
Doctoral Dissertation

Academic Year 2019

Neuromorphic Networks

for Prediction Applications

Keio University

Graduate School of Media Design

Cedric Caremel

A Doctoral Dissertation

submitted to Keio University Graduate School of Media Design

in partial fulfillment of the requirements for the degree of

Ph.D. in Media Design

Cedric Caremel

Dissertation Advisory Committee:

Professor Kai Kunze (Supervisor)

Professor Kouta Minamizawa (Co-Supervisor)

Professor Akira Kato (Co-Supervisor)

Doctoral Dissertation Review Committee:

Professor Kouta Minamizawa (Chair)

Professor Akira Kato (Member)

Professor Keiko Okawa (Member)

Professor Yoshihiro Kawahara (Member, The University of Tokyo)

Abstract of Doctoral Dissertation of Academic Year 2019

Neuromorphic Networks

for Prediction Applications

Category: Science / Engineering

Summary

Artificial neural networks represent a powerful class of machine learning algo-

rithms, well suited for any type of technical application: from engineering appli-

cations to scientific computing. However, artificial neural networks designs are

increasingly deviating from the functional architecture of brain circuits they orig-

inated from, focusing on very sophisticated yet very segmented implementations,

at the opposite end of a multipurpose intelligence. Instead, current advances in

neuroscience converge toward models of the encoding of sensory signals as well

as rewards, learning and behavioral dynamics, indicating that, in the near fu-

ture, tools such as artificial neural networks should be capable of providing better

insights about the brain architecture. Here, the main objective is to provide a

few key concepts and methods to leverage the power of predictive, biologically

plausible, neural networks.

The expert implementation of task-specific neural networks versus the practi-

cal needs of innovators, engineers, physicists or biologists to analyze their models

regardless of the complexity or type of data they are working with, also empha-

size the critical importance of designing general-purpose algorithms, and as such,

bio-inspired artificial neural networks represent a viable solution. Prediction can

be used to control complex hardware, validate experiments or create innovative

interactions. Biological plausibility brings in flexibility and adaptability to differ-

ent situations and desired outputs, thus facilitating data processing for experts

and non-experts alike.

i

Abstract

Keywords:

Artificial Neural Networks, Brain Circuits, Human-Machine Interfaces, Neuro-

computing.

Keio University Graduate School of Media Design

Cedric Caremel

ii

Contents

Acknowledgements ix

1 Introduction 1

1.1. Definition of Artificial Intelligence 1

1.2. Machine Learning . 3

1.3. Artificial Neural Networks: State of the Art 7

1.4. Aim and Objectives . 9

1.5. Contributions . 10

1.6. Overview . 12

2 Related Work 14

2.1. Hybrid Approaches . 14

2.2. Fundamentals . 15

2.2.1 Supervised Learning . 16

2.2.2 Unsupervised Learning . 23

2.2.3 Reinforcement Learning 24

Notes . 26

3 Neuromorphic Networks 27

3.1. Paradigm . 27

3.2. Modeling Neural Circuits for Prediction 32

3.3. Biologically plausible neural network 34

3.4. Structure and Function . 34

3.5. Reduction, Simulation and Prediction. 38

3.6. “BioNN”: a Custom Neural Network in MATLAB 42

Notes . 60

iii

Contents

4 Neuromorphic Networks: a Use Case 61

4.1. Design of the Experiment . 61

4.2. Method: BioNN, Structure and Function 67

4.3. Experimental Results . 68

4.4. Neuromorphic Network Evaluation 76

Notes . 81

5 Evaluations 83

5.1. Prediction Model in Virtual Reality 84

5.2. Prediction Model for Haptic Feedback 87

5.3. Prediction Model for Thermo-haptic Feedback 98

Notes . 102

6 Conclusion and Future Work 103

6.1. Conclusion . 103

6.2. Limitation and Future Work . 104

6.3. Summary . 106

References 107

Appendices 117

A. Toy Model - Sample Code (MATLAB) 117

B. BioNN Code (Python Sample) . 122

C. Glossary . 140

iv

List of Figures

1.1 Machine learning milestones. 2

1.2 Google N-GRAM of the term “artificial intelligence”. 4

1.3 Google N-GRAM of the term ”machine learning”. 4

1.4 A MATLAB implementation of the Game of Life. 5

1.5 Overview. 13

2.1 Diagram of a mathematical expression of a neuronal cell. 17

2.2 Sigmoid function graph. 18

2.3 Example of a custom neural network architecture for a supervised

learning algorithm. 19

2.4 The gradient descent algorithm. 22

2.5 Diagram of the reward system in Reinforcement Learning. 25

3.1 A 3D variation of the Kanizsa triangle. 29

3.2 Diagram of a neuromorphic network with prediction and classifi-

cation. 30

3.3 Functional structure of a stacked architecture. 31

3.4 Selected connectivity matrix. 35

3.5 Diagram of the predictor/classifier network. 36

3.6 Brain Atlas extracted from the MSDL data set. 37

3.7 Bio-inspired artificial neural circuit. 39

3.8 Noise matrix. 41

3.9 Weight matrices. 43

3.10 Original signal and predicted signal side-by-side. 44

3.11 Functional programming of the bio-inspired architecture: create

the first node. 46

v

List of Figures

3.12 Functional programming of the bio-inspired architecture: create

the first nodes. 47

3.13 Functional programming of the bio-inspired architecture: first

connections to outputs. 48

3.14 Functional programming of the bio-inspired architecture: connect

the layers. 51

3.15 Functional programming of the bio-inspired architecture: overview. 53

3.16 Functional programming of the bio-inspired architecture: ReLU

activation function. 55

3.17 Functional programming of the bio-inspired architecture: Sigmoid

function. 55

3.18 Functional programming of the bio-inspired architecture: objec-

tive function. 56

4.1 EEG-based neural interface and machine learning algorithm for

the 12AX task. 62

4.2 The 10-20 system for EEG recording. 63

4.3 The OpenBCI Interface. 64

4.4 OpenBCI electrodes placement. 65

4.5 Sample of the heat map of the active signals while performing the

task . 66

4.6 Connectivity mapping. 68

4.7 Correlation matrix from the ADHD dataset with the atlas data

from MSDL for the labelling. 69

4.8 Design of the BioNN network. 70

4.9 The 1-2-AX working memory task. 72

4.10 Recorded EEG signals for n=12 participants. 73

4.11 The recorded and predicted signals. 74

4.12 Stacked histogram of the highest variance for a specific channel. . 75

4.13 Architecture of the BioNN network 1/3. 77

4.14 Architecture of the BioNN network 2/3. 77

4.15 Architecture of the BioNN network 3/3. 78

4.16 Architecture of the LSTM network. 78

4.17 Benchmark LSTM vs BioNN . 82

vi

List of Figures

5.1 ExoBrain testing. 85

5.2 Hand-motion prediction in VR. 87

5.3 NARX diagram, open-loop and closed-loop. 88

5.4 Mechanical engineering of the ring structure. 89

5.5 Rendering of the haptics glove. 90

5.6 Picture of the first prototype developed for haptic feedback. . . . 91

5.7 Final setup. 93

5.8 Resting time after displacement histogram. 94

5.9 Simple fit plot. 95

5.10 Neural Network fit. 96

5.11 Neural network performance plot. 97

5.12 Tensorflow graph. 99

5.13 Value estimate graph. 100

5.14 Cumulative rewards graph. 100

5.15 Thermo-haptic feedback demo. 101

vii

List of Tables

4.1 LSTM Parameters and Connections Summary. 79

4.2 BioNN Parameters and Connections Summary. 80

viii

Acknowledgements

I would like to thank the Professors at Keio University for their guidance, and in

particular my main supervisor, Prof. Kai Kunze, for his constant support, unique

approach and invaluable insights along the course of my doctoral program. Many

thanks to Prof. Kato and Prof. Minamizawa as well, Dr. Benucci at RIKEN

CBS (Center for Brain Science), Prof. Yoshihiro Kawahara at the University of

Tokyo (Graduate School of Engineering, Department of Electrical Engineering

and Information Systems), Kinya Tagawa, Hisato Ogata and Kotaro Watanabe,

partners/directors at Takram Design Engineering, for the many inspiring discus-

sions and advises. A very special thanks to my colleagues, friends and family, for

their indefectible support along the years.

The work at Keio University is partly supported by JST Presto, Grant No: JP-

MJPR16D4.

All plots, images and graphs are my own, unless stated otherwise. In case of any

inquiries, please contact me: cedric@keio.jp

ix

Chapter 1

Introduction

1.1. Definition of Artificial Intelligence

The idea of an ’electronic brain’ appears as early as 1943 in the seminal paper

“A Logical Calculus of Ideas Immanent in Nervous Activity” (McCulloch and

Pitts 1943), by Warren McCulloch, an established American neurophysiologist,

and Walter Pitts, his young assistant, a self-taught logician eager to follow the

path of the British philosopher Bertrand Russel (Russel and Whitehead 1910-13),

at the university of Chicago. From 1942, Pitts and MacCulloch worked extensively

on the nervous system and together, they laid the foundations of what would be

later called the McCulloch–Pitts neuron model:

yk = φ(
n∑

i=1

wjixi)

where yk represents the output of an artificial neuron, as the function of a sum

of its weighted inputs. This groundbreaking model of the mathematical expres-

sion of a biological neuron led, a few decades later, to the development of a

flourishing new field, computational neurosciences, first in 1969, with Minsky

(Perceptron (Minsky M. 1969), 1969), showing that the perceptron architecture

as intended by Rosenblatt (Rosenblatt 1958) could not solve the XOR prob-

lem (Minsky M. 1969); then in 1987, when the Lisp machine, specifically de-

signed for a new generation of high-level computer language, failed to impose its

paradigm to the market. The resurgence came in the early 2000, when the expo-

nential development of powerful workstations and additional resources (GPUs) at

lower manufacturing costs, in a newly globalized world, favored the conditions for

some spectacular achievements in machine learning, led by a few private (Face-

book, Google, IBM, Tencent, NVidia) and public initiatives around the world.

1

1. Introduction 1.1. Definition of Artificial Intelligence

Figure 1.1 Machine learning milestones.

2

1. Introduction 1.2. Machine Learning

The concept of artificial intelligence slowly gained acceptance by analysts and

defense experts, after accelerating its pace in the last decades (IBM DeepBlue

(Crichton et al. 2017)), and reaching an overwhelming visibility in the litera-

ture, in the press and in movies. Now that more complex games can be solved

(AlphaGo (Silver et al. 2017)), artificial intelligence is under scrutiny virtually ev-

erywhere, a subject of both fascinations and tensions. As we have already briefly

seen, the term “artificial intelligence” encompasses a myriad of sub-fields and var-

ious concepts across history, borrowing from physiology, computational sciences,

physics, mathematics, philosophy, fiction. In that view, artificial intelligence rep-

resents a collective dream for our modern societies. In a strict sense though, it is

an academic field that requires rigor and method and, as we will see, it has yet to

deliver all its promises. The question that arises then, is for the immediate future:

will artificial intelligence develop into fully intelligent machines that can help us

solve seemingly intractable problems?

1.2. Machine Learning

To answer this question, I will explore today’s available technology. After re-

viewing some important methods in the field, along with the state-of-the-art, I

will expose the theoretical foundations of this thesis.

As Figure 1.3 shows, the term “machine learning” has turned to be an exponen-

tial trend in the literature since 1980. It denotes a practical and effective subset

of artificial intelligence that can be characterized by the actual algorithmic imple-

mentation of the core principle of any intelligent system: the ability to learn and

discover by itself. There is an important distinction operating there: while artifi-

cial intelligence regroups a variety of concepts, stretching from computer science to

ontological questions on the nature of the human mind, machine learning should

be considered as a programmatic attempt to answer those questions rationally

and practically (Bishop 2007).

In 1970, John Conway’s Game of Life (Gardner 1970), after John Von Neu-

mann and Stanislaw Ulam’s initial discovery, marks one of the very first effort to

model life as a self-replicating program that evolves based on initial inputs and

a set of rules. This concept known as “cellular automaton” laid the groundwork

3

1. Introduction 1.2. Machine Learning

Figure 1.2 Google N-GRAM of the term “artificial intelligence” in English litera-

ture since 1940. In computational linguistics, the N-GRAM refers to the number

of occurrences of a word recorded over a given period of time.

Figure 1.3 Google N-GRAM of the term “machine learning” in the literature

(English language) since 1940.

4

1. Introduction 1.2. Machine Learning

Figure 1.4 A MATLAB implementation of the Game of Life (©Ibraheem, 2010).

The initial state (A) is defined by a 500x500 pixel black and white picture with

random noise represented by the white pixels. A cell is said to be alive if white,

black otherwise. The program computes the state of a cell based on its alive

neighbors. After initialization, different types of patterns arise. After 1000 epochs,

the final state (B), represents an ensemble of stable patterns that will not evolve

any further. Each pattern can be classified and there only exist a finite number

of variations. However, the game is undecidable: given (A) and (B), it is not

possible to tell whether (B) will ever exist, other than by running the algorithm

until it reaches its final state.

5

1. Introduction 1.2. Machine Learning

for machine learning. The important result this simple game provided is that a

system does not preclude complexity to emerge from a set of simple rules; here,

the program is undecidable (Figure 1.4). This idea that we, as human beings

doted of an intellect, are capable of producing pure, perfect and ideal construc-

tions, represented by mathematical properties, always confronts the harsh reality

of an ever-changing, seemingly chaotic world (Strogatz 2000), that also seems to

increase in complexity as we increase our understanding. This strange paradox

(increasing our knowledge does not appear to simplify the state of the world, but

rather, render it harder to apprehend) led us to build tools powerful enough to

overcome our own limitations, but simple enough to let us control them with ease.

If artificial intelligence can respond to the first part of our need (understanding

the world), its interpretability (Sussillo and Barak 2013, Sussillo et al. 2015), or

lack thereof, remains: we may be capable of producing models that can solve

intractable problems, but we may not fully grasp their internal representations.

Indeed, if the theoretical background that underlies the algorithm we are im-

plementing is well-known, the solutions may be non-trivial, since the number of

parameters and dimensions explodes as the difficulty of the task increases. In

October 2015, AlphaGo, a program that plays Go, beat Lee Sedol, the world best

player, with odd-looking (from a human perspective) moves (Silver et al. 2017).

This unprecedented feat is, of course, reminiscent of Kasparov’s loss against IBM

DeepBlue, but should not be mistaken for it: Chess is essentially an entropic sys-

tem, where the number of successful combinations decreases as the game develops.

Playing pieces are removed, allowing the algorithm to brute-force a decision tree.

The board game Go follows instead a negative entropy development, where the

combinations in play rise exponentially as playing pieces (white stones and black

stones) are added to the game. A set of sophisticated statistical models, based

on the neural networks introduced earlier, were used in combination to enormous

computer resources, in order to train the network on millions of game variations

and approximate the optimum policy that would eventually allow the program

to beat the world champion. More impressively, AlphaZero, a second iteration of

AlphaGo, superseded its predecessor in just under 4 hours, learning by self-play

reinforcement learning. Although classic tree search algorithms are still present in

the most recent machine learning implementations and can be easily represented

6

1. Introduction 1.3. Artificial Neural Networks: State of the Art

in terms of choice decisions, the idea that an artificial network may surpass the

expert knowledge, not only in terms of outcome but also in terms of optimization,

is mesmerizing: what did the network learn that the expert didn’t? Are those

remarkable achievements only a question of processing speed, or could it be that

the internal representations in play there, are fundamentally uninterpretable from

a human standpoint?

1.3. Artificial Neural Networks: State of the Art

Whether we use them in games, the automotive industry or the health-care

sector, artificial neural networks represent a special set of machine learning algo-

rithms and can be classified in three distinct categories:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

Deep Learning, the strongest proponent in machine learning to achieve AGI,

regroups under this denomination the three methods stated above, by sharing a

common architecture: the addition of a middle layer between the input and the

output, a standard implementation (Gallicchio et al. 2018) that can be traced back

to the 1990s as a replacement to first-generation classifiers, such as Support Vector

Machines (SVN) (Cortes and Vapnik 1995). Deep learning, as a generic method

to implement artificial neural networks, can be designed either in feed-forward

fashion or recurrently. In feed-forward fashion, the data are transiting through

the network in one pass, from the lower to the upper layers, each layer being

specialized in a type of data feature extraction, making it an ideal candidate for

resource intensive and image processing applications: the hidden layers between

the input and output units allow to stack as many kernels as needed to filter

images and extract the much needed features to compute, for instance, driving.

AlexNet, GoogleLeNet, Inception and more recently VGG are all pretrained con-

volutional neural networks (CNN) with a deep neural network architecture that

have been massively adopted by the automotive industry (Luckow et al. 2016).

7

1. Introduction 1.3. Artificial Neural Networks: State of the Art

Recurrent Neural Networks are another well-known class of deep learning algo-

rithms, where the output is fed back to the network as an input (hence, recurrent).

Generally suitable for time-series prediction, Long-Short Term Memory (LSTM)

neural networks have long provided good results for natural language-processing

applications. However, new approaches, combining both of those or introducing

novel ideas inspired by biology, such as echo-state networks and reservoir com-

puting (Gallicchio et al. 2018), promise to unleash the next wave of AI-powered

applications, as we will see in the next section.

If deep learning has gained a lot of traction in recent years, it is mostly due to its

very active research community, along with groundbreaking, language and vision-

based applications, provided, sometimes for free, by some of the world largest

companies and R&D centers: self-driving vehicles, face recognition systems, per-

sonal “smart” assistants, translators, but also tool-kits, programming languages

and frameworks - there is almost no limit to the number of visionary concepts

that could involve machine learning. In the automotive industry particularly, this

revolution, in an otherwise very conservative and competitive business landscape,

proposes for example “full autonomy” in three future steps (level 3-5):

• Level 0: No autonomy.

• Level 1: Drive assist (brake-assist, parking-assist, GPS).

• Level 2: Partial autonomy (automated safety measures, speed-limit, self-

parking).

• Level 3: Conditional autonomy (autopilot point-to-point on highways, chang-

ing lanes). Current state-of-the art.

• Level 4: Near autonomous (autopilot in a populated, semi-urban environ-

ment, safe decision-making based on road signals and dynamic traffic).

• Level 5: Fully autonomous (autopilot in urban environment with maximum

safety).

As it appears above, safety is a key variable in leveling autonomy, which could

not be achieved without a fully integrated hardware-software development. It is

worth noting though, that the convolutional (Nayebi et al. 2018) and recurrent

8

1. Introduction 1.4. Aim and Objectives

neural networks (Gallicchio et al. 2017, Salehinejad et al. 2017) tool-kits and li-

braries currently implemented by machine learning developers (Keras, TensorFlow

by Google, PyTorch, Caffe by Facebook) share the same type of initial architec-

ture and philosophy proposed by Pitts-McCulloch, Rosenblatt and others during

the past half-century: essentially, a multilayer perceptron, which I will formalize

in the next chapter (Related Work).

Resource-demanding, convoluted networks, for instance, rely heavily on two crit-

ical points: first, a dedicated system of optical sensors, either lasers (LIDAR) or

cameras, to acquire an accurate representation of the environment. Second, an

expensive training over a very large amount of data. Because the concept of learn-

ing is intrinsically bonded to the concept of training, complex dynamic systems

may not be correctly approximated with a limited amount of data.

In that sense, major advances are coming from the medical research (Esteva

et al. 2017, Christiansen et al. 2018), where data may be sparse or not publicly

available. Transfer learning showed, for example, very promising results in skin

cancer detection: one neural net is first trained with a very large amount of

data, and then applied to a second-related task with a more restricted amount.

In a letter issued in 2017 on Nature, Stanford researchers (Esteva et al. 2017)

proved that their CNN’s performance was on par with the diagnosis of pro-eminent

dermatologists for detecting malignant melanomas. Although the training was

applied over a large 129,450 clinical images dataset, it is still far less compared

to the pretrained architecture they utilized for their approach, the GoogleNet

Inception net, which was trained over 1.28 million images.

1.4. Aim and Objectives

This research focuses on the recent developments in artificial intelligence, more

specifically biologically plausible artificial neural networks, to create and envision

hardware and software that can be fully integrated to human activity. The aim of

this research is not to provide an exhaustive review of all the possible implemen-

tations in machine learning, as there would be too many, but rather to select a few

relevant ones, belonging to the neural network class, and propose a novel network

design framework, inspired by biology and relying on sensory inputs, acquired via

9

1. Introduction 1.5. Contributions

innovative interfaces. The main objectives are the following:

• Presenting a novel method using the cortical circuits of the brain as a prime

model for the structural and functional architecture of artificial networks.

The main advantage is to propose flexibility and adaptability to different ex-

perimental conditions. Its relevancy w.r.t. biological networks is limited by

the current knowledge in brain science, but the architecture is agile enough

to be trained over large data sets, in a reasonable amount of time.

• Establishing a comparative analysis using core concepts of machine intel-

ligence such as agency, prediction and control, in different applications ar-

eas. Such implementations have been first designed with conventional neu-

ral networks, to confirm and explore their potential (Caremel et al. 2018,

Chernyshov et al. 2018a). In parallel, artificial neural circuits have been

designed and tested extensively for a bio-inspired, general-purpose architec-

ture.

• Envisioning the potential of neural data to automate decision-making tasks.

A new experiment with neural data recording has be implemented for this

purpose. Indeed, if training an artificial neural network on neural signals

for cognitive tasks is common practice in brain science (Nayebi et al. 2018),

(Sussillo and Barak 2013), (Guerguiev et al. 2017), it has been a forsaken

path in HCI, due to the lack of framework and tools. In that sense, a

brain-based neural network architecture represents a legitimate and desir-

able route to offer new perspectives to an ever-growing number of innovators,

researchers and engineers interested in predictive simulations and computa-

tional models.

1.5. Contributions

This thesis constitutes a major advance in the field of human-computer inter-

faces by bridging the gap between neuroscience and machine learning.

• In this thesis, “neuromorphic networks”, a novel paradigm, is defined at

the intersection of machine learning, HCI and neurosciences. To this day,

10

1. Introduction 1.5. Contributions

the computations occurring in the brain are not fully understood. However,

predicting outcomes and making choices based on simulations are at the

core of the human intellect, shaping our experiences. On the other end,

programming languages and interfaces are widely available, and in recent

years, state-of-the-art artificial neural networks have been extremely effi-

cient at modeling a large range of problems. A multitude of techniques

and research works have been published and discussed. Among those avail-

able, the two well-established methods of Classification and Regression are

exposed in this thesis as complementary. While classification is by defini-

tion well-suited when the dataset can be labelled, regression, in contrast, is

generally used when the underlying function is not well-known. This work

proposes to re-unite those methods in a novel “neuromorphic” paradigm,

by mapping the known structural and functional connectivity of the brain

to an artificial neural network. An important finding was that the brain

connectivity could serve as an example to describe the neuromorphic model

in a comprehensive, formalized way.

• By carefully developing several applications, this thesis demonstrates how to

leverage the predictive power of neuromorphic networks to facilitate system

modeling. Whether it is for determining the resting parameters of a com-

plex shape-memory alloy, anticipating the decision-making process involved

in trajectory predictions and body motions, or predicting neurosignals as-

sociated with a specific task, the techniques that were designed and tested

provided better insights on the understanding of the models internal dynam-

ics and representation. Comparative analysis on error and performance led

to innovative solutions for refining and improving the models over existing

techniques.

• Finally, an experimental setup with EEG recording was designed to envision

knowledge transfer and task automation using neural models. Training an

artificial neural network on neural data poses several challenges: the learning

halts at a local minimum or a plateau, overfitting may occur, weights are

not properly distributed. An exploration phase is often needed to derive the

correct parameters and validate the network. Based on the current corpus of

11

1. Introduction 1.6. Overview

knowledge in neuroanatomy and computational neuroscience, a “blueprint”

was devised to design a predictor-classifier for a working-memory task. The

thesis also represents a detailed guideline and an invitation to build such

networks, paving the way for future brain-computer interfaces and neural-

based machine learning.

1.6. Overview

Today, neuroscience research is increasingly relying on machine learning mod-

els to understand the encoding of sensory signals as well as rewards, learning and

behavioral dynamics, indicating that, in the near future, tools such as artificial

neural networks should be essential to provide better insights about the brain

architecture. Interestingly, the converse did not happen: machine learning engi-

neers are less inclined to use biology as a referral model, while still aiming for

general intelligence. This thesis proposes to bridge the gap between the current

knowledge of biological models and the state-of-the-art machine learning tech-

niques. In life, we base our choice on predictions, simulations of the future, and

we rank the possible solutions to adjust our behaviors, and take actions to the

world. Similarly, artificial neural networks can be designed to encode inputs and

predict patterns, so as to model a behavior and predict outcomes. Regression and

classification should then be used in conjunction, rather than separately, as it is

classically done. This novel paradigm is at the center of this thesis, and a new

model, ’BioNN’ (for ’Biology-inspired Neural Network’), is proposed for several

application examples to verify this approach.

12

1. Introduction 1.6. Overview

Figure 1.5 Overview of the implemented neural networks models. Left: predic-

tion model for haptic feedback, prediction model for body motion, hand motion

prediction in virtual reality. Right: neuromorphic network use case based on EEG

recording. 13

Chapter 2

Related Work

“All models are approximations.

Essentially, all models are wrong,

but some are useful. However, the

approximate nature of the model

must always be borne in mind.”

— George E. P. Box.

2.1. Hybrid Approaches

Some related works have been published in recent years, such as multiregressor

models, or for instance converting classifier to predictors. Generative Adversarial

Networks (GANs) is an obvious example (Ian J. Goodfellow 2014): as two neural

networks compete with each other, a generative model can, for example, generate

plausible and convincing yet fake images of faces and people1. Dynamic Routing

Between Capsules (Capsule networks) by Hinton was an important contribution

to the field in 2017. First, because of the stature of Hinton in the machine learning

community. More importantly perhaps, capsule networks offer a novel approach

to model the hierarchical spatial relationships of objects. Indeed, the pooling

operations that have made Convolutional Neural Networks (CNNs) so popular

and efficient this last decade, actually loose a large part of the internal repre-

sentation of the data. Capsule networks rely on multiple predictions to activate

“capsule layers” in a tree-like structure, “solving the problem of assigning parts

to wholes” (Sabour et al. 2017). Spiking Neural Network Architecture (SNNs) is

another emergent approach which gained traction very recently: such networks

14

2. Related Work 2.2. Fundamentals

rely on trains of pulses rather than gradient descent to adjust their weights, as

spikes trains are discrete and non-differentiable (a requisite for backpropagation).

Some attempts to combine deep learning and spiking neural architectures have

been proposed to study biological models, using classification/regression of the

activated spiking patterns (Doborjeh et al. 2018). However, it is not yet clear if

supervised learning is achievable with this approach.

Another interesting hybrid technique consists in using CNNs for time series anal-

ysis, for example price prediction in financial data (Sezer and Özbayoglu 2019).

2-D images are generated from stocks charts and a trading model representing the

market conditions is run to define a buy-sell strategy.

2.2. Fundamentals

While regression models are generally used to predict values, classification is

preferred to assign classes to data. To better understand how we can leverage

different types of artificial neural network architecture to combine regression and

classification in a biologically plausible paradigm, I will provide in the following

sections an overall related work. Indeed, artificial neural networks are fundamen-

tally statistical models. As such, it is important to understand their structure at

the mathematical level, how they can possibly relate to a biological model, and

what were the latest contributions and limitations for each type of architecture.

In this chapter, I will explain some of the most fundamental concepts in machine

learning. Those detailed explanations, and the literature that follows, should

contribute to a better understanding of the neuromorphic network paradigm. In

the following section, the reader should assume the following: an artificial neu-

ral network consists of layers (input, hidden, output), each of them consisting

in nodes (Rumelhart 1986, Salehinejad et al. 2017). Each node, sometimes also

referred as unit, can be considered the computational equivalent of a neuron. As

such, a node is said to be “activated” (firing) when its input passes a certain

threshold. This threshold is set by an activation function. In its simplest form,

a step-function centered around 0 can be set to return 1 on its y-axis when the

input values on its x-axis are positive, 0 otherwise. Since the objective of a neural

network is to approximate any type of function, random weights and biases are

15

2. Related Work 2.2. Fundamentals

attributed to each nodes during an initialization phase, shaping (weights) and

shifting (biases) the curvature of each activation function (Figure 2.2) for each

node, so as to provide as many local approximators as possible, and find the best

compound of functions that approximates a given input function.

The mathematically-inclined reader may refer to the “Stanford notations for Deep

Learning”,2 for further explanations on the notations rules used in this chapter.

2.2.1 Supervised Learning

Supervised learning has been very popular (and still is) in data mining appli-

cations: given a set of labeled data, the network maps an input to an output and

infer functional rules during a training phase, to generalize over a new set of data

during a testing (or simulation) phase. For classification, targets can be defined

as the supervised component, and labeled data provided to the network will rep-

resent the features that should be approximated. In the case of a regression for

prediction, supervised learning can also be used, in that case univariate or multi-

variate time-series will be re-framed as an input set and a target set, and passed

through the network to forecast approximate values. This approximation takes

place as the outputs diverge from the targets, and the network aims to minimize

the error between those two sets.

Classically (Rumelhart 1986), a deep learning artificial neural network consists

in an input, as many middle layers as needed, and an output layer (Figure 2.2).

Each layer contains a number of units, or nodes, or “neurons” (in the following,

those terms are used interchangeably).

The output layer will yield {y1, ..., ym} as an output dataset to be compared

with the initial input dataset {x1, ..., xm}, where m is the number of the dataset

samples. To create this network, each layer is connected to the next, such that

the input for each layer’s unit is the sum of the dot product of its weights by its

previous layer’s outputs, where a is known as the activation input of a neuron,

w represent its weight and b, the bias (Figure 2.13). This input is activated by

another function, the “activation function”, denoted g. As shown in Figure 2.2,

the bias shifts the activation function to the right or to the left, while its steepness

is changed by the weight. A logistic sigmoid can be used (Salehinejad et al. 2017),

as it introduces non-linearity, which allows us to map out any type of values. It

16

2. Related Work 2.2. Fundamentals

Figure 2.1 Mathematical expression of a neuronal cell: Neuron A and B propagate

an electric signal unidirectionally from their neuronal cell body to their axon

terminal, characterized by the output vector zi in A. From B to A: to sustain

neuronal firing, synaptic transmission defined as the weight wi is ensured for the

input vector xi; the excitatory input wixi is provided on the dendrite of Neuron

A to produce a firing pattern modulated by the activation function gi.

17

2. Related Work 2.2. Fundamentals

0 x

y

w’ b’

-y

-x

Figure 2.2 A sigmoid function g admits a weighted input and its bias, such that

g(wx + b) is shifted to the right when b = b′ and its steepness is changed when

w = w′.

18

2. Related Work 2.2. Fundamentals

Hidden LayerInput LayerInput Dataset Output DatasetOuput Layer
l=1 ; m nodes l=2 ; n nodes l=3 ; m nodes

{wij,bj}

gi

{wjk,bk}
xi

zj=gi(bi+Σwijai) zk=gj(bj+Σwjkaj)

gj(zj)

g2(z2)

g1(z1)

gk(zk)

g2(z2)

g1(z1)

gm(zm)gn(zn)

gi(xi)

g2(x2)

g1(x1)

gm(xn)xm

x2

x1

yi

ym

y2

y1

m samples m samples

1

Figure 2.3 Example of a custom neural network architecture for a feed-forward,

supervised learning algorithm, with 1 input layer/m nodes, 1 hidden layer/n nodes,

and 1 output layer/m nodes. The error is computed via backpropagation using

gradient descent.

is written as:

glogistic =
1

1 + e−x

Also, its derivative is well-known:

dglogistic
dx

= glogistic(1− glogistic)

Once the network is set, and its weights and biases randomly assigned for each

node of each layer, the input-target pair is passed through the network, as high-

lighted in Figure 2.3.

Its aims is to minimize a cost function J between its targets ŷk and its outputs

yk so as to fit the input set xk. To compute this minimization, the mean squared

error function (MSE) is a standard, but many other cost functions may be imple-

mented instead. Here, for the sake of simplicity, we will only refer to the MSE

19

2. Related Work 2.2. Fundamentals

when computing the error. It is written:

J(ŷ, y) =
1

m

m∑
1

(yk − ŷk)
2

Classically, the gradient descent (Yann LeCun 1989) (or convex optimization)

algorithm has been used to find the parameters that minimize the cost function: as

the cost decreases, we can better approximate the two parameters {w, b} for each

node of each layer. As suggested in Figure 2.4, this method requires to calculate

the derivative for the multivariate cost function and find its local minimum. This

cost function is different for each layer.

For each layer then, we need to calculate the partial derivative w.r.t to the

weights set in the previous layer. The gradient will then be first computed from

the output layer to the middle layer, then from the middle layer to the input layer,

and at each step, the signal error will be used to update the weights, hence the

term “backpropagation” (Yan LeCun 1998, Training 2006).

From the output layer to the middle layer, the cost function evaluation is formal-

ized as follow, w.r.t to its weights wjk (1):

∂J

∂wjk

= δkaj

where:

δk = (yk − ŷk)g
′
k(zk)

And as follow, w.r.t. to its biases bk (2):

∂J

∂bk
= δk

where aj in equation (1) represents the activation input for the layer l+1 (or

the output of node j from the layer l to layer l+1) and (yk − ŷk) in equation (2)

compares the targets ŷk to the corresponding outputs yk.

g′k(zk) is the derivative of the activation function in the output of layer l+1, and

zk is the input from node k in the previous layer l-1 to node j in layer l.

Next, the weights and biases parameters will be updated, such that we can

better approximate our targets, and find a global function that generalize well

over other inputs. Regarding the weights of the connection between the output

20

2. Related Work 2.2. Fundamentals

layer and the middle layer, they are updated such that wij = wij − η ∂J
∂wjk

, where η

is the learning parameter, defining how much the error contributes to update the

weights. The error signal can then back-propagated further toward the previous

(input) layer. The biases are updated analogously and the computation is reit-

erated for the error signal of the connection between the input layer and middle

layer. Again, w.r.t to its weights wij, J is written as:

∂J

∂wij

= δjai

where:

δj = (yj − ŷj)g
′
j(zj)

And w.r.t. to its biases bj:
∂J

∂bj
= δj

Once the weights and biases are updated for each layer, the error optimiza-

tion is reiterated, so that the neural network can converge further toward a

better solution. A well-known issue, however, is the vanishing gradient prob-

lem (Hochreiter 1991), where the gradient is so small that it prevents the weights

to be updated. Historically, other methods have been developed in parallel, such

as the momentum and Nesterov momentum approaches, Adaptive Gradient, Con-

jugate Gradient (used in one of the implementation described in the next chapter)

and were proved to be faster and more reliable, but are not fully covered here for

the sake of brevity.

In 2011, an important contribution by Xavier Glorot (Glorot and Bordes 2011)

proved that ReLU (Rectified Linear Unit) activation functions may mitigate that

issue, also showing that they may be closer to biological models, computationally

faster and more efficient. For instance, non-significant outliers in the training set

may be removed early in the process to improve the performance, using techniques

such as PRISM, outlined by Smith in 2011 (Smith and Martinez 2011). However,

a major drawback, inherent to the supervised component of the learning process,

is that the dataset needs to be labelled “by hand”, an almost impossible task for a

very large amount of data. Very recently, frameworks have been developed to ease

this expensive process, such as automated tagging using CNN (Keunwoo Choi

2016) or crowd sourcing (the Backyard Worlds project)4.

21

2. Related Work 2.2. Fundamentals

Figure 2.4 The gradient descent algorithm (©simar, 2012), marching downhill

to find the local minimum of the function z = x2 + y2 where x represents the

weights, y represents the biases, and z, the cost.

22

2. Related Work 2.2. Fundamentals

2.2.2 Unsupervised Learning

Unsupervised learning does not need labeled data to infer new rules, and is

therefore usually preferred for classification when labels are not available or la-

belling is too time-consuming. Self-organizing maps are one such example: the

input space is considered as a continuous network of nodes, where a neighbor-

hood function aims to reduce the dimensionality of the data while preserving its

topology. Generally, unsupervised learning algorithms refer, directly or indirectly,

to Hebbian principles (Pearlmutter and Hinton 1986), where if a neuron A spike

activity is strongly correlated to a neuron B spike activity, A and B are most

likely physically connected. Applied to machine learning, the Hebbian learning

function is defined as follows: the weight change ∆ of the connection between

a given neuron input Ai (i corresponding biologically to one if its axon) and a

neuron output Bj is computed according to the rule:

∆w = η ∗ Ai ∗Bj

where η is the learning rate (See Chapter 2.1: Supervised Learning).

Because the parameters {w, b} are unknown to the network, in the case of Unsu-

pervised Learning, several methods can be used to find them without any targets.

An interesting approach is the method of moments, widely used in statistics and

initially developed by Pearson in 1936 (K. 1936).

Practically, however, as stated by Ruffini (Matteo Ruffini 2017), the adoption

of this method has been very limited, despite its very strong theoretical founda-

tion, and a more robust and comprehensive approach, such as the log-likelihood,

is generally preferred. For this type of method, a family of distribution is selected

(such as the natural logarithmic distribution, given that the population of the

model follows this type of distribution) so as to find the values of the parame-

ters (for example the weights and biases) that makes the model more probable.

This technique is very often encountered in the literature when it is not possi-

ble to label the data, or when it is not precisely known what type of features

should be learned within the set. Recently, eminent researchers in the machine

learning community, such as Andrew Ng, Yann LeCun, or Hinton, have all em-

phasized that Unsupervised Learning presents a real challenge and an important

opportunity for the development of artificial intelligence. In games in particu-

23

2. Related Work 2.2. Fundamentals

lar, Generative Adversarial Networks (GANs) have been cited frequently since

2014 (Ian J. Goodfellow 2014), making the use of Unsupervised Learning tech-

niques to let one neural network compete against another in a zero-sum game, a

very promising framework for the next few years.

2.2.3 Reinforcement Learning

Reinforcement Learning, popularized by the TensorFlow library release in 2017,

can be summarized as a reward system informing the agent about its states to

optimize its policy function. From this definition, we should note that three

important concepts are highlighted:

• Observations or Markovian state variables : the network records a set of

states of the system.

• Agency: an agent takes action over selected variables of the system (the

control variables) and,

• Policy: the agent gets rewarded or penalized for its action, in order to

optimize the policy function of the system i.e. the hidden rules that govern

the states of the system.

This system is best described by a recursive function maximizing the reward

of the agent (Figure 2.55) and as such can be better formalized by the Bellman

equation (R. 2003):

n ∈ R>0, v(s) = rt + γrt+1 + ...+ γnrt+n

where v(s) is the value of all the states of the system, computed as the sum of the

rewards rt at every step t, discounted by a factor γ that increases exponentially

as the agent takes action over the next step. Hence, the equation can be written

recursively as:

v(s) = rt + γv(st+1)

Because the function should be maximized w.r.t. the actions taken by the agent

(as the agent should collect as many rewards as possible), the Bellman function is

often seen as: v(s) = argmax(rs,a + γv(st+1)) where s and a denote, respectively,

24

2. Related Work 2.2. Fundamentals

Figure 2.5 Diagram of the reward system in Reinforcement Learning: the agent

acquires the state st of the environment at time t, takes action at over the environ-

ment, and get rewarded with rt for its action. The process is looped recursively.

the state of the system, and the action of the agent at step t. Artificial Neu-

ral Networks can approximate this function with a method known as Q-learning,

where Q denotes v(s). Similarly to Supervised Learning methods, the objective

function aims to minimize the difference between the Q value and its target value.

This target value corresponds to an optimal Q value i.e. the expected total re-

ward for the agent. Q-learning has proved to be a major advance, especially

in game-oriented applications, but has nevertheless lost favor recently, with the

introduction of interesting new supervised and unsupervised techniques, such as

GANs (Zuo et al. 2018), as previously seen, or echo-state networks, a supervised

technique where the output weights, which drive the change of the adaptation,

are reused to produce new outputs (Schiller UD 2005). Similarly, recent research

work in biologically-based computation, subsumed under the name of “Reservoir

Computing”, have also shown interesting results (Y. Paquot 2012) and is a source

of inspiration for my current and future work.

25

2. Related Work 2.2. Fundamentals

Notes

1 https://www.thispersondoesnotexist.com

2 Standard notations for Deep Learning, an interesting initiative to set a new standard for

deep learning mathematical notations: https://cs230.stanford.edu/files/Notation.pdf

3 Adapted from: http://cs231n.github.io/neural-networks-1/

4 The Backyard Worlds project: a collaboration between between NASA and UC Berkeley,

the American Museum of Natural History in New York, Arizona State University, the Space

Telescope Science Institute in Baltimore, and Zooniverse, a platform for developers and ed-

ucators to manage science projects: https://www.zooniverse.org/projects/marckuchner/backyard-

worlds-planet-9

5 Adapted from http://www.wildml.com/author/dennybritz/

26

Chapter 3

Neuromorphic Networks

3.1. Paradigm

Etymologically, “Neuromorphic” is a closed compound word, combining An-

cient Greek νϵυ̂ρo- (Latin neuro-, originally “nerve”)1 and -µoρϕή (Latin -morph´̄e,

“form”)2. A neuromorphic system refers to a system mimicking the neural system.

For instance, the notion of “Neuromorphic electronic systems” was exemplified at

Caltech by Carver Mead in 1990 (Monroe 2014), to describe a novel computing

paradigm in hardware design that would make use of analog signals, instead of

digital signals, to decrease the cost of computational power. Directly inspired

by the “elementary functions”, “representation of information”, and “organizing

principles” of the nervous system (Mead 1990), the paper echoes the progress in

neurosciences at the time.

In 1982, David Marr’s posthumous publication “Vision” (Marr 1982) presented a

pivotal work in computational neurosciences. By carefully detailing how percep-

tion can be defined in terms of computational, algorithmic, and implementational

processes (notoriously, his three “levels of analysis”), Marr developed the idea

that the way we perceive the world can be formalized by a set of functional rules

following the computational logic in the physical world. Here, “Neuromorphic net-

works” refers to biologically plausible artificial neural networks, that is, algorithms

functionally and structurally inspired by biological models. Perception is therefore

a central theme in the creation of such networks, as modeling biomimetic neural

circuits implies a body of knowledge on how neural signals effectively translates

sensory-motor information with predictive power. Accordingly, neuromorphic net-

works could not be totally envisioned without interactions to the physical world,

and hardware implementation with feedback loops, as I will develop in the last

chapter, should be the final design objective of such networks. Simulating and,

27

3. Neuromorphic Networks 3.1. Paradigm

ultimately, predicting physical features, or physiological signals, will confirm the

model.

To design biologically plausible networks, one very important concept to high-

light is the notion of percept, the mental objects our brain relentlessly produce

from sensory information (even fragmentary, see Fig. 3.1). A perception, as a

mode of presentation of a particular stimulus, does not arise from the brain, but

from a dedicated organ: vision, for example, is acquired via electric signals prop-

agating from the retinal ganglion cells to neuronal cells in the visual cortex, and

visual information is processed in parallel cortical circuits by specialized networks

(identifying contrasts, edges, colors...), eventually linking vision to decision and

interactions with the physical world (Luo 2016).

Perception is therefore an active process and in neurobiology, behavioral as-

says are constantly designed to reveal how behavior and decision-making patterns

relate to neuronal activity. A well-known experiment (Luo 2016) consists in pre-

senting moving dots to a monkey and monitoring the saccades (the motion of

the eye fixation point) to correlate the task variables to his behavioral response.

Classically, electrodes (Niell and Stryker 2008) were also implanted in the brain,

so as to record and perturb the neuronal activity, in order to further investi-

gate how it relates to behavior. An important result is that the perturbations

induced in the brain did influence the monkey’s behavior, advancing the interpre-

tation of the activity (linking neuronal dynamics and behavior) from correlation

to causation. The consensus is that neurons in the visual cortex have preferred

orientations (Swindale 1998), and that their firing rates can predict the direction

of the sensory information. Recently, more advanced techniques, such as optoge-

netics, utilize genetically modified protein indicators to express light-sensitivity

in targeted neurons. Perturbations may be introduced as well to take control

over the electrical activity of the neuronal circuits. This new class of sensors and

actuators represent a powerful tool set to study the brain (Aoki et al. 2017).

In machine learning, new types of artificial neural networks are constantly de-

signed as well. However, the computations involved in such circuits usually do

not take into account the specifics of an environment. Those networks are created

ad hoc, processing large streams of data to obtain a statistical model that will be

used to achieve a given task. This may be useful for industrial and commercial

28

3. Neuromorphic Networks 3.1. Paradigm

Figure 3.1 A 3D variation of the Kanizsa triangle, an illusory contour first de-

scribed by the Italian psychologist Gaetano Kanizsa, and covered in David Marr’s

Vision work, emphasize how we perceive information. Here, a tetrahedron can

be visually inferred by both the negative space created by the troncated black

dots and the contrasted background, telling us that we are biologically inclined

to make sense of our environment, our neural cells compensating for any lack of

sensory information.

applications, but does not represent an ideal solution to achieve general-purpose

intelligence. Instead, learning in biological neural networks presupposes a struc-

tured collection of cells in continuous interaction with the physical world. This

is where the core concept of “neuromorphic networks” takes shape: an artificial

neural network inspired by biological systems and principles.

Indubitably, artificial neural networks are promising for developing human-

centered applications. However, the objective of this thesis is not only to introduce

novel applications, but also to provide a theoretical background on how intelli-

gence, or at the very least decision-making processes, may arise from fundamental

and functional components that may be modeled after the brain. Historically,

machine learning core principles have been theorized on a biologically plausible

brain architecture. However, lately, bioinspired approaches have been facing some

criticism: first, there are now countless examples of implementation that clearly

diverge from a biologically valid model and yet, impressive performances in solving

a wide range of problems have been reported in the literature on an almost daily

basis, showing that there might be different types of intelligence required for differ-

ent types of task, and the research in the field does not burden itself anymore with

its neurophysiological roots, at the notable (and expected) exception of the neu-

29

3. Neuromorphic Networks 3.1. Paradigm

Figure 3.2 Diagram of a neuromorphic network with prediction and classification.

rosciences (Guerguiev et al. 2017). Second, to this day, artificial neural networks

are still struggling to explain a realistic brain model. The two most common dif-

ficulties in neuroscience to validate those computational models are the following:

the first difficulty is to accurately simulate the activity of large cortical networks,

which has yet to be done. The second difficulty is that an accurate simulation

will not suffice: the results need to be interpreted. At present, the artificial neural

network model is often used as a “black box” (Sussillo and Barak 2013) to com-

pute a stimulus-response mechanism: the internal functions are not accounted

for and it is hard, then, to figure out exactly how it has learned to do tasks.

Without a comprehensive framework to interpret data, our understanding of the

most fundamental principles of functional connectivity in the brain will remain

opaque (Yang et al. 2017). On the opposite side, if artificial neural networks can

be proved to be a solid representation of how the brain work, effectively validating

the statistical models, they will provide us with a novel theoretical background.

In return, more powerful applications, biologically compatible, will be developed,

opening entirely new perspectives in the field of brain-computer interfaces.

Here, I propose to design a Neural Network to model and test the hypothe-

sis that behavior can be modeled based on predicted outcomes. Classification

and Regression will be used as complementary approaches to attempt to mimic

biological models’ learning.

30

3. Neuromorphic Networks 3.1. Paradigm

...

Hidden Layer 1

Input

Hidden Layer 2

Ouput

...

...

... ...

...

...

n

n

n

Hidden Layer 3

Figure 3.3 Functional structure of a stacked architecture. The output, evaluated

to compute the network error, is passed through the network’s layer.

31

3. Neuromorphic Networks 3.2. Modeling Neural Circuits for Prediction

3.2. Modeling Neural Circuits for Prediction

The custom artificial neural network should admits a series of inputs, for in-

stance a sequence of keystrokes or images, while any signals and possible be-

havioral components can be added as targets. The initial inputs yield artificial

outputs, corresponding to the signal components and behavioral components of

the network. The neural net aims to minimize the objective function such that

the network output error is:
∂E

∂wjk

= δkaj

where:
∂E

∂wjk

represents the derivative of the error, aj represents the output of node j from the

layer l to the output layer l+1 and:

δk = (ak − tk)g
′
k(zk)

where

(ak − tk)

compares the targets ak (the recorded neural activity in different regions) to the

corresponding outputs, where:

g′k(zk)

is the derivative of the activation function in the output layer l+1, and where zk

is the input to node j in layer l. The final output layer represents the behavioral

component.

The architecture is designed as follows: a LSTM-based neural network, referred

as a predictor, predicts based on the task variables only. A multilayer clas-

sifier then identifies possible actions over the predictions. This necessitates a

training in two steps, as summarized in Fig. 3.5. First, the main input, such as

the task variables, is passed sequentially (over time) through the network, along

with auxiliary inputs, to help the optimizer computing the objective function.

The weights and biases matrices may be computed during the training phase over

thousands of trials to set the predictor. Once this initial training has been com-

pleted, each target is converted to a main input, and the desired outputs, for

32

3. Neuromorphic Networks 3.2. Modeling Neural Circuits for Prediction

instance a behavioral component, is set as targets. It is important to note here

that the structure of the hidden layers should be loose and organic, as we will see

in detail in the next section. Similar in that to echo-state networks, where the

output weights, which drive the change of the adaptation, are reused to produce

new outputs (Schiller UD 2005), this type of implementation represents a more

flexible approach for training over complex time-series, as recent research work in

biologically inspired computation, subsumed under the name of “Reservoir Com-

puting”, have shown (Y. Paquot 2012). The spatial configuration follows the

biological model, where information streams from the retina pathways, engage in

LGN layers to the primary visual cortex, then from the visual cortex to other

highly specialized areas. Those areas support various features of the sensory in-

put, such as, in the case of the visual cortex, form and color, or motion and depth

(Luo 2016). In a neuromorphic network, the behavioral layer returns the final

output, a vector representing the network decision over time. This implementa-

tion allows to predict the model’s response given a specific stimulus, a property

inherent to recurrent neural networks (Hammer et al. 2009)), and this type of ar-

chitecture may be structurally more representative of the biological model’s cortex

(Spoerer et al. 2017).

One method, to explore further the mechanism by which the network performs

the tasks, consists in linearizing the dynamics of the system, following a top-down

approach, in a reverse engineering fashion. However, because these networks are

trained and not designed following a number of constraining assumptions, the

long-term goal of developing neural networks is to achieve a bottom-up design

where better insight is gained from experimental data instead of being provided

solely by theory-bounded methods. My central hypothesis is that, if artificial

neural networks are essentially data-driven constructs and can learn most of the

dynamics present in the data, the representation of the data must be computed a

posteriori. Yet, after being trained, the phase space of the network, which repre-

sents the internal states of the network, must be interpreted with linear methods,

as the total number of parameters (weights and biases) in multilayer neural nets

can be extremely large for the data sets we are considering. A promising method

to study such dynamical elements in the phase space of our trained networks will

be to approximate the full nonlinear system with a succession of more easily inter-

33

3. Neuromorphic Networks 3.3. Biologically plausible neural network

pretable linear systems defined by fixed and slow points (Sussillo, D. and Barak,

O., 2013).

3.3. Biologically plausible neural network

The bio-inspired artificial neural net described in this section represents an el-

ementary mapping of the structure and functions of several regions of the brain.

Here, the structure refers to the spatial connectivity between different areas, as

mapped from the MSDL atlas 3. The functions of each region are determined by

the functional connectivity between those same regions. Otherwise put, it repre-

sents the activation of population of neurons over time, and unlike the structural

connectivity, the functional connectivity may describe activation patterns occur-

ring in physically unrelated areas. The correlation matrices were extracted from

the signals in the ADHD200 dataset 4. 30 participants were selected to build a

robust connectivity matrix, Fig. 3.4.

Spatially, the neural net is designed to map the connections of large brain

regions. The net can be expanded or re-configured with other regions, depending

on the task and experimental conditions.

3.4. Structure and Function

The structural and functional connectivity can be extracted from correlation

plots or maps, providing measures of the connection between population of neu-

rons, and helping to analyze how the brain regions are interconnected. The

methods to compute those measures may differ according to the experimental

conditions, preferred toolboxes and computational models, but they are usually

a conjunction of derived data from neural recording for the functional analysis

part (for instance by calculating Pearson’s correlations over time or testing differ-

ent permutations between groups of neurons against random networks with the

BRAPH toolbox (Mijalkov et al. 2017) and anatomical work, imaging physical

routes between neurons from one region to another. Over the last decades, several

atlases have been proposed to establish the topology and connectivity of mammals

brain (Hashikawa Atlas, Allen Human Brain Atlas, The Brain/MINDS 3D digital

34

3. Neuromorphic Networks 3.4. Structure and Function

L A
ud

R A
ud

Str
iat

e
L D

MN
Med

 DMN
Fro

nt
DMN

R D
MN

Occ
po

st
Moto

r
R D

LP
FC

R F
ron

t p
ol

R P
ar

R P
os

t T
em

p
Ba

sa
l

L P
ar

L D
LP

FC
L F

ron
t p

ol
L I

PS
R I

PS
L L

OCVis
R L

OC
D AC

C
V A

CC
R A

 In
s

L S
TS

R S
TS

L T
PJ

Bro
ca

Su
p F

ron
t S

R T
PJ

R P
ars

 Op
Ce

reb
Dors

 PC
C

L I
nsCin
g

R I
ns

L A
nt

IPS
R A

nt
IPS

L Aud
R Aud

Striate
L DMN

Med DMN
Front DMN

R DMN
Occ post

Motor
R DLPFC

R Front pol
R Par

R Post Temp
Basal
L Par

L DLPFC
L Front pol

L IPS
R IPS

L LOC
Vis

R LOC
D ACC
V ACC

R A Ins
L STS
R STS
L TPJ

Broca
Sup Front S

R TPJ
R Pars Op

Cereb
Dors PCC

L Ins
Cing
R Ins

L Ant IPS
R Ant IPS

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.4 Pictured is the connectivity matrix from the ADHD dataset, with the

atlas data from MSDL for the labelling. The rows and columns of the matrix rep-

resent the extracted regions. The gradient bar indicates the normalized strength

of the correlations. This matrix will help define the connections between each

region in the neuromorphic network.

35

3. Neuromorphic Networks 3.4. Structure and Function

x

z

y

ŷ

^

^Predictor

zClassi�er

Main Input

Aux Input
y

Output

Predictions

Classes

OutputAux Input

Main Input

Figure 3.5 Diagram of the predictor/classifier network.

36

3. Neuromorphic Networks 3.4. Structure and Function

L R L R

-0.77

-0.38

0

0.38

0.77

Figure 3.6 Brain Atlas extracted from the MSDL data set.

marmoset brain atlas to name a few). For this thesis, I used the MSDL/ADHD200

public dataset to design the first version of a bio-inspired artificial neural network.

The MSDL atlas and ADHD200 dataset presents several advantages, being well-

documented and open to public, they can be processed in python relatively easily

thanks to the Nilearn module.

In the following paragraphs, I will describe the bio-inspired neural network in

details, also shown in Fig. 3.7 as a preliminary study in SIMULINK. On the

method of the implementation, the network must be designed with its two core

components in mind: structural and functional connectivity mapped after the

biological brain. After designing the experimental protocol, the arrangement of

those meta-parameters must be taken in consideration. However, they offer a

practical advantage over conventional artificial neural networks designs, as any

arrangement can be easily conceived and tested depending on the experimental

requirements.

Spatially, the neural net can been designed with the connections established by

the MSDL atlas as a reference point: Fig. 3.6 shows the connectivity map based

on the published data. The extracted map determines the spatial arrangement of

the neuromorphic layers. A totally different arrangement may be used depending

on the desired output. For instance, audio signal processing may be treated by

adding two layers that represent the mapping of the L/R Aud connections. This

37

3. Neuromorphic Networks 3.5. Reduction, Simulation and Prediction.

constitutes the basic “blueprint” for the neuromorphic network architecture.

The rows and columns of the matrix in fig. 3.4 represent individual cortical areas.

The gradient bar represents the estimate of the central tendency for the correlation

coefficients. Only a few regions may be selected, for instance the parietal, DMN,

occipital and frontal lobes. Those regions generally correspond to the treatment

of information with a high selectivity for a specific task, (e.g. the visual cortices

have high selectivity for orientation (Solomon and Rosa 2014) (Solomon and Rosa

2014)). Functionally, this connectivity matrix is used to define the loss weights

for each layer. Indeed, as we have seen, the neural net aims to minimize the

objective function of its hidden and output layers. The loss weights determine

the loss contribution (after backpropagation) to different outputs. As the final

loss for the model is the weighted sum of all the sub-losses, using the correlation

coefficients as weight coefficients allows to fine-tune the network according to the

biological model. The weights for each layer will be updated differently, based on

the functional connectivity extracted from the ADHD dataset. For example, the

loss weights should be low for the connections between the R Aud layer and the

L DMN layer (as shown in the matrix 3.4), while obviously very high between R

Aud and L Aud, strengthening the connections between the corresponding layers

in the artificial model.

Finally, the neural net has been designed to capture the hidden dynamics of the

recorded regions with sparse data, so as to reveal the encoding of task variables,

despite the high variability of responses within the data set. As explained, on the

data input structure, the neuromorphic network admits two categories of inputs.

The first class should be been designed specifically for the predictor (e.g. the task

variable and corresponding signals), and the second class for the classifier (e.g.

the behavior and corresponding signals). The final output layer represents the

result, or the observable variables derived from the task.

3.5. Reduction, Simulation and Prediction.

To prototype and test a neuromorphic network in ideal conditions, I first de-

signed a randomized dataset for each layer. This “noise” dataset represent the

task variables, the recorded signals, and a behavior component, and is a conve-

38

3. Neuromorphic Networks 3.5. Reduction, Simulation and Prediction.

Bio-inspired Neural Circuit

TOP-LEVEL
Region 1

Region 2

Region 3

Region 4

+Delays 1

W

b

Delays

W

TOP-LEVEL

Region

Region

TOP-LEVEL

1
a

1
ntransfer function ReLU

bounded 0-inf

Input
Output

Neural Activity 2

Neural Activity 1
Neural Activity 1

Neural Activity 2

Neural Activity 3

Neural Activity 3

Neural Activity 3

Neural Activity 3

Neural Activity 1 or 2

Delays 3

W

2

Bias

+

W

W

W

Weights 1

Weights 2

Weights 3

Figure 3.7 The bio-inspired neural circuit shown above was generated with

SIMULINK. There are three levels: the top-level refers to the overall structure

of the artificial network. In this example, one input (the task-variable) and three

targets (the neural data) can be passed through the network, i.e. through Region

1,2,3,4, each representing, for instance, a visual cortex area. Each output for each

region may be fed back for memory-based tasks. The second level concerns the

functional component of the network: signals are integrated to compute weights

and biases of the network before backpropagation. The lowest level simply de-

scribes the type of activation function, here, a ReLU function.

39

3. Neuromorphic Networks 3.5. Reduction, Simulation and Prediction.

nient way to test the network without worrying about missing values, data errors

3.8.

Mocanu et al recently published a paper 5 about the scalable training of artificial

neural networks. Their objective was to reduce quadratically the number of pa-

rameters, without sacrificing to quality. For example, RNN have a square number

of connections compared to their neurons. This characteristic is inherent to their

structure. However, a sparse topology, which is by default for biological models,

is built on a very different paradigm: small worldness. This concept, developed in

graph theory (and retrieved in many human construct and natural phenomenon),

proposes that small world network nodes can be reached from every other node

by a small number of steps. As such, they follow a power law distribution: they

are scale-free. As the number of connections of a node to other nodes increases,

the distribution of its degree decreases. Otherwise said, in that configuration, a

few nodes become “connection hubs”, with a large amount of connections to other

nodes with very few connections. The advantage of those small-world networks,

as opposed to random networks, is, as we saw it, scalability. The main issue is that

ANNs have been design with opposite paradigms in mind (a task-dependent struc-

ture), and topological features are usually a lesser concern: as stated by Mocanu

et al., their weights distribution tend to drop to 0. In my functional-structural

approach, inspired by biological networks, I noticed that the newly conceived net-

work does remove some weights by setting some weight layer matrices to 0. This

feature is obviously a corollary of the structural aspect of the approach: because

several routes are possible for the information to flow from one layer to another,

the number of parameters greatly decreases, along with the computation time.

The step function in the behavioral layer was chosen based on the binary type

of data fed to this layer (noise, left or right choice); the cross-entropy function,

which is employed for logistic regression, is above all for classification problems

(as the 12AX task developed later to simulate the prototype is one of them); all

those functions are responsible for minimizing the weights of some layers, and

especially in the behavioral-output layer. To illustrate this argument, Fig. 3.9

shows some comparison between functionalities. On the left subplot, the ReLU

function was applied to all layers and RMSE was used for the cost function. The

weights are well distributed across the layers but the Pearson value p indicates a

40

3. Neuromorphic Networks 3.5. Reduction, Simulation and Prediction.

Figure 3.8 Noise matrix for the BioNN design testing.

41

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

negative correlation (low score) between the raw EEG signal and its prediction.

In the middle, the step function in the behavioral layer did nullify some of its

weight matrices. However, the matrices correlations are still negative. On the

right, cross-entropy is finally introduced as the objective function: the final layers

matrices indicate weights close to 0 but the p value is now clearly positive. Those

pretests are consistent across multiple trials.

3.6. “BioNN”: a Custom Neural Network in MAT-

LAB

Hassoun, in his “Fundamentals of Neural Networks” 6 define the solution to an

algorithmic problem as a set of requirements for a certain number of steps (time

complexity), memory size (space complexity) and algorithm length (Kolmogorov

complexity). In a neural net, it is equivalent to the number of computations, num-

ber of units, and number of weights (or degrees of freedom) where the algorithm

is stored. Obviously, the objective here is to design a neural net that minimizes

the complexity for each. Functional Programming (subsequently abbreviated FP)

is generally considered as best suited for writing machine learning code. Indeed,

machine learning applications require a heavy use of matrices manipulation; par-

allelisation of the processes (a core feature of FP languages), although not within

the scope of this thesis, leverages the power of GPU computing for faster training.

FP languages, such as Python, R, and to a lesser extent Scala, allow to write con-

cise code, relying on scientific libraries and packages to call functions and perform

operations generally in a vectorized fashion i.e. without the use of a loop or con-

ditional statements. As of today, Python is probably the most popular language

for machine learning, due to its open-source core, with a large and dedicated com-

munity, fostered by technology hubs around the world, and granted of dozen of

powerful scientific libraries. Google’s Tensorflow and the Keras API created by

François Chollet, for instance, were used for some of the predictive applications

developed in this research work, as mentionned in the next chapter. MATLAB,

as a matrix-oriented language7, is especially suited, albeit not free (commercial

IDE licence, not open-source)- a point of friction often heard in the computer

science community. Yet, largely spread in the academic world, its integrated IDE

42

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.9 On the left, the ReLU function was applied to all layers and RMSE

was used for the cost function. The weights are well distributed across the layers

but the Pearson value indicates a negative correlation (low score) between the raw

EEG signal and its prediction. In the middle, the step function in the behavioral

layer nullify its weights matrix. However, the matrices correlations are still nega-

tive. On the right, cross-entropy is introduced as the objective function: the final

layers matrices indicates weights close to 0 but the p value is now clearly positive.

Those tests are consistent across multiple trials (>10).

43

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.10 Depicted left, the original signal, depicted right, the predicted signal.

The network was trained on previous tasks, but was never presented a signal, only

the same sequence of characters the participant was shown on screen.

44

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

offers a huge and robust set of mathematical tools, to build and analyze complex

projects. For the sake of simplicity and brevity, we will use here the MATLAB

language and its Neural Network Toolbox (machine learning package) to convey

the main concepts and ideas behind the build of a simple bio-inspired neural net-

work, namely “BioNN”. We will also explain the core properties of the functions

imported from the package, a necessary endeavor to understand the granular as-

pects of the program processes, so that more sophisticated tasks may be built

upon those general guidelines. The code is also accompanied by diagrams, that

follow the build step-by-step. A more sophisticated model will then be developed

with TensorFlow/Keras (Python) in the evaluation part, to leverage the full po-

tential of the correlation matrices and brain connectivity maps extracted from the

MSDL and ADHD dataset.

Below are a few introductory steps:

Create a network:

First, per the language documentation, an obvious ’network’ function can be

called to return a neural network with the following properties defined:

• numInputs - Number of inputs

• numLayers - Number of layers

• biasConnect - numLayers-by-1 Boolean vector, zeros.

• inputConnect - numLayers-by-numInputs Boolean matrix, zeros.

• layerConnect - numLayers-by-numLayers Boolean matrix, zeros.

• outputConnect - 1-by-numLayers Boolean vector, zeros.

The network starting point is a class of functions without any input/ouput 3.11.

45

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.11 Functional programming of the bio-inspired architecture: create the

first node.

net = network;

net.name = 'BioNN';

Next, the number of inputs is defined as follow: here, only one input, that will

represent a 8 states cell e.g. 8 possible choices between 8 alphanumeric characters

(12AX task, or an image, a text). What is defined as “input to the network” is

the task variables.

net.numInputs = 1;

The number of layers is then defined according to some elementary anatomical

mapping, e.g. each layer may correspond to large areas following the 10-20 system

(in the case of EEG recording) described earlier. Here, the 3 layers will refer to

Frontal, Parietal, Temporal (3 regions) and a behavioral component that spatially

receive all the signals from the previous layers (output layer). The behavioral

layer can be considered as the interface to the real world. In the 12AX task,

46

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.12 Functional programming of the bio-inspired architecture: create the

first nodes.

this component registers the user’s decision (left or right keystroke input). The

Frontal, Parietal and Temporal layers are the network targets. The network will

aim to minimize the error between those targets, for instance raw EEG data, and

the produced estimates. Once the network is trained, the targets can be removed;

the network will be able to produce artificial outputs, for instance neural data,

with only the task variables as input. The network will stimulate its own “neural”

data and can be used for other tasks. Fig 3.12

layer_count = 4;

net.numLayers = layer_count;

47

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.13 Functional programming of the bio-inspired architecture: first con-

nections to outputs.

Define the connections:

Each layer has structurally at least 2 entry points and 1 exit point: 2 for the

weights and biases and 1 for the output. The connections between layers, to biases

and from outputs, are all defined by 2D Boolean matrices. Fig 3.13.

net.biasConnect = ones(layer_count,1);

net.outputConnect = ones(1,layer_count);

48

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Connect the layers

Regarding the layers, in rows (matrix first index) are the layer indices for the

incoming connection; in column (second index) are the layer indices for the out-

going connection. Fig. 3.14.

%Connect Layers From L1 to L2

net.layerConnect(2,1) = 1;

%Connect Layers From L2 to L3

net.layerConnect(3,2) = 1;

%Connect Layers From L3 to L4

net.layerConnect(4,3) = 1;

Inputs process functions:

Each function can be customized, depending on the type of task e.g. classifi-

cation problems (involving binary choices) generally require step-function in the

output layer; here, the default functions including in the nn packages are shown

for the example. ’mapminmax’ normalize the values between -1 and 1 by default;

however, it is generally advised to normalize the input values beforehand (with

norm(), rescale(),...) so that the functional boundaries are clearly defined and

controlled by the user.

net.inputs{:}.processFcns = {'mapminmax'};

At present, the feedback input matrix should be considered as a critical piece for

a bio-inspired architecture and be set to true. When the signals are fed-back to the

layers, some recurrent dynamics can be captured by the network, a property that

is associated to task memorization processes. Each hidden state (non-observable

49

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

information) at time t is modified by a corresponding weight matrix: when the

information contained in those states is looped over the network process, the next

hidden state contains partial information regarding the previous states. Besides,

the network should be trained in feed-forward fashion, by setting its outputs to

’open’: this step in the network configuration allows the network to be supervised

during the training. The targets will be removed in a second step, as explained

earlier.

net.outputs{:}.feedbackInput = 1;

net.outputs{:}.feedbackMode = 'open';

Normalize Input:

net.inputs{1}.name = 'Task Variable';

net.inputs{2}.name = 'Frontal Region';

net.inputs{3}.name = 'Parietal Region';

net.inputs{4}.name = 'Temporal Region';

net.inputs{5}.name = 'Behavioral Component';

The input preprocesses may be refined if need, although this step is not neces-

sary if the data have been normalized as advised.

net.inputs{1}.processParams{1}.ymin = 0;

net.inputs{1}.processParams{1}.ymax = 1;

Connect the layers:

The layers can now be interconnected, see Fig. 3.15. In a biological model,

each anatomical region “project” to another. Some connections are sparse, other

50

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.14 Functional programming of the bio-inspired architecture: connect the

layers.

51

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

are dense. A basic routing can be done via inputConnect().

%row=Target-Layer -> col=Input:

%Task Variable = 1,

%Target-Layers:

%Signal 1 = 2, Signal 2 = 3, Signal 3 = 4 and Behavioral = 5

%Layer 1 to Task Variable and Signal 1

net.inputConnect(1,1) = 1;

net.inputConnect(1,2) = 1;

%Layer 2 to Signal 2

net.inputConnect(2,3) = 1;

%Layer 3 to Signal 3

net.inputConnect(3,4) = 1;

%Layer 4 to Behavioral

net.inputConnect(4,5) = 1;

Customize delays and weights:

Finally, delays are entered. Feedback delays may follow a specific sequence, for

instance Frontal-Temporal/Occipital-Behavioral.

52

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.15 Functional programming of the bio-inspired architecture: overview.

53

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

%net.LayerWeights{2,1}.delays = 1;

%net.LayerWeights{3,2}.delays = 1;

%net.LayerWeights{4,3}.delays = 10;

%net.inputWeights{2,2}.delays = 1;

%net.inputWeights{3,2}.delays = 1;

%net.inputWeights{4,2}.delays = 10;

net.outputs{1}.feedbackDelay = 1;

net.outputs{2}.feedbackDelay = 2;

net.outputs{3}.feedbackDelay = 2;

net.outputs{4}.feedbackDelay = 3;

Define the activation functions:

Although there is no formal proof that such functions actually perform complex

computations in the brain, activation functions are also critical to pass values from

one node to another. Sigmoid can be used to simulate the firing rate of neurons,

with the function ceiling as the maximum rate. Above a certain threshold (the

function ceiling or asymptote), neuron-units are deactivated. Sigmoid functions

output a finer probabilistic result: as weighted values pass through the functions,

they follow a logistic distribution, assuring non-binary outputs. The sigmoid, Fig.

3.16, can be defined as:

f ′
Sig(x) =

1

1 + e−x

ReLU (Rectified Linear Unit, Fig. 3.17) functions are sometimes preferred for

a network that requires a faster convergence, as the positive part of the function

is updated more rapidly during training due to its linearity:

f ′
ReLU (x) =

{
0 for x < 0

1 for x ≥ 0

54

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.16 Functional programming of the bio-inspired architecture: ReLU ac-

tivation function.

Figure 3.17 Functional programming of the bio-inspired architecture: Sigmoid

function.

55

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

Figure 3.18 Functional programming of the bio-inspired architecture: objective

function.

net.layers{:}.transferFcn = 'poslin';

net.layers{4}.transferFcn = 'hardlim'; %step function

net.layerWeights{:}.learnFcn = 'learngdm';

As seen previously, the objective function, Fig. 3.18, also known as “loss

function” or “cost function” (mainly used when referring to the Mean Squared

Error, as the MSE is applied to the entire dataset) calculates the error between

the outputs and the targets. Here, we apply a cross-entropy function, as it suits

well classification problems with probabilistic activation functions in the output

layer such as the ’hardlim’ step function:

∑
i

H(y′i, yi)

where y′i is the probability of the estimated value for class i and y′i is the true

probability of the value. In other words, the cross-entropy function measures the

minimum average binary encoding size for each data point, when following the

true probability distribution and when following the estimated one. The resulted

value is an indicator of how good the model is.

56

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

net.performFcn = 'crossentropy';

net.performParam.regularization = 0.1;

net.performParam.normalization = 'none';

An adaptive function may be chosen among those; particularly, the Hebb

function, that follows D. Hebb’s theory that “cells that fire together wire together”
8. This function presents the advantage to link structure and function, a desirable

goal for a “neuromorphic” network.

%Hebb with decay weight learning rule.

net.adaptFcn = 'learnhd';

%Conscience bias learning function

%net.adaptFcn = 'learncon';

%Gradient descent weight/bias learning function

%net.adaptFcn = 'learngd';

%LVQ 2.1 weight learning function

%net.adaptFcn = 'learnlv2';

%Perceptron weight/bias learning function

%net.adaptFcn = 'learnpn';

%Self-organizing map weight learning function

%net.adaptFcn = 'learnsom';

As detailed in the previous chapter, backpropagation is applied, and although

it may not have been particularly relevant w.r.t neuroscience literature, some more

recent research hints in that direction, for example published in the neuroscience

journal Cell this year9. The Scaled Conjugate Gradient (SCG) is a fast, robust

57

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

gradient descent as it does not perform line search at each iteration 10, but rather

use a step scaling mechanism especially suited for supervised learning, and detailed

by Møller in his initial paper.

%Scaled conjugate gradient backpropagation

net.trainFcn = 'trainscg';

epoch=100; %number of planned training steps

net.trainParam.epochs = epoch;

Define the sampling:

The sampling is set as ’time’ since the data are time series.

net.divideMode = 'time';

net.divideFcn = 'dividerand';

net.divideParam.trainRatio = 60/100;

net.divideParam.valRatio = 20/100;

net.divideParam.testRatio = 20/100;

Define the final plots and diagram:

Finally, the regression values R for the training, validation and testing sets

should be plotted. They are considered as a reliable indicator of the network

fitting between the outputs and the targets: a value too close to 1 may indicate

overfitting (the network may not be able to generalize over unseen data) while a

value too close to 0 shows under-fitting (the network did not capture the dynamics

of the data).

58

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

net.plotFcns = {'plotregression'};

Diagram Labels:

net.layers{1}.name = 'Signal 1 Layer';

net.layers{2}.name = 'Signal 2 Layer';

net.layers{3}.name = 'Signal 3 Layer';

net.layers{4}.name = 'Behavioral Layer';

Training and results:

The training is done over the preprocessed Input, Signals and Behavioral dataset.

net = init(net);

[net, tr] = train(net,{[Input_cell],...

[Signal1_cell],[Signal2_cell],[Signal3_cell],...

[Behavioral_cell]},,...

{[Signal1_cell],[Signal2_cell],[Signal3_cell],...

[Behavioral_cell]});

save('net','net')

The final weight matrices can also be plotted for reference, as plotted on 3.10.

59

3. Neuromorphic Networks 3.6. “BioNN”: a Custom Neural Network in MATLAB

view(net)

%Plot Weights

W_i_weight=net.IW;

figure,

imshow(imresize(normalize(W_i_weight{1,2}),[800,800],...

'nearest'),[])

colormap parula

Notes

1 -neuro, E.Littré, public domain, https://gallica.bnf.fr/ark:/12148/bpt6k58019485/f254

2 -morphé, E.Littré, public domain, https://gallica.bnf.fr/ark:/12148/bpt6k5460034d/f638.

Littré is one of the oldest etymology book (1863–77), providing thousands of Ancient Greek

and Latin roots. Interestingly, when the last edition was published in 1877, Camillo Golgi

had just discovered (1873) a revolutionary silver staining technique to characterize nerve

cells, later famously known as the Golgi method, but the wording “neuron” had yet to be

invented. The “neuron theory” was established later, in the 1950s, and the term “neuron”

became the modern acception for “nerve cells”.

3 “Multi-subject dictionary learning to segment an atlas of brain spontaneous activity”,

Varoquaux et al, Information processing in medical imaging 2011, p 562-573

4 “The ADHD-200 Sample is a grassroots initiative, dedicated to accelerating the scientific

community’s understanding of the neural basis of ADHD through the implementation of

open data-sharing and discovery-based science.” http://fcon1000.projects.nitrc.org/indi/adhd200/

5 https://www.nature.com/articles/s41467-018-04316-3

6 https://books.google.co.jp/books/about/FundamentalsofArtificialNeuralNetwor.html?id =

Otk32Y 3QkxQCrediresc = y

7 https://www.mathworks.com/help/matlab/language-fundamentals.html

8 Donald Hebb in his 1949 book: “The Organization of Behavior”, Hebb, D.O. (1949). New

York: Wiley Sons.

9 https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(19)30012-9

10 Neural Networks, Vol. 6, 1993, pp. 525–533

60

Chapter 4

Neuromorphic Networks: a Use

Case

4.1. Design of the Experiment

Regarding the goal of the experiment, the plan was to run a simulation where

neurosignals can be used to train a biologically plausible network for task automa-

tion. The central hypothesis was that, if artificial neural networks are essentially

data-driven constructs and can learn most of the dynamics present in the data, a

biologically accurate representation of the data will retrieve the neural dynamics,

model the task and therefore may facilitate knowledge transfer by humans using

neural recording. To test this, we aimed to design a task-dependent activity and

record neural data to train and simulate the bio-inspired neural net.

The electrodes were placed according to the 10–20 system nomenclature (Fig. 4.2),

highlighted in the previous chapter. Each electrode is connected on a pin (code in

parenthesis) to an Arduino Cython board (16 channels with the Daisy module),

which includes an on-board RFDuino radio module connected to the workstation.

The signals are collected via UDP at 128Hz.

• Channel 1(N1P) - Fp1 - Pre-frontal (planning, decision-making)

• Channel 2(N2P) - Fp2 - Pre-frontal (planning, decision-making)

• Channel 3(N3P) - C3 - Central (no central lobe per say: partially integrated

activity of contiguous lobes, user dependent)

• Channel 4(N4P) - C4 - Central (no central lobe per say: partially integrated

activity of contiguous lobes, user dependent)

• Channel 5(N5P) - P7 - SIMPRED (language processing)

61

4. Neuromorphic Networks: a Use Case 4.1. Design of the Experiment

Figure 4.1 EEG-based neural interface and machine learning algorithm for the

12AX task.

62

4. Neuromorphic Networks: a Use Case 4.1. Design of the Experiment

Figure 4.2 The 10-20 system, describing the positioning of EEG electrodes relative

to brain anatomical regions. Image source: OpenBCI (wwww.openbci.com).

63

4. Neuromorphic Networks: a Use Case 4.1. Design of the Experiment

Figure 4.3 The OpenBCI Interface.

• Channel 6(N6P) - P8 - SIMPRED (language processing)

• Channel 7(N7P) - O1 - Occipital (visual processing)

• Channel 8(N8P) - O2 - Occipital (visual processing)

• Channel 9(BN1P) - F7 - Frontal (action, body control such as ocular move-

ment, speech)

• Channel 10(BN2P) - F8 - Frontal (action, body control such as ocular move-

ment, speech)

• Channel 11(BN3P) - F3 - Frontal (action, body control such as ocular move-

ment, speech)

• Channel 12(BN4P) - F4 - Frontal (action, body control such as ocular move-

ment, speech)

• Channel 13(BN5P) - T7 - Temporal (visual memory, emotion associations)

64

4. Neuromorphic Networks: a Use Case 4.1. Design of the Experiment

Figure 4.4 The OpenBCI electrodes placement (image source: www.openbci.com).

• Channel 14(BN6P) - T8 - Temporal (visual memory, emotion associations)

• Channel 15(BN7P) - P3 - SIMPRED (language processing)

• Channel 16(BN8P) - P4 - SIMPRED (language processing)

Here, the preferred method for recording was EEG for its non-invasiveness and

accessibility. In that, the OpenBCI toolkit represented a reasonable, portable

solution, being open-source, easily configurable and a relatively inexpensive yet

seemingly reliable EEG recording device. Alternative tests may be conducted in

65

4. Neuromorphic Networks: a Use Case 4.1. Design of the Experiment

Figure 4.5 Sample of the heat map of the active signals while performing the task.

Each circle represents an electrode; warmer color indicates higher signal intensity.

the future on a highly reliable and reputable source of neurosignal data, such as

vim-1 (Lescroart et al. 2011), a fMRI dataset of human visual areas in response to

natural images. However, EEG-recording was the preferred setup for this experi-

ment, as it allows to freely design the experiment, as opposed to using a database

with predefined experimental conditions. An intermediate solution was to use

fNIR, a near-infrared spectroscopy system, recording oxygen concentration levels

in the brain, and presenting the same temporal accuracy as EEG but with a bet-

ter spatial resolution, similar in that to fMRI. A peak in the amount of scientific

publications using fNIR imaging has surged in recent years, along with the release

of commercial, portable versions, making the technology more attractive.

66

4. Neuromorphic Networks: a Use Case 4.2. Method: BioNN, Structure and Function

4.2. Method: BioNN, Structure and Function

As described in length in the previous chapter, a neuromorphic network “BioNN”

has been designed, here using Python’s Keras functional API to Tensorflow 1 for

the implementation part, so as to keep it free and open-source. Keras is a pow-

erful deep learning library, specifically designed for research. The neuromorphic

network requirements were structural and functional. Here, the structure refers

to the spatial connectivity between different regions. The functions of each re-

gion are determined by the functional connectivity between those same regions.

In Fig. 4.6, a selected connectivity map, based on the MSDL dataset, is shown

connecting eight different regions structurally: Frontal left and right, Parietal left

and right, Occipital left and right, Default Mode Network left and right. Addi-

tionally, the eight rows and columns of the corresponding matrix Fig. 4.7 represent

the functional connectivity of each mapped region. As explained in the previous

chapter, this map and this matrix helped define the specifications of a biologically

plausible network. Functionally, the correlation matrix from the ADHD atlas was

used for the sub-losses weights between each layer in the neural net. Structurally,

the connectivity map from the MSDL brain atlas, as shown in diagram Fig. 4.8,

was used for the layers arrangement. It also helped as a reference point for the

OpenBCI electrodes placement, which follows the 10-20 system (Fig. 4.2).

Regarding the design of the circuit, the neural net is a compound of two net-

works, one network consists of a predictor and the other network acts as a clas-

sifier. A similar predictor network architecture was used for the experiment on

prediction model for thermo-haptic feedback. The main difference is that there is

no rewarding system in this design, as supervised learning is preferred for classifi-

cation and regression, as opposed to clustering or learning a policy (unsupervised

learning). The dual design approach was strongly influenced by my research work

on NARX for body motion prediction in Virtual Reality, with a series-parallel

architecture for the training and a closed network for prediction. Besides, the

NARX model, a multilayer perceptron, served as the basis to build the BioNN

classifier.

In this example, one input (the task-variable) and eight targets (from the eight

OpenBCI channels) were passed through the predictor, i.e. through eight inter-

connected LSTM layers. Each layer receives a channel signal as an auxiliary input

67

4. Neuromorphic Networks: a Use Case 4.3. Experimental Results

L R L R

-0.78

-0.39

0

0.39

0.78

Figure 4.6 Connectivity mapping for 8 selectivity regions of the brain, based on

the correlation matrix from the functional ADHD dataset. Labeling of the regions

was extracted from the MSDL data set.

(i.e. as a target). Each channel refers to a specific region: for instance, a visual

processing region, a language processing region. The predictor computes the task

variables (1,2,A,X,B or Y) and the EEG signals, and generates new signals as an

output. A second network, the classifier, is then trained, by computing the ob-

served variables, that is: left or right answers ((1,0) or (0,1) in one hot encoding),

and the corresponding signals. Importantly, the signals that were targets in the

predictor are now inputs in the classifier. This transitive design allows the signals

to be passed from one network to the other. As a result, the trained model only

requires a task variable as an input, and can generate a simulated behavior (left or

right answer) without any additional data. Synthetic signals are generated by the

first network and passed though the second network to generate a choice based

on the initial task variable. ReLU and Sigmoid (in the output layer) are used for

the activation functions, as it is classically done.

4.3. Experimental Results

To implement this architecture in the EEG setup, the plan was to train and

simulate a network on some elementary computations involved in memory tasks,

68

4. Neuromorphic Networks: a Use Case 4.3. Experimental Results

L D
MN

R D
MN

R F
ron

t p
ol

R P
ar

L P
ar

L F
ron

t p
ol

L L
OC

R L
OC

L DMN

R DMN

R Front pol

R Par

L Par

L Front pol

L LOC

R LOC
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.7 Correlation matrix from the functional ADHD dataset with the atlas

data from MSDL for the labelling.

69

4. Neuromorphic Networks: a Use Case 4.3. Experimental Results

Selected Connectivity (8 Channels)

L DMN

L Par

R Par

L Front

R Front

R LOC

L LOC

R DMN

L LOC

InputInput

R LOC

L DMN R DMN

L Par R Par

L Front 1

3

4

5 6

7

8

Derived Arti�cial Neural Network Circuit

R Front

2

8

1

-1

0

Brain Connectivity (n=30 participants)

4

3

2

8

7

1 5

6

Connectivity Matrix
(8 Channels)

Figure 4.8 Design of the BioNN network. Top left quadrant: brain connectivity

mapping over 30 participants. Top right: selected connectivity corresponding to

8 OpenBCI channels. Bottom left: extracted connectivity matrix. Bottom right:

neural network circuit derived from the brain connectivity mapping.

70

4. Neuromorphic Networks: a Use Case 4.3. Experimental Results

such as the 1-2-AX working memory test described by P. Dayan (2008), O’Reilly

(2006). This relatively recent test has been used with different neural networks

in the literature and represent a relevant choice for comparing with base-line

architectures. It can be described as a simple algorithm to solve for humans, but

a notoriously difficult one for neural networks. To my knowledge, it has never

been tested with a biologically plausible neural network trained on the neural

traces acquired from a human subject performing the task.

#Python 3

def nextOutput(nextInput):

global lastNum, lastLetter

if nextInput in ["1", "2"]:

lastNum = nextInput

lastLetter = ""

return "L"

elif nextInput in ["A", "B"]:

lastLetter = nextInput

return "L"

elif nextInput in ["X" , "Y"]:

seq = lastNum + lastLetter + nextInput

lastLetter = nextInput

if seq in ["1AX","2BY"]:

return "R"

if seq not in ["1AX","2BY"]:

return "L"

return None

The algorithm above can be briefly described as follow: given a random sequence

composed of letters 1,2,A,B,X,Y if the last numeral is 1, the target sequence is AX

and L should be returned, if it is 2, the sequence is BY and L should be returned,

otherwise R should be returned; only the last number and last letter count. For

example, the sequence “21AAXBYAX” returns “LLLLRLLLR”. The number of

71

4. Neuromorphic Networks: a Use Case 4.3. Experimental Results

2 1 A X 1 2 B Y

1-2-AX Working Memory Task

Sequence

L L L R L L L R

Figure 4.9 The 1-2-AX working memory task.

combinations for a specific number of alphanumeric characters (sequence length)

was determined before testing the task, this way we may test all the combinations,

for a reasonable length. As wrote earlier, this task is a non-trivial problem for

artificial neural networks, even with a long training, but a trivial one for humans,

with minimum training. Resolution of this problem have already been successfully

demonstrated, initially in 2008 using Gabor wavelet functions (Kay, 2008) or more

recently with state-of-the-art Generative Adversarial Networks (StYves, 2018, not

peer-reviewed), but not directly with neural data.

EEG recording was done over n=12 participants (8 males, 4 females): each

participant was instructed about the 1-2-AX and a trial test was given. Once

completed, the recorded session started. A sequence was displayed on a com-

puter screen and each participant could answer by clicking left or right, with 10

sequences (of variable lengths) in total. On average, the participants answered

correctly 94.38% of the time, with 3 participants yielding a perfect score (100%).

As shown in Fig. 4.10, each participant presents different neural patterns while

72

4. Neuromorphic Networks: a Use Case 4.3. Experimental Results

Figure 4.10 Recorded EEG signals for n=12 participants.

73

4. Neuromorphic Networks: a Use Case 4.3. Experimental Results

Training Set Predictions

Test Set Predictions

Participant p0

Figure 4.11 Pictured on the left column, the recorded EEG signals. On the right,

the predicted signals.

performing the same memory task.

Based on our data collection, an important result is that we could simulate

an artificial network that can retrieve and predict some of the non-linear dynam-

ics present in the data, as shown in Fig. 4.11. On the training set, the signals

outputs of the neuromorphic network could explain on average 33.65% (and as

high as 70.21% and 70.41% for participant 1 and participant 10) of the neural

activity recorded on the OpenBCI. The highest explained variance recorded on a

training session for a specific channel was on channel 3 (Default Mode Network)

with participant 1 (98.31%, average over all participants: 64.35%) and should be

74

4. Neuromorphic Networks: a Use Case 4.3. Experimental Results

Figure 4.12 Stacked histogram of the highest variance for a specific channel (1

channel), n participants = 12, range 14.24%-98.31%.

considered an outlier: this set translated to an overfitting and a lower predictive

power on this participant data overall. However, participants 3, 4, 5 and 9, 10 had

also good scores on the training set (highest:48.92-88.05%, average: 28.26-70.41%)

and relatively higher predictive power on the test set as well.

Fig. 4.11 shows conclusive results: the neuromorphic network did retrieve a

significant part of the activation despite the variability of the neural data between

participants, as a visual inspection of the matrices side-by-side, user generated and

artificially generated, can confirm. Note that those matrices represent the activity

of the Frontal (left, right, involved in planning, decision-making), Parietal (left,

right, involved in language processing), Occipital (left, right, visual processing) re-

gions and DMN (Default Mode Network, widespread brain regions with functional

connectivity). By designing an experiment where EEG (electroencephalograms)

signals could be used to train the network, the network, which is interpretable

both functionally and structurally, could in return provide interesting insights

75

4. Neuromorphic Networks: a Use Case 4.4. Neuromorphic Network Evaluation

about each participants neural dynamics.

Additionally, I then tested the trained network in prediction, without providing

any EEG signals. The only input was the alphanumeric sequence, for instance:

[’2’, ’1’, ’A’, ’A’, ’Y’, ’A’, ’X’, ’1’, ’A’, ’A’]

This sequence was never part of the training session. Remarkably, the closed-

network produced similar auto-generated EEG pattern, when comparing to the

existing user’s EEG signals (also not used in the training session).

The synthetic signals that were produced, visible on the right column (predic-

tions) in Fig. 4.11 are pure constructs of the network with the 12AX sequence

as the only input. Apart from those performance tests, the EEG experiment

served as a point of comparison for a qualitative assessment. Indeed, contrary

to classical supervised learning, where the targets are essentially the correct an-

swers to output, the bio-inspired neural network also had to search the spatial

and frequency space of the neural data to output the correct signals. Because

the network was capable of partially modeling the neural dynamics, if there exist

strong correlations of patterns between the neural data provided by the EEG and

the correctness of the answers, the neural net may find, in a future work, the

optimum solution to the task itself, formulated as a random sequence of letters

with a hidden algorithmic solution.

4.4. Neuromorphic Network Evaluation

Benchmark for the BioNN architecture shown in Fig 4.15 was performed against

a standard LSTM network (as represented in Fig 4.16): for fair comparison, they

share the same input/target structure, with the task variables as inputs, the sig-

nals as targets/inputs and the observed variables (behavior) as outputs. The

observed variables were formatted with one hot encoding, so that the categorical

variables could be represented as binary vectors (e.g. [1,0],[0,1] for Left, Right)

and categorical cross-entropy could be applied as the objective function for the

classifier. In order to train over the signals as auxiliary targets, LSTM layers are

ordered in parallel, each line computing a signal. The total amount of parameters

for this LSTM-based network is 2,173,000 as the summary below reveals.

In comparison, BioNN has 1 order of magnitude less parameters, here 271,950.

76

4. Neuromorphic Networks: a Use Case 4.4. Neuromorphic Network Evaluation

Figure 4.13 Tensorflow diagram of the first part of the BioNN network (LSTM-

based predictor).

Figure 4.14 Tensorflow diagram of the second part of the BioNN network (clas-

sifier).

77

4. Neuromorphic Networks: a Use Case 4.4. Neuromorphic Network Evaluation

Figure 4.15 Tensorflow diagram of the BioNN network, complete with the LSTM-

based predictor and the sequential classifier.

Figure 4.16 Tensorflow diagram of the LSTM network, for benchmarking.

78

4. Neuromorphic Networks: a Use Case 4.4. Neuromorphic Network Evaluation

LSTM

Layer (type) Parameters Connected to

Main input 0

Embedding 64 Main input

Dropout 0 Embedding

LSTM 1 271360 Dropout

LSTM 2 271360 Dropout

LSTM 3 271360 Dropout

LSTM 4 271360 Dropout

LSTM 5 271360 Dropout

LSTM 6 271360 Dropout

LSTM 7 271360 Dropout

LSTM 8 271360 Dropout

Channel 1 257 LSTM 1

Channel 2 257 LSTM 2

Channel 3 257 LSTM 3

Channel 4 257 LSTM 4

Channel 5 257 LSTM 5

Channel 6 257 LSTM 6

Channel 7 257 LSTM 7

Channel 8 257 LSTM 8

Total params: 2,173,000

Trainable params: 2,173,000

Non-trainable params: 0

Table 4.1 LSTM Parameters and Connections Summary.

79

4. Neuromorphic Networks: a Use Case 4.4. Neuromorphic Network Evaluation

BioNN

Layer (type) Parameters Connected to

Main input 0

Embedding 64 Main input

Dropout 0 Embedding

Input 271360 Dropout

Channel 3 257 Input

Channel 4 2 Channel 3

Channel 2 2 Channel 4

Channel 1 2 Channel 2

Channel 5 2 Channel 1

Channel 7 257 input

Channel 6 2 Channel 5

Channel 8 2 Channel 7

Total params: 271,950

Trainable params: 271,950

Non-trainable params: 0

Table 4.2 BioNN Parameters and Connections Summary.

80

4. Neuromorphic Networks: a Use Case 4.4. Neuromorphic Network Evaluation

This allows a much faster training time compared to a conventional LSTM. Re-

garding the losses, Fig 4.17 indicates the backpropagated error between the target

tensors and the output tensors, the lower the error the better the network per-

forms. BioNN losses, in blue, decrease in validation for a majority of channels,

suggesting that overfitting is less likely to occur, whereas the LSTM validation

losses increase in most cases. Indeed, the interconnection of the BioNN layers

reducing the number of parameters, the backpropagation of the error is computa-

tionally less expensive, and less epochs are necessary to decrease the cost of the

objective function. Besides, relatively low loss weights are assigned to each layer,

in the range 0.17-1: as explained earlier, those coefficients were obtained from

the extracted connectivity on the ADHD data set; they reflect the contribution of

each region to the others. As the BioNN layers are connected in similar fashion, it

seems plausible that the contribution of the sub-losses relative to each layer helps

optimize the network.

As stated by François Chollet in “Deep Learning with Python”2: “The mean

squared error (MSE) loss used for the age-regression task typically takes a value

around 3–5, whereas the crossentropy loss used for the gender-classification task

can be as low as 0.1. In such a situation, to balance the contribution of the different

losses, you can assign a weight of 10 to the crossentropy loss and a weight of 0.25 to

the MSE loss.” Here, the MAE objective function (Mean Absolute Error, a variant

of Mean Squared Error which presents the advantage of being outlier tolerant) was

applied to the predictor, while crossentropy was applied to the classifier. Since

the training is done in two-fold, the losses of the classifier do not impact the

predictor’s hidden layers weights.

Notes

1 “Keras is a high-level neural networks API, written in Python and capable of running on

top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast

experimentation. Being able to go from idea to result with the least possible delay is key

to doing good research.” https://keras.io

2 “Deep Learning with Python, author: François Chollet, November 2017, ISBN 9781617294433”

81

4. Neuromorphic Networks: a Use Case 4.4. Neuromorphic Network Evaluation

Figure 4.17 Validation graphs for the BioNN and LSTM. BioNN losses, in blue,

decrease in validation for a majority of channels, suggesting that overfitting is less

likely to occur, whereas the LSTM validation losses increase in most cases.

82

Chapter 5

Evaluations

Different neuromorphic architectures can be designed for different applications.

Whether they are rewarding models or feedback loop, recurrent models, if we

acknowledge that similar processes occur in the brain, and that those networks

implement some of the neural dynamics features, we can also use them to predict

the hysteresis of a device or non-linear human behaviors. In essence, we can use

neuromorphic networks to augment our perceptions. In this chapter, I advance

the hypothesis that neuromorphic artificial nets cannot be achieved without the

notion of embodiment and physical interactions. Specifically, embodiment should

be defined here as the implementation of artificial neural networks in hardware.

Training embodied artificial neural networks implies that they will interact with

our environment. Not taking into account our environment may result in a “vat”

model, with lower predictive power. Conversely, physical interactions (environ-

mental parameters, behavioral components, physiological signals) may be used as

a feedback loop for the training. The main motivation is the following: as we

have seen, the field of machine learning provides powerful methods to implement

functional computations, and artificial neural networks particularly, can learn any

function. If we ever wanted to build a type of intelligence that is fully compatible

with the perception we have of our environment, it seems sensible, then, to build

biologically valid models that are fully immersed into the physical world.

In the following sections, I will detail three setup, in virtual reality, haptic force

feedback and thermal feedback, that highlight the notions of feedback control and

prediction by supervised learning networks and reinforcement learning networks.

Each of this setup represents a specific perceptual modality: Visual perception

in VR, Pressure detection and Thermoception with haptic devices. Regarding

visual information processing, an overwhelming amount of publications has al-

ready been produced in computer sciences, physiology, neurosciences. However,

83

5. Evaluations 5.1. Prediction Model in Virtual Reality

cognitive augmentation through agency in virtual reality spaces represents a novel

approach. Virtual reality systems (head-mounted displays, control and tracking)

have gained significant improvements only recently, and learning algorithms can

now be implemented in such systems. Regarding haptic feedback, it also repre-

sents an interesting field to investigate, as there are not so many devices that can

accurately reproduce the sense of touch (Minamizawa et al. 2012): tactile data

are difficult to acquire; texture, weight or pressure can be subjective.

Many other types of perception (auditive, olfactive, gustative, internal, to men-

tion only a few) could be further studied, but this body of work will focus on

very specific perceptual properties to build neural nets, rather than presenting an

exhaustive list of possible implementations.

5.1. Prediction Model in Virtual Reality

Predictive models could possibly help the user compensate for the reaction time

or prevent motion sickness, extending the range of our cognitive abilities. Prelim-

inary research was conducted at Sony CSL with Dr Shunichi Kasahara (Kasahara

and Rekimoto 2014), interested in exploring human cognition and the concept

of body ownership in VR. Although recurrent neural networks (RNNs) for data

modeling have been extensively used, the implementation of RNNs for tracking

complex behaviors in a VR environment remains under-investigated. The applica-

tion of my work was done over the decision-making process involved in trajectory

predictions, and how neural nets could anticipate such decisions: body movements

in particular, and the large set of motions that can be performed, can be described

as a nonlinear, dynamical system with uncertain parameters. Artificial RNNs

have traditionally been used for time series prediction (Xie et al. 2009) where

parametric uncertainty is part of the model and non-trivial. However, accurately

predicting the future behavior of such a system requires learning long-term de-

pendencies: a difficult problem for standard RNNs (Martens and Sutskever 2011),

as the gradient descent algorithm used in those networks tends to “vanish” with

time (Hochreiter 1991). In addition, forecasting methods require stationarity

where most of the real-time series are non-stationary.

The architectural approach we chose was based on a nonlinear autoregressive

84

5. Evaluations 5.1. Prediction Model in Virtual Reality

Figure 5.1 ExoBrain testing in collaboration with Dr Shunichi Kasahara using

his RAMActor setup.

85

5. Evaluations 5.1. Prediction Model in Virtual Reality

exogenous (NARX) model: essentially a Multilayer Perceptron that takes its past

outputs as inputs instead of estimated ones (Fig. 5.31). The main advantage of

this architecture, compared to a standard RNN, was to achieve a much faster

convergence, an important characteristic for real-time processing. Another ad-

vantage, regarding the non-linearity, relied on the network capability to learn

long-term dependencies between the time series components. Finally, the possi-

bility to cope with non-stationarity and therefore process real-time data with a

good performance made this model particularly well-suited to our approach. We

used the NARX network as a nonlinear tool for successfully predicting human mo-

tions, both in batch processing and real-time. In the experiments we conducted,

the apparatus consisted in a full-body suit with motion capture markers placed

around 23 articulation points and an optical system tracking their tridimensional

position in real-time. The device transfers the movements to our processing unit

via UDP in the short 20-50ms range. The stimuli were either physical or vir-

tual objects presented to the actor; the tests consisted in grasping, avoiding or

catching those as fast as possible. In order to validate our RNN model, the first

tests were done in batch processing. Both the reflex movement and its predicted

trajectory were classified as, respectively, reflex and anticipated movements; the

plotted sequence of anticipated movements and the reflex one were superimposed;

we then monitored the accuracy of our predictions over time.

Eventually, the performance of the RNNs was evaluated on the number of false

positives/negatives, and we improved both the apparatus and the RNN, until an

acceptable margin of error was achieved.

In order to avoid overfitting, the cross-validation was done by randomly dividing

the dataset between a training, a validation, and a test set: the splitting was

found (by trial-and-error) most effective at, respectively, 70%, 15%, and 15%. We

used the Levenberg-Marquardt algorithm for the training part, as it converges

quickly. The results show a good performance: the final mean squared error was

small as shown in the prediction plot. Also, overfitting did not occur as the test

set error and the validation set error had similar characteristics. For the real-

time processing, the model was optimized. The method was very similar to batch

processing, only the mode of acquisition changed. We processed the data within

100-200ms, before the motor response to the stimulus reached the actor’s muscles

86

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.2 Hand-motion prediction in VR: in blue the current position of the hand;

in orange the predicted position computed in real-time at 100fps (TensorFlow to

Unity Reinforcement Learning framework).

or, simply put, under the reaction time. We obtained a lower yet acceptable

accuracy. One of the main limitation we had was that, in order to process the

data in such a short period of time, we could only model some specific parts of the

body, such as the arm, and not the whole body. The possible next steps would be

to increase the accuracy using unsupervised learning methods that were proven

efficient for the type of systems we are simulating. Learning human actions, based

on real-time gesture acquisition, is one of the direction we think have some great

potential for achieving general-purpose intelligence.

The demo was coined “ExoBrain” as an implicit reference to the Exoskeletons

known as “Shells” or “Protective Body”: the predictive model could possibly

help the user compensate for his relatively slow reaction time or prevent him to

experience motion sickness, extending the range of his cognitive abilities.

5.2. Prediction Model for Haptic Feedback

In this experiment, we designed for engineering applications an innovative force

feedback interface using Shape-Memory Alloys and we demonstrated that arti-

87

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.3 Difference between the Series-Parallel Architecture (diagram A, open-

loop) and the purely Parallel Architecture (diagram B, closed-loop). The NARX

network is first trained in open-loop (supervised with targets), then switched to

a closed-loop for prediction based on the estimated outputs.

ficial nets could also be used for modeling the non-linear behavior of those ac-

tuators (Chernyshov et al. 2018b, Caremel et al. 2018). It appears that SMA

applications are very limited, especially for haptic interface implementations, as

it is difficult to precisely control them. Here, we could emulate a fully auto-

mated force feedback control scheme that did not require a complex analysis of

the SMA depending on environment variables such as temperature, humidity, or

the hysteresis of the system.

Classically, several sophisticated models can be used to simulate the behavior

of SMA, such as the Preisach model and the Jiles-Atherton model, both used

for ferromagnetism; however, the recent advances in neural networks allowed us

to simulate nonlinear systems with a minimal set of parameters. In our current

setup, the difficulty was that the resting time needed after each contraction of the

ring is hardly predictable with conventional methods. This resting parameter was

critical in our testing sessions: understanding the hysteresis of the SMA can help

us triggering adequately timed haptic feedback. Indeed, if the contraction peak

was reached instantly after a current was applied to the SMA, it took more time

88

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.4 Technical drawing of the mechanical engineering of the ring structure.

In clockwise direction from the top right quadrant of the screen: perspective view,

left cross-section, front cross-section, top cross-section.

89

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.5 Rendering of the haptics glove, complete with the connectors, handles

and ring structure.

90

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.6 Picture of the first prototype developed for haptic feedback with

Takram. The SMA are visible on the gloves. When electric current is applied, the

SMA applies pressure to the index and thumb.

for the ring to retrieve its original resting shape. The SMA cannot be quickly

elongated unless it is forced-cooled, which would have drastically increased the

complexity of the design of our wearable device. Therefore, the state of the

system was highly dependent on variables such as the room temperature and the

devices’ history. Although the room temperature could be easily controlled, the

previous states of the system did not exhibit linearity, which made prediction a

difficult challenge. Therefore, anticipating the future states of the system was of

crucial importance for a fully-controllable device.

First, we designed a setup consisting of a high-speed/high accuracy laser dis-

placement meter (Keyence LC-2400 with LC-2440 measuring head) measuring the

contraction displacement relative to the sensor head, in a horizontal plane. As the

silicone tube, containing the SMA wire, goes through four FR-4 supports (exerting

pressure on the finger), a reflector was placed on one of them. This support was

91

5. Evaluations 5.2. Prediction Model for Haptic Feedback

placed in front of the laser and the sensor was calibrated based on its reflectance.

The three other supports were fixed on the horizontal plane so that each contrac-

tion would move the reflector only farther away from the sensor. The frictions to

the horizontal plane, a slick plastic plate, were negligible at this scale, as the re-

flective marker could move freely without any significant difference compared to a

test done in mid-air. The whole experiment was recorded at 240 fps. First, a con-

stant current of 850mA, at 5V was applied to the SMA for 1s. The ring instantly

contracted and we measured the displacement in mm, in the range 0.8004-0.881

(minimum-maximum). We repeated this procedure multiple times to evaluate the

resting duration of the SMA ring, i.e. when the displacement measured by the

sensor drops to near 0 (Fig. 5.2). It is worth noting the peak displacements by

contraction were remarkably invariable over successive trials. However, the rest-

ing time was still problematic there: after each short contraction, it took more

time for the alloy to recover its original shape, which we assessed here over 10

successive trials, with 9 resting intervals.

The data we collected in order to build a model consist in a time series that

was acquired following the protocol described previously: we monitored the dis-

placement dynamics of the ring by noting its magnitude and the associated time

reference. Every time we triggered a contraction, the time it took for the ring to

recover its original shape is not the same as previously noted. The resulting data

was, as expected, very noisy and therefore very difficult to model.

Here, we wanted to use the right method to correctly assess the behavior of

our SMA-actuated ring. Usually, smoothing methods are used to fit noisy data.

We decided to test a conventional “smoothing spline” model, using the MATLAB

Curve Fitting toolbox: when calling the fit function, it returns a vector of values

defined by the spline interpolation of x (time) and y (displacement). However,

only the values collected after about 1 min were properly fitted by this model;

the displacement dynamic between 0 and 1 min is not well-captured. Indeed, the

degree of the polynomial of the spline was high, with a relatively high RMSE

of 0.3391. A value closer to 0 would have indicated that the fit is better for

prediction. Likewise, the R-Squared error being weak at 0.6845, it performed

better than a horizontal line, but the proportion of variance in the dataset was

not fully captured by the fit.

92

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.7 Final setup exhibited by Takram (Photograph: Yuki Shinohara).

93

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.8 Resting time after displacement: it takes more time for the SMA to

recover after successive contractions.

By stark contrast, we applied a NARX to the model and it largely outperformed

the simple fit, making it useful for prediction. The RMSE was evaluated at 0.0851

(1 order of magnitude smaller compared to the previous results with simple fit)

and the R-squared error was 0.832, a clear indicator that the predictive model is

robust. Plotting the results of the NARX model compared to the original data, we

monitored how the early trials were then fully captured by the model. Besides,

the main advantage of this model architecture was that we could implement a

predictive function. Unlike Wang et al. (Han Wang 2014), we didn’t use the

Levenberg-Marquardt algorithm for the gradient descent but the Fletcher-Reeves

conjugate method, giving fast results. Also, we only needed n=8 units in our

hidden layers which we found was the optimal configuration for a better general-

ization across the repeat of the trained network. We divided the data into three

subsets: the training set (60%), the validation set (20%) and the test set (20%),

using the ’dividerand’ function in MATLAB, with its ’divideMode’ property set

94

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.9 The simple fit, a spline interpolation between peak values, try to

capture the nonlinear resting behavior of the SMA but does not properly describe

all the characteristics of the alloy, especially the early stage (left values on the

graph).

95

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.10 The Neural Network models and predicts the correct values much

more accurately than the simple fit.

as ’time’ for dynamic network. The neural network computed its weights and

biases based on the training set. As the training progressed, the error on this

set decreased. Meanwhile, a second set is used for validation: when the network

started to over-fit the data, the error on the validation set, instead, increased: the

training was stopped.

The third set, the testing set, was never used while training to ensure that we

could objectively evaluate the performance of the trained model over a new set

of data. We run the neural network multiple times until we obtained a satisfying

model that generalizes well, without overfitting. The linear regression value R

between outputs and targets on the training, validation and test sets was R=0.97

(1 is ideal) for the test set. There was no overfitting as both the training error

and the testing error converge to a small mean square error (Fig. 3.3) and, more

importantly, the predicted values were consistently in the range previously men-

tioned, around 0.8-0.9 mm displacement. Obviously, the features of the system

96

5. Evaluations 5.2. Prediction Model for Haptic Feedback

Figure 5.11 Best validation performance (mse) of the training, validation and test

set. The error on the validation set increases after epoch 17, signaling the network

starts to overfit the data. The weights and biases are selected at this minimum

for the training set. The error on the test set, although higher, also decreases,

showing similitudes with the training set trend.

97

5. Evaluations 5.3. Prediction Model for Thermo-haptic Feedback

were correctly assessed by the model: short burst of contraction with a displace-

ment at a maximum peak below 1 and relax state duration based on nonlinear

dependencies relative to the history of the system. We concluded that, if this

setup showed artificial neural networks could enable accurate control over a com-

plex haptic feedback, a wide range of novel type of sensors and actuators could

be designed specifically using a model produced by artificial neural networks.

5.3. Prediction Model for Thermo-haptic Feed-

back

In biological systems, neural networks learn how to interact with the real world

in real-time. The current application of my research on thermo-haptic feedback

involved a reinforcement learning algorithm for motion prediction in a real-time

virtual reality simulator (Chernyshov et al. 2018a), also described as a novel ap-

proach to study intelligent systems (Norman 2018). The hand position could

then be accurately projected in the user’s 3D space, enabling a thermal feed-

back of the user’s visual perception of the effect (hot and ice materials handled

in VR). The hand movements were tracked using infrared sensors mounted on a

Vive (VR) headset and the TensorFlow toolkit was added to design the machine

learning part, a LSTM with a TensorGraph depicted on Fig. 5.15. The objective

of the simulation was to track, predict and display hand movements ahead of time,

acquiring perceptual features related to thermoception. We used TensorFlow in

Unity to implement a reinforcement learning algorithm for motion prediction.

Unity is used as a simulator and the TensorFlow toolkit for the machine learning

part. The hand movements were tracked using LeapMotion mounted on a Vive

headset. The environment requires an agent to record observations of the hand

behavior. The agent takes actions, such as changing the direction of the predicted

hand. The predicted hand position is extrapolated by using the hand previous

positions and superimposing the agent action. For each fairly correct assumption,

the agent gets rewarded, otherwise it is penalized. This reward system informs

the agent about the task, as it learns to optimize its policy to collect rewards,

hence the name “reinforcement learning”.

First, the simulation asked an agent to record observations of the hand behavior

98

5. Evaluations 5.3. Prediction Model for Thermo-haptic Feedback

Figure 5.12 The Google TensorFlow Graph for the LSTM implemented in thermo-

haptic feedback.

in the real world. During this training process, the agent took actions, such as

changing the direction of the virtual hand in the simulator. The future positions

were predicted by extrapolating the past and current state of the observational

system. As described in the previous chapter, for each correct assumption, the

agent got rewarded, otherwise it was penalized. This reward system informed

the agent about the task, as it learned to optimize its policy to collect rewards.

Our results showed how the agent was rewarded over time, with a small reward

attributed for each fairly correct prediction. Hence, during the training session,

the network accumulated rewards over time. However, the increase was non-

linear, as the agent had to adapt its action to non-linear behaviors, as already

described in section 3.2.1. For instance, a sudden change in the motion pattern

may have temporarily penalized the agent. Nevertheless, because the network

also adapted its learning rate (which represents the search for the optimal policy

and steadily decrease over time), the prediction model could more reliable as the

training progressed and the estimate increased over time.

99

5. Evaluations 5.3. Prediction Model for Thermo-haptic Feedback

Figure 5.13 Value estimate graph demonstrating how prediction accuracy in-

creases over the training.

Figure 5.14 Cumulative rewards indicating how the agent is favored over time.

100

5. Evaluations 5.3. Prediction Model for Thermo-haptic Feedback

Figure 5.15 Thermo-haptic feedback demo exhibited at VRST (Photo credit: K.

Ragozin).

More specifically, the cumulative reward indicates how the agent is retributed

over time, with a reward of 0.01 attributed every frame to each fairly correct

prediction, otherwise -0.001. Those scalars were estimated best based on the sim-

ulator frame rate set at 100fps. The increase showed that the training session was

successful, as it accumulated rewards. Besides, the learning rate had decrease over

time, a good indicator that the task was learned. It was set at 0.0003 and steadily

decreased from 0.0003 to below 0.00012. Finally, as shown in Fig. 5.14, as the

prediction model got more reliable, the value estimate increased over time. We

concluded that the newly learned rules of our specific environment were mainly re-

lated to the range of sensations expressed by the users (from cold to warm), rather

than the virtual representation of their hand position. Although the network did

learn the features purely based on behavior, our assumption is that it actually

learned second-order features, directly correlated to the user’s thermoception, as

it was aiming to maximize its rewards.

101

5. Evaluations 5.3. Prediction Model for Thermo-haptic Feedback

Notes

1 Adapted from: https://www.mathworks.com/help/deeplearning/ug/design-time-series-narx-

feedback-neural-networks.html

102

Chapter 6

Conclusion and Future Work

“Chaos: when the present

determines the future, but the

approximate present does not

approximately determine the

future.”

— Lorentz Edward.

6.1. Conclusion

The aim for the BioNN network was to output the correct associations be-

tween neural data and visual inputs. Although it has already been successfully

demonstrated, initially in 2008 using Gabor wavelet functions (Kay et al. 2008)

or more recently with state-of-the-art Generative Adversarial Networks (St-Yves

and Naselaris 2018), such a demonstration using EEG represented a powerful

proof-of-concept for my thesis research. Additional behavioral components, such

as pupil dilation, may be recorded in a next development phase. Those compo-

nents may be beneficial to help the network optimization when the neural data

are too noisy and correlation patterns difficult to establish. Overall, non-invasive

neurosignal recording applications constitute a desirable goal for the future of

machine learning and BCI. First, for machine learning: training neural network

can be sometimes fastidious and time-consuming. Neural data may be seen as

a compressed version of the required amount of data to achieve a specific task.

Currently, human experts can outperform most of the AI-powered algorithms if

we only consider the training time as a performance indicator. Indeed, in the case

103

6. Conclusion and Future Work 6.2. Limitation and Future Work

of AlphaGo Lee, the first version of AlphaGo, it took over 160,000 game patterns

from the KGS data set to train the neural net (Silver et al. 2016). The second ver-

sion, AlphaGo Zero, only took 36 hours (Silver et al. 2017), but while it certainly

represents an impressive feat, one should consider that the training was executed

over a pretrained Alpha Lee. With a game lasting on average 40 minutes, training

Alpha Lee represents 6,400,000 minutes or over 12 years of uninterrupted practice.

In that regard, the best reinforcement learning algorithms applied to video games

still require an incommensurate amount of data, such as the one developed by

Vinyals et al (Vinyals et al. 2017), which surpassed experts knowledge in a rather

complex strategy game, but represents 200 years of game experience. What if the

training data were only sparsely available, or observable actions, such as moving

pawns on a game board, could not be derived? The bio-inspired neural network

should be regarded as a different yet complementary approach: cooperation rather

than competition is the highlight of such a network, as it capitalizes on the ex-

pert knowledge to learn the task. This type of training could be useful to model

concepts or knowledge that cannot be easily explained or expressed by words

or actions. More importantly, it is designed in its core to be flexible depending

on the experimental conditions. Whether it is for image processing, time-series

predictions or simple problem-solving, its adaptability, based on structural and

functional brain connectivity, may be seen as a step closer to general intelligence.

By developing biologically plausible neural networks, one can also envision the

future of BCI applications, where information can transit from biological circuits

to artificial ones and reciprocally. Eventually, databases of task-dependent neural

signals could be constituted to download training sequences suitable for specific

tasks.

6.2. Limitation and Future Work

Regarding my latest EEG setup, for further improvement, medical research

equipment could be beneficial to get more granular, detailed, data. Another

desiderata would be to test the network in real-life scenarios, by automating some

simple tasks, such as guessing a participant intention based on their neural data.

Ethical considerations should be taken into account, so as to enlarge the per-

104

6. Conclusion and Future Work 6.2. Limitation and Future Work

spectives that neuromorphic applications offer. Yet, after testing several types of

neural network along the years, the results of my last EEG setup proved to be

conclusive for creating a “neuromorphic network”, delineating a very promising

framework for future developments in HCI and BCI. Although the main language

used for the first implementation were MATLAB, the core concepts were devel-

oped with Keras/Tensorflow (Python) to offer a free, open-source alternative to

researchers interested in building bio-inspired networks. One of the main limi-

tations I encountered during my research along those years, was to find the right

methodology to explore artificial neural networks from a bottom-up approach, as

opposed to a top-down approach, where a strong theoretical corpus is already

constituted, and one may derive irrefutable properties from the main principles.

However, because machine learning is still a young discipline w.r.t. to biology,

physics or engineering, the profuse amount of methods, techniques, ideas, theo-

ries, annotations and standards, make it virtually impossible to grasp all the nu-

ances, historical points, latest trends, mathematical corners and ethical concerns

that come along the way. Because machine learning is inherently a vast, inter-

disciplinary field, which requires solid notions in various domains, the amount

of technical challenges and theoretical “impasses” that one must face to build

upon the existing framework is sometimes hard but exhilarating; yet, learning

machines demand data. This year, a turning point in my research was to, care-

fully, methodologically, create synthetic, perfect, random data before each new

network simulation, so as to avoid the burden of broken sources, discrepancies

within the dataset, format issues and other NaN. More importantly, designing

synthetic dataset to fit some network requirements allows a deeper understanding

of how the inner gears and processes interplay. Instead of laboriously iterating

over machine learning algorithm versions to match the data structure, I designed

the data to fit the network I wanted to build, so as to simulate the network on

real data in a subsequent step. The result, a neuromorphic, simple yet flexible,

fast network of nodes and layers, capable of prediction and simulation, provided

me with a better control over the parameters than I had imagined. One of the

most exciting, perhaps intriguing, perspective, was, and still is, to build models

for searching patterns in seemingly noisy data. Obviously, all computer gener-

ated random numbers are in fact, pseudo-random numbers, and finding hints of

105

6. Conclusion and Future Work 6.3. Summary

the existence of the traces of a programmatic structure in non-deterministic gen-

erators represents for me a much sought-after research direction, with possible

applications to a multitude of fields.

6.3. Summary

At the start of my doctoral program, I was honored to be invited to the Schloss

Dagstuhl seminar (Leibniz Center for Informatics) in Germany, where I had the

chance and the privilege to meet and discuss some of my early results with inter-

national senior researchers, providing me with additional references and valuable

resources on the topic, and confirming the potential significance of my thesis for

computer applications in science. I worked extensively with engineers, innovators

and researchers at Sony CSL and Takram Design Engineering on novel inter-

faces and hardware. Last year, I was part of the NII Shonan Meetings, the first

Dagstuhl-style seminar held in Asia by the National Institute of Informatics in

Japan, where I could refine my research work direction on predictive modeling.

At Riken CBS, I focused my own research on artificial neural networks applied

to biological models, as this burgeoning field is traversed by highly important yet

unanswered questions.

After finalizing both the set up of a EEG recording device and the design of a

task to acquire and exploit neural data, I established a map of regions of interest

in the brain, according to the task. I conducted preliminary data recording and

analysis to verify that the set-up was in line with my final objective and imple-

mented a task-oriented, bio-inspired artificial neural network. In conclusion, this

research work represents a detailed approach, based on artificial neural networks,

to capture and predict goal-oriented behaviors. Inspired by engineering core prin-

ciples, I proposed an original formulation on how to integrate machine learning to

novel hardware and applications, and as artificial neural networks will gain in in-

terpretability, I am convinced they will extend the range of our tools for revisiting

or defining novel theories.

106

References

A., Turing (1937) “On computable numbers, with an application to the Entschei-

dungsproblem,” Proceedings of the London Mathematical Society, Series 2,

Volume 42.

Acharya, U. Rajendra, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Hojjat Adeli,

and D. P Subha (2018) “Automated EEG-based screening of depression

using deep convolutional neural network,” Computer Methods and Programs

in Biomedicine, Vol. 161, pp. 103–113.

Aoki, Ryo, Tadashi Tsubota, Yuki Goya, and Andrea Benucci (2017) “An auto-

mated platform for high-throughput mouse behavior and physiology with

voluntary head-fixation,” Nature Communications, Vol. 8, No. 1.

Bakker, Rembrandt, Paul Tiesinga, and Rolf Kötter (2015) “The Scalable Brain

Atlas: Instant Web-Based Access to Public Brain Atlases and Related Con-

tent,” Neuroinformatics, Vol. 13, No. 3, pp. 353–366.

Bishop, Christopher (2007) Pattern Recognition and Machine Learning.: Springer.

Caremel, Cedric, Gemma Liu, George Chernyshov, and Kai Kunze (2018)

“Muscle-Wire Glove: Pressure-Based Haptic Interface,” in IUI Companion,

pp. 52:1–52:2: ACM.

Carreiras, Manuel, Ileana Quiñones, Juan Andrés Hernández-Cabrera, and

Jon Andoni Duñabeitia (2014) “Orthographic Coding: Brain Activation

for Letters, Symbols, and Digits,” Cerebral Cortex, Vol. 25, No. 12, pp.

4748–4760.

Chaisangmongkon, Warasinee, Sruthi K Swaminathan, David J Freedman, and

Jing Wang (2017) “network performs sequential category-based decisions,”

Vol. 93, No. 6, pp. 1504–1517.

107

References

Chernyshov, George, Kirill Ragozin, Cedric Caremel, and Kai Kunze (2018a)

“Hand motion prediction for just-in-time thermo-haptic feedback,” in

VRST, pp. 52:1–52:2: ACM.

Chernyshov, George, Benjamin Tag, Cedric Caremel, Feier Cao, Gemma Liu, and

Kai Kunze (2018b) “Shape memory alloy wire actuators for soft, wearable

haptic devices,” in UbiComp, pp. 112–119: ACM.

Christiansen, Eric M., Samuel J. Yang, D. Michael Ando, Ashkan Javaherian,

Gaia Skibinski, Scott Lipnick, Elliot Mount, Alison O’Neil, Kevan Shah,

Alicia K. Lee, Piyush Goyal, William Fedus, Ryan Poplin, Andre Esteva,

Marc Berndl, Lee L. Rubin, Philip Nelson, and Steven Finkbeiner (2018)

“In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images,”

Cell, Vol. 173, No. 3, pp. 792–803.e19.

Cortes, Corinna and Vladimir Vapnik (1995) “Support-vector networks,” Machine

learning 20.3 (1995): 273-297.

Crichton, Ellika M., Marie Noël, Esther A. Gies, and Peter S. Ross (2017) “A

novel, density-independent and FTIR-compatible approach for the rapid

extraction of microplastics from aquatic sediments,” Analytical Methods,

Vol. 9, No. 9, pp. 1419–1428.

Dayan, Peter (2008) “Simple substrates for complex cognition,” frontiers in Neu-

roscience, Vol. 2, No. 2, pp. 255–263.

Doborjeh, Gholami, Z., N. Kasabov, Gholami Doborjeh, M., and A. Sumich (2018)

“Modelling Peri-Perceptual Brain Processes in a Deep Learning Spiking

Neural Network Architecture.,” Scientific reports, 8(1), 8912.

Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter,

Helen M. Blau, and Sebastian Thrun (2017) “Dermatologist-level classifica-

tion of skin cancer with deep neural networks,” Nature, Vol. 542, No. 7639,

pp. 115–118.

Gallicchio, Claudio, Alessio Micheli, and Luca Pedrelli (2017) “Deep reservoir

computing: A critical experimental analysis,” Neurocomputing, Vol. 268,

No. April, pp. 87–99.

108

References

Gallicchio, Claudio, Alessio Micheli, and Luca Pedrelli (2018) “Design of deep

echo state networks,” Neural Networks, Vol. 108, No. February, pp. 33–47.

Gardner, Martin (1970) “Mathematical Games: The fantastic combinations

of John Conway’s new solitaire game ”Life”.,” Scientific American. 223:

120â123.

Glorot, Xavier and Antoine Bordes (2011) “Deep Sparse Rectifier Neural Net-

works,” Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, Vol. 15, pp. 315–323.

Goulas, Alexandros, Matteo Bastiani, Gleb Bezgin, Harry B. M. Uylings,

Alard Roebroeck, and Peter Stiers (2014) “Comparative Analysis of the

Macroscale Structural Connectivity in the Macaque and Human Brain,”

PLoS Computational Biology, Vol. 10, No. 3, p. e1003529.

Guerguiev, Jordan, Timothy P. Lillicrap, and Blake A. Richards (2017) “Towards

deep learning with segregated dendrites,” eLife, Vol. 6, pp. 1–37.

Hammer, Barbara, Benjamin Schrauwen, and Jochen J. Steil (2009) “Recent ad-

vances in efficient learning of recurrent networks,” in ESANN 2009, 17th

European Symposium on Artificial Neural Networks, Bruges, Belgium, April

22-24, 2009, Proceedings.

Han Wang, Gangbing Song (2014) “Innovative NARX recurrent neural network

model for ultra-thin shape memory alloy wire,” Elsevier, Neurocomputing,

Vol. 134.

Hebb, D.O. (1949) The Organization of Behavior, New York, Wiley.

Hochreiter, Sepp (1991) “Untersuchungen zu dynamischen neuronalen Netzen.

Diploma thesis, TU Munich.”

Hopfield, J. J. (1982) “Neural networks and physical systems with emergent col-

lective computational abilities.,” Proceedings of the National Academy of

Sciences, Vol. 79, No. 8, pp. 2554–2558.

109

References

Ian J. Goodfellow, Mehdi Mirza Bing Xu David Warde-Farley Sherjil

Ozairâ Aaron Courville Yoshua Bengio, Jean Pouget-Abadieâ (2014) Gen-

erative Adversarial Nets.

K., (Pearson (1936) Method of Moments and Method of Maximum Likelihood.

Kasahara, S. and J. Rekimoto (2014) “JackIn: integrating first-person view with

out-of-body vision generation for humancaugmentation,” J. In Proceed- ings

of the 5th Augmented Human International Conference, ACM , 46.

(2009) “Synaptic Activity and the Construction of Cortical Circuits Author (s): L

. C . Katz and C . J . Shatz Published by : American Association for the Ad-

vancement of Science Stable URL : http://www.jstor.org/stable/2891573,”

Advancement Of Science, Vol. 274, No. 5290, pp. 1133–1138.

Kay, Kendrick N., Thomas Naselaris, Ryan J. Prenger, and Jack L. Gallant (2008)

“Identifying natural images from human brain activity,” Nature, Vol. 452,

No. 7185, pp. 352–355.

Keunwoo Choi, Mark Sandler, George Fazekas (2016) “Automatic tagging using

deep convolutional neural networks,” ISMIR (International Society of Music

Information Retrieval) Conference 2016.

Kirchhoff, Michael, Thomas Parr, Ensor Palacios, Karl Friston, and Julian Kiver-

stein (2018) “The markov blankets of life: Autonomy, active inference and

the free energy principle,” Journal of the Royal Society Interface, Vol. 15,

No. 138.

Kobak, Dmitry, Wieland Brendel, Christos Constantinidis, Claudia E. Feierstein,

Adam Kepecs, Zachary F. Mainen, Xue Lian Qi, Ranulfo Romo, Naoshige

Uchida, and Christian K. Machens (2016) “Demixed principal component

analysis of neural population data,” eLife, Vol. 5, No. APRIL2016, pp. 1–36.

Lescroart, Mark, Kendrick Kay, Thomas Naselaris, Ryan Prenger, Michael Oliver,

and Jack Gallant (2011) “fMRI of human visual areas in response to natural

images.”

Liang, D. (2017) “Automated Multi-task Learnin,” UC San Diego.

110

References

Libonati, F., C. Colombo, and L. Vergani (2013) “Design and characterization of

a bio-inspired composite,” Engineering Against Failure - Proceedings of the

3rd International Conference of Engineering Against Failure, ICEAF 2013,

pp. 30–38.

Luckow, Andre, Matthew Cook, Nathan Ashcraft, Edwin Weill, Emil Djerekarov,

and Bennie Vorster (2016) “Deep learning in the automotive industry: Ap-

plications and tools,” Proceedings - 2016 IEEE International Conference on

Big Data, Big Data 2016, pp. 3759–3768.

Luo, Liqun (2016) Principles of Neurobiology: Garland Science.

Majka, Piotr, Tristan A. Chaplin, Hsin-Hao Yu, Alexander Tolpygo, Partha P.

Mitra, Daniel K. Wójcik, and Marcello G.P. Rosa (2016) “Towards a com-

prehensive atlas of cortical connections in a primate brain: Mapping tracer

injection studies of the common marmoset into a reference digital template,”

Journal of Comparative Neurology, Vol. 524, No. 11, pp. 2161–2181.

Marr, David (1982) Vision.: The MIT Press, Cambridge, Massachusetts.

Martens, James and Ilya Sutskever (2011) “Learning recurrent neural networks

with Hessian-free optimization,” Proceedings of the 28th International Con-

ference on Machine Learning, ICML 2011, pp. 1033–1040.

Martinolli, Marco, Wulfram Gerstner, and Aditya Gilra (2018) “Multi-Timescale

Memory Dynamics Extend Task Repertoire in a Reinforcement Learning

Network With Attention-Gated Memory,” Frontiers in Computational Neu-

roscience, Vol. 12.

Matteo Ruffini, Borja Balle, Guillaume Rabusseau (2017) “Hierarchical Methods

of Moments,” NIPS.

McCulloch, W.S. and W. Pitts (1943) A Logical Calculus of Ideas Immanent in

Nervous Activity.

Mead, Carver (1990) “Mead C (1990, October) Neuromorphic electronic systems.

Proc IEEE,” Proceedings of the IEEE, Vol. 78, pp. 1629 – 1636.

111

References

Meier, Jil, Prejaas Tewarie, Arjan Hillebrand, Linda Douw, Bob W. van Dijk,

Steven M. Stufflebeam, and Piet Van Mieghem (2016) “A Mapping Between

Structural and Functional Brain Networks,” Brain Connectivity, Vol. 6, No.

4, pp. 298–311.

Mijalkov, Mite, Ehsan Kakaei, Joana B. Pereira, Eric Westman, and Gio-

vanni Volpe and (2017) “BRAPH: A graph theory software for the analysis

of brain connectivity,” PLOS ONE, Vol. 12, No. 8, p. e0178798.

Minamizawa, Kouta, Yasuaki Kakehi, Masashi Nakatani, Soichiro Mihara, and

Susumu Tachi (2012) “TECHTILE toolkit: a prototyping tool for design

and education of haptic media,” in VRIC.

Minsky M., Papert S. (1969) Perceptrons: an introduction to computational ge-

ometry.

Monroe, Don (2014) “Neuromorphic Computing Gets Ready for the (Really) Big

Time,” Commun. ACM, Vol. 57, No. 6, pp. 13–15.

Nayebi, Aran, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, James J

Dicarlo, Daniel L K Yamins, Cognitive Sciences, Google Brain, and Moun-

tain View (2018) “Task-Driven Convolutional Recurrent Models of the Vi-

sual System,” pp. 1–14.

Niell and Stryker (2008) “Highly selective receptive fields in mouse visual cortex.”

Norman, M.D. (2018) Applying Complexity Science with Machine Learning,

Agent-Based Models, and Game Engines: Towards Embodied Complex Sys-

tems Engineering.

Orban, Guy A., David Van Essen, and Wim Vanduffel (2004) “Comparative map-

ping of higher visual areas in monkeys and humans,” Trends in Cognitive

Sciences, Vol. 8, No. 7, pp. 315–324.

O'Reilly, Randall C. and Michael J. Frank (2006) “Making Working Memory

Work: A Computational Model of Learning in the Prefrontal Cortex and

Basal Ganglia,” Neural Computation, Vol. 18, No. 2, pp. 283–328.

112

References

Pearlmutter, Barak A and Geoffrey E Hinton (1986) “G-Maximi,zation: an Un-

supervised Learning Procedure,” Snowbird Conference on Neural Networks

for Computing, No. 151, pp. 333–338.

Pennachin, Ben GoertzelCassio (2007) Artificial General Intelligence: Springer.

R., Bellman (2003) Dynamic Programming.

Rosenblatt, Frank (1958) The perceptron: A probabilistic model for information

storage and organization in the brain.

Rumelhart, Geoffrey E.; Williams Ronald J., David E.; Hinton (1986) “Learning

representations by back-propagating errors,” Volume 323, Issue 6088, pp.

533-536 (1986).

Russel, B. and A. N. Whitehead (1910-13) Principia Mathematica.

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton (2017) “Dynamic Routing

Between Capsules,” CoRR, Vol. abs/1710.09829.

Salehinejad, Hojjat, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh

Valaee (2017) “Recent Advances in Recurrent Neural Networks,” pp. 1–21.

Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini (2009) “The graph neural network model,” IEEE

Transactions on Neural Networks IEEE Transactions on Neural Networks

IEEE TRANSACTIONS ON NEURAL NETWORKS, Vol. 20, No. 1, pp.

61–80.

Schiller UD, Steil JJ (2005) “Analyzing the weight dynamics of recurrent learning

algorithms,” Neurocomputing 63: 5-23.

Seth, A. K., A. B. Barrett, and L. Barnett (2015) “Granger Causality Analysis in

Neuroscience and Neuroimaging,” Journal of Neuroscience, Vol. 35, No. 8,

pp. 3293–3297.

Sezer, Omer Berat and Ahmet Murat Özbayoglu (2019) “Financial Trading Model

with Stock Bar Chart Image Time Series with Deep Convolutional Neural

Networks,” CoRR, Vol. abs/1903.04610.

113

References

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal

Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel, and Demis Hassabis (2016) “Mastering the

game of Go with deep neural networks and tree search,” Nature, Vol. 529,

No. 7587, pp. 484–489.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore

Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis (2017)

“Mastering Chess and Shogi by Self-Play with a General Reinforcement

Learning Algorithm,” pp. 1–19.

SivasankariK. and ThanushkodiK. “n Improved EEG Signal Classification Us-

ing Neural Network with the Consequence of ICA and STFT.,” Journal of

Electrical Engineering and Technology, Vol. 9, No. 3, pp. 1060–1071.

Smith, Michael R. and Tony Martinez (2011) “Improving Classification Accu-

racy by Identifying and Removing Instances that Should Be Misclassified,”

Conference: Neural Networks (IJCNN), The 2011 International Joint Con-

ference on.

Solomon, Samuel G. and Marcello G. P. Rosa (2014) “A simpler primate brain:

the visual system of the marmoset monkey,” Frontiers in Neural Circuits,

Vol. 8.

Spoerer, Courtney J., Patrick McClure, and Nikolaus Kriegeskorte (2017) “Recur-

rent Convolutional Neural Networks: A Better Model of Biological Object

Recognition,” Frontiers in Psychology, Vol. 8.

St-Yves, Ghislain and Thomas Naselaris (2018) “Generative Adversarial Networks

Conditioned on Brain Activity Reconstruct Seen Images.”

Strogatz (2000) Nonlinear Dynamics and Chaos.

Sussillo, David, “LFADS - Latent Factor Analysis via Dynamical Systems.”

114

References

Sussillo, David and Omri Barak (2013) “Opening the black box: Low-dimensional

dynamics in high-dimensional recurrent neural networks,” Neural Compu-

tation, Vol. 25, No. 3, pp. 626–649.

Sussillo, David, Mark M. Churchland, Matthew T. Kaufman, and Krishna V.

Shenoy (2015) “A neural network that finds a naturalistic solution for the

production of muscle activity,” Nature Neuroscience, Vol. 18, No. 7, pp.

1025–1033.

Swindale, N. V. (1998) “Orientation tuning curves: Empirical description and

estimation of parameters,” Biological Cybernetics, Vol. 78, No. 1, pp. 45–

56.

Training, Backpropagation (2006) “1 . 2 On the origin and development of neu-

rocomputing,” No. 1958.

Vinyals, Oriol, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha

Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Aga-

piou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen,

Karen Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy P.

Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence,

Anders Ekermo, Jacob Repp, and Rodney Tsing (2017) “StarCraft II: A

New Challenge for Reinforcement Learning,” CoRR, Vol. abs/1708.04782.

Whittington, James C.R. and Rafal Bogacz (2019) “Theories of Error Back-

Propagation in the Brain,” Trends in Cognitive Sciences.

Xie, Hang, H A O Tang, and Yu-he Liao (2009) “Time Series Prediction Based

on NARX Neural Networks: An Advanced Approach,” Proceedings of the

Eighth International Conference on Machine Learning and Cybernetics, No.

July, pp. 12–15.

Y. Paquot, A. Smerieri J. Dambre B. Schrauwen M. Haelterman S. Massar,

F. Duport (2012) “Optoelectronic Reservoir Computing,” Scientific Reports

volume 2, Article number: 287.

115

References

Yan LeCun, J. S. Denker D. Henderson R. E. Howard W. Hubbard L. D. Jackel,

B. Boser (1998) “Backpropagation Applied to Handwritten Zip Code Recog-

nition.”

Yang, Guangyu Robert, H. Francis Song, William T. Newsome, and Xiao-Jing

Wang (2017) “Clustering and compositionality of task representations in

a neural network trained to perform many cognitive tasks,” bioRxiv, p.

183632.

Yann LeCun, Patrick Haffner, LÃ©on Bottou (1989) “Gradient Descent Algo-

rithm Applied to Document Recognition.”

Zuo, Yan, Gil Avraham, and Tom Drummond (2018) “Generative Adversarial

Forests for Better Conditioned Adversarial Learning.”

116

Appendices

A. Toy Model - Sample Code (MATLAB)

---------STRUCTURE-----------

net = network;

net.numInputs = 1;

layer_count = 4;

net.numLayers = layer_count;

net.biasConnect = ones(layer_count,1);

net.layerConnect(2,1) = 1;

net.layerConnect(3,2) = 1;

net.layerConnect(4,3) = 1;

net.outputConnect = ones(1,layer_count);

net.outputs{:}.feedbackInput = 1;

net.outputs{:}.feedbackMode = 'open';

net.inputs{1}.name = 'Task Variable';

net.inputs{2}.name = 'Signal 1';

net.inputs{3}.name = 'Signal 2';

net.inputs{4}.name = 'Signal 3';

net.inputs{5}.name = 'Behavioral Component';

117

Appendices A. Toy Model - Sample Code (MATLAB)

%Layer 1 to Task Variable and Signal 1

net.inputConnect(1,1) = 1;

net.inputConnect(1,2) = 1;

%Layer 2 to Signal 2

net.inputConnect(2,3) = 1;

%Layer 3 to Signal 3

net.inputConnect(3,4) = 1;

%Layer 4 to Behavioral

net.inputConnect(4,5) = 1;

%net.LayerWeights{2,1}.delays = 1;

%net.LayerWeights{3,2}.delays = 1;

%net.LayerWeights{4,3}.delays = 10;

%net.inputWeights{2,2}.delays = 1;

%net.inputWeights{3,2}.delays = 1;

%net.inputWeights{4,2}.delays = 10;

net.outputs{1}.feedbackDelay = 1;

net.outputs{2}.feedbackDelay = 2;

net.outputs{3}.feedbackDelay = 2;

net.outputs{4}.feedbackDelay = 3;

dim_1 = size([Input_cell{1,1}],1);

dim_2 = size([Signal1_cell{1,1}],1);

dim_3 = size([Signal2_cell{1,1}],1);

dim_4 = size([Signal3_cell{1,1}],1);

dim_5 = size([Behavioral_cell{1,1}],1);

%Number of neurons for Input_cell

net.inputs{1}.size = dim_1;

%Number of neurons for Signal1_cell

net.inputs{2}.size = dim_2;

%Number of neurons for Signal2_cell

net.inputs{3}.size = dim_3;

%Number of neurons for Signal3_cell

net.inputs{4}.size = dim_4;

%%Number of neurons for Behavioral_cell

net.inputs{5}.size = dim_5;

118

Appendices A. Toy Model - Sample Code (MATLAB)

Architecture and training parameters:

119

Appendices A. Toy Model - Sample Code (MATLAB)

---------FUNCTION--------

net.layers{:}.transferFcn = 'poslin';

net.layers{4}.transferFcn = 'hardlim'; %'logsig'

net.layerWeights{:}.learnFcn = 'learngdm';

net.performFcn = 'crossentropy'; %'msereg'

%net.performParam.regularization = 0.01;

%net.performParam.normalization = 'none';

net.adaptFcn = 'learnhd'; %Hebb with decay weight

%net.adaptFcn = 'learncon'; %Conscience bias learning

%net.adaptFcn = 'learngd'; %Gradient descent

%net.adaptFcn = 'learnlv2'; %LVQ 2.1 weight learning

%net.adaptFcn = 'learnpn'; %Perceptron

%net.adaptFcn = 'learnsom'; %Self-organizing map

net.trainFcn = 'trainscg'; %SCG backpropagation

epoch=100; %number of planned training steps

net.trainParam.epochs = epoch;

net.divideMode = 'sampletime';

net.divideFcn = 'dividerand';

net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

net.plotFcns = {'plotregression'};

net.layers{1}.name = 'Signal 1 Layer';

net.layers{2}.name = 'Signal 2 Layer';

net.layers{3}.name = 'Signal 3 Layer';

net.layers{4}.name = 'Behavioral Layer';

save('net','net')

120

Appendices A. Toy Model - Sample Code (MATLAB)

----------TRAINING---------

net = init(net);

row_start = 1;

row_end = sessions_n; %Number of trained sessions.

col_start = 1;

col_end = 1;

data_input = {[Input_cell],...

[Signal1_cell],...

[Signal2_cell],...

[Signal3_cell],...

[Behavioral_cell]}';

data_target = {[Signal1_cell],...

[Signal2_cell],...

[Signal3_cell],...

[Behavioral_cell]}';

[net, tr] = train(net,data_input,data_target);

view(net)

W_i_weight=net.IW;

W_l_weight=net.LW;

121

Appendices B. BioNN Code (Python Sample)

closednet=closeloop(net);

%Connect Layer 1 to Layer 2

closednet.layerConnect(2,1) = 1;

%Connect Layer 1 to Layer 3

closednet.layerConnect(3,1) = 1;

%Connect Layer 2 to Layer 4

closednet.layerConnect(3,2) = 1;

%Connect Layer 3 to Layer 4

closednet.layerConnect(4,3) = 1;

view(closednet)

data_input_test = {[Input_cell]}'

[outputs] = closednet(data_input_test); %Test unseen session

B. BioNN Code (Python Sample)

#!/usr/bin/env python

coding: utf-8

###

import keras

from keras.models import Sequential, Model

from keras.layers import (Input, Embedding, LSTM, Dense,

Dropout, Activation, BatchNormalization)

from keras.optimizers import SGD, Adam

from keras.callbacks import (TensorBoard, ModelCheckpoint,

EarlyStopping,ReduceLROnPlateau)

from keras.utils import to_categorical

122

Appendices B. BioNN Code (Python Sample)

from sklearn.preprocessing import normalize, minmax_scale

import pandas as pd

import numpy as np

import time

import matplotlib.pyplot as plt

import matplotlib

import os

channel_num = 8

epoch1 = 2000

epoch2 = 200

#Neural architecture parameters

act = 'sigmoid' #hidden layer activation e.g. sigmoid

#Predictor parameters

actLSTM = 'relu' #hidden layer activation e.g. relu

n_LSTM = 256 #number of units in hidden layers

n_do = 0.1 #dropout in dense layers [0,1]

n_DenseLSTM = 1 #number of units in output layers

lr_n=0.001 #optimizer

decay_n=1e-5 #optimizer

loss_fc='mae' #objective function

b_size = 1 #Batch size

#Classifier parameters

actDense_c = 'relu'

actOut_c = 'sigmoid' #output layer activation

n_Dense = 64 #number of units in hidden layers

n_do_c = 0.1 #dropout in dense layers [0,1]

123

Appendices B. BioNN Code (Python Sample)

lr_c=0.0001 #optimizer

decay_c=1e-5 #optimizer

loss_fc_c='binary_crossentropy' #objective function

b_size_c = 12 #Batch size

print(keras.__version__)

from tensorflow.python.client import device_lib

print(device_lib.list_local_devices())

keras.backend.clear_session()

#####################DATA FORMAT###########################

#Data should be formatted as follows (Pandas DataFrame main_df):

print(main_df.head())

timestamp CH1 CH2 CH3 CH4 CH5 CH6

0 262263 -5957.8276 -4735.3843 6936.8374 1477.7177 -1137.4503 8699.506

1 166260 -6102.6440 -5061.7305 8240.2400 1742.7611 -1489.5394 9228.946

2 661257 -5902.5000 -5057.8936 8845.1260 1865.3721 -1682.4323 9307.123

3 760260 -5402.4263 -4869.0654 9659.1690 2028.9210 -1983.9315 8889.895

4 558259 -4858.0415 -4563.2583 9769.4380 2042.3453 -2092.5664 8151.338

CH7 CH8 Task Variable Behavioral

0 2848.1594 7123.8335 1 0

1 3178.9612 8410.9260 0 0

2 3341.8276 8983.0940 2 0

3 3555.8054 9523.4880 3 1

4 3436.3738 9333.0030 5 0

#Dataset split length

main_df_np = np.array(main_df)

len_timeseries = main_df_np.shape[0]

n_ = round(len_timeseries/3)-1

124

Appendices B. BioNN Code (Python Sample)

#Get data for Classifier

#Channels are inputs x, Behavioral is target y

x_train_Neural = main_df_np[0:n_,1:9] #Channels

y_train_Behavior = main_df_np[0:n_,-1] #Behavioral 1 or 0 (Left or Right)

x_validation_Neural = main_df_np[n_:n_*2,1:9]

y_validation_Behavior = main_df_np[n_:n_*2,-1]

x_test_Neural = main_df_np[n_*2:n_*3,1:9]

y_test_Behavior = main_df_np[n_*2:n_*3,-1]

#Get data for Predictor

#Rescale [0,1]:

main_df_np = minmax_scale(main_df_np,feature_range=(0, 1), axis=0)

#Task Variable is input x, Channels are targets y

x_train_Task = main_df_np[0:n_,-2] #Task Variable 1 to 6 classes

y_train_Neural = main_df_np[0:n_,1:9] #Channels

x_validation_Task = main_df_np[n_:n_*2,-2]

y_validation_Neural = main_df_np[n_:n_*2,1:9]

x_test_Task = main_df_np[n_*2:n_*3,-2]

y_test_Neural = main_df_np[n_*2:n_*3,1:9]

#Format data for Predictor

#LSTM encoding

x_train_Task = np.reshape(x_train_Task,(-1,n_))

y_train_Neural = np.reshape(y_train_Neural,(1,n_,8))

x_validation_Task = np.reshape(x_validation_Task,(-1,n_))

y_validation_Neural = np.reshape(y_validation_Neural,(1,n_,8))

x_test_Task = np.reshape(x_test_Task,(-1,n_))

y_test_Neural = np.reshape(y_test_Neural,(1,n_,8))

125

Appendices B. BioNN Code (Python Sample)

###

#Predictor architecture

#8 Channels

input_len = x_train_Task.shape[1]

main_input = Input(shape=(input_len,), dtype='int32', name='main_input')

x_ = Embedding(output_dim=8, input_dim=8, input_length=input_len)(main_input)

x = Dropout(n_do)(x_)

lstm_out = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(x)

ch7 = Dense(1, activation=act, name='ch7')(lstm_out) #L LOC (to In)

d7 = Dropout(n_do)(ch7)

lstm_out7 = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(d7)

de7 = Dense(n_DenseLSTM, activation=act)(lstm_out7)

ch8 = Dense(1, activation=act, name='ch8')(ch7) #R LOC (to L LOC)

d8 = Dropout(n_do)(ch8)

lstm_out8 = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(d8)

de8 = Dense(n_DenseLSTM, activation=act)(lstm_out8)

ch3 = Dense(1, activation=act, name='ch3')(lstm_out) #L DMN (to In)

d3 = Dropout(n_do)(ch3)

lstm_out3 = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(d3)

de3 = Dense(n_DenseLSTM, activation=act)(lstm_out3)

ch4 = Dense(1, activation=act, name='ch4')(ch3) #R DMN (to L DMN)

d4 = Dropout(n_do)(ch4)

lstm_out4 = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(d4)

126

Appendices B. BioNN Code (Python Sample)

de4 = Dense(n_DenseLSTM, activation=act)(lstm_out4)

ch2 = Dense(1, activation=act, name='ch2')(ch4) #R Front (to R DMN)

d2 = Dropout(n_do)(ch2)

lstm_out2 = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(d2)

de2 = Dense(n_DenseLSTM, activation=act)(lstm_out2)

ch1 = Dense(1, activation=act, name='ch1')(ch2) #L Front (to R Front)

d1 = Dropout(n_do)(ch1)

lstm_out1 = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(d1)

de1 = Dense(n_DenseLSTM, activation=act)(lstm_out1)

ch5 = Dense(1, activation=act, name='ch5')(ch1) #L Par (to L Front)

d5 = Dropout(n_do)(ch5)

lstm_out5 = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(d5)

de5 = Dense(n_DenseLSTM, activation=act)(lstm_out5)

ch6 = Dense(1, activation=act, name='ch6')(ch5) #R Par (to L Par)

d6 = Dropout(n_do)(ch6)

lstm_out6 = LSTM(n_LSTM, activation=actLSTM, return_sequences=True)(d6)

de6 = Dense(n_DenseLSTM, activation=act)(lstm_out6)

model_neural = Model(inputs=main_input,

outputs=[ch1, ch2, ch3, ch4, ch5, ch6, ch7, ch8])

opt_neuro = Adam(lr=lr_n, decay=decay_n) #optimizer

127

Appendices B. BioNN Code (Python Sample)

NAME = f"Model-BioNN-neural-{int(time.time())}"

tensorboard_p = TensorBoard(log_dir="logs/{}".format(NAME))

filepath_p = "Predictor_BioNN-Final-{epoch:02d}"

checkpoint_p = ModelCheckpoint("models/{}.model".format(filepath_p,

verbose=0, save_best_only=True, mode='max'))

stopping_p = EarlyStopping(patience=200, verbose=0)

reduce_lr_p = ReduceLROnPlateau(factor=0.2,patience=5, min_lr=0)

loss_weights_ = [0.4732719 , 0.17619088, 1. , 0.55852309, 0.38801036,

0.60008576, 1. , 0.78297974]

model_neural.compile(optimizer=opt_neuro,

loss={'ch1': loss_fc, 'ch2': loss_fc, 'ch3': loss_fc,

'ch4': loss_fc,'ch5': loss_fc, 'ch6': loss_fc, 'ch7': loss_fc,'ch8': loss_fc},

loss_weights={'ch1': loss_weights_[0], 'ch2': loss_weights_[1],

'ch3': loss_weights_[2], 'ch4': loss_weights_[3],

'ch5': loss_weights_[4], 'ch6': loss_weights_[5],

'ch7': loss_weights_[6], 'ch8': loss_weights_[7]},

metrics=[loss_fc])

reshape each target for individual input:

ch1 = np.reshape(y_train_Neural[0,:,0],(1,input_len,1))

ch2 = np.reshape(y_train_Neural[0,:,1],(1,input_len,1))

ch3 = np.reshape(y_train_Neural[0,:,2],(1,input_len,1))

ch4 = np.reshape(y_train_Neural[0,:,3],(1,input_len,1))

ch5 = np.reshape(y_train_Neural[0,:,4],(1,input_len,1))

ch6 = np.reshape(y_train_Neural[0,:,5],(1,input_len,1))

128

Appendices B. BioNN Code (Python Sample)

ch7 = np.reshape(y_train_Neural[0,:,6],(1,input_len,1))

ch8 = np.reshape(y_train_Neural[0,:,7],(1,input_len,1))

ch1_v = np.reshape(y_validation_Neural[0,:,0],(1,input_len,1))

ch2_v = np.reshape(y_validation_Neural[0,:,1],(1,input_len,1))

ch3_v = np.reshape(y_validation_Neural[0,:,2],(1,input_len,1))

ch4_v = np.reshape(y_validation_Neural[0,:,3],(1,input_len,1))

ch5_v = np.reshape(y_validation_Neural[0,:,4],(1,input_len,1))

ch6_v = np.reshape(y_validation_Neural[0,:,5],(1,input_len,1))

ch7_v = np.reshape(y_validation_Neural[0,:,6],(1,input_len,1))

ch8_v = np.reshape(y_validation_Neural[0,:,7],(1,input_len,1))

history = model_neural.fit({'main_input': x_train_Task},

{'ch1': ch1 , 'ch2': ch2, 'ch3': ch3 , 'ch4': ch4,

'ch5': ch5 , 'ch6': ch6, 'ch7': ch7 , 'ch8': ch8},

epochs=epoch1,

batch_size=b_size,

validation_data=(x_validation_Task, [ch1_v,ch2_v,ch3_v,ch4_v,

ch5_v,ch6_v,ch7_v,ch8_v]),

verbose=1,

shuffle=False,

callbacks=[tensorboard_p, checkpoint_p])

score_neural = model_neural.evaluate(x_validation_Task, [ch1_v,ch2_v,ch3_v,

ch4_v,ch5_v,ch6_v,ch7_v,ch8_v], batch_size=b_size)

print(score_neural)

model_neural.save("saved_models/{}".format(NAME))

model_neural.summary()

129

Appendices B. BioNN Code (Python Sample)

pred_neuro = model_neural.predict(x_test_Task)

pred_neuro_np = np.reshape(pred_neuro,(8,n_)).transpose()

print(pred_neuro_np[0,:])

#Classifier architecture

model = Sequential()

model.add(Dense(8, input_dim=8, activation=actDense_c))

model.add(Dropout(n_do_c))

model.add(Dense(n_Dense, activation=actDense_c))

model.add(Dense(n_Dense, activation=actDense_c))

model.add(Dense(1, activation=actOut_c))

opt = Adam(lr=lr_c, decay=decay_c)

model.compile(loss=loss_fc_c,

optimizer=opt,

metrics=[loss_fc_c])

NAME = f"Model-BioNN-{int(time.time())}"

tensorboard_c = TensorBoard(log_dir="logs/{}".format(NAME))

filepath_c = "Classifier_BioNN-Final-{epoch:02d}"

checkpoint_c = ModelCheckpoint("models/{}.model".format(filepath_c,

verbose=0, save_best_only=True))

130

Appendices B. BioNN Code (Python Sample)

history_c = model.fit(x_train_Neural, y_train_Behavior,

epochs=epoch2,

batch_size=b_size_c,

validation_data=(x_validation_Neural, y_validation_Behavior),

verbose=1,

shuffle=False,

callbacks=[tensorboard_c, checkpoint_c])

score = model.evaluate(x_validation_Neural, y_validation_Behavior,

batch_size=b_size_c)

model.save("saved_models/{}".format(NAME))

model.summary()

pred_neuro_np = minmax_scale(pred_neuro_np,feature_range=(x_test_Neural.min(),

x_test_Neural.max()), axis=0)

pred_behavior = model.predict(pred_neuro_np)

pred_behavior_int = pred_behavior.transpose()

pred_behavior_int = np.round(pred_behavior_int)

print(pred_behavior_int) #Predicted behavior

print(y_test_Behavior) #Baseline behavior

p_binary=((pred_behavior_int==y_test_Behavior).sum()/y_test_Behavior.shape[0])

p_binary=p_binary*100

print("percentage of successful predictions: %.2f%%" % (p_binary))

131

Appendices B. BioNN Code (Python Sample)

def perf_measure(y_actual, y_hat):

TP = 0

FP = 0

TN = 0

FN = 0

for i in range(len(y_hat)):

if y_actual[i]==y_hat[i]==1:

TP += 1

if y_hat[i]==1 and y_actual[i]!=y_hat[i]:

FP += 1

if y_actual[i]==y_hat[i]==0:

TN += 1

if y_hat[i]==0 and y_actual[i]!=y_hat[i]:

FN += 1

return(TP, FP, TN, FN)

#TP, FP, TN, FN = perf_measure([0,1], [0,1])

y_actual = pred_behavior_int

y_actual = np.reshape(y_actual,(y_actual.shape[1])).astype(bool)

y_hat = y_test_Behavior.transpose().astype(bool)

TP, FP, TN, FN = perf_measure(y_actual, y_hat)

print('True Positives: %.2f' % (TP))

print('False Positives: %.2f' % (FP))

print('True Negatives: %.2f' % (TN))

print('False Negatives: %.2f' % (FN))

print('Neural scores on evaluation:')

132

Appendices B. BioNN Code (Python Sample)

for n in range(len(score_neural)):

print("%s: %.2f" % (model_neural.metrics_names[n], score_neural[n]))

print('Final scores on evaluation:')

for n in range(len(score)):

print("%s: %.2f" % (model.metrics_names[n], score[n]))

#%matplotlib widget

get_ipython().run_line_magic('matplotlib', 'inline')

#Predictor

list all data in history

print(history.history.keys())

summarize history for loss

fig1 = plt.figure()

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Neural model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')

plt.savefig('Figs/Neural model loss.pdf')

plt.show()

#Classifier

list all data in history

print(history_c.history.keys())

fig2 = plt.figure()

plt.plot(history_c.history['loss'])

plt.plot(history_c.history['val_loss'])

133

Appendices B. BioNN Code (Python Sample)

plt.title('Final model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')

plt.savefig('Figs/Final model loss.pdf')

plt.show()

#Plot 1 Signal (quick check)

get_ipython().run_line_magic('matplotlib', 'inline')

ch_ = 0

X_pred = np.arange(0, n_, 1)

X_pred = np.reshape(X_pred,(n_))

X_test = X_pred

Y_pred = pred_neuro_np[:,ch_]

Y_test = x_test_Neural[:,ch_]

fig5 = plt.figure()

ax = plt.axes()

ax.set(xlabel='events', ylabel='neural activity',

title='predictions 1 channel')

plt.plot(X_pred, Y_pred, alpha=1)

plt.savefig('Figs/predictions 1 channel.pdf')

plt.show()

fig6 = plt.figure()

ax = plt.axes()

ax.set(xlabel='events', ylabel='neural activity',

134

Appendices B. BioNN Code (Python Sample)

title='test set 1 channel')

plt.plot(X_test, Y_test, alpha=1)

plt.savefig('Figs/test set 1 channel.pdf')

plt.show()

#%matplotlib inline

#Plot all signals

Y_p = minmax_scale(pred_neuro_np,feature_range=(0, 1), axis=1).transpose()

Y_t = minmax_scale(x_test_Neural,feature_range=(0, 1), axis=1).transpose()

def heatmap2d(arr: np.ndarray, str_title):

ax = plt.axes()

ax.set(xlabel='events',

ylabel='activity',

title=str_title)

im = plt.imshow(arr, cmap='viridis', interpolation='bicubic',

aspect='auto')

cb = plt.colorbar()

cb.set_label('intensity')

plt.savefig('Figs/'+str_title+'.pdf')

plt.show()

fig7 = plt.figure()

heatmap2d(Y_p, 'Gradient map (interpolated) - Predicted')

fig8 = plt.figure()

heatmap2d(Y_t, 'Gradient map (interpolated) - Test')

#Plot regions by regions

135

Appendices B. BioNN Code (Python Sample)

def heatmap2d_b(arr: np.ndarray, str_title):

ax = plt.axes()

ax.set(xlabel='events',

ylabel='Channels',

title=str_title)

plt.imshow(arr, cmap='viridis', interpolation='bicubic',

aspect='auto')

#plt.imshow(arr, cmap='viridis')

cb = plt.colorbar()

cb.set_label('intensity')

plt.savefig('Figs/'+str_title+'.pdf')

plt.show()

fig7b = plt.figure()

Fp_p = minmax_scale(pred_neuro_np[:,0:2],feature_range=(0, 1),

axis=1).transpose()

heatmap2d_b(Fp_p, 'Fp Left,Right - Predicted')

Fp_t = minmax_scale(x_test_Neural[:,0:2],feature_range=(0, 1),

axis=1).transpose()

fig8b = plt.figure()

heatmap2d_b(Fp_t, 'Fp Left,Right - Test')

C_p = minmax_scale(pred_neuro_np[:,2:4],feature_range=(0, 1),

axis=1).transpose()

heatmap2d_b(C_p, 'Central - Predicted')

C_t = minmax_scale(x_test_Neural[:,2:4],feature_range=(0, 1),

axis=1).transpose()

fig8b = plt.figure()

heatmap2d_b(C_t, 'Central - Test')

136

Appendices B. BioNN Code (Python Sample)

Par_p = minmax_scale(pred_neuro_np[:,4:6],feature_range=(0, 1),

axis=1).transpose()

heatmap2d_b(Par_p, 'Parietal Left,Right - Predicted')

Par_t = minmax_scale(x_test_Neural[:,4:6],feature_range=(0, 1),

axis=1).transpose()

fig8b = plt.figure()

heatmap2d_b(Par_t, 'Parietal Left,Right - Test')

Occ_p = minmax_scale(pred_neuro_np[:,6:8],feature_range=(0, 1),

axis=1).transpose()

heatmap2d_b(Occ_p, 'Occipital Left,Right - Predicted')

Occ_t = minmax_scale(x_test_Neural[:,6:8],feature_range=(0, 1),

axis=1).transpose()

fig8b = plt.figure()

heatmap2d_b(Occ_t, 'Occipital Left,Right - Test')

#Generate outputs based on training targets for evaluation:

output_tr_neuro = model_neural.predict(x_train_Task)

output_tr_neuro_np = np.reshape(output_tr_neuro,(8,n_)).transpose()

#%matplotlib inline

#Plot all signals (training)

Y_p = minmax_scale(output_tr_neuro_np,feature_range=(0, 1), axis=1).transpose()

Y_t = minmax_scale(x_train_Neural,feature_range=(0, 1), axis=1).transpose()

137

Appendices B. BioNN Code (Python Sample)

def heatmap2d(arr: np.ndarray, str_title):

ax = plt.axes()

ax.set(xlabel='events',

ylabel='activity',

title=str_title)

im = plt.imshow(arr, cmap='viridis', interpolation='bilinear',

aspect='auto')

cb = plt.colorbar()

cb.set_label('intensity')

plt.savefig('Figs/'+str_title+'.pdf')

plt.show()

fig7 = plt.figure()

heatmap2d(Y_p, 'Gradient map (interpolated) - Train output')

fig8 = plt.figure()

heatmap2d(Y_t, 'Gradient map (interpolated) - Train set')

def explained_variance(arr1,arr2,str_):

cor_arr = np.corrcoef(arr1, arr2,rowvar=str_)

cor_arr_output_target = cor_arr[8:,:8]

diag_ = np.diag(cor_arr_output_target)

p_var = (diag_**2)*100

p_var[np.isnan(p_var)] = 0

print("variance explained by each output channel:")

print(p_var)

print("highest variance explained by outputs: %.2f%%" % (p_var.max()))

ch_ = np.where(p_var==p_var.max())[0][0]+1

print("EEG Channel: ", ch_)

return cor_arr, ch_

138

Appendices B. BioNN Code (Python Sample)

cor_arr, ch_ = explained_variance(Y_p,Y_t,True)

#Plot 1 Signal (quick check)

get_ipython().run_line_magic('matplotlib', 'inline')

ch_ = ch_-1

X_pred = np.arange(0, n_, 1)

X_pred = np.reshape(X_pred,(n_))

X_test = X_pred

Y_pred = pred_neuro_np[:,ch_]

Y_test = x_test_Neural[:,ch_]

fig5 = plt.figure()

ax = plt.axes()

ax.set(xlabel='events', ylabel='neural activity',

title='predictions channel '+ch_.astype(str))

plt.plot(X_pred, Y_pred, alpha=1)

plt.savefig('Figs/predictions 1 channel.pdf')

plt.show()

fig6 = plt.figure()

ax = plt.axes()

ax.set(xlabel='events', ylabel='neural activity',

title='test set 1 channel '+ch_.astype(str))

plt.plot(X_test, Y_test, alpha=1)

plt.savefig('Figs/test set 1 channel.pdf')

plt.show()

###

139

Appendices C. Glossary

C. Glossary

A (non-alphabetic) glossary condensing some study notes in the context of

machine learning.

• Activation Function. An activation function, as the name suggests, is

used by a unit in a neural network to decide what the activation value of

the unit should be based on a set of input values. The activation value of

many such units can then be used to make a decision based on the input

(classification) or predict value of some variable (regression).

The activation functions are typically non-linear. Non-linear mappings ap-

plied to inputs are able to capture interesting properties of the input.

There are different types of units based on the activation functions like

sigmoid units, rectified linear units (ReLU), tanh units.

– 1. Sigmoid maps input to a value in the range 0 to 1.

– 2. Tanh maps the input to a value in the range -1 to 1.

– 3. ReLU maps the input x to max(0,x), i.e. it maps negative inputs to

0 and positive inputs are output without any change.

• Saddle point. A saddle point admits a local minimum in one axis and a

local maximum in another (hyperbolic or paraboloid).

• Gradient map. A gradient map, or heat map, gives the direction of the

change and the strength or magnitude of the change. It is a convenient

visual representation of tensors or scalar fields, showing the rate of change

and direction (e.g. vectors pointing to red area as the highest values).

• Jacobian. The Jacobian gives the best linear approx of a distorted figure at

a point x (partial derivatives). It is the determinant of the Jacobian matrix.

Since matrix represents the coefficients in a systems of linear equations,

the Jacobian is the scaling factor of the transformation of the matrix i.e.

if V maps to W, addition and scalar multiplications are preserved by this

factor. Scalar product changes the scale (or magnitude) of the vector, not

its direction (see inner or dot products of 2 vectors).

140

Appendices C. Glossary

• MSED. Minimum Square Cartesian Distance: a Cartesian system being

an euclidian space with coordinates, the euclidean distances can be squared

and the smallest is the MSED.

• SSE. Sum of Squares Due to Error. A value closer to 0 indicates that the

model has a smaller random error component, and that the fit will be more

useful for prediction.

• R-Square. Because R-square is defined as the proportion of variance ex-

plained by the fit, if the fit is actually worse than just fitting a horizontal

line then R-square is negative.

• Degrees of Freedom Adjusted R-Square. The adjusted R-square statis-

tic can take on any value less than or equal to 1, with a value closer to 1

indicating a better fit

• Principal Component Analysis (PCA). Useful if the data has high

variance. The Principal Components are equivalent to an orthogonal trans-

formation that preserves the inner product of the linear transformation of

the data points. PCA reduces the dimensionality of the data, useful for

denoising.

• Tensor. A tensor is a geometric object that describes a linear relation

between vectors.

• Estimator. An underlying function estimating the model i.e. its expected

outputs. Overfitting occurs when the model provided by the estimator is

too complex while underfitting occurs when the model is not sophisticated

enough. In that case, a deviation to the true estimator is observed, and

large.

• Standardization. Standardisation is not normalization. Standardisation

is centered to mean=0 and SD=1, following a normal distribution. It is a

sub-class of normalization.

• Predictor values. Refers to independent variables or input values to the

network.

141

Appendices C. Glossary

• Regularization. Regularization reduces the variance of the estimator by

increasing its bias, so that error decreases.

• Hessian matrix. The Hessian matrix contains the second partial deriva-

tives to determinate the local min or max or saddle point of a surface, thus

helping the search of the direction to go for the gradient descent.

• Bayesian inference. Inferring the posterior probability based on the an-

tecedents (“likelihood” Baye’s function).

• Probability mass function / probability density function. Func-

tions that give the probability of a variable value in a discrete / continuous

distribution.

• Dynamic Causal Modeling. DCM describes how dynamics are manifest

in the data, what is the physical-causal mechanism.

• Perceptron. An object, with features and associated weights, indicating

their importance.

142

	Acknowledgements
	Introduction
	Definition of Artificial Intelligence
	Machine Learning
	Artificial Neural Networks: State of the Art
	Aim and Objectives
	Contributions
	Overview

	Related Work
	Hybrid Approaches
	Fundamentals
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	 Notes

	Neuromorphic Networks
	Paradigm
	Modeling Neural Circuits for Prediction
	Biologically plausible neural network
	Structure and Function
	Reduction, Simulation and Prediction.
	``BioNN": a Custom Neural Network in MATLAB
	 Notes

	Neuromorphic Networks: a Use Case
	Design of the Experiment
	Method: BioNN, Structure and Function
	Experimental Results
	Neuromorphic Network Evaluation
	 Notes

	Evaluations
	Prediction Model in Virtual Reality
	Prediction Model for Haptic Feedback
	Prediction Model for Thermo-haptic Feedback
	 Notes

	Conclusion and Future Work
	Conclusion
	Limitation and Future Work
	Summary

	References
	Appendices
	Toy Model - Sample Code (MATLAB)
	BioNN Code (Python Sample)
	Glossary

