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GENOMIC PREDICTION

Joint Use of Genome, Pedigree, and Their
Interaction with Environment for Predicting the
Performance of Wheat Lines in New Environments
Réka Howard,* Daniel Gianola,† Osval Montesinos-López,‡ Philomin Juliana,§ Ravi Singh,§

Jesse Poland,** Sandesh Shrestha,** Paulino Pérez-Rodríguez,†† José Crossa,§,1 and Diego Jarquín*,1

*University of Nebraska – Lincoln, Lincoln NE, 68583, USA, †University of Wisconsin-Madison, Madison, Wisconsin 53706,
USA, ‡Universidad de Colima, CP 28040 Colima, México, §International Maize and Wheat Improvement Center
(CIMMYT), Km. 45, Carretera México-Veracruz, El Batán, Texcoco, Edo. de México, CP 56130, México, **USDA-ARS and
Dep. of Plant Pathology, Kansas State University, 4024 Throckmorton Hall, Manhattan KS, 66506, USA, and ††Colegio de
Postgraduados, Montecillos, Edo. de México, CP 56230, México

ORCID IDs: 0000-0002-8837-3770 (R.H.); 0000-0001-8217-2348 (D.G.); 0000-0003-4464-3385 (O.M.-L.); 0000-0001-6922-0173 (P.J.);
0000-0002-7856-1399 (J.P.); 0000-0002-3202-1784 (P.P.-R.); 0000-0001-9429-5855 (J.C.); 0000-0002-5098-2060 (D.J.)

ABSTRACT Genome-enabled prediction plays an essential role in wheat breeding because it has the
potential to increase the rate of genetic gain relative to traditional phenotypic and pedigree-based
selection. Since the performance of wheat lines is highly influenced by environmental stimuli, it is important
to accurately model the environment and its interaction with genetic factors in prediction models. Arguably,
multi-environmental best linear unbiased prediction (BLUP) may deliver better prediction performance than
single-environment genomic BLUP. We evaluated pedigree and genome-based prediction using 35,403
wheat lines from the Global Wheat Breeding Program of the International Maize and Wheat Improvement
Center (CIMMYT). We implemented eight statistical models that included genome-wide molecular marker
and pedigree information as prediction inputs in two different validation schemes. All models included main
effects, but some considered interactions between the different types of pedigree and genomic covariates
via Hadamard products of similarity kernels. Pedigree models always gave better prediction of new lines in
observed environments than genome-based models when only main effects were fitted. However, for all
traits, the highest predictive abilities were obtained when interactions between pedigree, genomes, and
environments were included. When new lines were predicted in unobserved environments, in almost all
trait/year combinations, the marker main-effects model was the best. These results provide strong evidence
that the different sources of genetic information (molecular markers and pedigree) are not equally useful at
different stages of the breeding pipelines, and can be employed differentially to improve the design and
prediction of the outcome of future breeding programs.
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It is important to increase food production to meet the needs of an
increasing world population (Whitford et al., 2013), and satisfy people’s
dietary requirements. Wheat is a major cereal grain worldwide and the
third most-produced cereal after maize and rice. It is an important
source of protein and calories and the dominant staple in North Africa,

West and Central Asia, and the European Union (Tadesse et al., 2017).
The Consultative Group for International Agricultural Research
(CGIAR) estimated that, by 2050, wheat production would need to
increase by 60% to satisfy consumers’ needs. Such an objective cannot
be met with contemporary techniques because wheat production is

Volume 9 | September 2019 | 2925

http://orcid.org/0000-0002-8837-3770
http://orcid.org/0000-0001-8217-2348
http://orcid.org/0000-0003-4464-3385
http://orcid.org/0000-0001-6922-0173
http://orcid.org/0000-0002-7856-1399
http://orcid.org/0000-0002-3202-1784
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0002-5098-2060


currently increasing by less than 1% per year (Ray et al., 2013).
Thus, there is an urgent need to develop methods that would make
it possible to increase wheat production to meet the current and
future global demand.

In plant and animal breeding, predicting the breeding values of
individuals depends, among other factors, on the target population, the
genetic complexity of the traits, and the target environments where the
traits are tobemeasured. Inparticular, efficient plant breedingprograms
need to address genotype · environment interactions (G·E) that reflect
differential reactions of certain genotypes across a set of environmental
circumstances. Environmental conditions affecting gene expression in-
duce G·E, and estimates of genetic correlations of line performance
across environments summarize the collective action of genes and
environmental conditions. In theory, the correlation between perfor-
mances in different environments may vary across chromosome re-
gions, and standard mixed models for assessing G·E typically do not
decompose the totalG·E into specific chromosome region· environment
interactions.

Bernardo (1994) was the first to propose usingmarkers in pedigree-
related lines for predicting yet-to-be-observed individual crosses. Sub-
sequently, Meuwissen et al. (2001) proposed whole genome regression
models for genomic selection (GS) where hundreds of thousands of
markers were fitted jointly as covariates for predictive purposes. When
the number of markers (p) is larger than the number of individuals (n),
regularization methods are often beneficial for prediction. Proper prior
distributions in Bayesianmodels produce regularization, but can have a
marked effect on inference when n,,p (Gianola et al., 2009; de los
Campos et al., 2013; Gianola, 2013). Empirical evidence obtained with
plant and animal breeding data has shown that GS often outperforms
pedigree-based predictionmethods by a sizable amount (de los Campos
et al., 2009; Crossa et al., 2010). GS has become a useful approach for
improving quantitative traits of many crops in plant breeding.

Wheat production and its profitability are highly influenced
by environmental factors, especially climate. The interaction between
environmental factors and genotypes also affects wheat yield. Hence,
environmental factors and G·E interaction must be included in pre-
diction models. The first study using a model including genome ·
environment interaction was conducted by Burgueño et al. (2012).
These authors developed GS models for multi-environmental trials
based on the genomic best linear unbiased predictor (GBLUP), using
the notion of genetic correlations between environments (Falconer,
1952). Burgueño et al. (2012) found that the multi-environmental
GBLUP had higher prediction accuracy than the single-environment
GBLUP. Later, Jarquín et al. (2014) proposed random effects models
where main effects and interaction effects between markers and en-
vironmental covariates were introduced using covariance structures as
in reproducing kernel Hilbert spaces (RKHS) regression (e.g., Gianola
et al., 2006; Gianola and van Kaam, 2008). The approach presented
by Jarquín et al. (2014) is an extension of GBLUP, and can also be

interpreted as a reaction normmodel where genetic and environmen-
tal gradients are represented by linear functions of markers and
environmental covariates (e.g., Gregorius and Namkoong, 1986;
Falconer and Mackay, 1996; Calus et al., 2002; Calus and Veerkamp,
2003). The advantage of the GBLUP model of Jarquín et al. (2014) is
that it allows using not only large numbers of markers and environ-
mental covariates, but also high-dimensional additive relationship
matrices obtained from the pedigree information.

The model of Jarquín et al. (2014) has been used successfully for
multi-environmental data and for incorporating interactions among
multi-type input sources (e.g., dense molecular markers, pedigree,
high-throughput phenotypes) in several crops (Pérez-Rodríguez
et al., 2015; Crossa et al., 2016; Sousa et al., 2017; Crain et al., 2018;
Jarquín et al., 2018). Many studies using the Jarquín et al. (2014)
model indicated that including G·E interaction in the model sub-
stantially increased the accuracy of across-environment (locations
and/or years) predictions (Crossa et al., 2017).

Most studies involving pedigree or genome · environment interac-
tion do not include more than 1000 lines per year in different environ-
ments (year by location combinations), with all lines repeated in all
environments (Crossa et al., 2017). Pérez-Rodríguez et al. (2017) was
the first study in which GBLUP and pedigree models were used to
assess the prediction accuracy of a large number of CIMMYT wheat
lines (58,798) evaluated in several site-year combinations in México,
and to predict grain yield performance of wheat lines in several sites of
South Asia using the GBLUP with G·E model. The predictive corre-
lation of models using only pedigree, only markers, or both pedigree
andmarkers to predict performance in South Asia (India, Pakistan, and
Bangladesh) was around 0.25-0.38, which was higher than the correla-
tion attained using phenotypic values only (0.20).

To our knowledge, no studies have addressed the potential interac-
tion between pedigree and genomic information, and between pedigree,
genomic, and environmental information for a large number of lines
evaluated for several years where lines are tested for only one year.
If genome-enabled prediction is more effective when individuals are
genetically (pedigree) related than when they are nominally unrelated
(e.g., Habier et al., 2007), the interaction between pedigree andmarkers
and between marker, pedigree, and environmental information could
result in better prediction accuracy. When the interaction with envi-
ronments is studied, the number of environments plays an important
role because the number of correlations that needs to be estimated
grows exponentially, and the complexity of the model increases signifi-
cantly. The marker · pedigree interaction would indicate interactions
between QTL and the genetic (pedigree) background, or simply a dis-
crepancy between the pedigree data and the marker data. When the
pedigree is deep, the expected additive genetic relationship should
be close to the realized estimated relationship obtained by markers. In
real plant breeding and animal data, most of the plant lines or animals
evaluated in one year are not repeated the following year, and thus in-
teraction terms between genetic (pedigree or marker) information and
environments can only be assessed by the link between individuals estab-
lished by pedigree and/or markers. Thus, it is possible to borrow infor-
mation for predicting unobserved lines in new environments by using
pedigree,marker, and correlated environmental information.However, it
is acceptable that some degrees of confounded information’s between
pedigree, genomic, and environments would exist in large plant breeding
trials when not all lines are tested in all environments and the degree of
overlapping of lines across years (or environments) is not high.

To answer some of the questions and considerations described
above, our study aimed to assess the impact, over and above the main
effects of pedigree andmolecularmarkers, by including several types of
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interactions in prediction models. In particular, we contrasted models
with interactionsbetweenpedigreeandmarkers, andbetweenpedigree,
markers, and environments, with respect tomodels studied previously.
Eightmodels that incorporated pedigree and densemolecular markers
were tested.Our data includedphenotypic information collected by the
CIMMYT Global Wheat Program on first-year yield trial panels that
evaluated 35,403 lines during 2013-2014 (13-14), 2014-2015 (14-15),
2015-2016 (15-16), and 2016-2017 (16-17), and none of the lines were
tested inmore than one year. Five traits were considered in the prediction
study: grain yield (GY, tonha-1), days to heading (DTH), days tomaturity
(DTM), plant height (PH, in cm), and lodging score (LD, 0-5). None of
the wheat lines evaluated in one year were evaluated the following
year; thus any attempt to study genetic (pedigree and markers) ·
environment interactions relies on the connectivity between lines
across years based on pedigree and/or markers. The depth of the
pedigree used in this study was 5 generations back, and most family
sizes varied a great deal. The fact that none of the lines were re-
peated the following year does not prevent estimating the pedigree
or genomic · environment interaction; the association between
lines due to pedigree and/or genomic interaction establishes the link
that makes it possible to estimate and account for these interactions.

MATERIALS AND METHODS
Phenotypic, pedigree, and molecular marker data for 35,403 wheat
genotypes developed as described in Juliana et al. (2018a) were used in
this study. Briefly, this information corresponds to four observation
periods of the breeding pipeline: 7,577 genotypes for 13-14; 8,901 ge-
notypes for 14-15; 9,311 genotypes for 15-16; and 9,614 genotypes for
16-17. Genotypes were derived from 5,369 crosses with family sizes
ranging between 1 (1,017 families) and 116 (1 family). For example,
there were 1,172, 301, 92, 32, and 10 families with at least 10, 20, 30,
40, and 50 individuals, respectively. The pedigree relationship between
members of each family was identical, while marker-based relation-
ships varied because of segregation effects due to recombination and
Mendelian sampling. A total of 5,369 families were observed across
periods; however, in some cases, individuals of these families were
observed in 2 and 3 different periods (not the same genotypes but
belonging to the same family). Out of the total number of families,
4,585 were observed exclusively in only one cycle (13-14; 14-15;
15-16, or 16-17); 775 in two cycles, and 9 in 3 cycles. In cycle 13-14,
there were 1,382 families with sizes ranging from 1 to 51, in cycle 14-15
there were 1,294 families with sizes ranging from 1 to 48, in cycle
15-16 there were 1,332 families with sizes ranging from 1 to 65, and in
cycle, 16-17 there were 2,154 families with sizes ranging from 1 to 116.
It should be noted that the number of lines reported by Juliana et al.
(2018a) corresponds to a subset of lines reported in this study; thus the
number of wheat lines reported by Juliana et al. (2018a, b) is lower than
the number of wheat lines reported in this study.

Phenotypic data
Phenotypic data were recorded for the four aforementioned breeding
periods/years (13-14, 14-15, 15-16, and 16-17). The traits that we
considered were GY (ton ha-1), DTH, DTM, PH, and LD. The total
number of wheat lines in each year were 7,577 (cycle13-14), 8,901 (cycle
14-15), 9,311 (cycle 15-16), and 9,614 (cycle 16-17). There were 200 to
350 hundred trails in each of the breeding periods. Each trial had
30 wheat lines organized in 6 incomplete blocks of size 5, and analyzed
as incomplete block design with recovery of inter-block information,
and incomplete block design plus spatial analyses using autoregressive
in the row direction · autoregressive in the column direction model to
account for soil variability. A final combined analysis was performed

across all trails, and Best Linear Unbiased Estimate (BLUE) for all
wheat lines was computed. All the 200-350 trails in each of the breeding
periods were sown under full irrigation at the wheat experimental
stations in Cd. Obregon, Sonora, México.

Genotyping data
Genome-wide markers for the 46,089 lines were obtained as described
by Juliana et al. (2018b). Initially, 11,293 markers were obtained and,
after quality control, 6,978 SNPs remained for analysis. Markers with
more than 30% missing values and a minor allele frequency smaller
than 0.05 were discarded. After edits, we had pedigree, marker, and
phenotypic information for 35,403 wheat lines and 6,978 SNPs.

Statistical genome-enabled prediction models
The predictive ability of eight models was evaluated by assessing GY,
DTH, DTM, PH, and LD as target traits. These models considered the
main effects of pedigree and/or markers, and different types of inter-
actions between pedigree, markers, and environments. The interactions
were included by implementing the model of Jarquín et al. (2014).

All of the terms were entered as random effects into the model using
co-variance structures. Variance components for each of the eightmodels
were obtained under a Bayesian framework using the complete data set
(i.e., no missing values allowed). The eight models are described below.

M1 - Environment + Pedigree model
This model is written as

yij ¼ mþ Ei þ aj þ eij;

where yij denotes the phenotypic value for the jth genotype tested in
the ith environment;m is the overall mean, Ei (i = 1,. . ., I) is a random
environmental effect such that Ei �iidNð0;s2

EÞ with s2
E as the variance

component; aj (j = 1,. . ., J) is a random additive genetic effect for line
j and a={aj} is assumed to follow the multivariate normal distribution
N(0, As2

a), where A is the numerator relationship matrix computed
from pedigree information, and s2

a is the additive genetic variance com-
ponent; eij is the randomresidual termwith eij �IID Nð0;s2Þ and IID stands
for independent and identically distributed. This model produces the
same estimated breeding value for all individuals from the same family.

M2 - Environment + Pedigree + Pedigree 3
Environment model
M2 extends M1 such that an interaction, based on pedigree, between
genotypes and environments (G·E) is included in the model. The M2
model is written as

yij ¼ mþ Ei þ aj þ aEij þ eij;

where m, aj, and Ei are defined as before, and aEij is the interaction
between the additive value of the jth genotype and the ith environment. As
described by Jarquín et al. (2014), this interaction effect can be handled
using covariance structures such that aE � Nð0; ðZgAZ

0
gÞ�ðZEZ

0
EÞs2

aEÞ,
where Zg and ZE are incidence matrices for the lines and environments,
respectively, ‘�’ denotes the Hadamard (element by element) product
between twomatrices, and s2

aE is the corresponding variance component
of the random interaction term aE.

M3 - Environment + Genome model
M3 is similar to M1 but instead of pedigree-based additive effects, it
includes a main effect term for the genome-based (marker) breeding
value. The model is
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yij ¼ mþ Ei þ gj þ eij;

where m, Ei, and eij are as for M1. Here, gj corresponds to the geno-
mic breeding value of the jth line defined as a linear combination ofmarker

codes and the correspondingmarker effects such that gj ¼
Pp

m¼1
xjmbm;

where p is the number ofmarkers, xjm is themarker code for the jth line at
the mth marker position (m = 1,. . ., p), and bm is the corresponding
marker effect. The marker effects are assumed normally distributed
variables such that bm �IIDNð0;s2

bÞ with s2
b being the variance com-

ponent of the marker effects. The covariance matrix of the vector of
genomic values g={gj} can be written as CovðgÞ ¼ Gs2

g, where G is
the genomic relationship matrix computed as G ¼ XX9

p , X is the
standardized genotype matrix (by columns), p is the number of
markers, and s2

g ¼ p ·s2
b denotes the genomic variance compo-

nent. Hence, g ¼ fgjg � Nð0;Gs2
gÞ. Since molecular marker infor-

mation varies across individuals (even within the same family), the
estimated breeding values are unique for each genotype.

M4 - Environment + Genome +
Genome 3Environment model
M4 is the same as M2, but the G·E interaction is based onmarker data
instead of pedigree information. The model is written as:

yij ¼ mþ Ei þ gj þ gEij þ eij;

where gEij is the component that collectively represents interac-
tions between molecular markers of the jth line and the ith envi-
ronment. The distributional assumption for this term is similar to
the interaction term in M2, but using the Gmatrix instead of the A
matrix, such that gE ¼ fgEijg � Nð0; ðZgGZ

0
gÞ�ðZEZ

0
EÞs2

gEÞ, and
s2
gE is the variance component of the random interaction

component gE. As pointed out by Basnet et al. (2019), if observa-
tions are sorted by environment, then the variance-covariance
matrix ðZgGZ

0
gÞ�ðZEZ

0
EÞ is a block-diagonal matrix whose struc-

ture is similar to the Marker · Environment model of Lopez Cruz
et al. (2015).

M5 - Environment + Genome + Pedigree model
This model combines M1 and M3 since it contains both main effects
(pedigree [aj] and genomic information [gj]); it is written as:

yij ¼ mþ Ei þ gj þ aj þ eij;

where all of the terms were previously defined.

M6 - Environment + Genome + Pedigree + Genome 3
Environment + Pedigree 3 Environment model
Thismodel extendsM5byaddingpedigree· environment andgenome·
environment interactions. M6 can also be viewed as a combination of
M2 and M4, and the model is

yij ¼ mþ Ei þ gj þ aj þ gEij þ aEij þ eij;

where all model terms were previously defined.

M7 - Environment + Genome + Pedigree + Genome 3
Pedigree model
By introducing pedigree · marker interaction effects via covariance
structures, this model extends M5 as

yij ¼ mþ Ei þ gj þ aj þ gaj þ eij;

where gaj is the interaction between the genomic and pedigree-based
breeding values of the jth genotype. The interaction component is
distributed as

ga ¼ fgajg � Nð0; ðZgGZ
0
gÞ�ðZgAZ

0
gÞs2

gaÞ with s2
ga being the cor-

responding variance component.

M8 - Environment + Genome + Pedigree + Genome 3
Pedigree + Genome 3 Pedigree 3 Environment model
This is the most parameterized model, where M7 is enriched by adding
the interaction among pedigree, markers, and environment as:

yij ¼ mþ Ei þ gj þ aj þ gaj þ gaEij þ eij;

where gaEij is a three-way interaction term among the genomic breed-
ing values and the additive value of the jth genotype and the ith

environment. The interaction term is assumed to follow the distribu-
tion gaE ¼ fgaEijg � Nð0; ðZgGZg9Þ�ðZgAZg9Þ�ðZEZE9Þs2

gaEÞ; where
s2
gaE is the corresponding variance component.

Cross-validation and validation schemes
The performance of the models for predicting the five traits was
evaluated using the weighted average Pearson’s correlation coefficient
between observed and predicted values. For this, within each year/
period, the Pearson’s correlation coefficient between predicted and
observed values was computed first. Then, these values were weighted
by the ratio between the sample size for each year divided for the total
number of observations across years, and the resulting values were
summed up. Thus, the periods with the largest number of observation
are givenmore importance in the weighted average. One random cross-
validation scheme (CV1) and a leave-one-out validation method (V00)
were implemented, and predicted values vs. observed values were com-
pared within and across time periods. These schemes mimic real plant
breeding situations. CV1 refers to the schemewhere the performance of
20% of the wheat lines was not observed in any of the years (environ-
ments) and the rest of the wheat lines (80%) were already observed in
the same target environments. For this scheme, a fivefold random
partitioning (80% of data used as the training set, and the remaining
20% used as the testing set) was employed. Four folds were used for
training the models for predicting the remaining fold. This procedure
was repeated over the five folds, and the predictions from the testing
fold (5 in total) were joined in a single vector. Then, Pearson’s cor-
relation between predicted and observed values within the same en-
vironment were computed. The partitioning was repeated 20 times at
random.

The objective of V00 was to predict the performance of all new lines
in a new year. The leave-one-year (environment) out scheme was
implemented to define the training and testing sets; since random
partition was not possible, it was ran only once. Also, since the lines
were observed only once across all periods, no records on the same
genotype in different environments were available. A more detailed
description of the cross-validation techniques can be found in Jarquín
et al. (2017).

Software and Data availability
The Bayesian Generalized Linear Regression (BGLR) R-package (Pérez
and de los Campos, 2014) was used for fitting the previously described
GSmodels. Genomic and phenotypic data can be found in hdl.handle.net/
11529/10548169. This link contains the genomic relationship matrix
(G.RDA), the pedigreematrix (A.RDA), and theG·Amatrix (GA.RDA).
Entries in the columns and rows of the A, G, and GA matrices
align with rows in the phenotypic data (Column 1; GID in Y.csv).
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In addition, the link hdl.handle.net/11529/10548169 contains
Figures S1 and S2 in the Supplementary Material.

RESULTS

Variance components from full data
Table 1 presents the estimated percentage of total variance accounted
for by A, G, E, interaction, and the residual (Res) variance components
for the eight different models (M1-M8) and the five traits. We focus on
GY because it is the most important breeding trait and because the
general results were similar to other traits. For GY, when comparing
M1 andM3, the environmental component E explained around 45% of
the variance in both cases, while A captured 38%, a much larger frac-
tion than G (13.9%). When interactions between A or G and E were
included through models M2 and M4, the environmental component
explained around 40% in both models, while the interaction between
pedigree and environments (AE) and between markers and environ-
ments (GE) captured 21.7% and 16.0% of the total variance, respec-
tively. The relative amount of variability represented by the interaction
components in both models was similar, but the difference in the
amount of variance explained by main effects in these models was
larger: 17.6% for A in M2 and only 6.7% for G in model M4. In model
M2 (pedigree-based), the residual term (Res) represented 21.8%, while
it represented 36.1% in M4 (genome based). In M5, where A and G
were themain effects, the residual fraction was the same as inM1.Here,
the pedigree term (A) captured 36.4% of the phenotypic variability,
while the markers (G) captured only 8.4%. In M6, the relative amounts
of phenotypic variability explained by the variance components were:
E (35.3%), A (12.3%), G (6.6), AE (20.3), and GE (7.1); the remaining
18.5% was accounted for by the residual term. Also inM6, we observed
a similar picture as in M2 and M4: the AG and GE components took
away a large amount of the phenotypic variability explained by main
effects. This was not surprising, as the E term usually explains a large
amount of phenotypic variability in multi-environment trials where
interaction terms carry sizable information.

When the interaction between pedigree and markers (GA) was
introduced using M7, the fraction of total variability explained by the
different components was: E (38.1%), A (26.6%), G (7.6%), GA (19.2),
and the residual term (8.5%). Including the GAE interaction in M8
reduced the fraction of residual variance the most (6.0%) compared to
M1-M7, where the residual term captured between 40.7% and 8.5% of
the phenotypic variability. InM8, the proportion of total variancewas as
follows: E (29.9%),G (5.7%),A (41.8%),GA (5.7%), andGAE(10.9%). It
is clear that when interactions GA and GAE are included in the model,
the fractions of variance accounted for by the residual term dropped
remarkably inM7andM8compared tomodels that excludeGA.Results
for other traits showed similar patterns, as already mentioned.

Prediction: Random cross-validation CV1
Table 2 and Figure S1 (Supplementary Material, in hdl.handle.net/
11529/10548169) display the results for each environment (mean and
standard deviation across the 20 fivefold random partitions of the CV1
scheme) for grain yield (GY), days to heading (DTH), days to maturity
(DTM), plant height (PH), and lodging (LD). For GY the weighted
average Pearson’s correlation over the four years using M1 (i.e., envi-
ronment + pedigree, E+A) was 0.562. When the interaction between
pedigree and environment (AE) was included via M2, this value in-
creased slightly to 0.577 for GY.On the other hand, when only themain
effect of markers (G) was included using M3 for GY, the mean corre-
lation decreased to 0.458, but when GE was added via M4, it improved
to 0.515.

When combining the main effects of environments, markers and
pedigree (E+A+G) usingM5, for GY the correlation increased to 0.606.
Even better results were obtained for GY when both AE and GE were
added to the previous model using M6. In this case, the predictive
correlation increased to 0.623, so these results were better than when
using models M1-M5 for all years/periods for GY. M7 combining A, G
and G·A gave a Pearson’s correlation of 0.622. M7 produced better
results thanM1-M5 for GY for all periods/years and better results than
M6 for two out of the four years. M8, an extension of M7 that also
considers G·A·E interaction, increased the correlation to 0.630.
M8 was the best model for all years.

The most effective model (M8) improved predictive ability for
GY by 12.1% and 37.5% over models that included only main effects
of pedigree and markers (M1 and M3). The year when prediction
accuracy was best was 13-14 for all models, and the year with the worst
prediction outcomewas 14-15.Days toheading (DTH) showedpatterns
that were similar to those of GY. The weighted average correlations
ranged between 0.532 and 0.675, withM3 andM8 delivering the lowest
andhighest values, respectively. ForDTH,M8performedbetter than the
other models (M1-M7) in all years. For days to maturity (DTM), the
weighted average Pearson’s correlation for all models ranged between
0.528 and 0.678, and as they did for the other traits, M3 and M8
delivered the worst and best results, respectively. The average Pear-
son’s correlation for plant height (PH) ranged between 0.444 and
0.585. Again, M3 and M8 produced the worst and best results, re-
spectively. The mean Pearson’s correlation for Lodging ranged be-
tween 0.436 (M3) and 0.605 (M8).

Prediction: Leave-one-year-out validation (V00)
Results for grain yield (GY), days to heading (DTH), days to maturity
(DTM), plant height (PH), and lodging (LD) obtained with the V00
scheme are provided in Table 3 and Figure S2 (SupplementaryMaterial
in hdl.handle.net/11529/10548169). For all traits, the model with a
main effect of markers (M3) outperformed the other seven models
most of the time for all periods/years. There were exceptions for
plant height, where M5-M8 performed equally or slightly better
than M3. For V00, none of the models including interactions pro-
vided better average correlations thanM3, as occurred with the CV1
scheme, where accommodating interactions increased the predic-
tion accuracy obtained by models with main effects only. For yield
(GY), the mean Pearson’s correlation over all models ranged be-
tween 0.072 (M2) and 0.293 (M3). When main effects of markers
and pedigree were combined in M5, the predictive ability decreased
to 0.250. Pearson’s correlations for the best model (M3) for periods
13-14, 14-15, 15-16, and 16-17 were 0.336, 0.264, 0.350, and 0.231,
respectively.

The average Pearson’s correlation for days to heading (DTH)
ranged between 0.116 (M2) and 0.332 (M3). The model with A and
G produced amean accuracy of 0.3. For the four periods/years, Pearson’s
correlations obtained with M3 were 0.325, 0.281, 0.409, and 0.309.
Results for days to maturity (DTM) produced a mean Pearson’s cor-
relation of 0.135 for the worst model (M2), and 0.347 for the best
model (M3). Pearson’s correlations obtained with M3 were 0.321,
0.309, 0.416, and 0.338 for periods 13-14, 14-15, 15-16, and 16-17,
respectively.

For plant height (PH), the average Pearson’s correlations for the
worst and the best models were 0.139 (M1) and 0.295 (M3). Although
M3 produced the best results on average, in some years, M5-M8 per-
formed the same (M5) or slightly better (M6-M8) than M3. Results
for Lodging were in line with results for the other traits. The mean
Pearson’s correlation varied between 0.110 (M2) and 0.288 (M3).
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For the best model, correlations for the three years 13-14, 14-15, and
15-16 were 0.403, 0.248, and 0.233, respectively.

DISCUSSION
Genome-enabled prediction is a tool for plant breeders that has the
potential to increase genetic gain for high yielding wheat varieties with
agronomically desired traits. Since one of the main objectives of wheat

breeding is to develop varieties that are insensitive to environmental
changes, it is important to develop prediction models that incorporate
informationnot only ondensemolecularmarkers andpedigree, but also
interactionswith the environment.We implementedmodels thatuse the
reaction norm concept and incorporate the interactions among the
terms via a covariance (kernel) structure, because this approach enables
the inclusion of high dimensional data. We evaluated eight models for

n Table 1 Estimated percentage of the total variance accounted for by each random effect of the corresponding model for grain yield
(GY), days to heading (DTH), plant height (PH), lodging (LD), and days to maturity (DTM)

Estimated percentage of total variance explained by each component

Models E A G AE GE GA GAE Res.

GY M1: E+A 44.5 37.6 17.9
M2: E+A+AE 39.0 17.6 21.7 21.8
M3: E+G 45.4 13.9 40.7
M4: E+G+GE 41.3 6.7 16.0 36.1
M5: E+G+A 37.6 36.4 8.4 17.6
M6: E+G+A+GE+AE 35.3 12.3 6.6 20.3 7.1 18.5
M7: E+G+A+GA 38.1 26.6 7.6 19.2 8.5
M8: E+G+A+GA+GAE 29.9 41.8 5.7 5.7 10.9 6.0

Estimated percentage of total variance explained by each component
Models E A G AE GE GA GAE Res.

Heading M1: E+A 44.3 36.1 18.9
M2: E+A+AE 36.8 19.4 21.7 22.1
M3: E+G 43.9 19.5 36.6
M4: E+G+GE 34.7 14.1 16.2 35.0
M5: E+G+A 35.5 36.4 14.5 16.1
M6: E+G+A+GE+AE 32.9 12.3 12.6 15.7 7.7 15.7
M7: E+G+A+GA 42.4 26.6 11.9 21.9 4.8
M8: E+G+A+GA+GAE 38.1 41.8 13.3 10.6 14.5 4.5

Estimated percentage of total variance explained by each component
Models E A G AE GE GA GAE Res.

Height M1: E+A 34.8 35.3 29.9
M2: E+A+AE 24.5 22.9 18.5 34.1
M3: E+G 34.3 17.6 48.1
M4: E+G+GE 25.6 11.4 17.4 45.6
M5: E+G+A 27.5 31.4 12.7 28.4
M6: E+G+A+GE+AE 38.6 16.5 14.4 19.9 10.6 38.6
M7: E+G+A+GA 24.6 21.7 12.1 23.5 18.1
M8: E+G+A+GA+GAE 21.9 20.1 13.5 10.4 16.8 17.3

Estimated percentage of total variance explained by each component
Models E A G AE GE GA GAE Res.

Lodging M1: E+A 41.8 40.6 17.6
M2: E+A+AE 38.2 23.4 18.5 19.9
M3: E+G 43.7 15.8 40.5
M4: E+G+GE 39.4 8.0 16.6 36.0
M5: E+G+A 35.8 37.1 9.4 17.7
M6: E+G+A+GE+AE 30.3 15.8 7.5 18.5 8.4 19.4
M7: E+G+A+GA 36.9 22.8 8.5 23.8 8.0
M8: E+G+A+GA+GAE 35.6 19.5 9.6 10.9 15.0 9.2

Estimated percentage of total variance explained by each component
Models E A G AE GE GA GAE Res.

Maturity M1: E+A 45.1 35.5 19.4
M2: E+A+AE 43.2 15.6 19.8 21.4
M3: E+G 48.0 16.6 35.5
M4: E+G+GE 40.1 11.4 15.4 33.1
M5: E+G+A 37.8 32.2 12.6 17.3
M6: E+G+A+GE+AE 36.4 9.0 10.7 20.6 7.4 15.9
M7: E+G+A+GA 43.4 20.0 10.8 20.2 5.6
M8: E+G+A+GA+GAE 39.1 19.1 12.4 7.7 16.3 5.3
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predicting five traits using a cross-validation (CV1) and a leave-one-
year-out validation scheme (V00).

Cross-validation prediction accuracy
The trendwas similar forpredictingall traits in termsofmodelpredictive
ability underboth validation schemes (CV1andV00).However, the two
validation schemes showed differences. For CV1, accounting for the
environment via interactions with genomic sources seemed more
beneficial than for V00. Perhaps this is due to the fact that CV1 allows
borrowing information from other environments to increase predictive
ability, whereas in V00 we predicted the performance of unobserved
lines in unobserved environments, certainly a very complex task,
specially under unpredictable year conditions. One of the main goals
of this study was to examine whether including the interaction between
marker and pedigree information would enhance prediction accuracy.
Whenwe predicted the performance of unobserved lines in unobserved
environments (V00), there was no advantage in including GA interac-
tion. However, under CV1,M8 outperformed all models for most traits
and periods (years). In addition to the main effects of E, A, and G,
M8 included GA and GAE interactions.

A main observation in our study was that including pedigree in-
formation in the model instead of G was better for within-year CVs,
whereas markers had advantages across years. This is consistent with
observations of elite yield trials made by Juliana et al. (2018 a, b). These
results utilizing various types of information may enhance prediction

problems in the breeding pipeline, as mentioned by Morota and
Gianola (2014) and Gianola et al. (2014) when discussing multi-
kernel approaches to prediction. Another possible reason why ped-
igree-based models (M1 and M2) outperformed marker-based
models (M3 and M4) for the CV1 scheme is that some families
(�15%) overlapped, meaning that they were observed in more than
one year, enabling to borrow information across periods.

Pedigree 3 genomic and pedigree 3 genomic 3
environment interactions
It has been argued that genome-enabled prediction should work well
when there is genetic relatedness among lines (as indicated by the
pedigree), but not otherwise. In other words, the importance of a
genome-basedmodel depends on the strength of pedigree relationships
(Habier et al., 2007). In a model with pedigree, genomic information,
and their interaction, as in model M7 (A+G+GA), the expected phe-
notypic change per unit of genomic relatedness depends on the level
of genetic relationship conveyed by the pedigree. We found that the
amount of variance explained by GA in model M7 was between 19.2%
and 23.8%, a sizable amount.

However, the phenotypic change per unit of genomic relatedness
may be influenced not only by pedigree relationships, but also by
variation inenvironment.This three-factor interaction (GAE) explained
a sizable proportion of thewithin environment variance for the different
traits. For grain yield, it explained 10.9% of the variability in model M8

n Table 3 Weighted average (WA) Pearson’s correlation for validation V00 (prediction of new lines observed only in one year - leaving one
year out at a time as testing set) for eight models (M1: environment + pedigree; M2: environment + pedigree + pedigree 3 environment;
M3: environment + marker; M4: environment + marker + marker3 environment; M5: environment + pedigree + marker; M6: environment
+ pedigree + marker + pedigree 3 environment + marker 3 environment; M7: environment + pedigree + marker + pedigree 3 marker;
M8: environment + pedigree + marker + pedigree 3 marker + pedigree 3 marker 3 environment) for grain yield (GY), days to heading
(DTH), days to maturity (DTM), plant height (PH), and lodging (LD) for a wheat breeding pipeline comprised of 35,403 lines observed in
four periods/years (13-14, 14-15, 15-16 and 16-17). Lines were observed only once across all periods

Trait Year M1 M2 M3 M4 M5 M6 M7 M8

Yield 13-14 0.125 0.053 0.336 0.141 0.314 0.261 0.305 0.313
14-15 0.084 0.016 0.264 0.231 0.202 0.154 0.182 0.226
15-16 0.202 0.185 0.350 0.219 0.316 0.284 0.295 0.283
16-17 0.113 0.030 0.231 0.127 0.181 0.122 0.212 0.147

W. Mean 0.131 0.072 0.293 0.181 0.250 0.203 0.246 0.238

Heading 13-14 0.060 0.083 0.325 0.244 0.283 0.195 0.266 0.298
14-15 0.115 0.087 0.281 0.197 0.267 0.245 0.267 0.261
15-16 0.250 0.190 0.409 0.393 0.369 0.312 0.384 0.359
16-17 0.069 0.096 0.309 0.146 0.277 0.219 0.255 0.247

W. Mean 0.126 0.116 0.332 0.245 0.300 0.245 0.294 0.291

Maturity 13-14 0.072 0.055 0.321 0.270 0.237 0.308 0.263 0.253
14-15 0.122 0.076 0.309 0.270 0.278 0.308 0.293 0.272
15-16 0.221 0.266 0.416 0.329 0.365 0.260 0.369 0.328
16-17 0.133 0.125 0.338 0.273 0.319 0.306 0.292 0.270

W. Mean 0.140 0.135 0.347 0.286 0.304 0.295 0.306 0.282

Height 13-14 0.146 0.124 0.314 0.275 0.314 0.212 0.305 0.279
14-15 0.111 0.107 0.293 0.259 0.250 0.251 0.250 0.223
15-16 0.216 0.223 0.362 0.187 0.321 0.291 0.319 0.366
16-17 0.130 0.100 0.217 0.196 0.243 0.258 0.240 0.243

W. Mean 0.151 0.139 0.295 0.226 0.281 0.255 0.277 0.278

Lodging 13-14 0.200 0.175 0.403 0.315 0.340 0.221 0.338 0.296
14-15 0.133 0.071 0.248 0.168 0.198 0.115 0.193 0.211
15-16 0.136 0.096 0.233 0.229 0.228 0.147 0.208 0.187
16-17

W. Mean 0.154 0.110 0.288 0.233 0.251 0.158 0.241 0.227
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(A+G+GA+GAE), andwas also the genome-basedpredictionmodel for
predicting all periods (13-14, 14-15, 15-16, and 16-17) under CV1.
Under V00, the impact of the interactions was negligible and the main
determining factor was G (marker); thus including the genome-based
information produced the best prediction accuracy for all models in the
environments.

A wide range of variation in genomic relatedness in a given genetic
relationship is expected with large family sizes. In this data set, the
family size varies; as already mentioned, family sizes range between
1 (1,017 families) and 116 (1 family). There were 1,172, 301, 92, 32, and
10 families with at least 10, 20, 30, 40, and 50 individuals, respectively.
Perhaps with more families with larger family sizes, the effect of
variation in the genomic relationship per unit of genetic relatedness
(pedigree) could increase, in which case GA and GAE interactions
could influence prediction accuracy more strongly. The complex
three-factor interaction, GAE, may also capture cryptic, small,
epistatic effects, which would change from environment to environ-
ment and should be accounted for by the GAE term.

Interestingly, Morota et al. (2014) observed that when kernels are
mutually orthogonal to each other could enhance predictive ability;
however, these are not easy to construct. On the other hand, when
these are not mutually orthogonal the partition of variance is difficult
to interpret mechanistically. Hence, the partitioning of variance into A,
G, and GAmay reflect “collinearity” among kernels. Therefore, while a
multi-kernel approach may be more effective for prediction, the inter-
pretation of variance components should be interpreted with caution.

What variability is accounted for pedigree, genomic and
their interaction?
It is expected forA◦G to be similar to theG◦Gmatrix, which has been
used to model pairwise additive · additive epistasis (Jiang and Reif,
2015). These models have been shown to be effective in increasing
genomic prediction accuracy (Crossa et al., 2010 and Martini et al.,
2016 using the 599 CIMMYT wheat lines). It is possible that in this
study A and G would be dissimilar enough to produce a covariance
structure that would differ from the expected additive · additive epis-
tasis covariance. Therefore, the covarianceA◦Gmay simply be picking
up epistasis. Biologically it is not easy to explain exactly what variation
A◦G captures compared to A◦A and G◦G, but mathematically it ex-
plains the interaction among loci (epistasis) that is accounted by the in-
teraction of the marker and pedigree information (instead of accounting
for only the marker relatedness). The more complex model, M8, would
therefore simply include the epistasis term by environment interaction.

In general, pedigree shrinks the additive covariance within family to
0, emphasizes closer relationships and deemphasizes further relation-
ships (i.e., “unrelated” lines do share some common ancestor, and
is dependent on pedigree depth). Markers may produce unbiased esti-
mates depending on their distribution in the genome, and the filter-
ing methods used (e.g., redundant markers are often discarded).
Therefore, it can be speculated that G◦G (and similarly A◦G) would
also tend to overemphasize close relationships while deemphasizing
further relationships.

Arguably, for aG+Amodel,matrixApicks up some genetic variance
that is not tagged by G (markers). In livestock, markers mainly pick up
realized relatedness (better than A) as opposed to QTL effects. On the
other hand, in humans with high density SNP markers and weak
pedigree relationships, the markers would pick up mainly QTL effects.
In wheat, it is possible that a G constructed with high density markers
would pick up a combination of line, pedigree, and QTL effects. Un-
fortunately, since A and G kernels are not mutually orthogonal, the
interpretation of variance component estimations is ambiguous.

Several studies indicated that genome-enabled predictionworkswhen
training and testing sets are genetically related, but that it does not work
when genetic relationships are weak (where the definition of weak and
strong relatedness highly depends on the species in question, but math-
ematically speaking the relatedness can be captured by the correlation of
the genetic marker or pedigree information corresponding to the indi-
viduals in thetesting/trainingsets).Thisphenomenoncouldbe interpreted
as one in which there is interaction betweenA andG. In other words, if A
encodes stronggenetic relatedness, aGmodelmaybeuseful.Conversely, if
A is sparse, a G model may not help prediction. This basic idea could be
exploitedpredictively inamodelwithA+G+GAkernels.Wehypothesized
that theGAinteractionkernelwouldcapture suchaphenomenonwithina
population and evaluated the conjecture with real data.

Conclusion
GS is an important part of a breeding program’s selection and decision
making. Increased prediction accuracy can reduce the cost of a breeding
pipeline, increase the selection intensity and shorten the selection cy-
cles, thus increasing the genetic gain per cycle. Since the environmental
factors are a big part of how a variety performs, it is also important to
consider environmental information when building prediction models
for GS. It has also been shown that GS models can benefit from the
inclusion of pedigree information. Thus, in this study we compared
models includingmarker genotype, pedigree, and environmental infor-
mation in various combinations. Some of the models included main
effects only, and some included interactions.We found that, depending
on the validation scheme, including the interaction between themarker
genotypes, pedigree, and environmental factors can be beneficial, high-
lighting the importance of developing future GS models where other
sources of information and their interactions are considered, with the
potential to increase prediction accuracy.
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