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ALEXANDRE ALMEIDA AND STEFAN SAMKO

Abstract. In this paper we study the approximation of functions from generalized
Morrey spaces by nice functions. We introduce a new subspace whose elements can
be approximated by in�nitely di�erentiable compactly supported functions. This pro-
vides, in particular, an explicit description of the closure of the set of such functions in
generalized Morrey spaces.

1. Introduction

Morrey spaces play an important role in applications to regularity properties of so-
lutions to PDE including heat equations and Navier-Stokes equations, see [31, 32] and
references therein for further details. The classical Morrey spaces Lp,λ(Rn), 1 ≤ p < ∞,
0 ≤ λ ≤ n, consist of all locally p-integrable functions f on Rn such that

(1.1) ‖f‖Lp,λ(Rn) := sup
x∈Rn,r>0

(
1

rλ

∫
B(x,r)

|f(y)|p dy
)1/p

<∞.

Straightforward calculations show that

‖f(t·)‖Lp,λ(Rn) = t
λ−n
p ‖f‖Lp,λ(Rn) , t > 0,

which implies a modi�cation of the scaling factor in comparison with Lp-spaces. This
property reveals the homogeneous nature of the spaces Lp,λ(Rn) and it is very useful in
the study of partial di�erential equations.
The theory of Morrey spaces goes back to Morrey [16] who considered related integral

inequalities in the study of solutions to nonlinear elliptic equations. In the form of Banach
spaces of functions, called thereafter Morrey spaces, the ideas of Morrey [16] were further
developed by Campanato [7] and Peetre [19]. We refer to the books [1, 11, 21, 30, 31] and
the overview [22] for additional references and basic properties of these spaces, including
some generalizations. We also refer to [2], [24], [32] for a discussion of harmonic analysis
in Morrey spaces.
Although Morrey spaces may describe local properties of functions better than Lebesgue

spaces, they miss some important properties like separability and approximation by nice
functions. It is known that there are Morrey functions that cannot be approximated
even by continuous functions (see [37] for examples and further details). In [37] Zorko
has observed that the set of Morrey functions for which the translation is continuous in
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Morrey norm plays an important role in approximation. These facts were sketched in
[37, Proposition 3] (see also [8] and [14]).
On bounded domains, the so-called Zorko subspace can be characterized by an integral

mean vanishing property at the origin (cf. Remark 5.8) and its elements can be approxi-
mated by compactly supported bounded functions (cf. [8, Lemma 1.1]). It turns out that
these features are no longer true for unbounded domains, and a description of this set of
functions in easily veri�ed terms seems to be a di�cult task in this setting.
Using vanishing type conditions, in [3] the authors have introduced a new (closed)

subspace of Lp,λ(Rn), strictly smaller than Zorko class, and have shown that all elements

in this new class, denoted by V
(∗)
0,∞L

p,λ(Rn), can be approximated by C∞0 -functions in
Morrey norm. In particular, it was obtained in [3] an explicit description of the closure of
C∞0 (Rn) in Lp,λ(Rn). This closure plays an important role in harmonic analysis on Morrey
spaces, including Calderón-Zygmund theory, since its dual provides a predual space (cf.
[1, 2, 25, 32]). The description of such closure was given in similar, but di�erent terms,
in paper [36]. In [12], [13] the authors used the closure of C∞0 (Rn) (and the closure of the
set of compactly supported bounded functions) in Morrey spaces in the study of complex
interpolation, but did not provide a characterization for such closures.
The main goal of this paper is to extend the approximation scheme developed in [3] for

classical Morrey spaces to the case of generalized Morrey spaces. The latter are de�ned
by replacing the power rλ in (1.1) by a more general positive function ϕ(r) (cf. (2.1),
(2.2)), mainly satisfying monotonicity type conditions. Such spaces proved to be useful
in the study of critical Sobolev type embeddings (cf. [27], [35]).
Using appropriate vanishing properties we identify a closed subspace of Lp,ϕ(Rn) whose

elements may be approximated by C∞0 -functions in the generalized Morrey norm. We
also show how the various Morrey subspaces, including a generalized version of Zorko
class, are related to each other by proving embeddings and presenting examples show-
ing its strictness. Moreover, we prove that such vanishing properties are preserved by
convolution operators with integrable kernels.
The paper is organized as follows. After some notation and preliminaries on generalized

Morrey spaces, in Section 3 we introduce a generalization of the Zorko space and new
generalized vanishing Morrey subspaces. The invariance of such subspaces with respect
to convolution operators with integrable kernels is studied in Section 4. One of the
main results in this section asserts that the convolution of Morrey functions with some
special good kernels always produce bounded functions. The relation between all the
subspaces is discussed in Section 5, including examples showing the di�erence between
them. The main results on approximation are given in Section 6. In this section we
study the approximation by nice functions in various generalized Morrey subspaces. The
approximation of Morrey functions having all the vanishing properties by C∞0 -functions
in generalized Morrey norm is of special interest. In particular, the set of such Morrey
functions provides an explicit description of the closure of C∞0 (Rn) in the generalized
Morrey spaces Lp,ϕ(Rn).

2. Preliminaries on generalized Morrey spaces

We use the following notation: B(x, r) is the open ball in Rn centered at x ∈ Rn and
radius r > 0. If E ⊆ Rn is a measurable set, then |E| denotes its (Lebesgue) measure
and χE denotes its characteristic function. The measure of the unit ball in Rn is denoted
by ωn and Sn−1 stands for the unit sphere. We use the notation X ↪→ Y for continuous
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embeddings from the normed space X into the normed space Y . We use c as a generic
positive constant, i.e., a constant whose value may change with each appearance. The
expression f . g means that f ≤ c g for some independent constant c, and f ≈ g means
f . g . f .
A function ϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp., almost decreasing)

if ϕ(s) . ϕ(t) (resp., ϕ(s) & ϕ(t)) for s ≤ t.
As usual the class C∞0 (Rn) consists of all complex-valued in�nitely di�erentiable func-

tions on Rn with compact support, and Lp(Rn) stands for the classical Lebesgue space
normed by

‖f‖p =

(∫
Rn
|f(x)|p dx

)1/p

, 1 ≤ p <∞.

In the sequel we use the following notation for locally integrable functions f on Rn:

(2.1) Mp,ϕ(f ;x, r) :=
1

ϕ(r)

∫
B(x,r)

|f(y)|p dy , x ∈ Rn, r > 0.

De�nition 2.1. Let 1 ≤ p < ∞ and let ϕ : (0,∞) → (0,∞) be a measurable function.
The generalized Morrey space Lp,ϕ(Rn) consists of all locally p-integrable functions f on
Rn with �nite norm

(2.2) ‖f‖p,ϕ := sup
x∈Rn, r>0

Mp,ϕ(f ;x, r)1/p.

Such a spaces already appeared in [15] and [17]. Nowadays one can �nd many gener-
alizations of Morrey spaces in the literature. We refer to survey paper [22] and [28] for
further references and historical remarks. The interest in studying generalized Morrey
spaces comes not only from theoretical reasons, but also from their important role in ap-
plications (cf. [29]), including the study of optimal Sobolev type embeddings for critical
exponents (see, for instance, [27] and [35]).
If ϕ(r) = rλ, 0 ≤ λ ≤ n, then Lp,ϕ(Rn) = Lp,λ(Rn) are the well-known classical Morrey

spaces, which in turn coincide with Lp(Rn) when λ = 0.
It is not hard to see that

Lp,ϕ(Rn) ↪→ L∞(Rn) if sup
r>0

ϕ(r)

rn
<∞

and

L∞(Rn) ↪→ Lp,ϕ(Rn) if inf
r>0

ϕ(r)

rn
> 0.

Consequently,

Lp,ϕ(Rn) = L∞(Rn) when ϕ(r) ≈ rn.

In general we have to require some assumptions on the function parameter ϕ in order
to ensure good properties for the spaces Lp,ϕ(Rn). Let us consider the following class.

De�nition 2.2. The class Φ consists of all measurable functions ϕ : (0,∞) → (0,∞)
such that

(1) ϕ is almost increasing;
(2) ϕ(t)/tn is almost decreasing.
(3) inf

t>δ
ϕ(t) > 0 for every δ > 0.
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The conditions above de�ning the class Φ are widely used in papers on generalized
Morrey spaces. As observed in [18], if ϕ ∈ Φ then the space Lp,ϕ(Rn) is non-trivial. For
example, characteristic functions on balls belong to Lp,ϕ(Rn) under such assumptions on
ϕ. Moreover, for any x0 ∈ Rn and r0 > 0 there holds

(2.3) ‖χB(x0,r0)‖pp,ϕ ≈
rn0

ϕ(r0)
, x0 ∈ Rn, r0 > 0

(cf. [9, Proposition A]). It is clear that if ϕ . ψ then Lp,ϕ(Rn) ↪→ Lp,ψ(Rn). Moreover,
using (2.3) we can see that, for ϕ, ψ ∈ Φ, the condition ϕ . ψ is also necessary for the
above embedding.
There are Morrey funtions on Rn which are not in Lp(Rn). Indeed, if ϕ ∈ Φ and, for

some ε > 0, the function ϕ(t)/tε is almost increasing, then it is known that

(2.4)

(
ϕ(|x|)
|x|n

)1/p

∈ Lp,ϕ(Rn) but

(
ϕ(|x|)
|x|n

)1/p

/∈ Lp(Rn),

see, for example, [4, Lemma 2.1] and [10, Lemma 2.4].

3. New and known Morrey subspaces

It is known that approximations to the identity do not behave well in Morrey spaces,
since these spaces may contain functions with singularities like (2.4). The lack of such
property has motivated the consideration of appropriate Morrey subspaces mainly in the
case of power functions ϕ(r) = rλ. For example, it was introduced in [37] the subset
Lp,λ(Rn) consisting of all Morrey functions for which the translation is continuous in
Morrey norm. We introduce a generalized Zorko subspace as follows:

De�nition 3.1. For 1 ≤ p <∞ and ϕ ∈ Φ, we consider

(3.1) Lp,ϕ(Rn) :=
{
f ∈ Lp,ϕ(Rn) : ‖τξf − f‖p,ϕ → 0 as ξ → 0

}
,

where τξf := f(· − ξ), ξ ∈ Rn.

We also consider some Morrey classes by using vanishing type properties related to the
behavior of (2.1) at the origin and at in�nity.

De�nition 3.2. Let 1 ≤ p < ∞ and ϕ ∈ Φ. The class V0L
p,ϕ(Rn) consists of all those

functions f ∈ Lp,ϕ(Rn) such that

(V0) lim
r→0

sup
x∈Rn

Mp,ϕ(f ;x, r) = 0.

Similarly, V∞L
p,ϕ(Rn) is the set of all f ∈ Lp,ϕ(Rn) such that

(V∞) lim
r→∞

sup
x∈Rn

Mp,ϕ(f ;x, r) = 0.

We shall call V0L
p,ϕ(Rn) and V∞L

p,ϕ(Rn) vanishing Morrey spaces, at the origin and
at in�nity, respectively. As usual, in the classical case of ϕ(r) = rλ we write V0L

p,λ(Rn)
and V∞L

p,λ(Rn).
While the space V0L

p,λ(Rn) was introduced by Chiarenza and Franciosi [8] (on bounded
domains) in the study of elliptic equations (see also Vitanza [33, 34] for regularity results
for elliptic equations with coe�cients in such subspace), the vanishing space V∞L

p,λ(Rn)
was recently introduced in [3] and in [36].
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Remark 3.3. The generalized vanishing space V0L
p,ϕ(Rn) has been already considered in

other papers (see, for instance, [6], [20], [23], [26] for harmonic analysis in such spaces).
As regards its generalized counterpart at in�nity, V∞L

p,ϕ(Rn), up to author's knowledge
it is being consider for the �rst time in the present paper.

The space V0L
p,ϕ(Rn) is non-trivial if ϕ ∈ Φ and

(3.2) lim
r→0

rn

ϕ(r)
= 0

since then it contains bounded functions with compact support. Note also that bounded
Morrey functions always satisfy the vanishing property (V0) when (3.2) holds. We state
this property as a separate lemma.

Lemma 3.4. Let 1 ≤ p <∞ and let ϕ ∈ Φ. If, in addition, ϕ satis�es (3.2), then

Lp,ϕ(Rn) ∩ L∞(Rn) ⊂ V0L
p,ϕ(Rn).

As regards to V∞L
p,ϕ(Rn), it is not hard to see that it is non-trivial if ϕ(r)

rε
is almost

increasing for some ε > 0 and infr>δ ϕ(r) > 0 for all δ > 0. In fact, under such assump-
tions on ϕ, compactly supported bounded functions belong to this vanishing space. We
also observe the obvious fact that

V0L
p,ϕ(Rn) = Lp(Rn) when ϕ(r) ≈ 1.

Following the classical case studied in [3], we also introduce a new subspace by using
another vanishing property related to truncations in large balls. Below we use the notation

AN,p(f) := sup
x∈Rn

∫
B(x,1)

|f(y)|p χN(y) dy , where χN := χRn\B(0,N) , N ∈ N.

De�nition 3.5. For 1 ≤ p < ∞ and ϕ ∈ Φ, we de�ne V (∗)Lp,ϕ(Rn) as the set of all
functions f ∈ Lp,ϕ(Rn) having the vanishing property

(V ∗) lim
N→∞

AN,p(f) = 0.

Remark 3.6. As shown in [3, Lemma 3.4], a Morrey function f satis�es property (V ∗) if
and only if

(3.3) lim
N→∞

sup
x∈Rn

∫
B(x,r)

|f(y)|p χN(y) dy = 0

uniformly in r ∈]0, R0], for any �xed R0 > 0. Note also that the generalized parameter
ϕ does not interfere in the vanishing property (V ∗) itself.

By the Lebesgue dominated convergence theorem, we can see that every Lp-function
has property (V ∗) and hence V (∗)Lp,ϕ(Rn) = Lp(Rn) when ϕ(r) ≈ 1. Nevertheless, there
are Morrey functions which fail to have this vanishing property. An example of such a
function is given in Example 5.4 below.
The subspaces V0L

p,ϕ(Rn) and V (∗)Lp,ϕ(Rn) make di�erence only when we are dealing
with Morrey spaces di�erent from Lebesgue spaces. Indeed, it is easy to check that all Lp-
functions have the vanishing properties (V0) and (V ∗). On the other hand, the translation
operator is continuous in Lp-norm. Therefore, for any p ∈ [1,∞) we have the coincidence

Lp,ϕ(Rn) = V0L
p,ϕ(Rn) = V (∗)Lp,ϕ(Rn) = Lp(Rn) if ϕ(r) ≈ 1.

We end this section by de�ning a smaller Morrey class which will play an important
role later on.
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De�nition 3.7. Let 1 ≤ p <∞ and ϕ ∈ Φ. We set

V
(∗)
0,∞L

p,ϕ(Rn) := V0L
p,ϕ(Rn) ∩ V∞Lp,ϕ(Rn) ∩ V (∗)Lp,ϕ(Rn).

Remark 3.8. It can be shown that all the vanishing subsets Lp,ϕ(Rn), V0L
p,ϕ(Rn), V∞L

p,ϕ(Rn)

and V (∗)Lp,ϕ(Rn) (and consequently, V
(∗)
0,∞L

p,ϕ(Rn)) are closed in Lp,ϕ(Rn) (see [3, Lemma 3.7]
for a proof in the classical case).

4. Convolution in Morrey spaces

The classical Young's inequality for convolutions with kernels in L1(Rn), known for
Lp-spaces, holds also for Morrey spaces. In a more general de�nition of Morrey spaces,
Young's inequality was recently studied in [5]. Here we are interested in the preservation
of the vanishing properties (V0), (V∞) and (V ∗) by convolution operators.
The following two lemmas can be proved using Minskowski's inequality and a simple

change of variables. Further details can be found in the proof of [3, Theorem 3.8].

Lemma 4.1. Let 1 ≤ p <∞ and ϕ ∈ Φ. If K ∈ L1(Rn) and f is locally p-integrable on
Rn, then

(4.1) Mp,ϕ

(
K ∗ f ;x, r

)
≤ ‖K‖p1 sup

z∈Rn
Mp,ϕ(f ; z, r)

for every x ∈ Rn and r > 0. Consequently,

‖K ∗ f‖p,ϕ ≤ ‖K‖1 ‖f‖p,ϕ.
In the next lemma we use the interpretation

Aa,p(f) := sup
x∈Rn

∫
B(x,1)

|f(y)|p χa(y) dy , a ∈ R,

where
χa := χRn\B(0,a) if a > 0 and χa ≡ 1 if a ≤ 0.

Lemma 4.2. Let 1 ≤ p <∞. If K ∈ L1(Rn) and f is locally integrable on Rn, then

(4.2)
[
AN,p(K ∗ f)

]1/p ≤ ∫
Rn
|K(z)|

[
AN−|z|,p(f)

]1/p
dz,

for any N ∈ N.

From (4.1) we easily see that both vanishing properties, at the origin and at in�nity,
are preserved by convolutions with integrable kernels. Moreover, the same holds for
the vanishing property (V ∗). Indeed, by (4.2) and the Lebesgue dominated convergence
theorem we conclude that

AN,p(K ∗ f)→ 0 as N →∞.
Corollary 4.3. Let 1 ≤ p < ∞ and ϕ ∈ Φ. Then the Morrey subspaces V0L

p,ϕ(Rn),
V∞L

p,ϕ(Rn) and V (∗)Lp,ϕ(Rn) are all invariant with respect to convolution operators with
a kernel K ∈ L1(Rn):

f ∈ V0Lp,ϕ(Rn) =⇒ K∗ f ∈ V0Lp,ϕ(Rn) , f ∈ V∞Lp,ϕ(Rn) =⇒ K∗ f ∈ V∞Lp,ϕ(Rn)

and f ∈ V (∗)Lp,ϕ(Rn) =⇒ K ∗ f ∈ V (∗)Lp,ϕ(Rn).

We already know (by Lemma 4.1) that the convolution operator with an integrable
kernel is bounded on Lp,ϕ(Rn). The next result shows that the outcome convolution of a
Morrey function is bounded when the kernel has additional good properties.
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Theorem 4.4. Let 1 ≤ p <∞ and ϕ ∈ Φ. Let K(x) = k̃(|x|) be an integrable kernel in

Rn with k̃ a non-negative C1 function on [0,∞). Suppose that

(4.3) k̃(r) r
n
p′ ϕ(r)

1
p → 0 as r →∞

and

(4.4) C(K, ϕ, p) :=

∫ ∞
0

|k̃′(r)| r
n
p′ ϕ(r)

1
pdr <∞.

Then the convolution operator with kernel K is bounded from Lp,ϕ(Rn) into L∞(Rn) and

‖K ∗ f‖∞ ≤ ω
1
p′
n C(K, ϕ, p) ‖f‖p,ϕ

for every f ∈ Lp,ϕ(Rn).

Proof. Passing to polar coordinates, we get

(4.5)

∫
Rn
K(y) |f(x− y)| dy =

∫ ∞
0

∫
Sn−1

k̃(r) |f(x− rσ)| rn−1 dσ dr =

∫ ∞
0

k̃(r) dF (r)

where

F (r) =

∫ r

0

G(s) ds with G(s) =

∫
Sn−1

|f(x− sσ)| sn−1 dσ.

Integrating by parts we can write the right-hand side of (4.5) as

−
∫ ∞
0

k̃′(r)F (r) dr = −
∫ ∞
0

k̃′(r)

∫
B(0,r)

|f(x−y)| dy dr = −
∫ ∞
0

k̃′(r)

∫
B(x,r)

|f(y)| dy dr,

where we noted (by Hölder's inequality) that

F (r) =

∫
B(x,r)

|f(y)| dy ≤ (ωnr
n)

1
p′ ϕ(r)

1
p ‖f‖p,ϕ

and used (4.3) in particular. Therefore, with the help of Hölder's inequality and condition
(4.4), the convolution may be estimated as follows at any x ∈ Rn:

|K ∗ f(x)| ≤
∫ ∞
0

|k̃′(r)|
∫
B(x,r)

|f(y)| dy dr ≤ ω
1
p′
n C(K, ϕ, p) ‖f‖p,ϕ

The claim is proved. �

Remark 4.5. An example of a radial kernel satisfying the assumptions of Theorem 4.4 is
the heat kernel

(4.6) Kt(x) = cn t
−n

2 e−
|x|2
4t , t > 0,

where cn > 0 is a certain normalization constant depending on n. This special case was
considered in [14] in the case of classical Morrey spaces.

We end this section with an observation on the approximation of Morrey functions
with Zorko property by standard molli�ers. This will be useful later on.
Consider the usual dilations Kt(x) = t−nK(x/t), t > 0, where K is an integrable

function on Rn with ‖K‖1 = 1. By straightforward calculations and Minkowski's integral
inequality we get

‖f ∗ Kt − f‖p,ϕ ≤
∫
Rn
‖τtzf − f‖p,ϕ |K(z)| dz.
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If f ∈ Lp,ϕ(Rn) we have ‖τtzf − f‖p,ϕ → 0 as t → 0. Since ‖τtzf − f‖p,ϕ ≤ 2 ‖f‖p,ϕ for
any t > 0 and z ∈ Rn, we see that

(4.7) ‖f ∗ Kt − f‖p,ϕ → 0 as t→ 0

by the Lebesgue theorem.

5. Strict embeddings between Morrey subspaces

5.1. Examples and embeddings between vanishing Morrey spaces. We consider
the families of functions given by

gα(x) :=

(
ϕ(|x|)
|x|n−α

)1/p

χB(0,1)(x) and hβ(x) :=

(
ϕ(|x|)
|x|n+β

)1/p

χRn\B(0,1)(x)

for α, β ≥ 0. In the limiting cases α = 0 = β we already know that that gα, hβ ∈ Lp,ϕ(Rn)

when ϕ ∈ Φ and ϕ(t)
tε

is almost increasing for some ε > 0 (cf. [4, Lemma 2.1]). For the
non-limiting cases we have the following lemma:

Lemma 5.1. Let ϕ ∈ Φ and 1 ≤ p <∞.
(i) If α > 0 and ϕ(t)/tn−δ is almost decreasing for some δ ∈ (0, α], then gα ∈ V0Lp,ϕ(Rn).
(ii) If β > 0 and ϕ(t)/tε is almost increasing for some ε > β, then hβ ∈ V∞Lp,ϕ(Rn).

Proof. Step 1 : We prove (i). Let x ∈ Rn and r > 0.
If |x| < 2r we have

Mp,ϕ(gα;x, r) ≤ 1

ϕ(r)

∫
B(0,min{1,3r})

ϕ(|y|)
|y|n−α

dy

since B(x, r) ⊂ B(0, 3r). Passing to polar coordinates in the last integral and using the
fact that ϕ is almost increasing and ϕ(t)/tn is almost decreasing, we get

(5.1) Mp,ϕ(gα;x, r) . min{1, r}α,

with the implicit constant independent of x and r.
In the case |x| ≥ 2r we have |y| > |x− y|. Hence

Mp,ϕ(gα;x, r) ≤ 1

ϕ(r)

∫
B(x,r)∩B(x,1)

ϕ(|y|)
|y|n−α

χB(0,1)(y) dy ≤ 1

ϕ(r)

∫
B(x,min{1,r})

ϕ(|y|)
|y|n−δ

dy

where we used that δ ≤ α. Since ϕ(t)/tn−δ is almost decreasing the last integral can be
estimated from above by∫

B(x,min{1,r})

ϕ(|x− y|)
|x− y|n−δ

dy =

∫
B(0,min{1,r})

ϕ(|z|)
|z|n−δ

dz.

Passing again to polar coordinates and observing that ϕ is almost increasing, we obtain
the �nal estimate

(5.2) Mp,ϕ(gα;x, r) . min{1, r}δ.

By (5.1) and (5.2) we see that gα ∈ V0Lp,ϕ(Rn).
Step 2 : We prove (ii). If |x| < 2r we use again that B(x, r) ⊂ B(0, 3r) and obtain

Mp,ϕ(hβ;x, r) ≤ 1

ϕ(r)

∫
1≤|y|≤3r

ϕ(|y|)
|y|n+β

dy
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when 3r ≥ 1 (otherwise the integral vanishes taking into account the de�nition of hβ).
Writing the last integral in polar coordinates and noting that ϕ(t)/tε is almost increasing
and that ϕ(t)/tn is almost decreasing, we estimate the right-hand side as

1

ϕ(r)

∫
1≤|y|≤3r

ϕ(|y|)
|y|n+β

dy .
ϕ(3r)

ϕ(r) rε

∫ 3r

1

ρε−β−1dρ . r−β

Hence, in the case |x| < 2r, there holds the estimate

(5.3) Mp,ϕ(hβ;x, r) . max{1, r}−β,

with the implicit constant not depending on x and r. We can check that estimate (5.3) also
holds in the remaining case |x| > 2r. This can be handled following the corresponding
case in Step 1, but now using that ϕ(t)/tn is almost decreasing and ϕ(t)/tε is almost
increasing (with β < ε). �

The previous lemma and similar calculations used in its proof prompt us to exhibit the
following example which summarizes the main conclusions on the preciseness of embed-
dings.

Example 5.2. Let 1 ≤ p <∞ and ϕ ∈ Φ. De�ne

fα,β(x) := gα(x) + hβ(x) =


(
ϕ(|x|)
|x|n−α

)1/p
, |x| < 1,(

ϕ(|x|)
|x|n+β

)1/p
, |x| ≥ 1.

If α, β > 0 and there exist δ ∈ (0, α] and ε > β such that ϕ(r)/rn−δ is almost decreasing
and ϕ(r)/rε is almost increasing, then

fα,β ∈ V0Lp,ϕ(Rn) ∩ V∞Lp,ϕ(Rn).

Moreover,

fα,0 ∈ V0Lp,ϕ(Rn) but fα,0 /∈ V∞Lp,ϕ(Rn)

and

f0,β ∈ V∞Lp,ϕ(Rn) but f0,β /∈ V0Lp,ϕ(Rn).

In the limiting case α = 0 = β there holds

fα,β ∈ Lp,ϕ(Rn) but fα,β /∈ V0Lp,ϕ(Rn) ∪ V∞Lp,ϕ(Rn),

where the failure of the vanishing properties (V0) and (V∞) can be seen from the estimate

Mp,ϕ(f0,0; 0, r) =
1

ϕ(r)

∫
B(0,r)

ϕ(|y|)
|y|n

dy & 1

(with the implicit constant independent of r > 0), which follows by the monotonicity of
ϕ(r)/rn.

Theorem 5.3. Let 1 ≤ p <∞ and ϕ ∈ Φ. If, in addition, ϕ satis�es (3.2) and

(5.4) lim
r→∞

logp r

ϕ(r)
= 0,

then there are functions in V0L
p,ϕ(Rn) ∩ V∞Lp,ϕ(Rn) which do not have property (V ∗).
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Proof. We take the same example given in [3, Example 3.6]. Let f0 be the function de�ned
by

f0(x) :=
∞∑
k=2

χBk(x) ,

where Bk = B(2ke1, 1), k ∈ N, with e1 = (1, 0, . . . , 0). The calculations involving the
vanishing properties are quite similar to those presented in the proof of Theorem 4.1 in
[3]. By this reason we shall skip many details here. Nevertheless, for reader's convenience,
we present some steps to show where the assumptions on ϕ are used.
Since AN,p(f0) ≥ |B(0, 1)| for any N ∈ N, then f0 fails to have the vanishing property

(V ∗). In order to see that f0 belongs to the other vanishing spaces, we need to count the
number of balls Bk intersecting B(x, r) (for any �xed x ∈ Rn and r > 0). If r ≤ 1 there
exists at most one such a ball. Hence

(5.5) Mp,ϕ(f0;x, r) .
rn

ϕ(r)
for r ≤ 1,

with the implicit constant independent of x and r. From (5.5) and (3.2) we conclude that
f0 satis�es property (V0). The case of large values of r is technically more complicated.
Following [3] we get

(5.6) Mp,ϕ(f0;x, r) ≤
logp(4r)

ϕ(r)
for r > 1.

Therefore, by (5.6) and (5.4), we see that f0 also satis�es property (V∞). The proof is
complete. �

Let us explicit the example contained in the proof above.

Example 5.4. Let f0 be the function given by

f0(x) :=
∞∑
k=2

χBk(x) (with Bk = B(2ke1, 1)).

If 1 ≤ p <∞ and ϕ ∈ Φ satis�es the conditions (3.2) and (5.4), then we have

f0 ∈ V0Lp,ϕ(Rn) ∩ V∞Lp,ϕ(Rn) but f0 /∈ V (∗)Lp,ϕ(Rn).

Corollary 5.5. Under the same assumptions of Theorem 5.3, there holds

V
(∗)
0,∞L

p,ϕ(Rn) $ V0L
p,ϕ(Rn) ∩ V∞Lp,ϕ(Rn) $ V0L

p,ϕ(Rn) $ Lp,ϕ(Rn).

5.2. Embeddings involving the generalized Zorko space. We have seen in the pre-

vious section that the new subspace V
(∗)
0,∞L

p,ϕ(Rn) is strictly smaller than the intersection

V0L
p,ϕ(Rn) ∩ V∞Lp,ϕ(Rn). We will see that V

(∗)
0,∞L

p,ϕ(Rn) is also strictly smaller than the
generalized Zorko subspace Lp,ϕ(Rn) (recall De�nition 3.1).
First we observe the connection of the Zorko space with the vanishing space V0L

p,ϕ(Rn).
The next result is known in the classical case of ϕ(r) = rλ, 0 ≤ λ ≤ n, see [14, Corol-
lary 3.3].

Theorem 5.6. Let 1 ≤ p <∞ and ϕ ∈ Φ. If ϕ also satis�es (3.2), then

(5.7) Lp,ϕ(Rn) ⊂ V0L
p,ϕ(Rn).



APPROXIMATION IN GENERALIZED MORREY SPACES
∗

11

Proof. Let f ∈ Lp,ϕ(Rn) and consider the heat kernel Kt(x) given by (4.6). Recalling the
discussion in the very end of Section 4, we have

‖f ∗ Kt − f‖p,ϕ → 0 as t→ 0.

On the other hand, by Lemma 4.1 and Theorem 4.4 (and also Remark 4.5), we have, for
any t > 0,

f ∗ Kt ∈ Lp,ϕ(Rn) ∩ L∞(Rn).

Therefore, f ∗ Kt ∈ V0L
p,ϕ(Rn) in view of Lemma 3.4. Since V0L

p,ϕ(Rn) is closed we
conclude that f ∈ V0Lp,ϕ(Rn). �

The strictness of the embedding (5.7) was proved in [14, Example 3.4] in the case of
classical Morrey spaces. Below we use the same example from [14] to show that there are
functions satisfying both vanishing properties at the origin and at in�nity but not having
Zorko property, when, in addition to the conditions in Theorem 5.6, ϕ also satis�es (5.4).
It shows, in particular, that embedding (5.7) is strict under appropriate assumptions.

Example 5.7. For simplicity consider the case n = 1. De�ne

f1(x) :=
∞∑
k=1

ηk(x− 2k) where ηk(y) = sin(2kπy)χ(0,1)(y), k ∈ N.

It is clear that f1 is bounded and ‖f1‖∞ = 1. Thus, for every x and r, the modular
Mp,ϕ(f1;x, r) has the same bound as in (5.5). To control the behavior of the modular
for large values of r we need to count the number of intervals (2k, 1 + 2k) contained in
(x − r, x + r). Using similar arguments to those used in the proof of Theorem 5.3, we
can arrive at an estimate similar to (5.6). Taking into account the assumptions on ϕ, we
conclude that f1 ∈ V0Lp,ϕ(Rn) ∩ V∞Lp,ϕ(Rn).
In order to show that f1 /∈ Lp,ϕ(Rn) �rst we calculate τ 1

2k
ηk − ηk in the intervals

(0, 1 + 1
2k

), k ∈ N. Following [14, p.137], after some calculations we get∫
B
(
2k+ 1

2
,1
) ∣∣τ 1

2k
f1(y)− f1(y)

∣∣pdy ≥ 4−p.

Therefore, ∥∥τ 1
2k
f1 − f1

∥∥
p,ϕ
≥ cϕ > 0

for some constant cϕ independent of k. Hence we have

f1 ∈ V0Lp,ϕ(Rn) ∩ V∞Lp,ϕ(Rn) but f1 /∈ Lp,ϕ(Rn).

In particular, by Theorem 5.6 we have the strict embedding

Lp,ϕ(Rn) $ V0L
p,ϕ(Rn).

Remark 5.8. It is known that the vanishing Morrey space at the origin and the Zorko
space coincide on bounded domains. At least in the standard case of power functions
ϕ(t) = tλ, this follows from [8, Lemma 1.2] and [14, Corollary 3.3]. In a sense the bounded
domains setting is much better to deal with since then Morrey functions are always in
Lp.

As mentioned above, we want to show that our space V
(∗)
0,∞L

p,ϕ(Rn) is even strictly
smaller than the Zorko space. To this end we need an approximation argument which
already touches the main topic of this paper. Note that the approximation by nice func-
tions in Morrey subspaces will be discussed in detail in Section 6 below. By convenience,
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the proof of the next lemma is postponed to Section 6 (see Step 2 in the proof of Theo-
rem 6.3).

Lemma 5.9. Let 1 ≤ p <∞ and ϕ ∈ Φ. Then every function from V
(∗)
0,∞L

p,ϕ(Rn) can be
approximated in Morrey norm by compactly supported functions.

Theorem 5.10. For any 1 ≤ p <∞ and ϕ ∈ Φ we have V
(∗)
0,∞L

p,ϕ(Rn) ⊂ Lp,ϕ(Rn).

Proof. Let f ∈ V
(∗)
0,∞L

p,ϕ(Rn). For any ε > 0 there exists g ∈ Lp,ϕ(Rn) with compact
support such that

‖f − g‖p,ϕ < ε/4

(cf. Lemma 5.9). Since for any ξ ∈ Rn we have

‖τξf − f‖p,ϕ ≤ 2 ‖f − g‖p,ϕ + ‖τξg − g‖p,ϕ
it su�ces to show that the second norm is less that ε/2 for small values of |ξ|. By the
vanishing properties (V0) and (V∞), one can �nd r0, r1 > 0, with r0 < r1, such that

S1 := sup
x∈Rn,0<r<r0

Mp,ϕ(τξg − g;x, r) ≤ 2p sup
x∈Rn,0<r<r0

Mp,ϕ(g;x, r) < (ε/2)p

and
S2 := sup

x∈Rn,r>r1
Mp,ϕ(τξg − g;x, r) ≤ 2p sup

x∈Rn,r>r1
Mp,ϕ(g;x, r) < (ε/2)p.

For such �xed r0 and r1, we estimate

‖τξg − g‖pp,ϕ ≤ max{S1, S2, S3}
with

S3 := sup
x∈Rn,r0≤r≤r1

Mp,ϕ(τξg − g;x, r).

Since infr≥r0 ϕ(r) > 0, we have

S3 . sup
x∈Rn

∫
B(x,r1)

|g(y − ξ)− g(y)|p dy ≤ max

{
sup
|x|<M

(· · · ) , sup
|x|>M

(· · · )

}
.

where M > 0 is chosen below. Since g has compact support there exists K > 0 such that
g(u) = 0 if |u| > K. In the case |x| > M we have∫

|y−x|<r1
|g(y − ξ)− g(y)|p dy =

∫
|z|<r1

|g(z + x− ξ)− g(z + x)|p dz.

Hence, if we choose M > r1 + K + 1 then g(z + x) = 0 and g(z + x − ξ) = 0 for small
values of |ξ|, say |ξ| < 1, since

|z + x| > M − r1 > K and |z + x− ξ| ≥ |z + x| − |ξ| > K.

Let then M > r1 + K + 1 be �xed and let us now estimate the integral when |x| < M .
In this case we are just taking the Lp-norm on a ball centered at the origin with �xed
radius, precisely B(0, r1 +M + 1), again for |ξ| < 1. Therefore we also obtain

S3 < (ε/2)p

by the continuity of the Lp-norm with respect to translations. �

We end this section with the following chain of strict embeddings:

Corollary 5.11. Let 1 ≤ p <∞ and ϕ ∈ Φ satisfying (3.2) and (5.4). Then

V
(∗)
0,∞L

p,ϕ(Rn) $ Lp,ϕ(Rn) $ V0L
p,ϕ(Rn) $ Lp,ϕ(Rn).
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6. Approximation in subspaces of generalized Morrey spaces

As observed by Zorko [37] in the classical case ϕ(r) = rλ, λ ∈ (0, n), there are Morrey
functions that cannot be approximated even by continuous functions. It is the case of
functions with the form (2.4). This fact has motivated the introduction of the subspace
Lp,λ(Rn). It turns out that even in this subspace we can not approximate (in Morrey
norm) by in�nitely di�erentiable compactly supported functions.
Recalling the details given in the end of Section 4, one knows that if f ∈ Lp,ϕ(Rn)

and K ∈ L1(Rn), with ‖K‖1 = 1, then ‖f ∗ Kt − f‖p,ϕ → 0 as t → 0 (cf. (4.7)). If,
in addition, the kernel K is smooth, say K is a Schwartz function, then the molli�ers
f ∗ Kt ∈ Lp,ϕ(Rn) ∩ C∞(Rn) for any t > 0 (note that the convolution is invariant with
respect to translations). Consequently, we derive the following result:

Theorem 6.1. Let ϕ ∈ Φ and 1 ≤ p < ∞. Then every Morrey function with Zorko
property can be approximated in Morrey norm by C∞-functions. Moreover, we have

Lp,λ(Rn) ∩ C∞(Rn) = Lp,ϕ(Rn).

Now we discuss the approximation of Morrey functions having both vanishing proper-
ties at the origin and at in�nity.

Theorem 6.2. Let ϕ ∈ Φ and 1 ≤ p <∞. If f ∈ V0Lp,ϕ(Rn)∩ V∞Lp,ϕ(Rn) is uniformly
continuous, then f can be approximated in Morrey norm by functions from V0L

p,ϕ(Rn)∩
V∞L

p,ϕ(Rn) ∩ C∞(Rn).

Proof. Take a Schwartz kernel K with ‖K‖1 = 1. Then, by Corollary 4.3, we have
f ∗ Kt ∈ V0Lp,ϕ(Rn) ∩ V∞Lp,ϕ(Rn) ∩ C∞(Rn) for any t > 0.
It remains to show that f ∗ Kt → f in Lp,ϕ(Rn) as t → 0. Let ε > 0. For any x ∈ Rn,
r > 0 and t > 0, we have(∫

B(x,r)

|(f ∗ Kt)(y)− f(y)|p dy
)1/p

≤
∫
Rn
|Kt(z)|

(∫
B(x,r)

|f(y − z)− f(y)|p dy
)1/p

dz.

Since f ∈ V0Lp,ϕ(Rn) ∩ V∞Lp,ϕ(Rn), there are r0, r1 > 0 such that

1

ϕ(r)

∫
B(x,r)

|f(y − z)− f(y)|p dy < ε

for every r < r0 or r > r1 (and all x, z ∈ Rn). We also have

(6.1) sup
r>0

1

ϕ(r)

∫
B(x,r)

|(f ∗ φt)(y)− f(y)|p dy ≤ 1

infr≥r0 ϕ(r)
max{ε, Sr0,r1(x, t)p} ,

where

Sr0,r1(x, t) :=

∫
Rn
|Kt(z)|

(∫
B(x,r1)

|f(y − z)− f(y)|p dy
)1/p

dz.

By the uniform continuity of f one can �nd δ > 0 such that |f(y− z)− f(y)| < ε for any
y and z with |z| < δ. For such �xed δ we split the outer integral above into

(6.2) Sr0,r1(x, t) =

∫
|z|<δ

(· · · ) dz +

∫
|z|≥δ

(· · · ) dz.

For the �rst integral we use the uniform continuity of f and get

(6.3)

∫
|z|<δ

(· · · ) dz ≤ ε |B(x, r1)|1/p
∫
|z|<δ
|Kt(z)| dz ≤ |B(0, 1)| rn/p1 ε
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for every x ∈ Rn and t > 0. In the second integral in (6.2), we use the fact that
f ∈ Lp,ϕ(Rn) and ∫

|z|≥δ
|Kt(z)| dz .

∫
|z|≥δ

t

|z|n+1
dz . t

(where the implicit constant is independent of t) to derive the inequality

(6.4)

∫
|z|≥δ

(· · · ) dz . sup
r∈[r0,r1]

ϕ(r)1/p t ‖f‖p,ϕ

with the implicit constant depending only on K, n and δ. Taking into account (6.3) and
(6.4) in (6.2), from (6.1) we obtain

sup
x∈Rn,r>0

Mp,ϕ(f ∗ Kt − f ;x, r) . ε

for su�ciently small t > 0. This implies ‖f ∗ Kt − f‖p,ϕ → 0 as t → 0, and hence the
proof is complete. �

Finally we discuss the approximation of Morrey functions having all the vanishing
properties. In particular, property (V ∗) allow us to approximate by compactly supported
functions.

Theorem 6.3. Let ϕ ∈ Φ and 1 ≤ p <∞. Then every function in V
(∗)
0,∞L

p,ϕ(Rn) can be
approximated in Morrey norm by C∞0 -functions.

Proof. We split the proof into two steps.

Step 1 : The claim holds true for functions f ∈ V (∗)
0,∞L

p,ϕ(Rn) with compact support.
In fact, if we take a C∞0 kernel K, then the molli�ers f ∗ Kt have compact support and

belong to V
(∗)
0,∞L

p,ϕ(Rn) (cf. Corollary 4.3). Moreover, they approximate f in Morrey
norm (recall again the discussion in the end of Section 4 leading to (4.7)).

Step 2 : We show now that functions from V
(∗)
0,∞L

p,ϕ(Rn) can be approximated by

compactly supported functions in Morrey norm. Let f ∈ V
(∗)
0,∞L

p,ϕ(Rn). As before let
χk := χRn\B(0,k), k ∈ N. For each k, set

fk = f on the ball B(0, k) and fk = 0 otherwise.

Let ε > 0 be arbitrary. Again by the vanishing properties (V0) and (V∞) there exist
r0, r1 > 0 such that

sup
x∈Rn

Mp,ϕ

(
f − fk;x, r

)
= sup

x∈Rn
Mp,ϕ

(
fχk;x, r

)
< ε

for all k ∈ N and every r < r0 or r > r1. Hence

‖f − fk‖pp,ϕ < max{ε, Sr0,r1(k)}
where

Sr0,r1(k) := sup
x∈Rn,r∈[r0,r1]

Mp,ϕ

(
fχk;x, r

)
.

Now, by the vanishing property (V ∗) and Remark 3.6, we get

Sr0,r1(k) ≤ sup
x∈Rn

1

infr≥r0 ϕ(r)

∫
B(x,r1)

|f(y)|p χk(y) dy < ε

for all k large enough. Therefore,

‖f − fk‖p,ϕ → 0 as k →∞ ,
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which completes the proof. �

Since V
(∗)
0,∞L

p,ϕ(Rn) is closed (cf. Remark 3.8), from Theorem 6.3 we are ready to give
an explicit description of the closure of C∞0 (Rn) in the generalized Morrey space.

Corollary 6.4. Let 1 ≤ p < ∞ and let ϕ ∈ Φ satisfy (3.2) and (5.4). Then the class

C∞0 (Rn) is dense in V
(∗)
0,∞L

p,ϕ(Rn). Moreover, V
(∗)
0,∞L

p,ϕ(Rn) coincides with the closure of
C∞0 (Rn) in Lp,ϕ(Rn).
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