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resumo 
 
 

Os poluentes antropogénicos são continuamente libertados para o meio 
ambiente, o que pode resultar numa exposição de longa duração para os 
organismos do solo. Atualmente, as normas padrão visam a avaliação de 
efeitos em apenas um estádio de vida, geralmente juvenis, durante um 
determinado período de tempo. Além disso, estes métodos avaliam os efeitos 
nocivos destes compostos p.e. na sobrevivência, reprodução e comportamento 
de evitamento dos organismos. Os resultados obtidos com estes parâmetros, 
mesmo quando combinados, podem potencialmente sub/sobrestimar as 
consequências para a fauna do solo. Assim, o principal objetivo desta tese foi 
desenvolver e explorar diferentes metodologias para avaliar os efeitos de 
poluentes, especificamente usando diferentes estádios de vida do organismo 
modelo ecotoxicológico Folsomia candida e a exposição multigeracional. Além 
disso, objetivou-se integrar uma abordagem multiparamétrica, comparando a 
sensibilidade dos parâmetros propostos pelos métodos padrão, com outros já 
testados. 
 
A avaliação dos efeitos de um conhecido e bastante estudado metal, o cádmio, 
em diferentes estágios de vida da Folsomia candida, forneceu novas e valiosas 
informações para perceber como estes organismos são afetados. O cádmio 
diminuiu a reprodução após a exposição de adultos, contudo não foram 
observados efeitos ao nível da eclosão, sobrevivência e reprodução quando os 
organismos foram expostos a partir de ovos. Assim, os efeitos dos 
contaminantes podem causar impactos diferentes dependendo da idade dos 
organismos. Além disso, uma avaliação de diferentes parâmetros permite 
conclusões mais detalhadas. Após a avaliação do modelo de concentração-
adição (CA) para prever a toxicidade de uma mistura (produto biocida) na 
reprodução e evitamento, dois resultados distintos foram obtidos. Enquanto 
que o modelo foi capaz de prever os efeitos na reprodução, subestimou 
fortemente o impacto no evitamento.  
A avaliação do impacto dos poluentes após exposição multigeracional mostrou 
ter consequências imprevisíveis ao longo das gerações. Enquanto que o 
impacto do fármaco antiparasitário ivermectina na sobrevivência e reprodução 
de F. candida foi similar nas três gerações testadas, o tamanho dos 
organismos diminuiu. Efeitos no tamanho foram também observados após 
exposição ao inseticida teflubenzuron, além de uma diminuição na 
sobrevivência e reprodução com o aumento do tempo de exposição, isto é, ao 
longo das gerações. Dado que o tamanho é essencial para a capacidade 
reprodutiva, a continuidade das populações pode estar em risco se estiverem 
expostas durante longos períodos de tempo. Além disso, foram obtidos 
diferentes resultados de marcadores celulares e bioquímicos entre gerações, o 
que contribuiu para a compreensão dos efeitos e mecanismos envolvidos após 
uma longa exposição. 
 
Esta tese demonstra que as normas atuais podem ser melhoradas com a 
inclusão de novos parâmetros aos que são requeridos atualmente ou 
considerados padrão. 
A abordagem multiparamétrica usada neste trabalho, que incorporou a 
medição do tamanho e avaliação de biomarcadores, em combinação com os 
parâmetros padrão, tais como a sobrevivência, reprodução e evitamento, 
mostrou a importância da inclusão de uma abordagem mais integrativa no 
quadro atual de avaliação de risco. 
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Anthropogenic pollutants are continuously released into the environment, which 
can result in long term exposure to soil organisms. Currently, standard 
guidelines focus on the assessment of effects to only one life stage, mostly 
juveniles, during a fixed exposure time. Additionally, these methods evaluate 
harmful effects of compounds to e.g. organism’s survival, reproduction and 
avoidance. Results obtained when testing these endpoints, even when 
combined, can under-/over-estimate potential damage to soil fauna. Therefore, 
the main aim of this thesis was to develop and explore different methodologies 
to assess the effects of pollutants, namely using different life stages of the soil 
ecotoxicological model species Folsomia candida and multigenerational 
exposure. Moreover, it was aimed to integrate a multi-endpoint approach, by 
comparing the sensitivity of the endpoints proposed in the standard methods, 
with additional tested ones. 
 
The assessment of the effects of a well-known and studied metal, cadmium, to 
different life stages of F. candida provided new and valuable information to 
understand how these organisms are affected. Cadmium decreased 
reproduction after exposure of adults, while no effect on hatching, survival and 
reproduction was observed when organisms were exposed from eggs. 
Therefore, effects of contaminants can cause different impact depending on the 
organism’s age. Also, an assessment of different endpoints may result in more 
detailed conclusions. After evaluation the concentration addition (CA) model to 
predict the toxicity of a mixture (biocidal product), both to assess reproduction 
and avoidance behaviour, two distinct results were obtained. While the model 
was able to predict effects on reproduction, it strongly underestimated the 
impact on avoidance.  
The evaluation of the impact of pollutants after multigenerational exposure 
showed to have an unpredictable impact over the generations. While the 
impact of ivermectin (veterinary product) to survival and reproduction of F. 
candida was similar in all three tested generations, the size of the organisms 
decreased. Effects on size were also observed after exposure to an insect 
growth regulator – teflubenzuron, in addition to a decrease in survival and 
reproduction with increasing time of exposure, i.e. along generations. Since 
size has a crucial role to reproduction, the continuity of the population may be 
at risk if exposed during long periods of time. Also, different results from cellular 
and biochemical markers were obtained across generations, which contributed 
to the understanding of the effects and mechanisms involved after long term 
exposure. 
 
This thesis shows that the present guidelines can be improved by the 
incorporation of new parameters in addition to the currently required or 
standard endpoints. 
The multi-endpoint approach used in this work, which incorporated 
measurement of size and evaluation of cellular and biochemical markers, in 
combination with standard endpoints such as survival, reproduction and 
avoidance, showed the added value of the inclusion of a more integrative 
approach to the current risk assessment framework.    
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1. GENERAL INTRODUCTION 

 

The concentrations of chemicals are increasing in all environmental compartments 

due to human activities. 

The toxic effects of pollutants to the organisms can be defined as an alteration in 

their physiology, when comparing to control conditions (Kooijman et al., 2007), 

which may lead to consequences on the population and community level.  

Ecotoxicology studies the harmful effects of these pollutants on biota by combining 

approaches from chemistry, ecology, and toxicology (Ardestani et al., 2014). To 

achieve the main aim of protecting the structure and functioning of ecosystems 

(van Gestel, 2012), a number of standardized test methods to assess the effects 

of chemicals on organisms are essential (Römbke and Ahtiainen, 2007). These 

guidelines recommend the exposure of single species of selected test organisms 

to pollutants in order to extrapolate the resulting (no) effect concentrations to safe 

levels for populations and communities (van Gestel, 2012).  

Ecological or environmental risk assessment (ERA) uses scientific methodologies 

to estimate the adverse effects of pollutants and other anthropogenic activities on 

ecosystems and their compounds (Depledge and Fossi, 1994). Two approaches 

can be used in ERA: diagnosis and prognosis. The diagnostic approach aims at 

defining strategies for remediation and risk reduction, i.e. it focuses on chemicals 

which are already in the environment, meaning that standard test organisms are 

exposed directly in samples taken from the environment. The prognosis approach 

try to estimate the effects of pollutants using laboratory tests to regulate or prevent 

their use before they have been marketed. It is based in the principle that the risk 

of the pollutants to the environment can be calculated by their toxicity obtained in 

standard toxicity tests using model species. Potential risk is assessed by 

comparing the measured or predicted exposure data to the obtained results from 

these tests (van Gestel, 2012). 

 

1.1 Folsomia candida as a model for ecotoxicology testing 

Soil, consisting of a variable mixture of solid anorganic particles, water, gas and 

organisms and located between atmosphere and lithosphere, is a dynamic and 
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complex system with constant changes in physical and chemical properties due to 

environmental processes and anthropogenic pressure (Bur et al., 2012). In 

favourable conditions, soil supports numerous ecosystem functions or services 

(e.g. nutrient cycling) which are vital to support, not only crops, but also organisms 

that relies on these crops (Ockleford et al., 2017). 

Besides its function as a habitat and food source for microorganisms, plants, 

animals and humans (Hund-Rinke et al., 2002), soil is also a sink for organic and 

inorganic residues (including harmful pollutants) and it acts as a protective layer 

for groundwater contamination. Therefore, soil contamination has become one of 

the main concerns due to the potential catastrophic consequences (Sousa et al., 

2008). The effects of hazardous compounds depend on the contamination type 

and the respective soil characteristics (e.g. pH, clay content, cation exchange 

capacity, amount of organic matter), being responsible for their bioavailability to be 

absorbed by organisms (Loureiro et al., 2005; Van Gestel and Hensbergen, 1997).  

Edaphic invertebrates represent a wide range of life-style characteristics (Diao et 

al., 2007) and play a crucial role in soil structure and fertility, contribute to 

decomposition processes and recycling of nutrients, increase aeration and 

drainage, can constitute an important component of the diet of birds, reptiles or 

small mammals and increase primary production (Allen, 2001; Quijas and 

Balvanera, 2013).  

Soil bioremediation can be assumed by macro-fauna (>10 mm length, >2 mm 

width; e.g. earthworms, millipedes, centipedes, woodlice, termites, ants, beetles), 

meso-fauna (0.2-10 mm length, 0.1-2 mm width; e.g. micro-arthropods, such as 

collembolans and potworms) and micro-fauna (< 0.1 mm length, < 0.1 mm width; 

mainly nematodes), hence, soil fauna can help reduce pollutant´s impact (Bur et 

al., 2012). However, exposure of the organisms to pollutants, from contact or oral 

uptake routes in the surrounding soil compartment, may induce changes in their 

physiology, morphology and behaviour (Ockleford et al., 2017), which may disturb 

populations (e.g. due to mortality of organisms) and thus alter the ecosystem 

balance (Santorufo et al., 2012).  
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Collembolans, an integral part of many soil ecosystems and one of the most 

abundant groups in terrestrial ecosystems, are vulnerable to the effects of soil 

pollutants (Fountain and Hopkin, 2001). They contribute to soil aggregation 

(Ockleford et al., 2017) and quality by participating in the soil organic matter 

dynamics and nutrient mineralization, specially through micro-fragmentation of 

plant detritus and stimulation of the activity of bacterial and fungi colonies (Buch et 

al., 2016). 

 

Among Collembola, Folsomia candida (Isotomidae) is an anophtalm, unpigmented 

and parthenogenetic species. It is one of the most tested and sensitive micro 

arthropod to  pesticides (Daam et al., 2011; Frampton et al., 2006), thus has 

attained the status of a standard test species (OECD 2009). In addition, because 

they are easy to sample and to culture in laboratory tests (Fountain and Hopkin, 

2005) and have a short generation time (Jänsch et al., 2005), are one of the most 

used in standardized ecotoxicity studies for environmental risk assessment 

(Hopkin, 1997; Schnug et al., 2014). Actually, it is the only Collembolan species 

required in EU regulations for pesticides and veterinary pharmaceuticals 

(European Commission, 2002; VICH, 2004). 

 

1.2 Standard methods improvement with new endpoints   

 

Toxicity in natural ecosystems is frequently a result of the integrated effects of 

several contaminants instead of single substances (Saxena et al., 2014; Schnug et 

al., 2015), and can be underestimated or overestimated by ERA methods (Syberg 

et al., 2008) if each chemical is tested separately (Lock and Janssen, 2002). Even 

if the individual concentrations of contaminants in the environment are low, the 

combined concentrations can increase toxicity significantly (Faust et al., 2001). 

Organisms from contaminated sites are often exposed to several chemicals 

simultaneously (Lock and Janssen, 2002). Also, the availability and mobility of one 

contaminant can be affected by others (Van Gestel and Hensbergen, 1997). 

Hence, it is very important to study the impact of mixtures of chemicals (Schnug et 

al., 2013).  
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The possibility of potential toxicity of chemical mixtures to organisms resulted in 

the development of mathematical models to predict their impact in the 

environment, such as the Concentration Addition (CA) and Independent Action 

(IA) models (Loureiro et al., 2009). The observed toxicity can be stronger 

(synergism) or weaker (antagonism) than the toxicity predicted by the conceptual 

models (Backhaus et al., 2004) and can be dose-dependent if they occur only in a 

specific concentration range (Jonker et al., 2005). Both additive and synergistic 

effects of mixtures are of concern (Phyu et al., 2011; Wang et al., 2015), and, as 

an example, an EU Council Commission report recommends additional tests of the 

join effects of pesticides that may be present together in nature (European 

Commission, 2012).  

Wood preservatives are biocidal products used to prevent wood degradation by 

organisms. They can leach into the environment (e.g. water and soil), becoming a 

potential risk for soil organisms, their functions and thus for the soil ecosystem. 

The efficacy of the product formulation is usually improved by a mixture of two or 

more active substances. Although 3-iodo-2-propynyl N-butylcarbamate (iodocarb, 

IPBC) and Tebuconazole are some of the most used substances, there is a lack of 

information about their toxicity, especially for IPBC (Campiche et al., 2015).  

 

1.2.1 Limitations of the current guidelines 

Standard tests usually determine a dose–effect response of a specific substance 

for a certain endpoint (like reproduction or survival) using test organisms with a 

synchronized age during a fixed exposure time (Broerse and van Gestel, 2010). 

The results obtained in such tests may not represent the harmful effects of 

pollutants to other life stages of the organisms. It is therefore important to assess 

which life stage is more sensitive, e.g. comparing known effects of a given 

pollutant using the recommended life stage and comparing the effects after 

exposure of other life stages. 

 

1.2.2 Effects of long-term exposure  

One ecological advantage that organisms may present when exposed to 

unfavourable conditions is the ability to escape (Pereira et al., 2013). Avoidance 
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tests have already been developed for earthworms and collembolans (ISO 2008, 

ISO, 2011), as they are easy, fast and sensitive (van Gestel, 2012). However, the 

ERA process can still benefit from the incorporation of new test designs, test 

endpoints and additional methods. 

Individuals are often exposed to pollutants over extended periods of time, caused 

by a continuous release of a certain compound to the environment and/or its 

persistency in soil, such as veterinary medical products and pesticides. The 

internal effect concentration can vary with different time of exposure (Broerse and 

van Gestel, 2010), which may affect the organism´s response to chemical stress 

(Schnug et al., 2013). Toxic effects after exposure to low but continuous doses of 

a certain substances can occur when it exceeds the excretion/detoxification rate of 

organisms. Therefore, harmful effects may be underestimated by traditional tests 

(Broerse and van Gestel, 2010).  

To assess the real risks that some pollutants pose to the environment, it is highly 

recommended to perform multigenerational tests (Schnug et al., 2013). Some 

authors have already performed multigenerational tests using F. candida 

(Campiche et al., 2007; Ernst et al., 2016) and Enchytraeus crypticus (Bicho et al., 

2015). They can increase the understanding of adverse effects and cumulative 

damages to a certain population over extended periods of exposure (Paumen et 

al., 2008), e.g. related with disrupted trophic interactions or reproductive effects 

(Ockleford et al., 2017).  

 

The use of pesticides is increasing due to the ongoing growth of world population, 

being the number one solution to control insect pests in the ever-increasing 

demand for higher agricultural output (Furlan and Kreutzweiser, 2015). The 

widespread use of pesticides is of high concern since not only insects (Chagnon et 

al., 2015; Choung et al., 2011), but also the community structure and ecological 

functions of soil biota are affected by these compounds (Saha and Joy, 2016).  

In recent years, a new approach to control insect pests has been developed with 

substances that affect insect growth and development, known as “insect growth 

regulators’’ (IGRs). The IGRs are hormone analogues or bio-rational compounds 

that are quite selective in their mode of action, presenting low toxicity to non-target 
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species (Tunaz and Uygun, 2004). By acting on metabolism and affecting growth 

(El-Aasar et al., 2013), they are not necessarily toxic to organisms but can cause 

numerous morphological abnormalities that impair populations survival (Siddall, 

1976), e.g. reducing adults reproductive potential (Tunaz and Uygun, 2004).  

Table 1 shows information regarding the mode-of-action of five IGRs and 

summarizes reasons why Teflubenzuron (TFB) was considered as a relevant 

compound to assess multigenerational effects to F. candida. The IGR 

Teflubenzuron is a chitin synthesis inhibitor (CSI) used in numerous important 

plants (e.g. fruit trees and vegetables, among others) (Campiche et al., 2006; 

EFSA, 2008a; Oberlander et al., 1997) and is considered persistent due to its 

adsorption to organic and inorganic matter in the soil (Cycoń et al., 2012). It is 

highly toxic to F. candida and, although its harmfull effects over two generations 

have been already reported by Campiche et al. (2006), information regarding the 

impact of TFB after long exposure is limited.  
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Table 1: Information used for test chemical selection among insect growth 

regulators, including the mode-of-action (MoA) used as relevance criterion to 

assess effects to F. candida in a multigenerational exposure. 

Compound MoA Pros Cons Reference 
Teflubenzuron Inhibitor of 

chitin 
biosynthesis 

- Well described 
- Well known fate 
- Highly toxic to F. 

candida 

- Low 
solubility in 
water 
 

Campiche et al., 
2006; EFSA, 
2008b; EMEA, 
1997; FAO, 1996; 
Scheepmaker, 
2008 

Fenoxycarb Juvenile 
hormone 
mimics 

- Toxic to F. 

candida 
- Low 
solubility in 
water 

Campiche et al., 
2006; Marrs, 2012; 
Smit and Vonk, 
2008; Sullivan, 
2000 

Methoprene Juvenile 
hormone 
mimics 

- Toxic to F. 

candida 
- Short half-
life in soil 
- Low 
solubility in 
water 

Campiche et al., 
2006; Csondes, 
2004; Palma et al., 
1993; Thompson, 
2003 

Tebufenozide Ecdysone 
receptor 
agonist 

- Toxic to F. 

candida 
- Very low 
water 
solubility 

Addison, 1996; 
Campiche et al., 
2006; FAO, 1996; 
Marrs, 2012; 
Nakagawa, 2005; 
Sundaram, 1995 

Hexaflumoron Inhibitor of 
chitin 
biosynthesis 

- Toxic to F. 

candida 
- Short half-
life in soil 
- Very low 
water 
solubility 

Campiche et al., 
2006; Coppen and 
Jepson, 1996; 
Paranjape et al., 
2014; Tan et al., 
2014; Wang et al., 
2012 

 

 

1.2.2.1 Size as an additional endpoint in the standard guidelines for risk 

assessment 

The efficiency of the organism’s metabolism can be lowered by the exposure to 

toxic substances, which may lead to a reduction of growth rates (Crouau and 

Moia, 2006). Because reproduction of F. candida is dependent on body size of the 

adults (Hopkin, 1997), the incorporation of this endpoint in tests may be a sensitive 

parameter to evaluate the toxicity of chemicals (Crommentuijn et al., 1993; Folker-

Hansen et al., 1996; Tranvik et al., 1993). While some authors found growth to be 

a more sensitive parameter than reproduction (Folker-Hansen et al., 1996), others 



 
Introduction 
 

 
PhD Thesis – Bruno Guimarães 

 

24 

found opposite results (Fountain and Hopkin, 2001; Guimarães et al., 2019; Scott-

Fordsmand et al., 1999; Smit et al., 2004; van Straalen et al., 1989). Besides the 

additional work in terms of image treatment (Guimarães et al., 2019), 

measurement of organisms is easy and does not require expensive equipment 

(Crouau and Moia, 2006). 

 

1.2.2.2 Biomarkers used as tools to assess effects of a prolonged exposure 

Several biochemical studies are available. Oxidative stress, called when there is 

an imbalance between the production and the neutralization of reactive oxygen 

species (ROS) by antioxidant mechanisms (Davies, 1995), may be highly relevant 

to increase mechanistic understanding and should be further studied (Maria et al., 

2014). 

Biomarkers can be defined by any measurable molecular-genetic, biochemical, 

cellular, or physiological response to sublethal concentrations of toxicants 

(Kammenga et al., 2000; Morgan et al., 2007). They can be sensitive indicators for 

exposure and predict ecological effects (Ockleford et al., 2017), therefore 

biomarkers may be considered early-warning signals of organisms imbalance 

(Galloway, 2006; Wu et al., 2005). Results from biomarkers tests can also improve 

risk assessment, for example, in cases that substances don’t affect organisms 

during the duration of a standard test (Ockleford et al., 2017). A study performed 

by Duncan et al. (2009) with soil organisms, showed that effects of diazinon on 

Porcellionides pruinosus were only observed five weeks after application, which 

could be undetected by standard tests.  

Also, responses at cellular level can change over long exposure times, therefore 

biomarkers can increase mechanistic understanding of the effects that pollutants 

may pose to the organisms (Guimarães et al., 2019).  

 

2. AIMS AND THESIS STRUCTURE 

 

The main aim of this thesis was to explore different approaches to evaluate the 

effects of pollutants to the ecotoxicological model species Folsomia candida, both 

during different life stages and across multigenerational exposure. In parallel, this 
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thesis also aimed to integrate a multi parameter assessment combining standard 

endpoints referred to in the guidelines (e.g. OECD and ISO) with methods already 

tested, in order to compare their sensibility. 

 

This thesis was structured in 4 publications as follows: 

 

Chapter I: Guimarães, B., Römbke, J., Amorim, M.J.B., 2019. Novel egg life-stage 

test with Folsomia candida – A case study with Cadmium (Cd). Sci. Total Environ. 

647, 121–126. This study aimed to develop a test method using different life 

stages of Folsomia candida to evaluate sensitivity of organisms exposed from 

juveniles (as required by the guidelines) when compared to exposure from eggs 

and adults. 

 

Chapter II: Guimarães, B., Bandow, C., Amorim, M.J.B., Kehrer, A., Coors, A., 

2018. Mixture toxicity assessment of a biocidal product based on reproduction and 

avoidance behaviour of the collembolan Folsomia candida. Ecotoxicol. Environ. 

Saf. 165, 284–290. This investigation compared the effects obtained by the test of 

a commercial biocide as a mixture, the two active substances and a solvent with 

the calculated theoretical mixture toxicity to the collembolan Folsomia candida.  

 

Chapter III: Guimarães, B., Maria, V.L., Römbke, J., Amorim, M.J.B., 2019. 

Multigenerational exposure of Folsomia candida to ivermectin – using avoidance, 

survival, reproduction, size and cellular markers as endpoints. Geoderma 337, 

273–279. This investigation aimed to study the effects of a veterinary product to 

Folsomia candida during 3 generations using a multi endpoint approach. 

 

Chapter IV: Guimarães, B., Maria, V.L., Römbke, J., Amorim, M.J.B. Exposure of 

Folsomia candida (Willem 1902) to teflubenzuron over three generations – 

Increase of toxicity in the third generation. Appl. Soil Ecol. (in press). This study 

aimed to assess the effects of the exposure of 3 generations of the collembolan 

Folsomia candida to the insect growth regulator (insecticide) teflubenzuron, using 



 
Introduction 
 

 
PhD Thesis – Bruno Guimarães 

 

26 

a multi endpoint approach, which included survival, reproduction, avoidance, size 

and analysis of cellular and biochemical markers. 

 

Chapter V: Final remarks.�  
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HIGHLIGHTS 

 

• The standard collembolan test is based on exposure of one life stage 

(juveniles). 

• An egg stage test has been here developed and optimized.  

• Lower Cd impact on reproduction from pre-exposed eggs (compared to 

juveniles). 

• Cd seems to affect reproduction via exposure of adults.  

• It is recommended to test different life stages in a combined approach.  
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ABSTRACT  

 

Toxicity of pollutants is known to have a different impact depending on the 

organisms’ life stage. Standard tests are often based on one life stage, i.e. effects 

could be underestimated. We aimed here to develop and optimize a test system 

using eggs of Folsomia candida (4-5 days) instead of the juveniles (10-12 days 

old) required by the OECD standard test guideline No. 232 (2009). Accordingly, 

the exposure time and thus the test duration was extended. Tests with “standard” 

juveniles (10-12 days old) and, adults (21 and 28 days old) were also performed. 

Cadmium (Cd) was used as test substance. The extension to the test guideline 

starts as follows: 1) synchronization of eggs in a thin soil layer on plaster of Paris, 

2) selection of viable eggs, 3) burying these eggs in groups of 5 in soil. Afterwards, 

the test procedure will follow the standard procedure as described in the OECD 

standard test. Cadmium caused ca. 50% effects on reproduction at 60 mg Cd/kg 

soil dry weight (d.w.) when exposing juveniles or adults. There was no significant 

impact of Cd on the eggs, the hatching process or the latter life stages until ca. 

250 mg Cd/kg d.w. (Cd is stable during this exposure period). Hence, Cd seems to 

affect reproduction before egg laying, i.e., during egg formation or during juvenile-

adult stages. In order to clarify whether other chemicals do act in a similar way, 

testing with different chemicals is highly recommended. Exposure of different life 

stages does provide understanding of the mechanisms and effects of 

contaminants and offers important insight.   

 

Keywords: life-stage; full-life-cycle; long term; cadmium; Collembola.  

 

1. INTRODUCTION 

 

Pollutants have a different impact depending on the life stage during which the 

tested organisms are exposed (Belanger et al., 2010; Bicho et al., 2015). Testing 

for hazard assessment has been based on standard guidelines where organisms’ 

life stage or age is often optimized and synchronized, e.g. for Folsomia candida 

(Willem 1902; Collembola), 10-12 day old juveniles are used (OECD 232, 2009). 



 
Chapter I – Novel egg life-stage test with Folsomia candida – a case study with Cadmium (Cd) 
 

PhD Thesis – Bruno Guimarães 
 

41 

This exposure regime may cover potential effects on more than one life stage, but 

the way the test is designed does not allow for the identification of effects at 

individual life stages (which can reveal increased sensitivity, among others, see 

e.g. Bicho et al., 2016), hence the need for refinement. The implications are 

currently not covered in the Environmental Risk Assessment (ERA) procedures of 

the European Union (EU). In detail, the sensitivity of organisms to contaminants 

may be higher in certain periods of their life cycle, especially early life stages 

(Tarazona et al., 2014). For instance, eggs of the springtail F. candida are not 

mobile but show high physiological activity due to embryo growth and 

development, whereas hatched juveniles are in active contact with pollutants, e.g. 

can avoid it in patchiness field contamination. However, juveniles are not effective 

migrators and cannot avoid toxic conditions, especially in the first days of life. For 

oligochaete worms, different sensitivity between juveniles and adults is known, 

e.g. regarding survival in earthworms (Kwak and An, 2015; Van Der Ploeg et al. 

2011) or reproduction of enchytraeids (Bicho et al., 2015, 2017; Santos et al., 

2017). Few studies testing alternative exposure regimes have been published, 

including different multigenerational approaches with collembolans (Amorim et al., 

2017; Campiche et al., 2007; Ernst et al., 2016). For instance, Filser et al. (2013) 

exposed collembolan eggs to chemicals and reported preliminary results, but 

hatching success was relatively low. Besides, differences in sensitivity of juvenile 

F. candida differing in age by just one day are known (Crouau and Cazes, 2003) 

and show the importance and inherent variability with age. Therefore, the 

optimization of a test to expose F. candida from egg stage is highly relevant for 

chemical risk assessment in the soil compartment.  

Hence, the aim of this study was to optimize and develop a test system using eggs 

of F. candida (4-5 days) instead of the standard juvenile stage (10-12 days old). In 

addition, it was investigated which exposure regime would be relevant to cover the 

life cycle of the collembolan, from the egg stage till the reproduction phase. 

Further, in order to compare the recorded sensitivity of the egg stage with those 

from older life stages, adults with an age of 21 and 28 days were also tested. 

Cadmium was used as test substance since: 1. its toxicity to collembola in 

standard tests is well-known (Amorim et al., 2017); 2. it has embryotoxic 
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(Stummann et al., 2008); 3. it is not an essential metal and is widespread in the 

environment due to anthropogenic activities (Son et al., 2011); 4. it is quite 

bioavailable to living organisms (Crommentuijn et al., 1997; van Gestel & Mol, 

2003; Vig, 2003).  

 

2. MATERIAL AND METHODS 

 

2.1. Test organisms 

The test organisms used belong to the standard species Folsomia candida 

(Collembola). Individuals were cultured on a moist substrate of plaster of Paris and 

activated charcoal (8:1 ratio), at 20±1 °C, under a photoperiod regime of 16:8 

(light:dark). The organisms were fed weekly with dried baker's yeast 

(Saccharomyces cerevisiae). Cultures were synchronized in order to obtain four 

different life-stages: eggs (4-5 days old), juveniles (10-12 days), young adults (21 

days) and adults (28 days). 

 

2.2. Test substance, soil and spiking procedures 

As test substance, Cadmium chloride anhydrous (CdCl2, 99% purity, Fluka) was 

used. 

As substrate during the test phase the natural standard LUFA 2.2 soil (Speyer, 

Germany) was used. The main characteristics were as from the supplier: pH (0.01 

M CaCl2, ratio 1:5 w/v)=5.5, organic matter=10.1%, cation exchange capacity 

(CEC)=1.77 meq/100g, water holding capacity (WHC)=41.8%, grain size 

distribution of 7.3% clay, 13.8% silt, and 78.9% sand.  

The soil was spiked by mixing CdCl2 as an aqueous solution into the pre-

moistened soil. A full concentration range was tested with eggs and juveniles (10-

12 days old) at 0-32-60-128-256 mg Cd/kg soil dry weight (d.w.). A reduced test 

regime was used for the assays with 21 and 28 days old organisms, 

corresponding to 0 and 60 mg Cd/kg soil d.w., also included in the full test range 

with eggs and juveniles. A soil concentration of 60 mg Cd/kg soil d.w. was 

determined as the EC50 for reproduction in a standard OECD test (van Gestel and 

Mol, 2003). The moisture content of the soil was adjusted to 40–60% of the 
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maximum water holding capacity (WHC). Soil was left to equilibrate for 3-4 days 

prior to test start.  

 

2.3. Experimental procedures  

Optimization steps for egg culture synchronization and egg hatching success 

Optimization procedures included a suite of alternatives to investigate the best 

testing option. For details of the tested alternatives please see the Supplementary 

Information (Fig. S1). 

 

2.4. Egg stage test 

Exposure of eggs to Cd was performed in test vessels (Ø 5.5 cm, 250 mL volume), 

filled with 30 g WW (wet weight) of soil.  

The experimental procedure followed the standard guideline (OECD 232, 2009) 

with adaptations (as optimized in the previous step, see SI for details): twenty 

eggs, synchronized in cultures of Plaster of Paris with a thin layer of soil were 

introduced as groups of 5 and buried in a small pre-made hole partially covered 

with soil. Test conditions were 20±1°C and 16 h: 8 h photoperiod. Food and water 

loss were replenished on the soil surface weekly. Sampling was performed on day 

7, 14, 21, 28, 35, and 42 days; 4 replicates per treatment, i.e. control and 60 mg 

Cd/kg soil d.w. (a total of 48). At test end, each test vessel was flooded with water, 

the content was transferred to a crystallizer dish and the surface was 

photographed for further automatic counting using the software ImageJ (Schneider 

et al., 2012).  

 

2.5. Other life stages test  

Following the standard guideline OECD 232 (2009), organisms of synchronized 

age 10-12 days were used, as well as organisms with 21 and 28 days old. Ten 

organisms were introduced in each test vessel and the test ran under the same 

conditions as described above (Fig. 3). Sampling days included day 7, 14, 21, 28 

and 35. The same procedure was done in parallel but using petri dishes (Æ 60 

mm) with 50 g of compacted and levelled soil. Two replicates per treatment were 
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done. Every two days the boxes were checked under the binocular and the 

number of adults, eggs and juveniles were monitored until test end.  

 

2.6. Data analysis  

Significant differences between treatments and exposure time were determined 

using One-way ANOVA (ANalysis Of VAriance). Whenever significant differences 

were obtained, the Post-Hoc Dunnett’s was used (p<0.05). All analyses were done 

using  (SigmaPlot 12.0, 2011). The Effect Concentrations (ECx) were calculated 

using the logistic regression model (Erickson, 2010).  

 

3. RESULTS 

 

The results from optimization steps are shown in the supplementary (Fig. S3).  

 

3.1. Life stage comparison: eggs, juveniles and adults – limit test 

When eggs were exposed to Cd, their hatching success and the survival of the 

adults at day 42 was >80% (Fig. 1). Juveniles can be found from day 35 onwards 

(50-150 juveniles) although a few juveniles (<10) were observed already on day 

28. The coefficient of variation (CV) for reproduction at day 42 was 14%, also 

below the 30% value required in the 28 day standard guideline for tests with 10-12 

days juveniles. At day 42, survival and reproduction of the adult organisms was 

not affected, in fact, it was significantly higher in the Cd exposed organisms. 
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Figure 1: Hatching success, survival and reproduction of Folsomia candida when 

organisms were exposed as A) eggs, B) 10-12d C) 21d and D) 28d old organisms 

to 60 mg Cadmium /kg d.w., which has been determined to be the EC50 
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reproduction for F. candida) in LUFA 2.2 soil. Open columns refer to 

hatching/survival numbers and striped columns to the number of juveniles. For day 

0 columns represent the number of introduced eggs/organisms. Values are 

expressed as average ± standard error (AV±SE). p<0.05*: corresponds to 

statistically significant differences between the control and the treatment 

(Dunnetts’; p<0.05). 

 

Results from exposure of 10-12 days old juveniles confirm that the validity criteria 

were fulfilled. In addition, the ca. 50% effect of Cd on reproduction (tested EC50) 

was confirmed at day 28. Reproductive outcome from first clutches were observed 

already at day 21 but no significant effects (toxicity) was observed until day 28. For 

adults, the validity criteria were fulfilled too. Reproduction could be observed at 

days 14 and 7 after starting the tests with 21d old adults and 28d old adults, 

respectively. Further, for 28d old adults, unhatched eggs were observed at day 7, 

with higher numbers in the control soil (although no quantitative record was done 

at the time). Reproduction of Folsomia candida exposed at different life stages are 

summarised in Table 1. The equivalent time to reach similar life stages and 

reproduce differs with the start age, thus please note that the equivalent time is 42, 

28, 21 and 14 days for the test started with eggs (4-5d), juveniles (10-12d), 21 and 

28 days’ adults, respectively. 
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Table 1: Effects of cadmium (60 mg Cd/kg) on the reproduction of Folsomia candida in LUFA 2.2 natural soil based on tests 

using different life stages. Results are expressed as average ± standard error the number of organisms and the relative 

percentage of effects on organisms found in spiked soil compared to control soil.  

Life stage Eggs Juveniles (standard) Adults Adults 

Age (days) 4-5 10-12 21 28 

Cd (mg/kg) 0 60 0 60  0 60 0 60 

Exposure time (days)        

14 0 0 0 0 (0%) 

322±25 

(75±10%) 

81±33 

(0%) 

303±29 

(67±4%) 

101±10 

21 0 0 (0%) 

238±8 

(16±9%) 

199±21 

(0%) 

989±22 

(47±15%) 

523±151 

(0%) 

1027±80 

(41±3%) 

605±29 

28 0 0 (0%) 

829±118 

(39±10%) 

502±82 

(0%) 

1780±83 

(59±0%) 

726±5 

(0%) 

1738±84 

(35±5%) 

1123±78 

35 (0%) 

85±22 

(-132±25%) 

197±21 

(0%) 

2124±210 

(17±6%) 

1763±130 

(0%) 

2388±119 

(34±4%) 

1570±83 

(0%) 

2435±123 

(23±1%) 

1886±16 

42 (0%) 

658±47 

(-20±6%) 

789±42 

- - - - - - 
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3.2. Life stage comparison: Eggs and juveniles – full range test 

The validity criteria were fulfilled for the standard test. Adult F. candida that were 

exposed as eggs to Cd had higher reproductive output than those specimens that 

had been exposed as juveniles (Fig. 2). In the assays where eggs were exposed, 

the no observed effect concentration was 128 mg Cd/kg soil d.w., while for 

exposed juveniles the EC50 reproduction was determined to be 95 mg/kg soil 

d.w.. In terms of survival, there was an exceptional decrease at 128 mg/kg soil 

d.w. in the egg test with unknown reasons. If discarding that, effects on adults 

were similar.  

 

Figure 2: Hatching/survival and reproduction of Folsomia candida started from 

eggs (4-5 days) and juveniles (10-12 days), when exposed to CdCl2 in LUFA 2.2 

soil, during 42 and 28 days respectively. Values are expressed as average ± 

standard error (AV±SE). Lines represent model fit do data. *p<0.05 (Dunnetts’).  

 

Corresponding LC/ECx values can be found in Table 2. There was an apparent 

lower sensitivity for eggs compared to juveniles (EC10/50), although not 

significant. Further, the EC50 values in the egg test did not differ between survival 

and reproduction, in contrast to the juvenile test, which showed higher toxicity for 

reproduction.  
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Table 2: Estimated median Effect Concentrations (ECx) for Folsomia candida 

when exposed to Cadmium (mg/kg) in LUFA 2.2 soil from eggs (4-5 days old) and 

juveniles (10-12 days old) after 42 and 28 days, the equivalent time for same 

endpoint. ECx were calculated with a logistic regression model (Log2 or Log3 

parameters). Exposure was log scaled. For survival data the 128 mg Cd/kg was 

excluded to fit model. S: Slope. Y0: top point. CI: 95% Confidence Intervals.  

 EC10 EC50 Model parameters 

Egg test – d42 

Survival  185 

-65<CI<434 

272 

214<CI<329 

Log 2 par 

S: 0.63E-02; Y0: 18.3. 

Reproduction n.d. 242 

-782<CI<1267 

Log 3 par 

S: 0.18E-01; Y0: 

709.9. 

Juvenile test – d28 

Survival  182 

-4<CI<368 

285 

209<CI<361 

Log 2 par 

S: 0.54E-02; Y0: 10.0. 

Reproduction 30 

15<CI<60 

95 

69<CI<130 

Log 2 par 

S: 1.08; Y0: 836.4. 

 

4. DISCUSSION 
 

4.1. Egg hatching success/survival and reproduction test 

Optimization steps for egg culture synchronization and egg hatching success had 

the highest success when a synchronization of eggs in plaster of Paris with a soil 

layer (SI) was performed. One possible explanation for the increased hatching 

performance could be related to the fact that soil particles form a protective layer 

around the eggs (e.g. decrease moisture changes such as desiccation and 

impacts of direct manipulation), hence also less damage is inflicted in the eggs 

when transferring them to the test vessels.  

The selection of viable eggs performed as proposed by Hafer and Pike (2010) 

resulted in higher egg hatching rates (ca. 93%) in our study compared to the 

results obtained in other studies. For example, Filser et al. (2013) obtained 60% 
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hatching success possibly because a pre-exposure observation step was missing. 

Moreover, we find this is feasible to include in the test set-up after gained 

experience, similarly the collected juveniles are observed under the binocular for 

healthy status before introducing them in the test vessels.  

Introducing the eggs as groups of 5 and burying them into the soil, i.e. covered 

with soil, also improved hatching success, and will ensure exposure. Based on our 

daily monitoring, we postulate that some kind of stimuli promoted synchronous 

hatching when eggs were used in groups. F. candida eggs introduced individually 

in the test soil hatched at different times and the variability in the observed 

endpoints later in the test was higher than when introduced as a group. Eggs 

introduced in a small hole and partially covered with soil will be better protected 

from dehydration.  

The present design (as described in section 2.4, please see fig.3) can be 

implemented in the standard guideline to assess the effects of stressors from eggs 

life stage of Folsomia candida. 

 

 
Figure 3: Schematic calendar representing the proposal for the “egg test” with 

additional endpoints and test duration compared to the standard (OECD 232) as 

developed for Folsomia candida. 

The primary aspect will refer to the hatching success of the eggs as an added 

endpoint, but also the survival and reproduction of these organisms will be an 

important follow up result.  
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4.2. Ecotoxicity of Cd in different life stages 

When using the OECD standard method, (starting with juveniles 10-12 days old) 

showed that Cd median effect concentrations for reproduction were within a similar 

concentration range (69<EC50<130) – as reported in the literature (Amorim et al., 

2017; van Gestel and Mol, 2003). 

The impact of Cd on the reproduction of exposed adults (i.e. 21 and 28 days old) 

was not significantly different to the one obtained for exposed juveniles in the 

standard test for the one same concentration. Cadmium seems to act in adults and 

affects reproduction, but not hatchability or juvenile survival.  

 

The higher numbers of juveniles observed at the sampling dates on the 21-28d 

organism test are due to more cumulative egg laying clutches as naturally 

expected if starting with later life stage animals. This has not changed the relative 

effect of Cd compared to control.  

Results from tests with exposed eggs showed no significant impact of Cd on 

hatching/survival or reproduction of F. candida; hence Cd seems to affect 

reproduction before egg laying, i.e., during egg formation. This result of lower 

reproduction sensitivity to Cd when exposing collembolan eggs should not be 

generalised, since, for instance, for Cu, Pb and Zn there was a reduction on 

hatching success (Xu et al., 2009), indicating an effect on the egg stage at 

concentrations above 200 mg/kg soil d.w.. Other studies suggest that also the soil 

microbial community may influence egg viability (Hafer and Pike, 2010). In the 

case of Cd, concentrations under 70 mg/kg soil d.w. do not affect the soil C:N ratio 

(stable microbial index) (Khan and Scullion, 2002), hence this factor is unlikely. 

Lower sensitivity of different life stages has been reported for other organisms. For 

example, in tests with E. crypticus CuO nanomaterials were more toxic 

(reproduction) when exposing juveniles rather than cocoons (Bicho et al., 2017).  

An additional hypothesis for the reduced effect observed when exposing eggs of 

F. candida to Cd could be the activation of different defence mechanisms in the 

eggs which are then kept in the adult influencing the reproduction outcome. This 

could involve epigenetic mechanisms, i.e., changes in the genes that can be 

transferred between generations but without changing the genome (e.g. via 
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methylation of DNA) (Marczylo et al. 2016). Although there is apparently no global 

methylation for F. candida (Noordhoek et al., 2017), other epigenetic mechanisms 

(e.g. histone modifications or RNAi) cannot be excluded. Besides, epigenetics is 

also life stage dependent (Lyko 2001) which requires further in-depth studies.  

The exposure of eggs (instead of juveniles) allowed to assess the impact of 

cadmium on hatching and survival of young juveniles, and the reproduction 

thereafter. This provided a better insight on life stage specific effects and 

mechanisms in Folsomia candida. Moreover, the new test set-up offers increased 

flexibility regarding the testing of different life stages, and the probability of 

identifying effects of chemicals with different mode-of-actions is more likely. For 

reasons of comparability of sensitivity of different life stages, this method adds on 

the importance of testing the standard age as established. Regarding the 

differences in sensitivity, regarding the endpoint reproduction, between exposure 

to Cd from eggs and juveniles, we recommend that more tests with additional 

chemicals are done before drawing any general conclusions, especially before 

proposing additions to the existing OECD/ISO guideline.   

 

5. CONCLUSIONS 
 
The exposure from egg stage test methodology was optimized and the proposed 

design can be implemented as an annex to the standard OECD/ISO guidelines. 

The suggested improvements ensure a high hatchability success and survival in 

controls, as required in the standard guideline. It is also possible to implement a 

similar procedure to start the testing by using adult organisms (21-28 days old) 

and assess survival and reproduction. However, the use of adults seems to have 

less advantages compared to the standard guideline starting with juveniles.  

Cadmium affected F. candida reproduction possibly via the exposure of adults, not 

affecting the hatching success or survival of the hatched juveniles and 

reproduction thereafter. This would not be possible to interpret from the standard 

juvenile life stage test.  

It is recommended to test different life stages in a combined approach in order to 

provide a better insight in the mechanisms and effects of contaminants on 
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collembolans. However, before proposing an extension of the standard guideline 

to include the egg stage further validation studies (using different soils and 

contaminants) are necessary. 
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MATERIALS AND METHODS  
 
Optimization steps for egg culture synchronization and egg hatching success 

 

Synchronization of eggs was performed in 2 culture media in petri dishes (Æ 90 

mm): 1) Plaster of Paris (PP) and 2) Plaster of Paris with a thin layer of sieved 

(<0.125 mm) LUFA 2.2 soil (PP+S) (Fig. S1). 
 

 
Figure S1: Schematic representation of the tested alternatives for Folsomia 

candida eggs’ culture synchronization and the hatchability of the eggs introduced 

in pre-test. Eggs were synchronized in Plaster of Paris (PP) and Plaster of Paris 

with a thin layer of soil (PP+S), then introduced in a Petri dish with 20 g of 

compacted LUFA 2.2 soil (S) as 1) Group of 5 (G) and individually (I), and in each 

of these a) laid on the surface (Sur) or b) buried (Bur) in soil. Yellow background 

indicates the optimized method where eggs were synchronized in PP+S, buried in 
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groups of 5 (G_Bur) in test vessels (Ø 5.5 cm, 250 mL volume) containing 30 g of 

LUFA 2.2 soil.   

 

The hatchability of the eggs laid in option 1 and 2 was compared. First, they were 

transferred with a thin brush from the synchronized petri dishes to the test 

containers. Eggs from option 2 had soil particles adhered to the eggs surface. 

These consisted of petri dishes, filled with 20g of moistened soil (40-60% WHC). 

The soil was compacted and levelled until a smooth surface was achieved. Prior to 

that, egg visualization under the microscope was done to assess the good health 

(shape, size and smooth surface, according to (Hafer and Pike, 2010)) to improve 

viability success (Fig. S2).  

 

 
Figure S2: Visualization of Folsomia candida eggs with 4-5 days (50 x 

amplification). A: Inviable eggs (round shape, smaller and/or irregular size); B: 

Viable eggs (oval shape, bigger size and smooth surface). Selected based on 

Hafer and Pike (2010). 

 

Eggs were introduced as 1) Groups of five (G) and 2) Individually (I), and in each 

of these a) laid in the surface (Sur) and b) buried (Bur) in soil. In the latter method, 

a small hole (1-2 mm depth) was made, and the eggs were carefully introduced 

inside, being partially covered with soil with a thin brush. This allowed the eggs to 

be inside a small “cave”, i.e. they were protected from direct light and dehydration. 

Four replicates and 20 eggs per replicate were used. Hatching and survival were 

monitored daily under the binocular for 25 days. 

 

A 

B 
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Egg stage test optimization 

 

Additionally, and only as extra controls, 4 replicates using Petri dishes (Æ 60 mm), 

filled with 20 g of compacted and levelled soil were used. The Petri dishes test 

was used as a comparison and control to check daily under a binocular 

microscope, and hence evaluate, the progress of eggs development and hatching. 

On day 9, juveniles were transferred to the test vessels, following the same 

procedure as described above. Test conditions were 20±1°C and 16h:8h 

photoperiod. Food and water loss were replenished on the soil surface weekly. 

Sampling was performed on day 10, 21, 28, 35, 42 and 49 days. At test end, each 

test vessel was flooded with water, the content was transferred to a crystallizer 

dish and the surface was photographed for further automatic counting using the 

software ImageJ (Schneider et al., 2012). 

 
RESULTS 
 
Optimization steps for egg culture synchronization and egg hatching success 

 

A maximum hatchability of 80% (16 out of 20) was observed for PP_I after 14 days 

(Fig S3). The different treatments showed a similar pattern in terms of number of 

organisms with time. Although, e.g. from day 6 to 9, PP+S_I showed higher 

hatching success than PP_I, this being significant at day 6. Mortality of juveniles 

started to increase after day 12 and was almost 100% at day 22 (Fig. S3 A). 
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Figure S3: Results of hatching success and survival of the organisms from the 

optimization tests as starting with eggs of Folsomia candida. Tests were 

conducted for 22 days (A) and 23 days (B). A: Synchronized in Plaster of Paris 

(PP) and in Plaster of Paris with thin soil layer (PP+S), either introduced 

individually (I) or as a group (G); B: Synchronized in PP+S and introduced 

individually (I) or as a group (G) and buried in (Bur) or laying on the surface (Sur) 

of control LUFA 2.2 soil. N=20. Values are expressed as average ± standard error 

(AV±SE). p<0.05 (Tukey). a) between G_Sur and I_Sur; b) between G_Bur and 

I_Sur; c) between G_Sur and G_Sur; d) between I_Bur and I_Sur.   

 

Results of the second optimization step, where eggs were synchronized in plaster 

of Paris with a thin layer of soil (PP+S) (Fig. S3 B) show that at day 8 and 9 there 

was a higher hatching success of G_Bur. This difference was significant from day 

12 to 15. After day 12 mortality of the juveniles increased for all treatments and on 

day 23 the survival was less than 20%. 

 

Egg stage test optimization 

 

Results of the egg stage test, i.e. hatching, survival and reproduction of Folsomia 

candida when exposed from eggs to 60 mg Cd/kg soil d.w and control, can be 

observed in figure S4. 
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Figure S4: Hatching success, survival and reproduction of Folsomia candida when 

organisms were exposed to 0-60 mg Cadmium/kg d.w. in LUFA 2.2 soil, from A) 

eggs that hatched and grew in petri-dishes, being transferred to test vessels with 

1-3 days old at day 9 and B) eggs with 4-5 days old, transferred to test vessels at 

day 0. Open columns refer to hatching/survival numbers and striped columns to 

the number of juveniles produced. Arrows indicate the age and time of insertion for 

eggs, juveniles or adults in the test vessels. The dashed line indicates the average 

starting number of eggs/organisms. Note that the black colour bar at day 49 is due 

to the uncertainty of number of adults due to lack of size discrimination. Values are 

expressed as average ± standard error (AV±SE). p<0.05*: corresponds to 

statistically significant differences between the control and the treatment (T-test; 

p<0.05, one-sided).  
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reproduction was >30%. Reproduction could be assessed from day 35 onwards, 

with ca. 400-600 juveniles.  

Overall, the organisms hatched from the eggs placed in the Petri dishes and 

transferred to the soil after 9 days were more sensitive to Cd than those already 

introduced in the test vessels from day 0. This may be due to the transfer process 

from one container to the other in such a sensitive stage of the young juveniles’ 

life. 
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HIGHLIGHTS 
 

• Mixture toxicity of a biocidal product studied in collembolans. 

• Concentration-Addition model predicted effect of product on reproduction 

well. 

• Mixture effect on avoidance behaviour was strongly underestimated by this 

model. 

• Underestimation not reduced by including known formulation additive in 

prediction.  
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ABSTRACT  
 
Biocidal products represent mixtures that might be released into the environment 

at application and continuously during service life. Concentration addition (CA) has 

been proposed as default model to calculate theoretical mixture toxicity. However, 

the suitability of CA for chronic toxicity towards soil organisms has so far rarely 

been evaluated and therefore needs further experimental evidence. The present 

study investigated the toxicity of a wood preservative product and the individual 

active substances (tebuconazole and IPBC) therein with the aim to evaluate the 

compliance with the CA prediction for the product. Folsomia candida was selected 

as test organism for this purpose using the endpoints reproduction and avoidance 

behaviour. Both endpoints were increasingly impacted by increasing 

concentrations of the wood preservative product as well as its active substances 

tested individually. The chronic effects of the product could be predicted by CA 

with less than 4-fold deviation, while the assessment for avoidance behaviour 

indicated a strong underestimation. This underestimation could not be attributed to 

the one known formulation additive, an organic solvent. Overall, the present study 

provides some more evidence that CA could be applied as default model for 

standard endpoints of soil organisms but warns against using CA for behavioural 

responses. 

 

Keywords: fungicide; concentration addition; formulation additives; wood 

preservative; mixture assessment. 

 
1. INTRODUCTION 
 
Wood preservative products are used to protect wood in service from decay and 

destruction by fungi, algae, and insects. Such products may contain one or more 

biocidal active substances (e.g., fungicides and insecticides) together with a 

number of formulation additives. Hence, wood preservative products represent 

mixtures that are released as such into the environment during application, and 

mixtures of the product ingredients may reach the environment by continuous 

leaching from wood in service. In the European Union, wood preservative products 

are subject to an authorization process as biocides according to the Biocidal 
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Product Regulation (BPR, EU 2012). Recent guidance from the European 

Chemicals Agency (ECHA 2017) recommends theoretical mixture toxicity 

calculations based on the concept of concentration addition (CA) as one approach 

for the environmental risk assessment of biocidal products, which can render an 

experimental testing of the product unnecessary. For the aquatic compartment, the 

suitability of CA for the prediction of toxicity of mixtures has been demonstrated in 

general (Deneer 2000, Belden et al. 2007, Cedergreen 2014) and in particular for 

formulated biocidal and pesticidal products (Coors & Frische 2011, Coors et al., 

2012, 2014, 2018).  

For the terrestrial compartment, however, evidence for the suitability of CA for 

mixture toxicity prediction is still scarce. The joint effects of the three active 

substances esfenvalerate, picoxystrobin, and triclosan were reported to be 

additive with regard to survival and reproduction of earthworms (Schnug et al. 

2013), but synergistic at higher concentration levels with regard to reproduction of 

collembolans (Schnug et al. 2014). Yet, the deviation between the CA-predicted 

and experimentally observed response in that study was less than 2-fold. Binary 

mixtures of the insecticides atrazine, dimethoate, lindane, and the metals zinc and 

cadmium exhibited concentration-dependent deviations from predicted additive 

effects on survival and reproduction of the collembolan Folsomia candida (Amorim 

et al. 2012) as well as on avoidance behaviour of the enchytraeid Enchytraeus 

albidus and the isopod Porcellionides pruinosus (Loureiro et al. 2009). Binary 

mixtures of formulated plant protection products showed, with one exception, no 

deviation from CA predicted effects on avoidance behaviour of P. pruinosus as 

well as survival and reproduction of F. candida (Santos et al. 2010). Unfortunately, 

the influence of the formulation additives in these products could not be assessed, 

because the active substances were only tested in formulations but not 

individually, i.e. separately from formulation additives. 

The present study aimed to investigate whether the mixture toxicity of a formulated 

biocidal product could be reliably predicted for the terrestrial compartment in view 

of the recommended CA-based approach (ECHA 2017). The collembolan soil 

species Folsomia candida was selected for this purpose as one soil standard test 

species for which data may occasionally be required in the regulatory 

environmental risk assessment of biocidal products. In addition to the standard 

reproduction endpoint, the present study investigated avoidance behaviour and its 
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mixture predictability in the same collembolan species. While testing for avoidance 

behaviour is not required for the environmental risk assessment of biocides and 

not deemed a suitable replacement for a reproduction test (ISO 2011), it may 

nevertheless help interpreting the environmental impact of wood preservative 

products. This is because treated wood such as fence posts represent a point 

source for soil contamination with the potential impact being restricted to a small 

area that might be effectively avoided, reducing impacts at the population level. 

Previous studies with waste indicated that collembolans may respond to toxicants 

by avoidance behaviour at lower concentrations than those exhibiting effects on 

the population relevant endpoint reproduction (Natal-da-Luz et al. 2009). 

 

2. MATERIAL AND METHODS 
 
2.1 Test organisms 

A commercially available wood preservative product as well as individual 

substances contained in this product were tested in standard collembolan 

reproduction studies (OECD 2009) and in collembolan avoidance tests (ISO 

2011). The test organism was in all studies Folsomia candida Willem 1902 

(Isotomidae, Collembola). Organisms were obtained from an in-house culture kept 

at 20±2 °C on a mixture of plaster of Paris and activated charcoal in a ratio of 8:1 

(w/w), in constant darkness, and fed weekly with dried baker's yeast (S. 

cerevisiae). Reference tests conducted in regular intervals confirmed the required 

sensitivity of the test organisms (data not shown). All tests were conducted in the 

same laboratory under similar climatic conditions. 

 

2.2 Test chemicals 

The wood preservative product selected for the present study is authorized in 

Europe for use class 3, i.e., for outdoor use on wood exposed to weathering but 

without permanent contact to water or soil. There were two fungicidal active 

substances (a.s.) in the product: tebuconazole and 3-iodo-2-propynyl N-

butylcarbamate (iodocarb, IPBC) at weight proportions of 0.40 and 0.70%, 

respectively. In addition, the product contained one known additive that was 

labelled as hazardous, though not as hazardous to the environment. This additive 

(the solvent dimethylcapramide, DCM) was contained at a weight proportion of 
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1.64%. The product was obtained from a commercial online shop together with its 

material safety data sheet providing this information. Single substance tests were 

conducted with IPBC (CAS 55406-53-6), obtained from Sigma-Aldrich at a purity 

of 97%, tebuconazole (CAS 107534-96-3) obtained from Fluka (99% purity), and 

DCM (CAS 14433-76-2) obtained from TCI Chemicals (purity of 99.5%). DCM can 

be considered a non-volatile organic solvent due to the high boiling point (110°C 

according to the material safety data sheet from TCI).  

 

2.3  Test soil and spiking 

All tests used artificial soil composed according to OECD guideline 232 (OECD 

2009) (20% kaolin, 74.81% quartz sand, and 0.19% CaCO3) with a peat content of 

5%. The product was dissolved in water for spiking the soil, while acetone was 

used in the tests of the single substances. Accordingly, there were controls with 

deionised water and, in the tests with the single substances, additional solvent 

controls with acetone spiked at concentrations identical to those in the treatments. 

The tested concentration ranges were selected based on previous range finding 

tests.  

 

2.4  Reproduction and avoidance tests 

The reproduction tests were performed according to OECD guideline 232 (OECD 

2009) over an exposure period of 28 days. All tests were conducted with eight 

replicate vessels for the water control (or solvent control, if applicable), and four 

replicate vessels for each test concentration level. Each replicate vessel contained 

30 g soil (fresh weight, f.w.) and 7-10 mg of granulated dry yeast as food. The 

tests were started with juvenile F. candida (9-12 days old, ten individuals per 

replicate) obtained from synchronized breeding cultures. After 28 days, the 

number of adults and juveniles was determined by counting under a stereoscope 

using ink as dye. The test conditions were temperature between 14.6 and 21.9°C, 

light intensity between 416 and 796 lux, and a light:dark cycle of 16:8 h. The pH of 

the soil in the test vessels was between 5.4 and 6.8 during the tests, the soil 

moisture ranged from 38.9 to 58.7% of the maximum water holding capacity 

(WHCmax). 
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The avoidance tests with F. candida were performed according to ISO guideline 

17512-2 (ISO 2011) over an exposure period of 48 h. All tests were conducted 

with five replicate vessels per treatment, each containing 20 juvenile F. candida (9 

– 12 days old) obtained from synchronized breeding cultures. Each replicate 

contained 30 g soil (f.w.) spiked with the test item in one half of the test vessel (Ø 

5.5 cm, 250 ml volume). The other half of each test vessel was filled with 30 g soil 

f.w. representing the (solvent) control. Test conditions were temperature between 

18.2-21.5°C, light intensity between 470 and 736 lux, and a light:dark cycle of 16:8 

h. The pH of the soil in the test vessels was between 5.6 and 6.8 during the tests, 

the soil moisture ranged from 44.9 to 54.8% of the WHCmax. After 48 h of 

exposure, living and dead (=missing) collembolans were counted separately on 

each side of each test vessel.  

Details on temperature and pH are provided for individual tests in the supplement 

Table S1. 

 

2.5  Data analysis  

The response variables reproduction (number of juveniles as well as number of 

surviving adults after 28 days) and avoidance were evaluated statistically. 

Avoidance (%) was calculated for each replicate vessel according to the guideline 

(ISO 2011) as 

 
With nc and nt being the counted live collembolans on the control and the treated 

soil, respectively, and N being the total number of counted live collembolans.  

Average negative avoidance per treatment (i.e., attraction to the test item-spiked 

soil) was set to zero as prescribed by the guideline (ISO 2011), but negative 

avoidance in an individual vessel was in no case set to 0% avoidance. Effect 

concentrations (ECx), i.e., the estimated concentration causing x% effect, were 

determined by fitting non-linear concentration-response curves. Concentration-

response modelling was done in the free software R, version 3.2.2 (R 

Development Core Team 2015) using the most recent version of the package “drc” 

(Ritz & Streibig 2005). A three-parameter log-logistic model was fitted to 
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reproduction data with the lower limit fixed at 0, according to the function LL.3 

given as 

 

with b describing the steepness of the curve and the EC50 being directly modelled 

as inflection point of the curve. The model was reduced to two parameters by 

fixing the upper limit d at 1 for fitting avoidance and survival data. EC10 and EC50 

values (concentrations resulting in 10 and 50% effect, respectively) and their 95% 

confidence intervals were obtained with the implemented function “ED” of the “drc” 

package using the delta method and the t-distribution. 

In addition, Lowest Observed Effect Concentrations (LOECs) and the resulting No 

Observed Effect Concentrations (NOECs) were determined for the standard 

endpoint reproduction by William’s multiple t-test or, in case of variance 

heterogeneity, by Welch t-test (both: alpha=0.05; one-sided greater) in the 

software ToxRat Professional, version 2.10, release 20.02.2010 (ToxRat Solutions 

GmbH, Alsdorf, Germany). 

Based on the relative nominal proportions (Pi) of the considered i components in 

the product and the individual toxicity estimates of each component (ECx,i) the 

predicted toxicity estimates for the mixture (ECx,mix) were calculated according to 

the concept of concentration addition (CA) as 

 

These calculations were done either considering only the two a.s. in the product 

(i.e., Pi=0.364 for tebuconazole and Pi=0.636 for IPBC) or considering the a.s. and 

additionally the one known additive (Pi=0.146 for tebuconazole, Pi=0.255 for IPBC, 

and Pi=0.599 for dimethylcapramide). The alternative concept of independent 

action (IA) was not applied in the present project, because CA is usually more 

conservative and the difference between the two is rather small, particularly in the 

case of only a few mixture components (Junghans et al. 2006). 

To quantify the compliance of the observed product toxicity with the CA prediction, 

the Model Deviation Ratio (MDR) was calculated according to Belden et al. (2007) 

for each toxicity estimate as 
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An MDR well above 1 indicates that the effect of the product was underestimated 

by the CA prediction, while an MDR well below 1 indicates that it is overestimated. 

3 RESULTS 
 
The control treatments of all conducted reproduction tests met the validity criteria 

of the guideline (mean mortality at maximum 11.3%, at least 250 juveniles per 

vessel, and coefficient of variation (CV) of numbers of juvenile between 23.6 and 

27.1%). Since all validity criteria have been fulfilled in the conducted tests, the 

slight deviations in temperature and pH from the conditions described in the 

guideline are not deemed to invalidate the results. The conducted avoidance tests 

were also valid according to the guideline criteria, because the mean mortality 

(including missing individuals) of collembolans did not exceed 20% in most 

treatments as well as in all controls, and the mean number of collembolans in each 

section of the control combination treatments was between 40 to 60%. Only in the 

highest two test concentrations of DCM as well as in the highest test concentration 

of the product more than 20% mean mortality was observed; these treatments 

were hence excluded from the evaluation of avoidance. 

 

3.1 Reproduction tests 

Reproduction of the collembolan F. candida was increasingly inhibited by 

increasing concentrations of the wood preservative product and its active 

substances tested individually (Figure 1). Mortality in the reproduction tests (Figure 

1) was below 20% at all tebuconazole treatments but reached in the test with the 

product 45 and 100% mortality at 1000 and 3160 mg product/kg soil d.w., 

respectively. Mortality was also above 20% in the three highest tested 

concentrations of IPBC in the reproduction test. Although not the standard 

endpoint, survival of adult collembolans was statistically evaluated as well deriving 

a median lethal concentration (LC50) for 28 days of exposure (Table 1). However, 

mixture effects for the product could only be predicted as greater-than value due to 

the lack of lethal effects of tebuconazole in the reproduction test. The LC50 of the 



 
Chapter II – Mixture toxicity assessment of a biocidal product based on reproduction and 
avoidance behaviour of the collembolan Folsomia candida 
 

PhD Thesis – Bruno Guimarães 
 

71 

product when based solely on the IPBC concentration equals 5.7 mg/kg d.w., 

which is about half of the LC50 of IPBC. 
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Figure 1: Total number of offspring (left) and survival of introduced collembolans 

(right) in the 28 day reproduction tests with F. candida. Shown are means per 

treatment and the fitted 3-parameter log-logistic regressions in dependence of 

nominal concentrations of the product (A, B), tebuconazole (C, D), and IPBC (E, 

F).
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Table 1: Estimated Effect Concentrations (ECx), No Observed Effect 

Concentration (NOEC) and Lowest Observed Effect Concentration (LOEC) for 

Folsomia candida exposed to a commercial wood preservative formulation and to 

the individual active substances of this product. Reported endpoints are number of 

juveniles (reproduction) and survival of adults in the standard reproduction test 

and avoidance behaviour. Additionally, product toxicity as predicted by the CA 

model and the resulting Model Deviation Ratio (MDR) are provided for NOEC as 

well as ECx values. 

 Reproduction (28 days) Survival (28 
days) 

Avoidance (48 h) 

 NOEC (LOEC) EC10 (95% CI) LC50 (95% CI) EC50 

Product (mg 
product/kg soil 
d.w.) 

316.0 (1000) 544.9 (0-1487.4) 820.7 (139.2-

1502.2) 

67.6 (0-198.1) 

Product (mg 
sum active 
substances/kg 
soil d.w.) 

3.48 (11.0) 5.99 (0-16.35) 9.03 0.74 

Tebuconazole 
(mg/kg soil 
d.w.) 

50.0 (111.8)  44.5 (6.2-82.8) >1250 14.2 (0-56.3) 

IPBC (mg/kg 
soil d.w.) 

10.0 (17.8) 15.70 (0-54.6) 12.17 (9.71-

14.63) 

260.9 (0-2596.4) 

DCM (mg/kg 
soil d.w.) 

not tested >10 

Mixture, 
predicted (mg 
sum active 
substances/kg 
soil d.w.) 

14.10 20.53 >19.0 35.6 

MDR  4.06 3.43 >2.11 48.0 

 

In all three tests, LOECs, NOECs and 10% effect concentrations (EC10) could be 

derived for the endpoint reproduction (Table 1). For tebuconazole, a NOEC of 50 

mg/kg soil d.w. was determined, which is considerably below the NOEC of 250 
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mg/kg listed as endpoint in the regulatory dossier (EC 2007). For the product and 

IPBC, no data on chronic collembolan toxicity were available so far. Calculation of 

mixture toxicity considering only the active substances in the product (Table 1) 

indicated an about 3-fold deviation between prediction and observation based on 

the EC10, while the deviation was slightly higher when based on the NOEC. 

 

3.2 Reproduction tests 

Collembolans increasingly avoided spiked soil with increasing concentrations of 

the test item in the tests with the product, tebuconazole and IPBC (Figure 2). 

Average mortality per treatment was below 20% in the avoidance tests with 

tebuconazole and IPBC, while mortality increased with increasing product 

concentrations up to 33% in the avoidance test with the product (Figure 2). An 

avoidance test with the solvent additive DCM revealed high mortality at 

concentrations of 100 and 1000 mg/kg soil with an estimated LC50 (48 h) for 

mortality of 302.9 mg/kg soil. At the highest valid treatment (i.e., with mortality 

below 20%), no avoidance response was observed, resulting in an EC50 for 

avoidance of >10 mg/kg soil (Table 1).  
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Figure 2: Avoidance behaviour (left) and mortality (right) in the 48 h avoidance 

tests with F. candida. Shown are means per treatment and the fitted 2-parameter 

log-logistic regressions in dependence of nominal concentrations of the product 

(A, B), tebuconazole (C, D), IPBC (E, F), and DCM (G, H). 

 

The mixture assessment for avoidance behaviour indicated a strong 

underestimation by CA for the product when considering only the active 

substances: the avoidance response of collembolans for the product was almost 

50-fold greater than predicted. Including the solvent DCM in the mixture 

calculation (with a value of 10 mg/kg soil as EC50) reduced the underestimation to 

an MDR of 7.59. However, at the product EC50 for avoidance, the concentration of 

DCM was 1.11 mg/kg d.w., which is too low to cause on its own any avoidance 

response or mortality. 

 

4 DISCUSSION 
 

Reproduction was a more sensitive endpoint than survival in the chronic tests both 

with the single active substances as well as with the mixture. This is similar to a 

study that tested esfenvalerate, picoxystrobin and triclosan with Folsomia fimetaria 

(Schnug et al. 2014). The lethal effect of the product was most likely dominated by 

IPBC, as the LC50 for the product when related solely to the IPBC concentration 

differed approximately 2-fold from the LC50 determined for IPBC (Table 1).  

Earlier studies with mixtures of copper and pesticides or metals, respectively, 

reported conflicting results regarding the predictability of mixture toxicity in other 

soil organisms: mixture effects on chronic endpoints were underestimated in 

Caenorhabditis elegans (Jonker et al. 2004), overestimated in Enchytraeus albidus 

(Lock & Janssen 2002), or concentration-dependent in the collembolan 

Paronychiurus kimi (Son et al. 2016). Chronic mixture toxicity of organic 

insecticides and herbicides was also mostly overestimated by CA for F. candida 

(Santos et al. 2010). However, these studies did not provide a quantitative 

estimate for the degree of deviation between predicted and observed mixture 

toxicity that could be compared to the results of the present study. 

In the present study, the effect of the biocidal product on F. candida reproduction 

was fairly well predicted by CA, given a less than 4-fold underestimation of toxicity 
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based on the EC10 and a less than 5-fold underestimation based on the NOEC 

(Table 1). This deviation is only slightly larger than what has been considered an 

acceptable deviation of mixture predictions in the aquatic compartment (see e.g. 

Coors et al. 2018). Hence, these results support the application of CA in the 

regulatory context when it comes to chronic toxicity to soil invertebrates. However, 

the supporting evidence is rather limited given that only one formulated product 

was tested in one species and that at least some literature data do not support the 

use of CA. In addition, the tendency for underestimation of product toxicity 

indicates that a contribution of formulation additives to the overall effect on 

reproduction could have occurred in the reproduction test. Whether this can be 

attributed to the known hazardous additive, DCM, or other (unknown) additives 

remains unclear. An influence of environmental conditions on the mixture toxicity 

prediction is deemed highly unlikely, because toxicity is improbable to change 

much within the temperature range of 15-22°C and dependence on pH will also be 

rather limited for the three chemicals, which are not ionizable in the relevant pH 

range.  

The effect of tebuconazole on avoidance behaviour was stronger than that of 

IPBC, while the effect on reproduction was weaker than that of IPBC (Table 1). 

Consequently, no consistent correlation was found between the two endpoints 

reproduction and avoidance. Yet, the endpoint reproduction is usually found to be 

more sensitive than avoidance in F. candida, as reported e.g. for two insecticides 

(Santos et al. 2012) as well as dredged sediments (Cesar et al. 2015). Hence, an 

avoidance response may be predictive or serve as warning for effects on 

reproduction in F. candida (Natal-da-Luz et al. 2009) but based on the results of 

the present study not necessarily for all types of chemicals.  

In contrast to the endpoint reproduction, the avoidance response towards the 

product was strongly underestimated by the CA prediction when based only on the 

active substances contained in the product. This could be related to a greater 

uncertainty in the toxicity estimates for avoidance behaviour compared to those for 

reproduction. On a relative basis, the confidence intervals of the avoidance EC50 

values were similarly broad as those of the reproduction EC10 values for the 

product, but up to 2-fold larger for the single substances. This difference renders 

the predicted mixture toxicity for avoidance somewhat more uncertain than that for 

reproduction, but it is deemed rather unlikely to cause the large observed 
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underestimation in the case of avoidance. DCM as the only known additive in the 

product could not explain the strong avoidance response to the product, since the 

additional test with this organic solvent alone detected no avoidance response at 

the relevant concentration range. Yet, the tested commercial product may have 

contained other additives, e.g. solvents, emulsifiers, surfactants and/or 

preservatives. One or several of them may have triggered an avoidance response, 

which could not have been included in the prediction due to the lack of information 

on ingredients. 

Formulation additives such as solvents (including DCM) or emulsifiers may also 

interact with the bioavailability of chemicals or their uptake into organisms. This 

has been described as mechanism of toxicokinetic synergistic interaction 

(Spurgeon et al. 2010). When assuming such a synergistic interaction between 

formulation additives and the active substances it remains open, however, why it 

occurred only in the avoidance test but not similarly strong in the reproduction test. 

Time-dependence of mixture effects as discussed by Broerse & van Gestel (2010) 

may explain the lack of synergistic interaction in the chronic reproduction test. Yet, 

a simple explanation could also be a general inability of the CA model to predict 

behavioural responses. Few studies on avoidance behaviour of soil organisms 

tested the predictability of mixture toxicity (Santos et al. 2010; Loureiro et al. 

2009), with the results being species- and contaminant-specific, but generally not 

showing indication for synergistic interaction. Hence, the most likely explanation 

for the unexpected high avoidance response towards the product appears to be 

the presence of unknown additives in this product that triggered avoidance 

behaviour but did not induce toxic effects on reproduction. 

 
5 CONCLUSIONS 
 
The present study showed that reproduction and avoidance behaviour of the 

collembolan F. candida were affected by a wood preservative product and its 

active substances tested individually. The CA model was able to predict the 

toxicity of the product with less than 4-fold underestimation with regard to the 

standard endpoint reproduction, but strongly (>40-fold) underestimated the 

behavioural avoidance response. Hence with regard to regulatory risk 

assessments, the application of the CA model as default for a theoretical mixture 
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toxicity assessment of the standard endpoint reproduction is supported by these 

results, although more studies are needed to confirm this predictability for other 

types of chemicals and other soil organisms. Using CA as default for behavioural 

responses such as avoidance, however, is not supported by the present study.   
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SUPPLEMENTS 

 

Table S1: Climatic conditions (pH and temperature) during exposure of Folsomia 

candida to a commercial formulation of a biocide (product), to the individual active 

substances (tebuconazole and IPBC) and to an organic solvent 

(dimethylcapramide) in OECD artificial soil, following the standard guidelines. 

Given ranges relate to parameters measured continuously during the test 

(temperature) or determined at test start and test end in control and treated 

samples (pH). 

 Test item Test pH soil Temperature 
range (°C) 

Product Reproduction 5.7-5.9 14.6-21.9 

Tebuconazole Reproduction 6.7-6.8 17.9-21.1 

IPBC Reproduction 5.4-5.6 17.8-21.3 

Product Avoidance 5.6-5.9 18.2-20.9 

Tebuconazole Avoidance 5.7-5.9 19.1-20.8 

IPBC Avoidance 6.1-6.2 18.4-21.5 

Dimethylcapramide Avoidance 6.6-6.8 18.3-19.5 

Required conditions 
according to both 
test guidelines 

 5.5-6.5 18.0-22.0 
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Figure S1: Total number of offspring (left) and survival of introduced collembolans 

(right) in the 28 day reproduction tests with F. candida. Shown are means per 

treatment ± standard deviation in dependence of nominal concentrations (log-

scale) of the product (A, B), tebuconazole (C, D), and IPBC (E, F). 
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Figure S2: Avoidance behaviour (left) and mortality (right) in the 48 h avoidance 

tests with F. candida. Shown are means per treatment ± standard deviation in 

dependence of nominal concentrations (log-scale) of the product (A, B), 

tebuconazole (C, D), IPBC (E, F), and DCM (G, H). Note that average responses 

were not set to zero. 
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HIGHLIGHTS 
 

• Multigenerational (MG) exposure for F. candida is not covered by the 

standard test. 

• Impact of ivermectin was assessed during three generations (F1-F3). 

• Similar toxicity for survival and reproduction between MG.  

• Impact on size: organisms were smaller and more in F2 and larger and less 

in F3. 

• The multi-endpoint strategy was beneficial to interpret long-term exposure. 
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 ABSTRACT  
 
In standard toxicity tests one generation of test organisms is used, and they are 

usually exposed only during a fraction of their life-cycle. This approach is very 

important but does not cover the potential effects of multigenerational (MG) 

exposure and may underestimate risks. Hence, the main aim of this study was to 

assess the MG impact of the veterinary pharmaceutical ivermectin (IVM) on 

Folsomia candida during three generations (F1-F3). Ivermectin is a veterinary 

medicine, persistent in the environment and toxic to non-target soil invertebrates. 

A suite of different endpoints was used including avoidance, survival, reproduction, 

size and other biomarkers (catalase (CAT), glutathione peroxidase (GPx), 

glutathione reductase (GR), glutathione S-transferase (GST), acetylcholinesterase 

(AChE) and lipid peroxidation (LPO)). Survival and reproduction were affected 

(LC50: 40 mg/kg; EC50: 5 mg/kg), but no avoidance occurred, which poses 

additional ecological concern. Exposure throughout the generations showed 

similar toxicity in terms of survival and reproduction. Regarding size there was an 

impact, e.g., organisms were smaller and more abundant in F2 and larger and less 

abundant in F3. This can have implications in terms of risk as e.g. smaller 

organisms can respond differently to stress compared to larger organisms in future 

generations. The antioxidant mechanisms were dynamically activated along the 

generations, e.g. in F1 CAT was increased whereas in F3 there was increased 

GST activity, which resulted in damage (LPO) for F1 and F2 organisms but not for 

the F3 generation. The multi-endpoint approach proved to be beneficial for the 

interpretation of results and we recommend it, especially for persistent and/or 

highly adsorptive chemicals, but also endocrine disruptors. Moreover, the 

evaluation of size as an additional sub-lethal endpoint has significantly added to 

the relevance of this test. The relative proportion of small, medium and large 

animals may be an even more relevant aspect of this endpoint. This does not 

require guideline modifications and is hence easily implementable.   

 
Keywords: Antiparasitic drug; collembolans; transgenerational responses; soil 

ecotoxicity; multi-endpoint-approach. 
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1. INTRODUCTION 
 
Organisms are often exposed to contaminants during several generations 

although standard toxicity tests (e.g., OECD 2009, ISO 2004) are based on one 

generation, and usually exposure occurs during a fraction of the life-cycle. This is 

of course a good compromise for feasibility purposes but does not cover the 

potential effects of multigenerational (MG) exposure and may underestimate risks. 

Long term exposure in soils is of high concern because persistent chemicals can 

be deposited for long periods of time, accumulate in soil, undergo transformation, 

etc., while the organisms can be continuously exposed. There are still very few 

studies among terrestrial species that cover MG exposure, examples include the 

oligochaete species Enchytraeus crypticus (Bicho et al., 2017; Menezes-Oliveira 

et al., 2013), Eisenia fetida (Schnug et al., 2013), and  the collembolan species 

Folsomia candida (Amorim et al., 2017; Campiche et al., 2007; Paumen et al., 

2008).  Results differed, and this is not surprising since effects of multigenerational 

exposure of chemicals cannot be extrapolated from one endpoint to another due to 

biological and chemical differences 

In the present study we assessed the multigenerational effect of ivermectin (IVM), 

a high environmental concern parasiticide widely used in veterinary medicine. IVM 

is partly metabolized by cattle, pigs and sheep and considerable amounts (up to 

80% depending on the route of application and the treated farm animal) of the 

parent drug are excreted via faeces (Hennessy & Alvinerie 2002), finally reaching 

the soil. IVM is persistent in the environment (Kövecses and Marcogliese, 2005) 

and has been shown to be highly toxic to dung- (Madsen et al., 1990; Römbke et 

al., 2009) and soil-inhabiting invertebrates (Jensen & Scott-Fordsmand 2012; 

Jensen et al. 2003; Römbke et al. 2010). From standard laboratory as well as 

microcosm tests with IVM, it is assumed that collembolans  are among the most 

sensitive soil organisms (Jensen & Scott-Fordsmand 2012; Jensen et al. 2003; 

Römbke et al. 2010). IVM causes neurotransmission failure because of 

neuromuscular synapses interference (Õmura, 2008), and is known to act by the 

interaction with glutamate-gated or γ-aminobutyric acid related chloride channels 
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in synapse membranes (Campbell, 1985; Duce and Scott, 1985), hence 

behavioural effects, e.g., avoidance, are a relevant endpoint.  

Therefore, we aimed to assess the effects of multigenerational exposure to 

ivermectin using the soil ecotoxicity model species Folsomia candida (Collembola) 

(OECD 2009; ISO 2004), in terms of survival and reproduction, along 3 

generations. In order to increase mechanistic understanding and thus the 

relevance of this study, avoidance behaviour and biomarkers involved in 

neurotransmission (AChE-acetylcholinesterase), biotransformation (GST-

glutathione S-transferase), antioxidant defence (CAT-catalase, GPx-glutathione 

peroxidase, GR-glutathione reductase) and oxidative damage (LPO-Lipid 

Peroxidation) were also measured. 

 

2. MATERIALS AND METHODS 
 
2.1. Test organisms 

The standard test species Folsomia candida (Collembola) was used. Cultures 

were kept on a moist substrate of plaster of Paris and activated charcoal (8:1 

ratio), at 20±1°C, under a photoperiod of 16:8 (light:dark). Food consisted of dried 

baker's yeast (Saccharomyces cerevisiae) provided weekly. Age-synchronized 

juveniles (10-12 days) were used for the test. 

 

2.2 Test substance, soil and spiking procedures 

Ivermectin (IVM) (≥90% purity; Sigma-Aldrich) and the natural standard LUFA 2.2 

soil (Speyer, Germany) were used. Soil characteristics are summarised as follows: 

pH (0.01 M CaCl2) of 5.5±0.1, 1.61±0.15% organic carbon, 7.9±1.8% clay, 

16.3±2.5% silt, and 75.8±3.9% sand.  

Ivermectin is not water soluble, therefore acetone (100% purity; VWR Chemicals) 

was used as a solvent. Nominal test concentrations were 0-0.32-1-3.2-10-32-100 

mg/kg soil dry weight (d.w.) for the survival, reproduction and avoidance tests and 

0-1-3.2 mg/kg soil d.w. for the multigenerational test. The latter were selected 

based on the reproduction effect concentrations (0-EC10-EC50). Solutions were 

prepared and serially diluted and thoroughly homogenized with the soil. Acetone 
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was left to evaporate overnight. Water was added to the soil in order to achieve 

40–60% of the maximum water holding capacity (WHC). In addition to a water 

control, a solvent control was used in all tests, resembling the maximum added 

volume of solvent with the ivermectin spiking. 

 

2.3. Experimental procedure  

2.3.1. Avoidance test 

The avoidance test guideline ISO 17512-2 (2011) was followed, using the 2 

chamber option. Circular plastic boxes (Ø 8 cm x 4.5 cm) divided in the middle by 

a removable plastic barrier were used. Five replicates were done. Half of each of 

the containers were filled with 30g of the control soil and the other half with 30g of 

the spiked soil. After removal of the plastic barrier, 20 juveniles (10-12 days old) 

were placed in the middle. The test was conducted for 48 h, at 20±2 ºC, under a 

photoperiod of 16:8 h (light:dark). At the end of the test, the plastic wall was placed 

in the middle section of each box and the soil from each half of the container was 

separated and put into new vessels, flooded with water and the number of floating 

individuals was counted directly. 

 

2.3.2. Reproduction tests 

The standard guideline OECD 232 (2009) was followed. In short, 10 organisms 

were introduced into each test vessel, containing 30g of moist soil. Five replicates 

were done. The test ran for 28 days at 20±2ºC, under a photoperiod of 16:8 h 

(light:dark). Food and water loss were replenished weekly. At test end, test 

vessels were flooded with water, the content was transferred to a crystallizer dish 

and the surface was photographed for further automatic counting using the 

software ImageJ (Schneider et al., 2012). Two endpoints were evaluated: survival 

and reproductive output. 

 

2.3.3. Multigenerational test  

Each multigeneration test was conducted following of the same OECD guideline 

232 (2009), except that at test end the juveniles were sampled and further 

exposed. In short, at test end, the similar flooding and photographing procedure 
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for counting and measuring was done, both using the functions available in 

software ImageJ, and juveniles were transferred with a spoon to a box with a layer 

of Plaster of Paris (culture medium). For the exposure of the next generation, ten 

of the biggest juveniles (ca. 11 days old) were transferred to new test vessels, with 

freshly spiked soil. Additionally, 300 plus 150 juveniles were sampled in 2 

microtubes, snap frozen in liquid nitrogen and stored at -80ºC, until further 

analysis. This was repeated for all 3 generations, i.e. 28, 56 and 84 days exposure 

for the three consecutive generations of juvenile collembolans. Five replicates 

were used for the controls and ten for each treatment, in order to ensure enough 

organisms to start the next generation tests and analysis. Three endpoints were 

evaluated: survival, reproductive output and size (area, mm2).  

 

2.3.4. Cellular and biochemical markers analysis  

Procedures followed the previously optimized methodology as detailed by Maria et 

al. (2014). The selected biomarkers were catalase (CAT), glutathione peroxidase 

(GPx), glutathione reductase (GR), acetylcholinesterase (AChE), glutathione S-

transferase (GST) and lipid peroxidation (LPO). In short, pools of 300 juveniles 

were homogenized in potassium phosphate buffer (0.1 mM, pH 7.4). For LPO, 4% 

BHT (2,6-dieter- butyl-4-metylphenol) in methanol was added to 150 μL of the 

homogenate and stored at -80ºC. The remaining 850 μL of the homogenate were 

centrifuged and the PMS (Post Mitochondrial Supernatant) was stored at -80ºC. 

Protein concentration was assayed using bovine γ - globuline as a standard 

adapted from literature (Bradford, 1976) in a 96-well flat bottom plate. For CAT, 

Clairborne (1985) was followed, as described by Giri et al. (1996). GPx, GR and 

GST activities were determined according to Mohandas et al. (1984), Carlberg & 

Mannervik (1975) and Habig et al. (1974), respectively, and as detailed in Maria et 

al. (2014). Lipid peroxidation (LPO) was determined according to Ohkawa et al. 

(1979) and Bird & Draper (1984), adapted by Filho et al. (2001). 

Acetylcholinesterase (AChE) activity was determined according to Ellman et al. 

(1961), adapted by Guilhermino et al. (1996). 
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2.4. Data analysis  

Avoidance response (A) was calculated as the percentage of organisms that 

avoided the treated soil compared to the total number of organisms in the vessel, 

calculated as follows:  

A = (C−T) ⁄ (N) x 100 

where C=number of organisms observed in the control soil; T=number of 

organisms observed in the test soil; N=total number of organisms per replicate. No 

avoidance or a non-response to the compound is considered when A is negative 

(ISO, 2011). 

The Effect Concentrations (ECx) were calculated, based on nominal 

concentrations, using a logistic and threshold 2 parameters regression model 

(Toxicity Relationship Analysis Program (TRAP) – version 1.20, US EPA).  

One-way analysis of variance (ANOVA), followed by the Post-Hoc test (Dunnett’s 

or Holm-Sidak, p<0.05) was used to assess differences between control and 

treatments or between generations (SigmaPlot 12.0, 2011).  

Results in terms of size were obtained for the various types of measurement, 

including length and area (mm2). Area was selected as the most representative, 

although results followed the same pattern with the other size measure. In terms of 

size range distribution, the 3 main area size classes (mm2) were: 1) Small (S): 

S<0.05, 2) Medium (M): 0.1>M>0.05 and 3) Large (L): 0.8>L>0.1.  

 
3. RESULTS 
3.1. Avoidance Test 

Results for the avoidance behaviour test are presented in Figure 1. 
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Figure 1: Results of Folsomia candida A) avoidance and B) reproduction test after 

exposure to ivermectin in LUFA 2.2. Values are expressed as average ± standard 

error (AV±SE). Lines represent model fit to data. 

 

The test validity criteria were fulfilled (mortality <20% in all treatments). Avoidance 

was not significant in any treatment, although there was a tendency of increasing 

avoidance up to 1 mg/kg. Afterwards, a slight decrease did occur. 

 

3.2. Reproduction Test  

Validity criteria was fulfilled according to the guideline (mortality <20% and number 

of juveniles >100, coefficient of variation <30%), the pH showed a normal variation 

of 6.0±0.5 between treatments at test start and end.  

Effects in the control and the solvent control were not significantly different, hence 

the control data is presented.  

 

A dose-response effect was observed for both survival and reproduction for the 

tested range of ivermectin (Fig. 1). The estimated effect concentrations (ECx) are 

presented in Table 1. 

 

Table 1: Estimated Effect Concentrations (ECx) for Folsomia candida exposed to 

ivermectin (mg/kg) in LUFA 2.2 soil following the standard guideline (exposure 

logged scale). Results from the multigenerational exposure estimates are shown 
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for relative comparison in terms of % reduction. Log. 2 par: logistic 2 parameters; 

Thresh 2 par: threshold sigmoid 2 parameters. S: Slope. Y0: top point. CI: 95% 

Confidence Intervals. n.d.: not determined.  

 EC10 
(mg/kg) 

EC20 
(mg/kg) 

EC50 
(mg/kg) 

Model  
parameters 

Standard test     

Survival  
(F0) 

17.5 

11<CI<25 

25.8 

22<CI<30 

39.9 

34<CI<46 

S: 0.019;  

Y0: 9.8 

Reproduction 
(F1) 

0.4 

0.2<CI<1 

1.1 

0.6<CI<2 

5.1 

3<CI<7 

S: 0.945;  

Y0: 1190.2 

Multigenerational test    

F1 10% 

reduction 

20% 

reduction 

50% 

reduction 

 

Reproduction 0.1 

0.04<CI<0.5 

0.3 

0.1<CI<0.6 

1.3 

1<CI<1.6 

S: 0.576;  

Y0: 840.44 

Size juveniles n.d. 1.9 

0.2<CI<3.6 

3.2 

1.9<CI<4.6 

S: 0.259;  

Y0: 9.47E-02 

F2     
Reproduction  0.7 

0.4<CI<1.2 

1 

0.7<CI<1.5 

2.3 

1.9<CI<2.9 

S: 1.036;  

Y0: 811.8 

Size juveniles n.d. 1.5 

-0.5<CI<3.6 

4.3 

0.8<CI<7.7 

S: 0.135;  

Y0: 0.128 

F3     

Reproduction 0.9 

0.8<CI<1 

1.1 

1<CI<1.2 

1.7 

1.6<CI<1.9 

S: 1.994;  

Y0: 1444.6 

Size juveniles n.d. 2.7 

0.4<CI<4.8 

4.6 

-0.2<CI<9.3 

S: 0.182;  

Y0: 0.1195 

 

3.3. Multigeneration test  

Results of the multigenerational test (3 generations) in terms of survival, 

reproduction and the size of adults and juveniles are presented in Figure 2.  
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Differences between control and solvent control were significant in F3 (with more 

animals in the solvent control). Comparison between generations showed that the 

survival of the organisms was similar in all generations. In terms of reproduction 

there was a relatively higher number of juveniles in F2 and F3, this being 

significantly higher for exposure to 1 mg/kg in F3. 

There was a decrease in the average size with increasing ivermectin 

concentration, both for adults and juveniles, although not significant (Fig. 2). 

 

 
 
Figure 2: Results of the Folsomia candida multigenerational test (endpoints: 

survival, reproduction and size) after exposure to ivermectin (0-1-3.2 mg/kg, i.e. 

ca. 0-EC10-EC50) in LUFA 2.2 soil for 3 generations (F1, F2, F3). Values are 

expressed as average ± standard error (AV±SE). p<0.05*: between control and 

treatments, a: between F1-F2, b: between F1-F3 and c: between F2-F3. «: 

solvent control data used (control=647±70; solvent control=1445±43 juveniles).  
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The detail of the different size classes and numbers of individuals (Fig. 3) showed 

e.g. that after the first exposure to ivermectin, juveniles are more but smaller (size: 

F2<F1) when exposed to 1 mg/kg (ca. EC10) and as many but smaller (size: 

F2<F1) when exposed to 3.2 mg/kg (ca. EC50).  

 
Figure 3: Results of the Folsomia candida multigeneration test (endpoint: size as 

area) after exposure to ivermectin (0-1-3.2 mg/kg, i.e., ca. 0-EC10-EC50) in LUFA 

2.2 soil for 3 generations (F1, F2, F3). Values are expressed as average ± 

standard error (AV±SE). Small (S): S<0.05, Medium (M): 0.1>M>0.05 and Large 

(L): 0.8>L>0.1. p<0.05: a, b, c- comparison between control and treatments (t-test) 

in small, medium and large size groups, respectively. «: solvent control data used: 

control: (L=224±18; M: 119±6), solvent control (L=626±55; M: 265±30).  

 

In F3 differences between control and solvent control were observed, with 

significantly higher numbers of large and medium juveniles in the solvent control. 

Hence this seems to confirm that the solvent acetone also affected this endpoint, 

in this case showing a shift towards larger animals (size: F3>F2). 

 

3.4. Cellular and biochemical markers  

Due to mortality it was not possible to analyse results for 3.2 mg/kg (fig. 4).  
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Figure 4: Results of Folsomia candida multigeneration test (endpoint: cellular and 

biochemical markers) after exposure to ivermectin (0-1 mg/kg) in LUFA 2.2 soil for 

3 generations (F1, F2, F3, i.e. 28, 56, 84 days). Values are expressed as average 

± standard error. Acetylcholinesterase (AChE), glutathione peroxidase (GPx), 

catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) 

activities and lipid peroxidation (LPO). p<0.05 *: comparison between control and 

treatments (t-test); a: between F1-F2, b: between F1-F3 and c: between F2-F3 

(ANOVA; Holm-Sidak).  
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Results showed an increase of CAT for F1 (after one ivermectin exposure cycle), 

which was absent in the next generations (F2-F3) (Fig. 4). For GST, the activity 

increased at F3. An increase in GPx and GR observed in F1 was not significant. 

For AChE, there was an overall increase except for F2. LPO shows that damage 

occurred for the F1 and F2 organisms (p<0.001), with a clear shift to decreased 

damage in F3, resembling a recovery scenario. 

 

4. DISCUSSION 
 
Results showed that F. candida did not avoid ivermectin contaminated soil in a 

dose response pattern, i.e., although there was a tendency to avoid concentrations 

up to 1 mg/kg, exposure to higher concentrations caused similar or lower 

avoidance, meaning that this endpoint is difficult to assess. Similarly, other 

compounds have been shown to interfere with the ability to avoid in Folsomia 

candida, e.g. boric acid (Amorim et al., 2012) or dimethoate (Pereira et al., 2013). 

For dimethoate exposure, a correlation between non-avoidance and AChE 

inhibition was shown. In the present study with ivermectin the measurements of 

AChE (which could indicate if the lack of avoidance would be related with the 

neurotransmitter blockage), were inconclusive due to the high mortality in higher 

concentrations of no avoidance and longer exposure duration compared to the 

avoidance setup. Nevertheless, Torkhani et al. (2011) has reported that Eisenia 

fetida is  “attracted” to IVM (8-256 mg/kg) in an avoidance test setup exposure. 

Other examples include decreased locomotor capacities in ivermectin exposed 

beetles (Verdú et al. 2015). In fact, there are good reasons that IVM affects 

organism groups depending on their ancient phylogenetic patterns, meaning that 

sensitivity to ivermectin is compatible with recent phylogenomic hypotheses 

grouping the Nematoida with the Arthropoda as Ecdysozoa (moulting animals), 

in contrast to, among others, Oligochaeta (Puniamoorthy et al., 2014), i.e., the 

effects observed by F. candida (Arthropoda), which are comparable to those 

observed by beetles (and nematodes) can be in part explained by the recent 

phylogenetic hypothesis proposed by Pumiamoorthy et al (2014). 
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Such avoidance inhibition has been observed also in other species and 

compounds (e.g. in enchytraeids for boric acid (Amorim et al., 2012), LAS (Linear 

Alkylbenzene Sulfonate) and TBTO (Tributyltin oxide) (Amorim et al., 2008)). One 

of the main concerns are the ecological implications of this kind of endpoint: if 

organisms are not able to avoid a certain compound in the field (where soil 

patchiness is known to still offer an escape for, in particular, small mesofauna 

species such as collembolans) then the risk on the population level is probably 

much higher in comparison to an assessment based solely on effects on survival 

and, especially, reproduction (Ockleford et al., 2017).  

Reproduction  

As recorded, effects on reproduction showed an EC50 of ca. 4 mg IVM/kg. This is 

higher than effect levels observed by Römbke et al. (2010) in an OECD soil with 

similar total organic content.  

The apparent difference of reproduction EC values can be due to relatively steep 

dose-response curve found for the effects of ivermectin. This is one of the 

chemicals where Folsomia candida is a particularly sensitive species compared to 

other soil organisms (Jensen and Scott-Fordsmand, 2012) including oligochaetes 

(Jensen et al., 2003). Other results available show variations in different soils, e.g. 

a natural loamy sand (Förster et al., 2011), a natural sandy clay loam (Jensen et 

al., 2009), or a tropical artificial soil (Zortea et al., 2017). 

Common across these studies is also the lower impact on the adults, showing that 

the effects on the endpoint reproduction are not due to adult mortality, hence it is 

not a narcotic type of effect. An increase in reproduction after exposure to acetone 

has been observed before (Römbke et al. 2010). Further, it seems that 

multigenerational exposure to acetone exponentiates the effects in F3.  

Results from the multigenerational exposure showed that the reproduction effect 

was similar to the comparable F1 in literature (Römbke et al. 2010) and within 

generations (F1-F3). Interestingly, adding an additional endpoint size, we could 

quantify that ivermectin affects body size. This has not been shown before for 

ivermectin. The model for size is merely indicative (as there are too few data 

points) but shows that size (average) and reproduction were similarly affected. 

Although, the relative proportion of small, medium and large animals may be an 
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even more relevant aspect of this endpoint. After the first exposure to ivermectin, 

the number of juveniles were greater, but smaller (size: F2<F1) when exposed to 1 

mg/kg (ca. EC10) indicating a stress mechanism activation. This type of R strategy 

– the ability to reproduce rapidly (exponentially) – is usually linked to relatively little 

investment in other individual assets, i.e. they are typically weak or smaller and, 

thus, subject to predation and stress. The exposure to higher ivermectin 

concentration of 3.2 mg/kg (ca. EC50) also caused a decrease in size (size: 

F2<F1), although reproduction did not increase in F2 compared to F1 (as occurred 

for the lower concentration). Evidences are that there is a compromise between 

energy allocation for size and reproduction, which is dependent on the 

concentration. At least for Folsomia candida this has also been observed in a long 

multigenerational exposure to cadmium (Amorim et al., 2017). The authors 

suggested that among the reasons for the extended survival to continuous 

exposure to the EC50 (and not to the EC10) was an investment in terms of optimal 

size for survival. For ivermectin multigenerational exposed Folsomia candida this 

response mechanism seems to be more transient than for Cd, as based on F3 

observations of larger animals. These results would indicate a shift to the opposite 

K strategy, with a significantly higher number of large and medium juveniles (size: 

F3>F2). The effects of the solvent acetone itself in the MG is not possible to 

disregard in F3, as observed by the significant difference between control and 

solvent control alone. Therefore, we recommend to add the measurement size as 

an additional endpoint of the collembolan reproduction test (OECD, 2009). Overall, 

the fitness of the organisms may be assessed by their growth (Fountain and 

Hopkin, 2001; Hopkin, 1997; Scheu and Simmerling, 2004), since a minimum size 

is required to be able to reproduce (Crommentuijn et al., 1993). So, small 

reproduction rates can be related to a decrease in growth, probably by a reduction 

in the metabolic activity (Crouau and Moia, 2006; Smit and Van Gestel, 1997). 

From the recorded cellular and biochemical markers there are indications of 

activation of stress response mechanisms after exposure to IVM during one and 

two generations, e.g. CAT increased in F1 juveniles, and LPO was measured in 

F1 and F2 but not in F3 hence there was an activation of a mechanism towards 

“homeostasis”, also with the antioxidant levels returning to basal levels (e.g. GPx, 
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GR). This is also in agreement with the apparent change in strategy from F1 to F2 

and then F3, where more energy would be required to activate these antioxidant 

enzymes in the first generation(s), establishing homeostasis, after which the 

opposite occurs, no damage is measured in F3 and less energy was required.  

Other studies have shown the activation of this mechanism after exposure to 

ivermectin, e.g. GPx in the aquatic vertebrate Clarias gariepinus (Ezenwaji et al., 

2017) or CAT and GST in Danio rerio (Domingues et al., 2016). The “renovation” 

of GSH by GR activity seems to be occurring in F3, this combined with GST that 

was significantly increased. The positive interaction between these complementary 

enzymes is well known (Meister 1995a; Saint-Denis et al. 1999; Saint-Denis et al. 

2001). To summarise, it seems that the initial effort made by the antioxidant 

system was not successful to prevent oxidative damage (LPO increased in F1 and 

F2), which could indicate inefficacy of the activation of CAT and GPx. On the other 

hand, the “joint work” of GST/GR enzymes seemed more efficient given no 

oxidative damage (decreased LPO in F3). This could be the result of a re-iteration 

of the antioxidant system, starting to respond with CAT and feedback after to GST 

activation.   

The half-lives of IVM in 3 natural soils (sandy loam) under aerobic conditions have 

been reported as 16, 37 and 67 days, while under anaerobic conditions no 

significant dissipation up to 120 days occurred (Krogh et al., 2009). Using the main 

soil properties (e.g. pH, CEC, OC and texture) of LUFA 2.2 for comparison with 

the York soil used by Krogh et al. (2009) the half-life of IVM is at least as high as 

67 days (York soil). Hence in the present multigenerational study where soil was 

freshly spiked with 1 and 3.2 mg/kg soil d.w. every 28 days these concentration 

levels were probably maintained during the test period.  

In the following, we used the EC10 values determined in this study in comparison 

to the NOEC (No Observed Effect Concentrations) values used by Liebig et al. 

(2010) – a practice agreed-on by these authors in cases where NOEC values were 

not available. Liebig et al. (2010) published the most comprehensive risk 

assessment done for ivermectin so far, meaning that we can discuss whether, and 

if yes, how our results would modify the outcome presented in the literature (Table 

2). Using always the worst-case assumptions for the determination of the PEC 
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(Predicted Effect Concentration) listed by Liebig et al. (2010) it becomes clear that 

a relatively small increase in sensitivity (the NOEC decreases from 300 µg/kg soil 

d.w. to 100 µg/kg soil d.w.) changes the outcome of the risk assessment. 

Interestingly, an even stronger change was found by Jensen et al. (2009), who 

studied ivermectin in a two-species laboratory test consisting of the Collembolan 

Folsomia fimetaria (a species closely related to Folsomia candida) and the 

predatory mite Hypoaspis aculeifer. However, when comparing similar endpoints 

such complex multi-species tests require higher efforts than multigeneration tests, 

in particular if effects occur already in the F2 generation. 

 

Table 2: Worst case risk assessment according to the rules of the European Union 

(VICH, 2004, 2000) for the effects of ivermectin on collembolans (Folsomia 

candida), comparing our results with the data from (Liebig et al. (2010). All data 

are given in µg/kg soil d.w..  

Test 
method 

Effect 
concentration 
(NOEC/EC10) 

   Assessment 
        factor 

PNEC PEC 
(worst 
case) 

RQ 
(worst 
case) 

Initial risk assessment 
OECD  300           10 30 6.08 0.20 

New 
method 

100           10 10 6.08 0.61 

Refined risk assessment 
OECD 300           10 30 11.4 0.38 

New 
method 

100           10 10 11.4 1.14 

NOEC: No Observed Effect Concentration; EC: effect concentration; PNEC: 

Predicted No Effect Concentration; PEC: Predicted Effect Concentration; RQ: risk 

quotient. RQ values in bold indicate a risk of ivermectin to Folsomia candida.  
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5. CONCLUSIONS 
 
Exposure to ivermectin in Folsomia candida showed that (almost) no avoidance 

behaviour occurred, although survival and reproduction were highly affected. The 

multigenerational exposure showed no variation in terms of the EC values for 

survival and reproduction along three generations. Nevertheless, there were shifts 

in energy allocation between size and reproduction within the three generations, 

i.e., more organisms were smaller in F2 and more were larger in F3. This can have 

implications in terms of the associated risk for the next generations. The 

antioxidant mechanisms were activated with updated activities along the 

generations, e.g. in F1, CAT was increased whereas in F3 there was an increased 

activity of GST, which resulted in damage (LPO) for F1 and F2 but not for F3. The 

multi-endpoint approach proved to be beneficial for the interpretation of results and 

we recommend it. Moreover, the evaluation of size as an endpoint from the 

standard test with Folsomia candida has significant added value. This does not 

require any modifications on the protocol, except for the additional work in terms of 

image treatment, thus, it is highly recommended.  
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HIGHLIGHTS 
 

• The standard collembolan test is based on exposure of one generation. 

• F. candida did not avoid soil spiked with teflubenzuron.  

• Toxicity to F. candida survival and reproduction increased in the 3rd 

generation. 

• Juveniles were smaller after exposure to teflubenzuron. 
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ABSTRACT  
 

The potential implications of long-term exposure to contaminants are not covered 

by current standard toxicity guidelines, usually referring to one generation and a 

fraction of the life cycle of the test species. Hence, in the present study, we aimed 

to assess the effects of the multigenerational exposure (generation 1-3: F1-F3) of 

Folsomia candida to an insect growth regulator (IGR) compound: teflubenzuron 

(TFB). The selected endpoints included both the standard ones as in the OECD 

and ISO guidelines (survival, reproduction, and avoidance) as well as additional 

ones (organisms’ size and cellular/biochemical markers: acetylcholinesterase, 

glutathione S-transferase, catalase, glutathione peroxidase, lipid peroxidation). 

Although no avoidance behaviour was recorded at field-relevant concentrations 

(PEC (Predicted Environmental Concentration)=0.06 mg/kg soil dry weigh (d.w), 

survival and reproduction were impacted (LC50=0.1 mg/kg soil d.w; EC50=0.05 

mg/kg soil d.w.). Multigenerational exposure to TFB caused increased toxicity in F. 

candida in F3 in terms of survival and reproduction. This could be related to the 

mode of action of TFB which does not seem to activate some of the general stress 

mechanisms of response like oxidative stress. In addition, TFB causes a reduction 

of the organisms’ size, with a reduction of the number of large-sized juveniles, 

which has potential adverse consequences in terms of organisms’ performance, 

e.g. change in age structure and hence population dynamics. Hence, both 

observations may increase the environmental concern and associated risk of this 

insecticide.  

 
Keywords: Insect growth regulator, size, collembolans, soil ecotoxicity, 

biomarkers, behaviour. 

 
1. INTRODUCTION 
 
Organisms can be exposed to contaminants for long periods of time during several 

generations, especially in the case of persistent chemicals that accumulate in the 

soil. The potential effects of long-term exposure of organisms to contaminants can 
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be underestimated by current standard toxicity tests (e.g., OECD, 2009; ISO, 

2014), which are based on the exposure during a fraction of the organisms’ life-

cycle. A few studies have focused on the effects of multigenerational exposure, 

e.g. with collembolans (Amorim et al., 2017; Campiche et al., 2007; Ernst et al., 

2016; Mendes et al., 2018; Paumen et al., 2008; van Gestel et al., 2017) and 

oligochaetes (Bicho et al., 2017; Menezes-Oliveira et al., 2013; Schnug et al., 

2013). Studies indicate for instance that effects on Folsomia candida (Willem, 

1902) reproduction can occur even after transferring the organisms to clean media 

during two subsequent generations (Campiche et al. 2007). This was the case for 

insect growth regulators (IGR) like methoprene, fenoxycarb, precocene II and 

teflubenzuron. 

Teflubenzuron (TFB) is an IGR that belongs to the benzoylureas group and acts 

by inhibition of chitin synthesis and moulting processes. Female fertility of insects 

may be reduced after contact or ingestion with TFB (EFSA, 2008a). It has been 

widely used in agriculture (EFSA, 2008b), and has moderate to high persistency in 

soil (Cycoń et al., 2012), with a DT50 of 30-152 days (EFSA, 2008a). Its predicted 

environmental concentration (PEC) in soil is 0.06 mg/kg soil d.w. (Campiche et al., 

2006).  

Since the information regarding the effects of TFB on soil organisms is limited, we 

aimed to assess the effects of multigenerational exposure to TFB over 3 

generations on survival and reproduction of  F. candida (Collembola), standard soil 

ecotoxicity test species (OECD, 2009; ISO, 2014). Additional endpoints included 

organisms’ size and biomarkers involved in neurotransmission 

(acetylcholinesterase), biotransformation (glutathione S-transferase), antioxidant 

defence (catalase and glutathione peroxidase) and oxidative damage (lipid 

peroxidation) were also measured to help understanding the mechanisms involved 

after long exposure.  
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2. MATERIALS AND METHODS 
 
2.1 Test organisms 

Tests were performed with the standard test species F. candida (Collembola). 

Organisms were cultured on a moist substrate of plaster of Paris and activated 

charcoal (8:1 ratio), under a photoperiod of 16:8 (light:dark), at 20±1°C. Individuals 

were fed once a week with dried baker's yeast (Saccharomyces cerevisiae). 

Cultures were synchronized to obtain 10-12 days old juveniles. 

 

2.2 Test substance, soil and spiking procedures 

The insecticide teflubenzuron (TFB) (≥98% purity; Sigma-Aldrich) was tested. TFB 

(molecular weight (M)=381.11 g/mol; n-octanol-water partition coefficient 

(KOW)=2×104 (pH7, 20ºC); adsorption coefficient (Kd): 169-944 ml/g) has low 

solubility in water (0.01 mg/L), therefore acetone (100% purity; VWR Chemicals) 

was used as a solvent. The natural standard LUFA 2.2 soil (Speyer, Germany) is 

characterized as follows: pH (0.01 M CaCl2); 5.5±0.1; organic carbon: 1.61±0.15%; 

texture: 7.9±1.8% clay, 16.3±2.5% silt, and 75.8±3.9% sand content.  

The TFB concentrations used in the survival, reproduction and avoidance tests 

were 0, 0.0032, 0.01, 0.032, 0.1, 0.32 mg/kg soil dry weight (d.w.). They were 

selected based on information from literature (Campiche et al., 2006). For the 

multigenerational test, the concentrations used were 0, 0.027, 0.064 mg/kg soil 

d.w., which corresponded to the sub-lethal effective concentrations of EC10 and 

EC50 on reproduction, respectively. Solutions were prepared with acetone, serially 

diluted and thoroughly homogenized with the soil. Freshly spiked soil was used in 

each generation. After acetone evaporation overnight, water was added to the soil 

until 50% of the maximum water holding capacity (WHC) was achieved. In addition 

to water control, a solvent control spiked with the maximum amount of solvent was 

prepared in all tests. 
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2.3 Experimental procedure  

2.3.1 Avoidance test 

The two-chamber option of the avoidance test guideline ISO 17512-2 (2011) was 

followed, using circular plastic boxes (Ø 8 cm × 4.5 cm) divided in the middle by a 

plastic card. In short, half of each container was filled with 30 g of the control soil 

and the other half with 30 g of the spiked soil. Twenty juveniles (10-12 days old) 

were placed in the middle, after removal of the plastic card. Five replicates were 

used. The test duration was 48 h, at 20±2ºC, under a photoperiod of 16:8h 

(light:dark). At the test end, the plastic barrier was inserted in the middle section of 

the containers. The soil of each half of the boxes was separated into new vessels 

and then flooded. The number of floating springtails was counted directly. 

 

2.3.2 Reproduction tests 

Tests followed the standard guideline OECD 232 (2009). In short, each test vessel 

contained 30 g of moist soil with food (baker’s yeast) after which 10 juveniles were 

introduced, and the vessel was covered with parafilm with holes to allow aeration. 

Five replicates were done. Test conditions were 20±2ºC and 16:8h (light:dark) 

photoperiod. Food and water loss were replenished weekly. After 28 days, test 

vessels were flooded with water and the content was transferred to a crystallizer 

dish. The surface was photographed for further automatic analyses (count and 

measure) using the software ImageJ (Schneider et al., 2012). The survival and 

reproductive output were evaluated. 

 

2.3.3 Multigenerational test  

Each multigeneration test was conducted following a modified version of OECD 

232 (2009). All procedures were the same and at test end, after the similar 

flooding and photographing procedure for counting, juveniles were transferred with 

a spoon to a box with a layer of Plaster of Paris (culture medium) which adsorbed 

extra water from the spoon. For the exposure of the next generation, ten of the 

biggest juveniles (ca. 11 days old) were transferred to new test vessels, with 

freshly spiked soil. Additionally, 300 plus 150 juveniles were pooled per replicate 

and sampled in 2 microtubes, snap frozen in liquid nitrogen and stored at -80ºC, till 
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further analysis. This was repeated for all 3 generations, i.e. 28, 56 and 84 days 

exposure for the three consecutive generations of juvenile springtails. It was not 

possible to analyse results for the concentration of 0.064 mg/kg soil d.w. due to an 

insufficient number of juveniles. Five replicates were used for the controls (water 

and solvent) and ten for each treatment, in order to ensure enough organisms to 

start the next generation tests. Three endpoints were evaluated: survival, 

reproductive output, and organisms’ size (area, mm2). 

  

2.3.4 Cellular and biochemical markers analysis  

Procedures followed the methodology previously optimized by Maria et al. (2014). 

The selected biomarkers were catalase (CAT), glutathione peroxidase (GPx), 

acetylcholinesterase (AChE), glutathione S-transferase (GST) and lipid 

peroxidation (LPO). To summarize, pools of 300 juveniles per replicate were 

homogenized in potassium phosphate buffer (0.1 mM, pH 7.4). For LPO, 2.5 μL of 

4% 2,6-di-tert-butyl-4-methylphenol in methanol was added to 150 μL of the 

homogenate and stored at -80ºC. The remaining 850 μL of the homogenate was 

centrifuged and the post-mitochondrial supernatant was stored at -80ºC. Protein 

concentration was assayed using bovine γ - globuline as a standard adapted from 

literature (Bradford, 1976) in a 96-well flat bottom plate. For CAT, Clairborne 

(1985) was followed GPx, GR and GST activities were determined according to 

Mohandas et al. (1984), Carlberg and Mannervik (1975), and Habig et al. (1974), 

respectively, and as detailed in Maria et al. (2014). Lipid peroxidation (LPO) was 

determined according to Ohkawa et al. (1979) and Bird and Draper (1984), as 

adapted by Filho et al. (2001). AChE activity was determined according to Ellman 

et al. (1961), as adapted by Guilhermino et al. (1996). 

 

2.4 Data analysis  

Avoidance response (A) was calculated as the percentage of organisms that 

avoided the treated soil compared to the total number of organisms in the vessel, 

calculated as follows:  

A = (C−T) ⁄ (N) × 100, 

where C=number of organisms observed in the control soil; T=number of 
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organisms observed in the test soil; N=total number of organisms per replicate. No 

avoidance or a non-response to the compound is considered when A is negative 

(ISO, 2011). 

The effect concentrations (ECx) were calculated using a logistic and threshold 2 

parameters regression model (Toxicity Relationship Analysis Program (TRAP) – 

version 1.20, US EPA).  

One-way analysis of variance (ANOVA), followed by the Dunnett’s post-Hoc test 

was used to assess differences of survival and reproduction between control and 

treatments, and differences between different generations within the same 

treatment (SigmaPlot 12.0, 2011). For biomarkers data, a t-test was used to 

assess differences between control and the one treatment.    

Results in terms of size were obtained for the various types of measurement, 

including organism’s length and area (mm2). Area was selected as the most 

representative, although results followed the same pattern with the other size 

measure. In terms of size range distribution, the 3 main organisms area size 

classes (mm2) were: 1) Small (S): S<0.05, 2) Medium (M): 0.1>M>0.05 and 3) 

Large (L): 0.8>L>0.1.   
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3. RESULTS 
 
3.1 Avoidance Test 

Validity criteria were fulfilled (mortality <20% in all treatments). There was no 

avoidance behaviour pattern (Fig. 1) within the tested range (0, 0.0032, 0.01, 

0.032, 0.1 mg/kg soil d.w.).  

 
Figure 1: Results of Folsomia candida test after exposure to teflubenzuron in 

LUFA 2.2 soil in terms of avoidance behaviour. Values are expressed as % 

average ± standard error.  

 

3.2 Reproduction Test  

Validity criteria were fulfilled (mortality <20%, number of juveniles >100, coefficient 

of variation <30%), and the pH was 6.0±0.5 between treatments and test start and 

end.  

The results show the water control data since effects in the measured endpoints 

were similar between the water control and the solvent control. 
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Figure 2: Results of Folsomia candida test after exposure to teflubenzuron in 

LUFA 2.2 soil in terms of A) survival and reproduction, B) organisms’ size, and C) 

size classes distribution for juveniles. Values are expressed as average ± standard 

error. Lines (A and B) represent model fit to data. Small (S): S<0.05 mm2, Medium 

(M): 0.1>M>0.05 mm2 and Large (L): 0.8>L>0.1 mm2. p<0.05 (Dunnetts’ post-Hoc 

test) *: between control and treatments; b, c: between control and treatment in 

each size group: (b) Medium and (c) Large. 

 

A TFB dose-response effect was observed for both endpoints, survival and 

reproduction of adults and juveniles (Fig. 2). Size of adults decreased significantly 

from 0.032 mg TFB /kg soil d.w.. The size class distribution of juveniles showed a 

decrease (p<0.05, Fig. 2 C) in the number of medium and large juveniles for 0.1 

mg TFB /kg soil d.w.. Table 1 shows the estimated effect concentrations (ECx). 

 
Table 1: Estimated effect concentrations (ECx) for Folsomia candida exposed to 

teflubenzuron (mg/kg soil d.w.) in LUFA 2.2 soil following the standard guideline. 

Results from the multigenerational exposure are shown in terms of % reduction for 

relative comparison.  
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EC10 EC20 EC50 

Estimated 
slope; 
Maximum 
response 

Standard test     

Survival 
(F0) 

0.07 

0.02<CI<0.1 

0.08 

0.05<CI<0.1 

0.10 

0.09<CI<0.1 

Sl: 16.5;  

Y0: 9.8 

Reproduction  
(F1) 

0.03 

0.02<CI<0.03 

0.04 

0.03<CI<0.05 

0.06 

0.06<CI<0.07 

Sl: 14.9;  

Y0: 1005.5 

Size juveniles 
(F1) 

0.04 

-0.08<CI<0.2 

0.08 

0.001<CI<0.2 

0.10 

-0.03<CI<0.3 

Sl: 5.177;  

Y0: 0.1 

Multigenerational test    

F1 10% reduction 20% reduction 50% reduction  

Reproduction 0.01 

0.001<CI<0.02 

0.03 

0.02<CI<0.03 

0.05 

0.05<CI<0.06 

Sl: 13.8;  

Y0: 1088.6 

Size juveniles 0.06 

-4.4<CI<4.5 

0.06 

-1.9<CI<2 

0.07 

-2.2<CI<2.3 

Sl: 63.8;  

Y0: 0.1 

F2     
Reproduction  0.02 

0.01<CI<0.04 

0.04 

0.03<CI<0.04 

0.06 

0.05<CI<0.06 

Sl: 15.9;  

Y0: 901.4 

Size juveniles 0.03 

-0.02<CI<0.08 

0.05 

0.02<CI<0.08 

0.09 

0.01<CI<0.17 

Sl: 8.8;  

Y0: 0.1 

F3     

Reproduction 0.01 

-0.02<CI<0.04 

0.01 

-0.005<CI<0.03 

0.02 

0.02<CI<0.03 

Sl: 38.6;  

Y0: 984.4 

Size juveniles n.e. n.e. n.e. - 

Sl: Slope. Y0: top point. CI: 95% Confidence Intervals. n.e.: no effect. 

 

3.3 Multigeneration test  

Results of the multigenerational exposure to TFB showed an increase in toxicity 

for survival and reproduction (Fig. 3) in F3 compared to the previous generations.  
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A higher number of juveniles (p<0.05, Dunnett’s post-Hoc test) was observed in F1 

in the solvent control compared to the water control (see Fig. 3).  

Size of adults was smaller (p<0.05, Dunnett’s post-Hoc test) in F3 when exposed 

to the TFB EC50. The size of juveniles did not vary significantly with increasing 

concentration or generation (Fig. 2), although there was an overall decrease of 

their number. 

 
Figure 3: Results of Folsomia candida multigenerational test (endpoints: A) 

survival, B) reproduction, C) adults’ size, and D) juveniles’ size) after exposure to 

teflubenzuron (0, 0.027, 0.064 mg/kg soil d.w., i.e. ca. 0, EC10, EC50) in LUFA 2.2 

soil for 3 generations (F1, F2, F3). Values are expressed as average ± standard 

error. p<0.05 (Dunnetts’ post-Hoc test) *: between control and treatments in the 
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same generation; a: between F1-F2, b: between F1-F3 and c:  between F2-F3. «: 

solvent control data used (control=793±118; solvent control=1089±121 juveniles).   

 

The relative differences between small, medium, and large animals size showed 

that there is a shift from large to less large animals in F1 due to TFB exposure 

(EC50) (Fig. 4), which persists in F2 and F3. Differences between control and 

solvent control occurred only in F1 as detailed in Figure 4. 

 

 
Figure 4: Results of Folsomia candida multigeneration test (endpoint: size as 

area) after exposure to teflubenzuron (0, 0.027, 0.064 mg/kg soil d.w., i.e., ca. 0, 

EC10, EC50) in LUFA 2.2 soil for 3 generations (F1, F2, F3). Values are 

expressed as average ± standard error. Small (S): S<0.05, Medium (M): 

0.1>M>0.05 and Large (L): 0.8>L>0.1. p<0.05 (Dunnetts’ post-Hoc test) *: 

between control and treatments within each size group. «: solvent control data 

used: control (L=301±103; S: 202±63), solvent control (L=520±26; S: 319±44).  
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3.4 Cellular and biochemical markers  

 

Figure 5: Results of Folsomia candida multigeneration test (endpoint: cellular and 

biochemical markers) after exposure to teflubenzuron (0, 0.027 mg/kg soil d.w.) in 

LUFA 2.2 soil for 3 generations (F1, F2, and F3, i.e. 28, 56, and 84 days after 

experiment start). Values are expressed as average ± standard error. AChE: 

acetylcholinesterase; GPx: glutathione peroxidase; CAT: catalase; GST: 

glutathione-S-transferase; LPO: lipid peroxidation. *p<0.05 (t-test): between 

control and TFB; a, b, c (p<0.05, Dunnetts’ post-Hoc test): between generations: a: 

between F1-F2, b: between F1-F3 and c: between F2-F3. «: solvent control data 

used: F1-control (105±20), solvent control (128±9); F2-control (121±4), solvent 
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control (80±4).  

 

Increase (p<0.05) of CAT activity occurred in F2 (and not in F1 and F3) (Fig. 5). 

GPx activity decreased in F1 and AChE increased in F3. GST increased in F1, but 

this was reverted in the next generations. LPO showed that damage did occur in 

F3 organisms.   

 

4. DISCUSSION 
 
F. candida was not able to avoid TFB contaminated soil. Similar effects (lack of 

avoidance) have been observed with other contaminants, e.g. ivermectin 

(Guimarães et al., 2019) or dimethoate (Pereira et al., 2013). The reasons for 

inability to avoid these compounds could be because the organisms’ olfactory or 

other sensory receptors are not responsive to TFB or related with the inhibition of 

the neurotransmission, e.g. the cholinergic or GABAergic synapses (Bicho et al., 

2015), although we cannot confirm either in the present study. The major concern 

associated with this study is related to the fact that both survival and reproduction 

are affected for concentrations where no avoidance occurs. In fact, toxic effects on 

reproduction are quite severe with an EC50 of 0.06 mg TFB/kg soil d.w.. This is 

comparable with values reported in the literature for F1 (Campiche et al., 2006). 

The PEC in soil is 0.06 mg/kg soil d.w. and the Toxicity Exposure Ratio is 0.1 

(Campiche et al., 2006), which highlights the ecological relevance of the study and 

the consequent environmental impact.  

The observed stimulating reproduction effect of acetone was previously reported 

(Guimarães et al., 2019; Römbke et al., 2010) and the use of acetone as solvent 

could be responsible for increased variability in the results obtained in F. candida 

tests.  

Results from the multigenerational exposure showed that TFB toxicity increased in 

F3. Other authors have shown the potential transfer of TFB effects between 

generations, e.g. Campiche et al. (2007) reported an effect of TFB on the 

reproduction of the F1 generation when exposing F0 during 10 days (no exposure 

of the F1). These results seem to indicate that effects of TFB are transferred 
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between generations (in this case the effects increased). This is not the case for 

all chemicals, e.g. in a multigenerational exposure to ivermectin (Guimarães et al., 

2019), imidacloprid or thiacloprid (van Gestel et al., 2017) no increase of effects 

was observed in reproduction.  

The sharp dose-response curve (survival, reproduction) could be related with the 

mode of action of TFB, i.e. the chitin biosynthesis inhibition can compromise the 

organisms’ development (growth, which involves molting) and maturity, e.g. 

unability to reach the adult stage (Tunaz and Uygun, 2004). Because a minimum 

size is required for F. candida to be able to reproduce (Crommentuijn et al., 1993) 

the observed reduction in size and survival rates could be associated with 

reductions in the metabolic activity (Crouau and Moia, 2006; Smit and Van Gestel, 

1997).  

The inclusion of the endpoint organism size (in particular when given as size 

classes) for juveniles, shows the added value in the ecotoxicological interpretation. 

The quantified reduction of the number of larger sized animals shows the effect of 

the compound (growth inhibition) and also the potential consequences thereafter. 

Smaller and weaker organisms are more susceptible to stress and predation, 

which can result in an increased risk for springtails.  

TFB exposure activated some of the oxidative stress mechanisms, e.g. GST in F1, 

CAT in F2, although these activations were not able to prevent lipid peroxidation in 

F3. It seems that exposure to TFB did not cause damage in the lipid membrane in 

F1 and F2. Instead it must have been elsewhere in the organism, e.g. reactive 

oxygen species generated by destruction of the cuticle.  

This study showed that, for this particular substance, toxicity increased in the third 

generation. This was not predictable based on the standard one generation test. 

The effects of long-term exposure, especially for persistent contaminants with 

long-term release should be assessed. The risk assessment framework should be 

improved to include long-term testing requirements, especially for persistent 

substances and long-term contamination scenarios.  
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5. CONCLUSIONS 
 
Although no avoidance behaviour was recorded, effects of TFB on survival and 

reproduction were high, which increases environmental concern and the 

associated risk of TFB. Multigenerational exposure to TFB increased toxicity to F. 

candida in F3 in terms of survival and reproduction. This could be related to the 

mode of action of TFB, which does not seem to sufficiently activate oxidative 

stress mechanisms of response (general pathways studied here). Further, TFB 

caused a reduction in the organisms’ size which has potential consequences and 

may increase the risk to species. Together, all these endpoints render TFB added 

risks for the environment.   
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Chapter V: Final remarks�  

 

Soil organisms are continuously being exposed to a number of substances 

released to the environment due to anthropogenic activities. Despite the significant 

amount of studies focusing on the effects of these pollutants to soil fauna, there 

are still methods that could be improved and/or included in the current guidelines 

for risk assessment.  

The results showed in this thesis demonstrated that the evaluation of different life 

stages other than the ones currently used in the guidelines are beneficial to 

understand the impact of unfavourable conditions to soil organisms. For instance, 

in Chapter I, cadmium decreased reproduction of F. candida after the exposure of 

adults. However, exposure of eggs showed no effect in the hatching success, 

survival and reproduction. 

Chapter II demonstrated that the conceptual model Concentration addition (CA) 

was able to predict effects of mixtures to F. candida reproduction rates, however 

strongly underestimated impact on avoidance behaviour. Although more tests 

should be performed, the CA model may be use for regulatory risk assessments 

regarding reproduction. 

Tests using synchronized age individuals with a fixed exposed time may under or 

overestimate risks, with respective consequences to the environment and 

economic activities. It is therefore important to develop and integrate different test 

methods with the ones already recommended to improve reliability of the 

Environmental Risk Assessment (ERA). Current guidelines (OECD and ISO) 

recommend testing the juveniles (10-12 days old) of the ecotoxicological model 

species Folsomia candida for 28 days to assess effects on survival and 

reproduction. Although these tests are cost effective and easy to implement, they 

may lead to interpretations that diverge from of the exposure of organisms in more 

realistic scenarios, e.g. after prolonged exposure.  

Chapter III showed that the impact of ivermectin on survival and reproduction of 

three generations of F. candida was similar. However, a reduction in organism’s 

size was detected within generations. Because reproduction depends on the size 

of the respective organism, this may indicate an additional risk for next 
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generations. After multigenerational exposure of F. candida to the pesticide 

teflubenzuron, effects on size were also observed in Chapter IV, with the 

associated possible future consequences referred already in Chapter III. In 

addition, survival and reproduction were also reduced with increasing time of 

exposure. These results showed the importance to test more than one generation 

of exposed organisms to better understand effects and mechanisms involved after 

prolonged exposure of soil organisms to pollutants. Additionally, the multi-endpoint 

approach used in this thesis in Chapters III and IV, which included measurement 

of organism’s size and analysis of cellular and biochemical markers in combination 

with survival, reproduction and avoidance, indicates the usefulness for inclusion of 

a more integrative approach using more parameters in combination with the 

endpoints already recommended. 

 

 
 
 


