less than 6%. 

 

 
 

Figure 5-2 Longitudinal stress distribution at the inside flange surface during bolt-up 

 



120 

 

 
 

Figure 5-3 Tangential stress distribution at the outside flange surface during bolt-up 

 

 

Figure 5-4 Tangential stress distribution at the inside flange surface during bolt-up 
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In spite of the fact that the anisotropic and ACP model are in better agreement with the 

analytical and experimental result compared to isotropic model due to the high-stress 

concentration at the hub and flange ring junction, it is difficult to make a judgment at this 

location and such a study is out of the scope of this work. In addition, the difference observed 

at the ring and hub junction is related to the laminate junctions that realistically cannot be 

duplicated either by the analytical model or by the ANSYS ACP PrepPost model. It can be 

noted that in the ACP model, the connection between the hub laminate and ring laminate is 

difficult to model exactly like the real FRP flange. Consequently, some discrepancies are 

observed between the results obtained from the ACP model and the other FE models. In fact, 

the ACP model of the composite flange is not precise as the difficulty to define the exact 

number of layers used for each flange part, the angle of the fibers in composite and the exact 

material properties in the different directions of the composite. It is worth noting that because 

the FRP flange manufacturing processes are hand made and not automated and the 

manufacturing technique varies from one composite flange size to the other, it is difficult to 

have defined the exact material properties in the various directions of the flange.  

 

 
Figure 5-5 Longitudinal stress distribution at the outside flange surface during pressurization 
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Figure 5-6 Longitudinal stress distribution at the inside flange surface during pressurization 

 
 

 
 

Figure 5-7 Tangential stress distribution at the outside flange surface during pressurization 
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Figure 5-8 Tangential stress distribution at the inside flange surface during pressurization 

 

Although in the cylindrical part of the flange, the tangential stress at the inner surface show 

around 15% difference at the hub to flange ring junction. The difference is even smaller far 

away from the junction as shown by the stress distribution at the inside and outside surfaces of 

the flange during pressurization. In general, the graphs show the importance of including 

material anisotropy in FE models of composite flanges. Comparing the tangential and 

longitudinal stresses obtained from ACP and other models based on anisotropy the difference 

is small as compared to the model with isotropic material behavior. Increasing the size of the 

flange will also lead to a larger result difference. Nevertheless, the importance of including 

material anisotropy to predict the stresses and strains in composite flanges is acknowledged.  

 

The results obtained from different finite element models and the experimental test data points 

to the fact the analytical model is reliable and the methodology used to predict the stresses and 

strains in bolted flange joint is robust.  
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 Radial displacement  

The radial displacement at the inside radius of the flange for bolt-up and at 1.345 MPa internal 

pressure is illustrated in figures 5-9 and 5-10. Each graph has four curves; three curves obtained 

from the three different FE models and one curve is obtained from the proposed analytical 

model. These figures show that the radial displacements all models follow a similar trend 

during bolt-up and pressurization. Furthermore, the anisotropic FE model and analytical model 

are in a good agreement, in particular, in the cylindrical part of the flange.  Although the trend 

is the same, the ACP model tends to underestimate the displacements.  

 
 

 

Figure 5-9 Radial displacement of the flange during bolt-up 
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Figure 5-10 Radial displacement of the flange during pressurization 
 

The highest difference is around 40% located at shell side when isotropic material properties 

of the flange are considered. Once again, the anisotropy of composite materials is important to 

estimate the radial displacement of the FRP flange. The anisotropic analytical developed model 

based on the laminated composite theory is justified.  

 

 Gasket contact stress 

In figure 5-11 the distribution of the gasket contact stress for the three different FE models are 

shown. In this graph, the gasket contact stress distribution is depicted as a function of the 

normalized gasket width. As anticipated and like in metallic flange joints, the maximum 

contact stress occurs at the gasket outside diameter and is caused by flange rotation that 

produces a higher flange axial displacement at the outer edge of the gasket. In general, the 

distribution of contact stress depends on two factors; the rotation of the flange and the nonlinear 

behavior of the gasket. 
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Figure 5-11 Distribution of the gasket contact stress as a function of a gasket width 
 

The graphs in figure 5-11 indicate that the critical stress occurs at the vicinity of the bolt and 

it would appear that the gasket stress distribution has a similar trend for all three FE models. 

However, in comparison with the metallic bolted flange joints (Black, 1994), the contact 

stresses in the gasket at the bolt location are much higher than those between bolts. This is 

expected since there is higher flexibility with FRP materials like other composite materials as 

compared to steel and other ferrous materials. 
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5.3 Results for the NPS 12 flange without the hub 

In this part, the analytical results are presented and compared to the numerical results obtained 

from the FE modeling of the NPS 12 FRP bolted flange joint with multilayered composites. 

Each graph gives compares the analytical to the numerical results. The analytical results are 

obtained through the MATLAB program for the NPS 12 FRP bolted flange joint the theory of 

which is detailed in chapter 2.   

 

 Flange stresses 

Longitudinal and tangential stress distribution at the outside and inside surfaces of the flange 

for the two conditions of bolt-up and pressurization are illustrated in figures 5-12 to 5-20. From 

these figures, it can be stated that analytical results are consistently close to the numerical 

results.  

 

 
Figure 5-12 Longitudinal stress distribution at the outside flange surface during bolt-up 
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Figure 5-13 Longitudinal stress distribution at the inside flange surface during bolt-up  
 

As shown in the figures 5-12 to 5-16, during bolt-up, the stress distribution in the shell far from 

the flange ring is not significant.   

 

As can be observed in figures 5-18 and 5-19 there is some slight difference around 14% in the 

stresses at the junction of the ring and shell. Although in the FE multi-layered composite model 

the junction of the ring and shell laminates are not adequately bonded together to ensure 

continuity there is a slight difference in longitudinal and tangential stress distributions between 

the analytical and numerical models. The stresses near the junction dramatically increased by 

43% but the general behavior as a result of discontinuity is picked up by both models.  

Although the tendency is similar, the FE model lacks accuracy due to the ring and shell 

laminate bounding discrepancy.  
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Figure 5-14 Tangential stress distribution at the outside flange surface during bolt-up  
 

 

 
 

Figure 5-15 Tangential stress distribution at the inside flange surface during bolt-up  
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In general, the graphs show a good agreement between the results of the analytical model and 

numerical model; this supports the robustness and accuracy of the proposed analytical model. 

In fact, the analytical approach and the FE model show the stress increase at the junction of 

the ring and the shell where the maximum stress concentration exists. Furthermore, a thorough 

investigation of the distribution of stresses in the specific laminate lay-up of the bolted flange 

joint with the hub will be conducted and presented in section 5.4. 

 
 

 
 

Figure 5-16 Longitudinal stress distribution at the outside flang surface during pressurization 
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Figure 5-17 Longitudinal stress distribution at the inside flange surface during pressurization 
 

 
 

Figure 5-18 Tangential stress distribution at the outside flange surface during pressurization 
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Figure 5-19 Tangential stress distribution at the inside flange surface during pressurization 

 

 Radial displacement  

The radial displacement of the flange during bolt-up and pressurization are depicted in Figure 

5-20. The comparison between the results obtained from the analytical and FE models show a 

good agreement at all locations along the shell axial length of FRP flange. The difference 

observed between the analytical and numerical models is less than 9% and 5% during bolt-up 

and pressurization respectively. Obviously, the good agreement between the two models 

confirms the accuracy of the analytical approach of FRP bolted flange joint.  
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Figure 5-20 Radial displacement of the flange during bolt-up and pressurization 
 

 
5.4 Results for the NPS 12 flange with the hub 

In this section, the results for the NPS 12 class 150 FRP bolted flange joints with the hub are 

presented. Comparisons of the longitudinal and tangential flange stresses and radial 

displacement obtained from the analytical and FE models are conducted with special focus on 

the hub region. FRP flange with the hub requires a more elaborate model that includes the three 

parts; shell, hub, and ring. The analytical results obtained from the MATLAB program for a 

bolted flange joint with the hub is available in Appendix A. 

 

 Flange stresses 

The longitudinal and tangential stress distributions at the inside and outside surface of the 

flange at bolt-up are illustrated in Figures 5-21 to 5-24. These figures show clearly that the 
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analytical and FE distributions at the inside and outside flange surfaces during bolt-up have 

the same tendency. In this case, the distributions of the longitudinal and tangential stresses are 

in a good agreement and the results are in concordance, with a difference of less than 4%. As 

anticipated during bolt-up, due to the lack of the pressure inside of FRP bolted flange joints, 

the stresses in the shell far away from the hub and shell junction are nil. 

 

Figures 5-25 to 5-28 present the longitudinal and tangential stress distributions after the 

application of internal pressure of 1.345 MPa. A similar stress distribution trend along the hub 

and cylinder length is observed in both the analytical and FE models. However, the FE 

numerical results show higher stress values at the outside flange surface near the junctions of 

the hub and the shell and the hub and ring flange (see figure 5-25 and 5-26). In comparing the 

analytical and numerical results near the junctions of the hub and the ring, the difference 

observed between the two is around 22% and 18% for the longitudinal stress distribution at the 

outside and inside flange surface respectively. Such differences are anticipated because these 

junctions are smoother and the laminates are not interconnected in the FE models. Moreover, 

the presence of the high local stresses in the composite flanges affects considerably the stress 

distribution particularly at the outside surface of the hub and shell. Since the material properties 

vary through the thickness of the composite flanges, there is an even distribution of stresses. 

Although in the junction of hub and ring, the longitudinal stress at inner and outer surfaces 

show around 20% maximum difference, the distributions very consistent (figures 5-25 and 5-

26).  
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Figure 5-21 Longitudinal stress distribution at the outside flange surface during bolt-up 
 

 
Figure 5-22 Longitudinal stress distribution at the inside flange surface during bolt-up  
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Figure 5-23 Tangential stress distribution at the outside flange surface during bolt-up 
 
 

 

Figure 5-24 Tangential stress distribution at the inside flange surface during bolt-up 



137 

 

Figure 5-25 Longitudinal stress distribution at the outside flang surface during pressurization 
 

 
 

Figure 5-26 Longitudinal stress distribution at the inside flange surface during pressurization 
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Figures 5-27 and 5-28 show a relatively good agreement between the analytical and FE models 

during pressurization with a difference of less than 4% except in the junctions. Nevertheless, 

while the results of the tangential stresses at the inner and outer flange surface are shown to 

have the same trend, those at the hub show a slight discrepancy that is acceptable in the design 

since some simplifications were made at the junctions. Indeed as expected, at the junction of 

the hub and the shell where the maximum stress concentration exists, the stresses at this 

location increased drastically by around 92%. This phenomenon also occurs near the hub to 

the flange ring junction. It is to be noted that considering the small tapered portion of the hub 

that is not considered in the analytical model, the results would be affected. Nonetheless, the 

difference is not significant and is acceptable for design purposes.  

 

 
Figure 5-27 Tangential stress distribution at the outside flange surface during pressurization 
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Figure 5-28 Tangential stress distribution at the inside flange surface during pressurization 
 

 Radial displacement  

The radial displacement results obtained from numerical and analytical models of FRP bolted 

flange joint with the hub at bolt-up and pressurization are compared in figure 5-29. As shown 

in the figures, there has not a similar trend but are in good agreement with each other. The 

difference observed between the analytical and numerical results is less than 3% and 5% during 

bolt-up and pressurization respectively. 

 

From these figures, the radial displacement of the shell is shown to be much higher than the 

flange ring and hub because these two structures are much stiffer. 
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Figure 5-29 Radial displacement of the flange during bolt-up and pressurization 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CONCLUSIONS  
 

The ability of FRP materials to resist in harsh and chemical environments and their 

comparatively high corrosion resistance has made them the best choice in pressure vessels and 

piping applications related to chemical, water, gas services, nuclear and petrochemical 

industries. A comprehensive study of the literature on FRP bolted flange joints was carried out. 

According to the literature, the current procedure used for the design of FRP flanges is a major 

concern because of their inappropriateness to address the anisotropic behavior of composite 

materials.  

 

The main objective of this work was to address this need and develop an accurate analytical 

model to evaluate the stresses and strains of FRP bolted flange joints taking into consideration 

the anisotropy of the flange material.  

 

In order to achieve the main objective of this study, a methodology for the analytical, numerical 

and experimental study was developed. The study is prominent in dealing with the behavior of 

FRP bolted flange assembly subjected to internal pressure. To allow verification of results, 

experimental and FE methods were used as complementary methods to validate the robustness 

of the developed analytical model.  

 

The composite flange was divided into three structures, namely the shell, the hub, and the 

flange ring or plate. The developed analytical model of FRP flange is based on the theory of 

composite thin cylinders, the theory of thin plates subjected to transverse loading, and the short 

cylinder theory adapted for composite materials.    

 

The proposed model was then validated by comparison with the results obtained from 

experimentation and finite element modeling. The novelty of this analytical model is to treat 

the integrity and tightness of FRP bolted joint taking into account the anisotropy material 

behavior and the flexibility of all joint elements including the gasket, bolts, and flanges.  
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The analytical approach has been developed for FRP bolted flange joints with and without the 

hub and is based on classical lamination theory for composites and the elastic interaction 

between all bolted joint assembly components. The developed analytical model presented in 

chapter 2 includes the flexibility of all parts of the bolted flange joint in both axial and radial 

direction.  The complex design and geometry of FRP flanges make it difficult to develop 

general analytical studies for this kind of flange. Despite the complexity and rigorous 

mathematical analysis of the composite flanges, the developed analytical model successfully 

and accurately reproduced the real behavior of FRP bolted flange joints during bolt-up (or 

initial tightening) and pressurization (operating) conditions.  

 

Experimentation and numerical finite element modeling are the two-method used for validation 

of the proposed analytical model. The experimental tests were conducted on a well-equipped 

test bench that uses a NPS 3 class 150 FRP flange with a hub. Three different FE models for 

three different type of FRP flanges were modeled; an NPS 3 class 150 with a hub and an NPS 

12 class 150 with and without the hub. The stress analysis and comparison are focused on the 

radial displacement and the tangential and longitudinal stresses at the inside and outside of the 

flange surfaces. The FE models were developed based on isotropy and anisotropy behavior of 

FRP materials and anisotropy shell element model using ANSYS PrepPost (ACP). 

 

The stresses obtained from strain measurements in the hub and those from FEM considering 

anisotropy are reasonably well predicted by the analytical model. The maximum differences 

observed between the analytical model and experimental measurement and FE numerical 

models are as follows. In the case of NPS 3 class 150 FRP flange with a hub:  

Tangential stress 19%; 

Longitudinal stress 14%; 

Radial displacement 6%. 

 

In the case of NPS 12 FRP flange without the hub:  

Tangential stress 13%; 

Longitudinal stress 9%; 
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Radial displacement 5%. 

In the case of NPS 12 FRP flange with the hub: 

Tangential stress 17%; 

Longitudinal stress 12%; 

Radial displacement 5%. 

 

In addition, the work points to the fact that the reliability and accuracy of the FE model of FRP 

bolted flange joints strongly depends on the consideration of the anisotropy behavior of the 

flange FRP material. The study shows that isotropy material properties underestimate stresses 

by around 35%. From the results obtained by both numerical FE model and experimental 

investigation, the proposed analytical model for FRP flanges with and without the hub has 

proved to be efficient, accurate and reliable in predicting the longitudinal and tangential stress 

distribution on the flange surface and radial displacement of the flange. Furthermore, it can be 

deduced that the FE model which is developed for FRP flanges with and without the hub can 

explain with acceptable accuracy the stress distribution of FRP bolted flange joints even at the 

hub part of the flange as well as the junction of the ring and the hub where the maximum stress 

concentration exists. 

 

The results of this investigation have led to this conclusion that the approach presented in this 

study provides a formulation consistent with the ASME BPV Code Section X standard, 

allowing an accurate, reliable and thorough design and evaluation of FRP bolted flange joints. 

However, additional experimental tests on FRP materials with different properties in the two 

longitudinal and tangential directions and larger diameter FRP flanges are required to confirm 

these findings. 

 

  



 

 
 
 
  



 

RECOMMENDATIONS  
 

Additional experimental tests on larger diameter FRP flanges and other FRP materials with 

different properties in the two longitudinal and tangential directions could be conducted to 

further support and validate the accuracy and robustness of the analytical and numerical models 

for different FRP flange size. 

  

The behavior of FRP materials is affected by the harsh environment and by temperature and 

humidity. Therefore, future work can be directed towards an investigation of FRP bolted flange 

joints when exposed to elevated temperature and high humidity. That study involves the use 

of a combination of experimental, analytical and numerical methods to analyze bolted flange 

joints made of composite materials from integrity and leak tightness standpoints.  

 

Another major concern of FRP bolted flange joints is their long-term creep-relaxation 

behavior. The analytical model presented in this thesis could be extended to incorporate load 

relaxation caused by the creep of the composite flange. The investigation could also include 

the influence of thermal ratcheting caused by temperature thermal cycling of the composite 

flange on the bolt load drop.  

 

And finally, experimental studies on the leak rates of FRP bolted flange joints at the ambient 

and high temperature used with different gasket materials would be valuable work in the future. 

The current study could be extended to a wider range of application that includes polymeric 

flange joints and in particular those flanges made out of PVC and HDPE since these are 

increasingly used in domestic gas and water services.   

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

APPENDIX A 

ANALYTICAL PROGRAM FOR FRP BOLTED FLANGE JOINT 
 

%------------------------------------------------------------------------- 
% ANALYTICAL PROGRAM FOR FRP BOLTED FLANGE JOINTS 
% Flange NPS 3  
% Flange NPS 12 with the hub 
% Flange NPS 12 without the hub 
%------------------------------------------------------------------------- 
clc; 
clear; 
% ------------------------------------------------------------------------ 
%Notations 
%h: hub 
%s: shell 
%p: ring/plate 
 
%------------------------------------------------------------------------- 
% Flange NPS 12 with the hub 
% ------------------------------------------------------------------------ 
 
r_go = 241.3;                         % Outside gasket radius mm 
r_gi = 152.4;                         % Inside gasket radius mm  
d = 22.7;                             % bolt diameter 
d_h = 25.4;                           % bolt hole diameter 
p_t = 2;                              % number of thread per mm 
l_h = 190.5;                          % hub length _mm_ 
l_s = 300;                            % effective length of the shell _mm_ 
r_i = 152.4;                          % flange/shell inner radius _mm_ 
r_o = 241.3;                          % outer radius of the flange _mm_ 
r_b = 215.9;                          % bolt circle radius _mm_ 
t_f = 47.625;                         % thickness of the flange _mm_ 
t_h = 41.8;                           % equivalent thickness of the hub 
_mm 
t_s = 17.1;                           % thickness of the shell _mm_(c) 
r_h = r_i+t_h/2;                      % hub mean radius mm_ 
r_s = r_i+t_s/2;                      % inner radius of shell mm 
t_g = 3;                              % thickness of the gasket _mm 
E_g   = 55;                           % compression modulus of gasket MPa  
l_b = 0.5*1.125*d+2*t_f+t_g;          % initial bolt length _mm_ 
p   = 1.034;                          % internal pressure MPa __ 
nu_f = 0.2;                           % Poisson's ratio of flange 
E_b = 210000;                         % Young’s modulus of bolts MPa 
S_b = 175.00;                         % bolt stress MPa 
n = 12;                               % Number of bolts 
nu_s = 0.3;                           % Poisson's ratio of shell 
nu_h = 0.3;                           % Poisson's ratio of joint element 
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%------------------------------------------------------------------------- 
% Flange NPS 12 without the hub 
% ------------------------------------------------------------------------ 
 
% r_go = 495.3/2;                     % Outside gasket radius mm 
% r_gi = 300/2;                       % Outside gasket radius mm  
% d = 16;                             % bolt diameter 
% d_h = 19;                           % bolt hole diameter 
% p_t = 2;                            % number of thread per mm 
% l_h = 114.3;                        % hub length _mm_ 
% l_s = 147.6;                        % effective length of the shell _mm_ 
% r_i = 300/2;                        % flange/shell inner radius _mm_ 
% r_o = 495.3/2;                      % outer radius of the flange _mm_ 
% r_b = 425/2;                        % bolt circle radius _mm_ 
% t_f = 38.1;                         % thickness of the flange _mm_ 
% t_h = 27;                           % equivalent thickness of the hub 
_mm 
% t_s = 17;                           % thickness of the shell _mm_(c) 
% r_h = r_i+t_h/2;                    % hub mean radius mm_ 
% r_s = r_i+t_s/2;                    % inner radius of shell mm 
% t_g = 3;                            % thickness of the gasket _mm 
% E_g   = 55;                         % compression modulus of gasket MPa  
% l_b = 0.5*1.125*d+2*t_f+t_g;        % initial bolt length _mm_ 
% p   = 0.3450;                       % internal pressure MPa __ 
% nu_f = 0.2;                         % Poisson's ratio of flange 
% E_b = 210000;                       % Young’s modulus of bolts MPa 
% S_b = 175.00;                       % bolt stress MPa 
% n = 12;                             % Number of bolts 
% nu_s = 0.3;                         % Poisson's ratio of shell 
% nu_h = 0.3;                         % Poisson's ratio of joint element 
 
 
% ------------------------------------------------------------------------ 
% Flange NPS 3  
% ------------------------------------------------------------------------ 
 
r_go = 7.5/2*25.4;                     % Outside gasket radius mm 
r_gi = 3/2*25.4;                       % Inside gasket radius mm 
d = 0.625*25.4;                        % bolt diameter mm 
d_h = 0.75*25.4;                       % bolt hole diameter mm 
p_t = 11*25.4;                         % number of thread per mm 
l_h = 2.139*25.4;                      % hub length mm 
l_s =  7.048*25.4;                     % effective length of the shell mm 
r_i = 3/2*25.4;                        % flange/shell inner radius mm 
r_o = 7.5/2*25.4;                      % outer radius of the flange mm 
r_b = 6/2*25.4;                        % bolt circle radius mm 
t_f = 0.813*25.4;                      % thickness of the flange mm 
t_h = 0.607*25.4;                      % equivalent thickness of the hub 
mm 
t_s = 0.25*25.4 ;                      % thickness of the shell mm 
r_h = r_i+t_h/2;                       % hub mean radius mm 
r_s = r_i+t_s/2;                       % inner radius of shell mm 
t_g = 0.125*25.4;                      % thickness of the gasket mm 
E_g   = 55;                            % compression modulus of gasket MPa 
l_b = 0.5*1.125*d+2*t_f+t_g;           % initial bolt length mm 
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p   = 1.034;                           % internal pressure MPa 
nu_f = 0.2;                            % Poisson's ratio of flange 
E_b = 210000;                          % Young’s modulus of bolts MPa 
S_b = 175;                             % bolt stress MPa 
n = 4;                                 % Number of bolts 
nu_s = 0.3;                            % Poisson's ratio of shell 
nu_h = 0.3;                            % Poisson's ratio of shell 
 
% ------------------------------------------------------------------------ 
%Laminate Data for NPS 3 
  
% As=[21.5, 21.5,3.38]*10000; 
% Bs=[0,0,0]; 
% Ds=[5190,5190,825.3]*1000; 
%  
% Ah=[21.5, 21.5,3.38]*10000; 
% Bh=[0,0,0]; 
% Dh=[5190,5190,825.3]*1000; 
%  
%As=Ah; 
%Ds=Dh; 
%  
% Ap=[39.7,39.7,6.09]*10000; 
% Bp=[0,0,0]; 
% Dp=[29484,29484,4615]*1000; 
 
%------------------------------------------------------------------------- 
 
A_b = n*pi*(d-0.9382/p_t)^2/4;         % Bolt stress area mm^2 
A_br = n*pi*(d-1.22687/p_t)^2/4;       % Bolt root area mm^2 
F_b = S_b*A_br;                        % bolt force _N_ 
F_g  = F_b;                            % gasket force _N_ 
 
r_g = 2/3*(r_gi^2+r_go^2+r_gi*r_go)/(r_gi+r_go);% effective gasket radius 
_mm_ 
r_g=r_gi+2/3*(r_go-r_gi)/2; 
A_p = pi*r_g^2; 
  
K_b = A_b*E_b/l_b;                      % bolt uniaxial stiffness _N/mm_ 
A_g = pi*(r_go^2-r_gi^2);               % gasket are mm^2 
K_g = A_g*E_g/t_g;                      % gasket uniaxial stiffness _N/m_ 
  
%Shell laminate 
beta_s = ((As(2)*As(1)-(As(3))^2)/(4*r_s^2*Ds(1)*As(1)))^(1/4);           
D_s = Ds(1); 
%Hub laminate 
beta_h = ((Ah(2)*Ah(1)-(Ah(3))^2)/(4*r_h^2*Dh(1)*Ah(1)))^(1/4);           
D_h = Dh(1); 
  
B11=(sinh(2*beta_h*l_h)-sin(2*beta_h*l_h))/(2*((sinh(beta_h*l_h))^2-
(sin(beta_h*l_h))^2)); 
B12=(cosh(2*beta_h*l_h)-cos(2*beta_h*l_h))/(2*((sinh(beta_h*l_h))^2-
(sin(beta_h*l_h))^2)); 
B22=(sinh(2*beta_h*l_h)+sin(2*beta_h*l_h))/((sinh(beta_h*l_h))^2-
(sin(beta_h*l_h))^2); 
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G11=-(cosh(beta_h*l_h)*sin(beta_h*l_h)-
sinh(beta_h*l_h)*cos(beta_h*l_h))/((sinh(beta_h*l_h))^2-
(sin(beta_h*l_h))^2); 
G12=-2*sinh(beta_h*l_h)*sin(beta_h*l_h)/((sinh(beta_h*l_h))^2-
(sin(beta_h*l_h))^2); 
G22=-
2*(cosh(beta_h*l_h)*sin(beta_h*l_h)+sinh(beta_h*l_h)*cos(beta_h*l_h))/((si
nh(beta_h*l_h))^2-(sin(beta_h*l_h))^2); 
  
C_5 = 2; 
C_6 = 0; 
C_7 = 0; 
C_8 = 0; 
  
K = r_o/r_i; 
  
D0=2*(r_o-r_i)/log(K); 
D0=D0-(d_h/(pi*2*r_b/n)*(D0-2*d/log((2*r_b+d)/(2*r_b-d)))); 
  
r_m=D0/2; 
  
%Plate theory 
L2=(r_i*r_o^2)/((r_o^2-r_i^2)*(Ap(3)-Ap(1))); 
L1=(r_i^3)/((r_o^2-r_i^2)*(Ap(3)+Ap(1))); 
L23=(r_i-2*r_i*log(r_i/r_o))/(8*Dp(1)*pi);  
L24=-r_i*((r_o^2-r_i^2)*(Dp(3)-
Dp(1))+2*r_i^2*log(r_i/r_o)*(Dp(1)+Dp(3)))/(8*Dp(1)*pi*(r_o^2-
r_i^2)*(Dp(1)+Dp(3))); 
L25=-r_o^2*r_i*log(r_i/r_o)*(Dp(1)+Dp(3))/(4*Dp(1)*pi*(r_o^2-
r_i^2)*(Dp(1)-Dp(3))); 
L20=-r_i^3/((r_o^2-r_i^2)*(Dp(1)+Dp(3))); 
L22=-r_o^2*r_i/((r_o^2-r_i^2)*(Dp(1)-Dp(3))); 
L26=L20+L22; 
L27=L23+L24+L25; 
  
C_9 = 1/K_b + 1/K_g; 
C_10 = A_p/K_g; 
  
D = [-
B11/(2*beta_h^3*D_h),B12/(2*beta_h^2*D_h),G11/(2*beta_h^3*D_h),G12/(2*beta
_h^2*D_h),-1,0,0,0,0 ... 
    ; -
B12/(2*beta_h^2*D_h),B22/(2*beta_h*D_h),G12/(2*beta_h^2*D_h),G22/(2*beta_h
*D_h),0,-1,0,0,0 ... 
    ; -
G11/(2*beta_h^3*D_h),G12/(2*beta_h^2*D_h),B11/(2*beta_h^3*D_h),B12/(2*beta
_h^2*D_h),0,0,-1,0,0 ... 
    ; G12/(2*beta_h^2*D_h),-G22/(2*beta_h*D_h),-B12/(2*beta_h^2*D_h),-
B22/(2*beta_h*D_h),0,0,0,-1,0 ... 
    ; 1/(2*beta_s^3*D_s) , 1/(2*beta_s^2*D_s),0,0,-1,0,0,0,0 ... 
    ; -1/(2*beta_s^2*D_s) , -1/(beta_s*D_s),0,0,0,-1,0,0,0 ... 
    ; 0,0,-(L1-L2),0,0,0,-1,t_f/2, 0 ... 
    ; 0,0,t_f/2*L26 , -L26,0,0,0,-1, (r_b-r_g)/(2*pi*r_m)*L27 ... 
    ; 0,0,0,0,0,0,0, C_5*(r_b-r_g) , C_9]; 
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U = zeros(9,9);   
  
D(9,:)=0; 
U(9)=F_b; 
D(9,9)=1; 
  
Coefficient_Matrix = [D]; 
  
Results = Coefficient_Matrix\U; 
  
% ------------------------------------------------------------------------ 
 
P_1(1) = Results(1); 
M_1(1) = Results(2); 
P_2(1) = Results(3); 
M_2(1) = Results(4); 
u_h1(1) = Results(5); 
theta_h1(1) = Results(6); 
u_h2(1) = Results(7); 
thetaf(1) = Results(8); 
Fb_b(1) = Results(9); 
 
% ------------------------------------------------------------------------ 
  
D(9,8)=C_5*(r_b-r_g); 
D(9,9)=C_9; 
  
U = [ -(Ah(1)-Ah(3)/2)/(4*beta_h^4*Ah(1)*Dh(1))*p ; 0 ...  
    ; -(Ah(1)-Ah(3)/2)/(4*beta_h^4*Ah(1)*Dh(1))*p ; 0 ... 
    ; -(As(1)-As(3)/2)/(4*beta_s^4*As(1)*Ds(1))*p ; 0 ; -(L1-L2)*t_f*p ; -
(r_g-r_i)*(r_g^2+r_i^2)*p/(4*r_m)*L27 ... 
    ; C_9*F_b + 2*(r_b-r_g)*thetaf(1) + C_10*p - (C_8)];   
  
Coefficient_Matrix = [D]; 
  
Results = Coefficient_Matrix\U; 
  
% ------------------------------------------------------------------------ 
 
P_1(2) = Results(1); 
M_1(2) = Results(2); 
P_2(2) = Results(3); 
M_2(2) = Results(4); 
u_h1(2) = Results(5); 
theta_h1(2) = Results(6); 
u_h2(2) = Results(7); 
thetaf(2) = Results(8); 
Fb_b(2) = Results(9); 
 
k=50;     
 
% ------------------------------------------------------------------------ 
% Stress Calculation in the hub part 
% ------------------------------------------------------------------------ 
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Slih=zeros(k,2);         % Longitudinal stress at the inside surface of the 
hub [MPa] 
Sloh=zeros(k,2);         % Longitudinal stress at the outside surface of 
the hub [MPa] 
Stih=zeros(k,2);         % Tangential stress at the inside surface of the 
hub [MPa] 
Stoh=zeros(k,2);         % Tangential stress at the outside surface of the 
hub [MPa] 
xh=zeros(k,1);            
u_h2sp=zeros(2,1); 
u_h=zeros(k,2)           %Radial displacement [mm] 
theta_h=zeros(k,2)       %Rotation 
Mh=zeros(k,2)            %Moments [N.mm] 
Qh=zeros(k,2)            %Shear forces [N] 
Nxh=zeros(k,2)            
Nth=zeros(k,2)            
  
for j=1:1:2 
u_h2sp(j)=u_h2(j)-(Ah(1)-Ah(3)/2)/(4*beta_h^4*Ah(1)*Dh(1))*p*(j-1); 
i=0; 
for x = 0:l_h/(k-1):l_h 
   i=i+1;     
   xh(i)=x; 
   F11= (cosh(beta_h*x) * sin(beta_h*x) - sinh(beta_h*x) * 
cos(beta_h*x))/2; 
   F12= sin(beta_h*x) * sinh(beta_h*x); 
   F13= (cosh(beta_h*x) * sin(beta_h*x) + sinh(beta_h*x) * 
cos(beta_h*x))/2; 
   F14= cosh(beta_h*x) * cos(beta_h*x); 
  
   u_h(i,j)=P_2(j)/(2*beta_h^3*Dh(1))*F11+ M_2(j)/(2*beta_h^2*Dh(1))*F12+ 
thetaf(j)/beta_h*F13+u_h2sp(j)*F14; 
%   u_h(i,j)=(P_2(j)/(beta_h^3*Dh(1))*F11+ M_2(j)/(beta_h^2*Dh(1))*F12+ 
2*thetaf(j)/beta_h*F13+2*u_h2sp(j)*F14); 
   theta_h(i,j)=beta_h*(P_2(j)/(2*beta_h^3*Dh(1))*F12+ 
2*M_2(j)/(2*beta_h^2*Dh(1))*F13+thetaf(j)/beta_h*F14-2*u_h2sp(j)*F11); 
   
Mh(i,j)=2*beta_h^2*Dh(1)*(P_2(j)/(2*beta_h^3*Dh(1))*F13+M_2(j)/(2*beta_h^2
*Dh(1))*F14-thetaf(j)/beta_h*F11-u_h2sp(j)*F12); 
   Qh(i,j)=2*beta_h^3*Dh(1)*(P_2(j)/(2*beta_h^3*Dh(1))*F14-
2*M_2(j)/(2*beta_h^2*Dh(1))*F11-thetaf(j)/beta_h*F12-2*u_h2sp(j)*F13); 
  
   Nxh(i,j)=p*(j-1)*r_h/2; 
   Nth(i,j)=(u_h(i,j)+(Ah(1)-Ah(3)/2)/(4*beta_h^4*Ah(1)*Dh(1))*p*(j-
1))/r_h*(Ah(2)-(Ah(3))^2/Ah(1))+Ah(3)/Ah(1)*Nxh(i,j); 
   Slih(i,j) = Nxh(i,j)/t_h+6*Mh(i,j)/(t_h^2); 
   Sloh(i,j) = Nxh(i,j)/t_h-6*Mh(i,j)/(t_h^2); 
   Stih(i,j) = Nth(i,j)/t_h+6*Dh(3)/Dh(1)*Mh(i,j)/(t_h^2); 
   Stoh(i,j) = Nth(i,j)/t_h-6*Dh(3)/Dh(1)*Mh(i,j)/(t_h^2); 
end 
end 
  
% ------------------------------------------------------------------------ 
% Stress Calculation in the shell part 
% ------------------------------------------------------------------------ 
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Slis=zeros(k,2);         % Longitudinal stress at inside surface of the 
shell [MPa] 
Slos=zeros(k,2);         % Longitudinal stress at outside surface of the 
shell [MPa] 
Stis=zeros(k,2);         % Tangential stress at inside surface of the shell 
[MPa] 
Stos=zeros(k,2);         % Tangential stress at outside surface of the 
shell [MPa] 
xs=zeros(k,1);            
u_s=zeros(k,2)           %Radial displacement [mm]  
theta_s=zeros(k,2)       %Rotation 
Ms=zeros(k,2)            %Moments [N.mm] 
Qs=zeros(k,2)            %Shear forces [N] 
Nxs=zeros(k,2)            
Nts=zeros(k,2)            
  
Rs = r_i+t_s/2; 
for j=1:1:2 
i=0; 
for x = 0:l_s/(k-1):l_s 
    i=i+1; 
   xs(i)=x; 
    
   f1= exp(-beta_s*x) * cos(beta_s*x); 
   f2= exp(-beta_s*x) * (cos(beta_s*x)-sin(beta_s*x)); 
   f3= exp(-beta_s*x) * (cos(beta_s*x)+sin(beta_s*x)); 
   f4= exp(-beta_s*x) * sin(beta_s*x); 
    
   u_s(i,j)= P_1(j)/(2*beta_s^3*Ds(1))*f1+ M_1(j)/(2*beta_s^2*Ds(1))*f2; 
%   u_s(i,j)=(P_1(j)/(beta_s^3*Ds(1))*f1+ M_1(j)/(beta_s^2*Ds(1))*f2); 
   theta_s(i,j)= beta_s*(-P_1(j)/(2*beta_s^3*Ds(1))*f3- 
2*M_1(j)/(2*beta_s^2*Ds(1))*f1); 
   
Ms(i,j)=2*beta_s^2*Ds(1)*(P_1(j)/(2*beta_s^3*Ds(1))*f4+M_1(j)/(2*beta_s^2*
Ds(1))*f3); 
   Qs(i,j)=2*beta_s^3*Ds(1)*(P_1(j)/(2*beta_s^3*Ds(1))*f2-
2*M_1(j)/(2*beta_s^2*Ds(1))*f4); 
   
   Nxs(i,j)=p*(j-1)*r_s/2; 
   Nts(i,j)=(u_s(i,j)+(As(1)-As(3)/2)/(4*beta_s^4*As(1)*Ds(1))*p*(j-
1))/r_s*(As(2)-(As(3))^2/As(1))+As(3)/As(1)*Nxs(i,j); 
   Slis(i,j) = Nxs(i,j)/t_s+6*Ms(i,j)/(t_s^2); 
   Slos(i,j) = Nxs(i,j)/t_s-6*Ms(i,j)/(t_s^2); 
   Stis(i,j) = Nts(i,j)/t_s+6*Ds(3)/Ds(1)*Ms(i,j)/(t_s^2); 
   Stos(i,j) = Nts(i,j)/t_s-6*Ds(3)/Ds(1)*Ms(i,j)/(t_s^2); 
end 
end 
 
% ------------------------------------------------------------------------  
% Stress Calculation in the Flange 

% ------------------------------------------------------------------------ 
 
xx=[xh xs+l_h]; 
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i=1; 
Sli(i,:)=[Slih(i,:) Slis(i,:)]; 
Slo(1,:)=[Sloh(i,:) Slos(i,:)]; 
Sti(1,:)=[Stih(i,:) Stis(i,:)]; 
Sto(1,:)=[Stoh(i,:) Stos(i,:)]; 
  
figure(1); 
plot(xx,Sli(1,:),'b*-',xx,Slo(1,:),'r-^',xx,Sti(1,:),'m--
o',xx,Sto(1,:),'k-.s') 
legend ('longitudinal inside','longitudinal outside','tangential 
inside','tangential outside','Location','SouthEast') 
set(findobj(gca,'type','line'),'MarkerSize',5) 
grid on 
title('Variation of stresses with length (Bolt-up)') 
xlabel('axial position from ring, mm') 
ylabel('Stress, MPa') 
  
i=2; 
Sli(i,:)=[Slih(i,:) Slis(i,:)]; 
Slo(i,:)=[Sloh(i,:) Slos(i,:)]; 
Sti(i,:)=[Stih(i,:) Stis(i,:)]; 
Sto(i,:)=[Stoh(i,:) Stos(i,:)]; 
  
figure(2); 
plot(xx,Sli(2,:),'b*-',xx,Slo(2,:),'r-^',xx,Sti(2,:),'m--
o',xx,Sto(2,:),'k-.s') 
legend ('longitudinal inside','longitudinal outside','tangential 
inside','tangential outside','Location','SouthEast') 
set(findobj(gca,'type','line'),'MarkerSize',5) 
grid on 
title('Variation of stresses with length (Pressurization)') 
xlabel('axial position from ring, mm') 
ylabel('Stress, MPa') 
  
  
u=[uh us]; 
  
figure(3); 
plot(xx,u(1,:),'b*-',xx,u(2,:),'r-^') 
legend ('bolt up','Pressurization','Location','SouthEast') 
set(findobj(gca,'type','line'),'MarkerSize',5) 
grid on 
title('Variation of displacement') 
xlabel('axial position from ring, mm') 
ylabel('Displacement, mm') 
  
% ------------------------------------------------------------------------ 

 

 

 

 

 



 

APPENDIX B 
LabVIEW program 

 

 
Figure B-1 LabView graphical interface 

 

 
Figure B-2 LabView graphical interface 
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Figure B-3 LabView graphical interface 
 

 

Figure 5-4 LabView graphical interface 
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Figure 5-5 LabView graphical interface 
 

 

Figure 5-6 LabView graphical interface 
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Figure 5-7 VI hierarchy of the developed program 
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