Emergence of Composite Services in Smart Environments

Maroun Koussaifi, Walid Younes, Françoise Adreit, Jean-Paul Arcangeli, Jean-Michel Bruel, Sylvie Trouilhet

To cite this version:

Maroun Koussaifi, Walid Younes, Françoise Adreit, Jean-Paul Arcangeli, Jean-Michel Bruel, et al.. Emergence of Composite Services in Smart Environments. 8th EuroScience Open Forum (ESOF 2018), Jul 2018, Toulouse, France. pp.0, 2018. hal-02280356
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22488

Official URL
DOI: https://doi.org/10.13140/RG.2.2.21832.42248

To cite this version: Koussaifi, Maroun and Younes, Walid and Adreit, Françoise and Arcangeli, Jean-Paul and Bruel, Jean-Michel and Trouilhet, Sylvie Emergence of Composite Services in Smart Environments. (2018) In: 8th EuroScience Open Forum (ESOF 2018), 9 July 2018 - 14 July 2018 (Toulouse, France).

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
Emergence of Composite Services in Smart Environments

Maroun Koussafi, Walid Younes
Françoise Adreit, Jean-Paul Arcangeli, Jean-Michel Bruel and Sylvie Trouilhet

firstname.lastname@irit.fr
University of Toulouse, France - Toulouse Institute of Computer Science Research

Opportunistic Software Composition

Connected objects in an ambient environment

User
Constant mobility
Unpredictable needs

Services
Unpredictable availability

Environment
Uncertain
Highly unstable

- How to provide a working and relevant composite service?
- How to let the user manipulate an emergent service?

Opportunistic Composition Engine “OCE”

Principles

- Environment-directed service composition
- Emergence of new composite services adapted to the context and the user
- Dynamic and continuous adaptation
- Learning by reinforcement
- Decentralized and automatic decision
- Integration of new appearing services

Interactive Control Environment “ICE”

Generate feedback from the user’s actions

Let the user modify and edit the emerging service or create one from the available components

Methods and Tools

- Domain Specific Languages (DSL)
- Model-Driven Engineering (MDE)
- Model transformations
- Eclipse Modeling Framework, GEMOC

Current status

- Operational prototypes of OCE and ICE
- Demonstration of simple use cases with real connected objects
 Arduino, Android, Nodejs, WComp...

Future Work

- Consolidation of the learning mechanism in OCE
- Interface adaptation to the user
- Feedback generation by ICE
- Feedback exploitation by OCE
- Full integration of OCE and ICE
- Scalability assessment