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Abstract 

Trunk Rehabilitation Using Cable-Driven Robotic Systems 

Moiz Khan 

 Upper body control is required to complete many daily tasks. One needs to stabilize the head 

and trunk over the pelvis, as one shifts the center of mass to interact with the world. While healthy 

individuals can perform activities that require leaning, reaching, and grasping readily, those with 

neurological and musculoskeletal disorders present with control deficits. These deficits can lead 

to difficulty in shifting the body center of mass away from the stable midline, leading to functional 

limitations and a decline in the quality of activity. Often these patient groups use canes, walkers, 

and wheelchairs for support, leading to occasional strapping or joint locking of the body for trunk 

stabilization. 

 Current rehabilitation strategies focus on isolated components of stability. This includes 

strengthening, isometric exercises, hand-eye coordination tasks, isolated movement, and 

proprioceptive training. Although all these components are evidence based and directly correlate 

to better stability, motor learning theories such as those by Nikolai Bernstein, suggest that task and 

context specific training can lead to better outcomes. In specific, based on our experimentation, 

we believe functional postural exploration, while encompassing aspects of strengthening, hand-

eye coordination, and proprioceptive feedback can provide better results. 

 In this work, we present two novel cable robotic platforms for seated and standing posture 

training. The Trunk Support Trainer (TruST) is a platform for seated posture rehabilitation that 

provides controlled external wrench on the human trunk in any direction in real-time. The Stand 

Trainer is a platform for standing posture rehabilitation that can control the trunk, pelvis, and 

knees, simultaneously. The system works through the use of novel force-field algorithms that are 



 

 

modular and user-specific. The control uses an assist-as-needed strategy to apply forces on the 

user during regions of postural instability. The device also allows perturbations for postural 

reactive training.  

 We have conducted several studies using healthy adult populations and pilot studies on patient 

groups including cerebral palsy, cerebellar ataxia, and spinal cord injury. We propose new training 

methods that incorporate motor learning theory and objective interventions for improving posture 

control.  We identify novel methods to characterize posture in form of the “8-point star test”. This 

is to assess the postural workspace. We also demonstrate novel methods for functional training of 

posture and balance.  

 Our results show that training with our robotic platforms can change the trunk kinematics. 

Specifically, healthy adults are able to translate the trunk further and rotate the trunk more 

anteriorly in the seated position. In the standing position, they can alter their reach strategy to 

maintain the upper trunk more vertically while reaching. Similarly, Cerebral Palsy patients 

improve their trunk translations, reaching workspace, and maintain a more vertical posture after 

training, in the seated position. Our results also showed that an Ataxia patient was able to improve 

their reaching workspace and trunk translations in the standing position. Finally, our results show 

that the robotic platforms can successfully reduce trunk and pelvis sway in spinal cord injury 

patients. The results of the pilot studies suggest that training with our robotic platforms and 

methods is beneficial in improving trunk control. 
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Chapter 1 

1 Introduction 

1.1 Posture Control 

 Trunk stability is a prerequisite for balance, gait, and daily activities [1]. Trunk control is the 

ability of the trunk to maintain upright posture, respond to weight shifts and disturbances, and 

maintain the body center of mass (COM) within the base of support (BOS). Postural control 

requires the stabilization and control of the head, trunk, pelvis, and knees to complete many daily 

tasks, e.g., reaching for an object, walking, sports. Although sitting or standing statically upright 

can be less demanding with the COM of the upper body centered over the BOS, large and quick 

displacements of the upper body outside the pelvic or foot boundaries can cause a sudden shift of 

the COM away from the center of the BOS, creating a lack of a stable neutral upper body and 

pelvic position. In this situation, high volitional control of the upper body is required to recover 

verticality and maintain stability. Maintaining balance and posture requires muscle synchrony and 

kinematic coordination. 
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 While healthy individuals can readily perform everyday activities, such as leaning, reaching, 

and grasping, patients with neurological and musculoskeletal disorders (MSDs) may have deficits 

in shifting their weight and moving their upper body within and beyond the BOS. These tasks are 

neurologically demanding requiring the primary motor cortex, somatosensory systems, and frontal 

and parietal areas to play an essential role to maintain balance [2]. The musculoskeletal structure 

within the human body responds to the gravitational forces and resists internal and external 

disturbances during motor tasks while providing mechanical support and balance [3]–[5]. Postural 

control can be divided into two tasks: (i) generation of direction specific kinematic movements 

and (ii) adaptation of these specific movements based on multi-sensorial afferent inputs [2], [6], 

[7]. Studies have shown that direction specificity emerges as a result of self-organization of 

intersegmental components during exposure to new positions [6], [8], [9]. Therefore, performing 

a new or more difficult task can show task-specific kinematic adaptations of posture. Posture 

control requires stabilization of all linked segments of the body through complex coordination of 

biomechanical, sensory, motor, and central nervous systems [10], [11].  

 

1.2 Motor Control 

 In the study of motor control, researchers are interested in identifying how our neuromuscular 

system functions to activate and coordinate the muscles and limbs when performing a motor skill. 

A motor skill is a task or activity that has a specific purpose or goal to achieve. In the textbook 

“Motor Learning and Control: Concepts and Applications”, authors Richard Magill and David 

Anderson identify and discuss various motor control theories and their applications [12].   
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 Movement studies look at how specific patterns of motion among joint and body segments are 

achieved. These movements make up a motor skill. Therefore, movement components are what 

allow an action goal to be achieved. There are three major reasons as to why we need to distinguish 

between motor movements and skills. First is that people learn movements as they try to acquire a 

certain skill. Though the movement is the same for most individual, the skill or technique used 

will vary. If we consider a shooters technique in professional basketball, all shooters need to move 

their hand in the shooting motion to move the ball to the basket. However, each shooter has a 

different and unique form which makes their technique work best for them. The second is that 

people adapt movement characteristics to achieve a common action goal. This means that although 

people may move differently, the outcome of their movement produces the same action goal. Due 

to the different physical features and abilities of a person, the movement pattern may be different 

while still achieving the same action goal, such as putting the ball in the basket. This can be 

especially important for a patient population that may use different techniques to compensate for 

walking deficits and yet produce the same end goal of walking. The third and final reason is that 

people evaluate motor skill performance, movements, and neuromotor processes with different 

types of measures. While a motor skill is measured by its outcome such as distance walked, a 

movement is evaluated by displacements, rotations, velocities, accelerations, and forces that allow 

these movements.  

 As described by Antoinette Gentile, one way to classify a skill is by the stability of the physical 

environment or “environment context” in which a skill is performed [13]. This takes into account 

the physical location where a skill is performed. The areas encompassing the environmental 

context are the supporting surface, objects involved, and people involved. In understanding the 

movement a person carries out for completing a given action or task, it is important to consider the 
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surface the task was performed on, the objects in interaction such as a ball or box, and people in 

the environment that serve as obstacles or cues. In certain situations, some environmental contexts 

may be stationary or moving. If objects and environment are stationary, this is considered as a 

closed motor skill. If objects and environment are in motion, this is an open motor skill.  

 Researchers believe that motor skill performance is influenced by three major areas: motor 

skills, performance environment, and physical and psychological factors of the person. In 

understanding these areas, the goal is to identify how one becomes skillful, going from infancy to 

old age. Motor control theories help us understand how the nervous system produces coordinated 

movement such that humans are able to perform a variety of motor skills in a variety of 

environmental context. These theories describe a large class of observations and make definitive 

predictions about the results of future observations. In other words, these theories describe how 

humans produce coordinated movements. Coordination is how humans pattern the head, body, and 

limbs relative to the environment. Since coordination involved the whole body, it becomes 

necessary to understand how the nervous system controls the muscles and joints involved in 

producing complex movement patterns. Many existing motor control theories aim to answer this 

problem using the bases of “degrees of freedom” problem first proposed by Nikolai Bernstein in 

1930s. He proposed that to perform a coordinated movement, the nervous system had to solve the 

degrees of freedom. Degrees of freedom is the number of independent elements or components of 

a system and the number of ways each component can vary. To learn a new skill, it is necessary to 

solve a complex degrees of freedom problem. 

 In the degrees of freedom problem, a complex coordination between the body and joints needs 

to be solved. The nervous system must first determine the actual number of degrees of freedom 

that must be controlled for coordinated movement. Bernstein argued that the nervous system must 
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break the problem of learning a new skill into stages. First it must determine the level of actions 

such as which motor segments need to be controlled first. Then the movements have to be 

coordinated to the external environment, followed by organizing muscle synergies and finally 

regulating muscle tone. The second stage of the problem solving requires developing a plan or 

strategy. This is how the performance would look from the outside or the environment. The third 

stage is where the most appropriate sensory corrections are made from the body’s internal point of 

view. These stages incorporate standardization and stabilization. Bernstein stated that such a 

complex process requires repetition and follows the “law of practice”. This law states that practice 

will lead to large initial changes which will taper off with practice. 

 Following Bernstein’s theory of degrees of freedom and Gentile’s two-stage model of motor 

learning, movement coordination can be studied further. Gentile’s two stage model states that 

motor learning happens in two stages. In the first, a beginner must acquire a movement pattern that 

will allow some degree of success at achieving an action goal. The second stage is where the 

learner discriminates between regulatory and nonregulatory conditions in the environmental 

context. The regulatory context is one which will define the movement needs, such as the shape of 

the cup. The nonregulatory is one that is nonimportant, such as the color of the cup. In performing 

the first stage of Gentile’s model, where some degree of success of a task is needed, a beginner 

may alter their movement strategy. Bernstein explains this as the locking or freezing of degrees of 

freedom. To gain initial control of the many degrees of freedom, a beginner may hold some degrees 

of movement rigid by coupling joint motion in tight synchrony. In most cases, distant joints are 

frozen together and the most proximal joint is moved to complete the task. An example may be 

writing with the nondominant hand. Usually the writing appears sloppy, yet readable due to the 

wrist and elbow being frozen, while the shoulder, most proximal joint is moved to achieve some 
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level of action success. As the task is practiced, the joints are released or unfrozen, operating as a 

multisegmental unit. This creates what is known as “functional synergy” where the arm and hand 

work together in a cooperative manner to allow for optimal performance of a skill.  

 Many new theories have derived from these initial motor control theories and understanding. 

Theories can be divided into two major classifications based on how the nervous system controls 

coordinated movement in terms of relative importance given to movement instructions specified 

by central components of control and the environment. Theories that give primary importance to 

movement instructions by the central nervous system (CNS) have some form of memory 

representation or motor program for the basis of organizing and carrying out an action. The others 

give more importance to movement instructions specified by the environment and the dynamic 

interaction of the environment with the body, limbs, and nervous system.  

 The motor program theories are led by the work of Richard Schmidt, who proposed the 

generalized motor program as a mechanism that could account for the adaptive and flexible 

qualities of human coordinated movement behavior. This uses the fundamental pattern of the class 

of actions, which remains consistent from one performance of an action to another. To achieve 

success in a movement, one must retrieve appropriate coordination program from memory and 

then add movement specific parameters. This uses rhythmic time sequencing to achieve 

coordination. While a task duration may change, the proportions of required activations are 

invariant and can be used to complete a skilled task. In contract to this is the dynamical systems 

theory. This theory uses aspects of physics, biology, chemistry, and mathematics to explain human 

movement control. Here the human movement control is thought of as a complex system that 

behaves in similar ways to complex biological or physical system. This is similar to nonlinear 

dynamics. In this the system behavior changes over time and does not follow a continuous, linear 
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progression. At different time instances, the behavior and its characteristics abruptly change due 

to varying factors such as the environment and internal body behavior. Experiments in literature 

often stem from these theories and work to identify which theory is most prevalent to human 

coordination and skill performance.  

  

1.3 Traditional Posture Rehabilitation 

 Posture rehabilitation uses the physical and physiological understanding of the human body to 

help patients gain or regain optimal human performance. These training programs use a 

combination of scientific and practical application needs to help patient progress through recovery. 

In rehabilitation of patients with severe upper body motor dysfunction, postural training is usually 

conducted by fixing the trunk or pelvis using a rigid frame, strap, or cord [14], [15]. This allows 

practical interaction with the patient in a safe and secure environment. Though this can provide 

added stability while practicing a task, this method is passive and restrictive. This limits the 

patient’s postural adjustments as the trunk is held fixed and also reduces postural sensorimotor 

experience due to constrained degrees-of-freedom (DOF), as described in the motor control section 

in Chapter 1.2. Locking the joints will allow an individual to achieve task or action success as 

necessary under Gentile’s first stage of motor learning. Yet, the environmental context is lost as 

body coordination is not required.   

 As outlined in Fig. 1.1, strategies for postural rehabilitation are very limited, and often several 

components of balance and posture are isolated and trained. The components include muscle 

activation and synergies, kinematic coordination, and proprioception. This is done to retain or 

build muscle activity and composition, improve kinematic coordination, and train proprioception 
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awareness. Balance and posture are a combination of proprioception, kinematic coordination, and 

muscle activation. Yet, traditional training paradigms isolate these components and fail to address 

functional rehabilitation, which is performing a task in an appropriate environmental context.  

 In patients with severe postural instabilities, joint locking and harnesses are used. While this 

may reduce sway in the patient, it does not actively allow the patient to control their trunk and 

posture. The motor control and planning are altered in this situation. This mean though a person 

may move a hand to complete a task, the locking of joints makes the task different from that in a 

real environment. A real environment is one where obstacles such as objects and humans are 

observed, and coordination changes are made to adhere to the task requirements. Though locking 

joints is beneficial if the task being trained will be performed in a constrained environment going 

forward in the patient’s progress, it does not allow for recovery of the fixed body segment. 

 In rehab settings, muscle strengthening is strongly promoted. Isometric, concentric, and 

eccentric exercises build muscle mass by recruiting muscle neurons. Muscle mass is necessary for 

maintaining bone integrity and for generating motion. However, muscle mass alone does not result 

in achieving task or action success. Similarly, balance training on unstable surfaces may help 

develop coordination and balance, but the transfer to functional tasks may not occur. As we 

mentioned in the earlier section on motor control, mass practice of a task will allow an individual 

to learn the sequence of coordination requirements from an internal and external self-

representation. This would allow improvements in the task that is being trained, whether it is an 

athlete swinging a golf club, or a patient relearning trunk control during a reach and grasp task.  
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Fig. 1.1 Current rehab methods isolate various components of functional activities. This includes muscle 

strengthening, joint locking, hand eye coordination tasks, and proprioceptive training. Functional and goal 

oriented postural exploration is often lost. 

 

1.4 Use of Technology for Posture Rehabilitation 

 In previous work, researchers have aimed to develop technology and rehab methods for 

balance training. Although each has its own benefits, most isolate aspects of balance training such 

as muscle strengthening, coordination, and proprioception are passively administered onto the 

patient. Specifically, in [18] researchers used virtual reality and a bicycle to stimulate visual and 

vestibular senses. Yet, this method was not task specific as is recommend by motor learning 

paradigms. The research geared towards training reaction from visual stimulus and proprioceptive 

awareness from the vestibular system, which provides spatial orientation. In [19], the “Spider-bot” 

was proposed, a cable driven system which provides a supporting structure during training (Fig. 

1.2). This can be through of as a wheel-less and baseless walker. This type of system will allow 
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support for those with adequate hand and feet functionality, during balance training programs. 

However, this method would not be suitable for those with muscular weakness, since it requires 

the patient to support their weight. It also does not target a specific body segment directly, as it is 

an external apparatus. No additional real-time sensing or training strategy was discussed. No 

human studies were conducted either. It was unclear as to why a supportive robotic structure would 

be more beneficial than a traditional cane or walker.  In addition to assistive systems, many 

researchers have proposed balance platforms such as the Hunova by Movendo Technology, the 

AMBA, and bio-feedback systems, as shown in Fig. 1.2 [5]. These systems utilize visual and 

vibratory feedback for balance correction in form of virtual games. Feedback is provided at the 

feet, shank, thighs, and/or trunk using vibratory feedback. The user is guided to control their 

posture following a gaming strategy. To complete the game successfully, the user is required to 

maintain instructed postures. A visual and vibratory feedback is provided to report their 

performance and to improve proprioception. In the Hunova, a unstable surface can also be provided 

to challenge the user at the ankle. Though these biofeedback devices and methods provide a 

training environment, they do not directly provide assistance or resistance to the body and are not 

suitable for severely affected patient groups. 
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Fig. 1.2 Several technology platforms have been proposed for balance and gait training. The devices shown 

provide haptic and visual feedback, but do not provide active assistance. 

 

1.5 Conclusion: Need for Assist-As-Needed Training Methods 

 Postural control requires a complex interaction between the sensory and motor systems. 

Among sensory inputs, proprioception plays a fundamental role in the fine control of postural 

movements. In some neuromotor disorders, defects in the proprioceptive system may be associated 

with unsteady, uncoordinated, and exacerbated upper body movements during activities of daily 

living that may secondarily result in imbalance, falls, and severe injuries. Passive or active 

proprioceptive interventions are implemented routinely as a critical part of rehabilitation programs 

that target postural balance disorders.  

 Considering patients with cerebellar ataxia, spinal cord injury, cerebral palsy, or even the 

elderly, devising rehab strategies that target a multimodal strategy can be most beneficial. These 

patient groups present with trunk and posture instability. Due to neurological and musculoskeletal 

deficits or paralysis, these patient show trunk and pelvis sway and difficulty maintaining balance 

during sitting, standing, and walking. Difficulty with muscle and body coordination forces the 

patient groups to rely on cane, walkers, and wheelchair, while often being strapped for safety. This 
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leads to a diminished workspace, or movement area for the patient to perform daily tasks. Training 

that includes muscle coordination, muscle strengthening, and proprioceptive enhancement, may 

allow patients to improve their tasks performance [16]. While current rehab strategies rely on 

manual techniques to provide these modalities where the training is limited to a single component 

at a given time, robotic platforms permit the integration of multiple modes of therapeutic training 

at once. 

 When experiencing new tasks or postures, humans have to consciously synchronize muscle 

activations and body movements. If a new task is not practiced, it cannot be experienced, adapted 

to, or learned. In this dissertation, we propose a new robotic intervention for posture rehabilitation 

and training. The goal of this system and its associated algorithms is to allow postural exploration 

during functional tasks. The device provides user specific parameters, real-time assist-as-needed 

forces when a person is detected to be unstable, and haptic feedback. Through its assistive nature, 

the device allows for increased time when completing a challenging new task. We believe 

increased time for completing a new task allows for more time for motor planning and for self-

promoted movement, muscle activations, and kinematic coordination. In the following sections, 

we discuss the device, healthy adults, and patient experiments to validate our hypothesis. 

 



            

 

i 

 

 

 

Chapter 2 

2 Trunk Support Trainer (TruST) for Seated Posture 

Training 

 In this chapter we discuss the development of a novel cable-driven robotic platform, The Trunk 

Support Trainer (TruST), for posture training. Here we modify a similar system, the Active 

Tethered Pelvic Assist Device (A-TPAD) developed in the Robotics and Rehabilitation Laboratory 

(RoAR Labs) at Columbia University [17]. We discuss new force-field algorithms which enable 

training trunk posture using an assist-as-needed strategy. The algorithms allow for real-time 

detection of human motion while providing assistance unique to the need of each person in the 

device. 

 TruST is a cable driven robotic system for posture training. The TruST can apply forces and 

moments on its end-effector, which in this case is a soft belt on the trunk. Benefits of this system 

include low inertia on the human body and modular control over the desired forces and moments. 

This is particularly beneficial for low force applications where the force applied on the body is a 

small body weight percentage, such as on children populations. This is primarily due to the motor 
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torque, low strength and light weight cables, and low system inertia. The low inertia allows free 

movement, without altering human performance, while allowing haptic feedback for assistance 

and perturbations. Another benefit of this system is that it does not require rigid links or fitting on 

the human body. This allows for quick fitting on a wide range of patients of different sizes. Since 

cables only require routing to an end-effector, the only adjustments required is the fitting of the 

belt and pulley positions. Since the belt is size adjustable and deformable, it can be fitted onto a 

wide range of human trunk sizes. It can also easily be modified for seated or standing applications 

by changing the pulley heights, at the cable exit points off the pulley. This allows control of cable 

vectors required for achieving a desired force. More on the details will be explained in this chapter. 

In addition, the software control allows quick modification of force applications. The force 

magnitude can be adjusted by entering the weight and body weight percent assistance requires for 

testing. 

 The specific setup of the TruST incorporates the use of four cables, each attached to a corner 

of the end effector or belt on the human trunk. This allows for direct control of planar forces and 

moment in the axial direction. In cable robotics, controlling certain number of degrees (n) of the 

end effector requires n+1 number of cables [17]. With four cables, three degrees at the end-effector 

can be controlled. The primary purpose of the TruST is to detect the position of the trunk during 

various reach and training activities and to provide assistance when a person is outside of their 

stability region. This is because outside of a person’s stability, they experience postural failure 

where the trunk collapses over the pelvis. At this point, stability is lost and a task is not adequately 

experienced or completed. Therefore, a planar assistance towards the boundary center is provided. 

This assistance is a planar force and requires two degrees of control, in the antero-posterior and 
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lateral directions. The TruST allows a minimal form of intervention, while providing real-time 

forces and objective outputs. A minimal form of intervention is one that does not hinder the 

movement of the individual and minimally assists a user’s desired motion when needed. 

 

 

Fig. 2.1 Schematic of the TruST. Four cables are attached to a torso belt, along the transverse plane. Four 

motors are mounted on a stationary frame, while a spring and load cell is attached in series with the cable. 

A global reference frame is set at the middle of the sitting platform. 

 

2.1 Mechanical Design 

 TruST utilizes four cables attached to each corner of an adaptable but rigid torso belt, while 

the other ends of the cables are connected to AC servo motors attached to a fixed frame. The cable 

attachment points on the belt are reinforced with thermoplastic to eliminate belt deformation 
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during force application. The motors have encoders (AKM series motors and AKD drivers from 

Kollmorgen, Pennsylvania). A tension sensor (MLP-200 Transducer Techniques, California) and 

a spring (Stiffness 2.5N/mm) are attached in series to each cable to measure the tension. The spring 

acts as a filter in two ways. It reduces motor reaction due to unwanted end-effector vibration and 

reduces the noise from any motor vibration onto the human body. These tension sensors record 

force up to 890N and are powered by a 12V DC amplifier (TMO-1 Transducer Technique, 

California). Pulleys are used to route cables from the motors to the torso belt along the transverse 

plane of the trunk. A cable spool of 5 cm diameter is attached to the end of each motor shaft to 

prevent the cables from wrapping over themselves. The smaller the cable spool, the large the 

tensions that can be achieved by the motor output. A 5 cm cable spool allows for fitting over our 

2.5cm motor shaft, while allowing a desired range of cable tensions. A motion capture system 

(Bonita-10 series from Vicon, Denver) is used to record the cable attachment points on the belt 

and pulley to calculate the force directions. A two-stage control is implemented using Labview, 

PXI real time controller and data acquisition cards (National Instrument, Austin). An illustration 

of the system can be seen in Fig. 2.1. 

 

2.2 System Model & Tension Planner 

The TruST, like the TPAD, is a cable driven parallel robotic system with each end of an actuated 

cable attached to an end effector. Four cables are connected to each corner of the end effector or 

torso belt to apply the desired force/moment in the transverse plane. If tensions in the cables are 

represented by 𝑻 ∈ 𝑹𝟒×𝟏, then the force-moment vector 𝑭 ∈ 𝑹𝟔×𝟏 applied at the trunk segment 

can be obtained by: 
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     𝐹 = 𝐴𝑇             (2.1) 

𝐹 = [𝐹𝑥   𝐹𝑦  𝐹𝑧  𝑀𝑥 𝑀𝑦 𝑀𝑍]𝑇         (2.2) 

 

and A is a 6 × 4 structure matrix based on the system geometry. The matrix A can be expressed 

as: 

𝐴 =   [
… 𝑰⃑𝑖 …

… 𝒓𝑖 × 𝑰⃗𝑖 …
]

6 × 𝑚

          (2.3) 

where 𝐼𝑖 is the ith unit cable length vector away from the rigid body and  𝑟𝑖 is the vector from the 

center of the rigid body to the cable attachment point i on the rigid body (Fig. 2.2). 
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Fig. 2.2 Matrix A is determined using unit cable length I and direction vector r from the center of the rigid 

body inside the torso brace, to the cable attachment point on the brace. F is the desired force vector and T 

is the tension required to achieve F. 

 

A quadratic programming-based optimization scheme was implemented to solve Eq. (2.1). This 

is to minimize discontinuities for all positive tensions T, often seen with linear programming, 

which finds the optimal solution at the corner of a convex hull of the feasible set [18]. The objective 

function minimizes deviations between T and Tp as follows. 

   min f               (2.4) 

 𝑓 =
1

2
(𝑇 − 𝑇𝑝)

𝑇
(𝑇 − 𝑇𝑝) 

 

such that,                     

𝐹𝒙 = 𝐹𝒅𝒙 ; 𝐹𝒚 = 𝐹𝒅𝒚         (2.5) 

-25 < 𝐹𝒛 < 25 ; -15 < 𝑀𝒙,𝒚,𝒛 < 15 

Tmin < T < Tmax 

 

where, Tp is a positive tension value at the previous time instance, added to the objective function 

to ensure non-zero cable tension values and Tmin and Tmax are lower and upper bounds for the cable 

tension values. This applies to the tension in each cable. Inequalities were set to create upper and 

lower Fz, Mx, My, and Mz boundaries which allow the solver to solve for Fx and Fy forces within 

the inequality constraint. Since the movement of the end effector is not purely planar, the solver 

solves for the specified planar forces Fx and Fy, while the other DOF are constrained within the 

specified Fz, Mx, My, and Mz boundaries. These were determined through testing prior to the study. 
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The normal transverse force, 𝑭𝒅 = [𝐹𝒅𝒙 𝐹𝒅𝒚], is computed by the high-level controller discussed 

in the next section.  

 

2.3 Controller 

 The controller consists of two modules, the high-level and the low-level controller to 

implement a force control scheme. The high-level controller determines the desired force vector 

based on real time position information, then computes the desired cable tensions using the tension 

planner. The low-level controller achieves the desired tension using the feedforward and feedback 

terms. The feedforward term is determined through multiplication of a desired force in Newtons 

and an empirical motor constant relating the tension and voltage. The feedback terms are calculated 

from a proportional-integral-derivative (PID) controller. The PID is tuned using the Ziegler-

Nichols method. In this, the proportional gain is increased until the motor becomes unstable and 

oscillates with a constant amplitude and period. Using the gain and period, a Ziegler-Nichols table 

is used to determine the PID gains. During testing, a command is given and the error is measured. 

If a steady-state error still exists, the integral gain is increased to decrease the stead-state error. If 

the response speed is slow or too fast, the derivative gain is adjusted. Using trial and error, the 

gains are found that minimize the error between the desired and actual tension values. The low-

level controller runs at a 1000Hz, while the high-level operates at 200Hz.   

 As a general outline of the control diagram (Fig. 2.3), the high-level controller reads real-time 

information from the motion capture system. Based on the position of the end effector, a desired 

force is determined. The Cartesian force is used to plan for the appropriate cable tensions. The 

low-level controller sends a feed forward term to the motor, which is used to determine the motor 
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output. Based on the errors, the feedback terms works to achieve the desired tension value 

precisely. 

 

 

Fig. 2.3 Control system block diagram of the high and low level controllers. The high-level controller plans 

the desired cable tension vector Td to apply desired force/moment Fd, once the COM is outside the boundary. 

The low- level controller implements these tensions using a feedback PID loop. 

 

2.3.1 High Level Controller 

 As discussed previously, the high-level controller is used for tension planning. It is also used 

to determine the appropriate desired Cartesian force, based on real-time position data. The end 

effector is tracked in real-time and is used to determine the force vector. Specifically, the TruST 

uses force-field algorithms which are used to apply a desired force onto the human trunk. 
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2.3.1.1 Force-Field Algorithm 

 The high level controller consists of a force tunnel controller [19] which creates a virtual force 

field at a specified radius around the subject’s trunk in the transverse plane. The center of the lower 

trunk is obtained by using a motion capture system and computing the estimated centroid of the 

left and right lateral points on the belt. The controller is designed such that when the trunk center 

is outside the specified circle of radius r, normal forces are applied to provide guidance to the 

center point back inside the circle, into a region of trunk stability (Fig. 2.4). 

 

Fig 2.4 The circular force-field is applied around the lower trunk. When the center of the trunk P is outside 

the boundary, a normal force is calculated and applied based on neighboring points P1 and P2. 

 

Let P be the current position of the trunk centroid, P1 and P2 be the two closest predefined points 

to P along the circular force tunnel with radius r. P’ be the point perpendicular to P on the line 

between P1 and P2, with the force magnitude k. 
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      𝑭 = 𝑭𝒏 = 𝑘(𝒏⃗⃗⃗)          (2.6) 

where the direction of the force,  𝒏⃗⃗⃗  is found by: 

 

𝒏⃗⃗⃗ =
(𝑷′−𝑷)

||𝑷′−𝑷||
          (2.7) 

 

and the perpendicular point P’ as, 

 

(𝑷𝟏 − 𝑷𝟐)  ∙  (𝑷 − 𝑷′) = 0         (2.8) 

 𝑷′ = (1 − 𝑚)𝑷𝟏 + 𝑚𝑷𝟐          (2.9) 

       𝑚 =  
(𝑷𝟏−𝑷𝟐) ∙ (𝑷𝟏−𝑷)

‖(𝑷𝟏−𝑷𝟐)‖2           (2.10) 

The force constant k was found by trial and error prior to the experiment. During the study, it 

varied between training blocks, decreasing from 60N (block 1) to 52N (block 5). This was chosen 

through trial and error prior to testing to ensure adequate assistive force, with a noticeable decrease 

through training blocks. In subsequent studies, we determined k as a percentage of body weight. 

 

2.3.2 Low Level Controller 

 The low-level controller runs at 1k Hz using Labview PXI real time controller.  An open loop 

feed forward term 𝑇𝐹𝐹 and a closed loop PID based feedback term 𝑇𝐹𝐵 are implemented to achieve 

the desired tension. The voltage provided to the motors yields 
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𝑉 = 𝐾𝑀(𝑇𝐹𝐹 + 𝑇𝐹𝐵)         (2.11) 

where 𝐾𝑀 is a pre-measured motor constant which is obtained from a linear relation between 

voltage and desired tension for each motor.  

For our cable-driven systems, to keep tension in the cable (𝑇𝐹𝐹 + 𝑇𝐹𝐵) > 0, the lower bound of 

the feedback term is set as 𝑇𝐹𝐵,𝑙𝑜𝑤 = −𝑇𝐹𝐹. However, if the subject pulls the cable away from the 

motor, extra negative input is required to compensate motor friction and unspool the cable reel. 

Only for this pulling case, the controller decreases the lower bound of the feedback term respect 

to the speed of the cable reel.  

 

2.4 System Validation 

 A representation of the desired and actual Cartesian force can be seen in Fig. 2.5. The PID 

controller was able to follow the desired force trajectory with a root mean square error of 6.89N 

(3.6%) with standard deviation of 6.38N. The min error was 6.61 𝑋 10−5𝑁 and max error 40.64N 

while any error above 10N lasted for a maximum of 0.135s, due to a small delay in real time 

response. 
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Fig. 2.5 The desired and actual Cartesian force vectors Fx, Fy, and resultant F demonstrate the capability 

of the low level controller to achieve the desired trajectory during dynamic movement.  

 

 

 

2.5 Conclusion 

 The design of the TruST allows for control of planar forces at the end-effector. It utilizes four 

cables attached from an end-effector belt onto a pulley at each corner of a rectangular frame. The 

device utilizes a force-field algorithm, which applies real-time assistance to the human trunk, based 

on its position. The system is cable of generative over 800N of force in each cable. The control 

strategy applies a body-weight percentage assistance on the human trunk, once the trunk is detected 

to be outside of a specified boundary. 

 Of the unique capabilities of the system is its modular and user-specific force field control 

algorithm. This force-field shape and size is determined prior to the use of the device. The shape 

encompasses the unique trunk workspace of each individual. Thus, it allows full independent 

posture control by the user at the end-effector, while inside this force-field boundary. Once outside, 
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a body-weight percentage assistance is provided to help the user maintain stability for a longer 

period of time and to experience new postures. This ability allows us to test new training modalities 

and answer scientific questions on the ability of patient groups to learn new tasks and trunk 

postures. The following chapters show case the studies and the new findings on trunk control. 
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Chapter 3 

3 Seated Human Experiments with TruST 

 In this chapter, we present the protocol and results from training experiments with the TruST. 

These experiments were conducted on healthy and cerebral palsy patients in the seated position. 

The TruST was used to provided trunk assistance at each individual’s stability boundary. The 

studies were first conducted on healthy individuals to document the changes in human 

performance, followed by a similar test in a virtual environment. Finally, we conduct a longitudinal 

study on children with cerebral palsy. 

 

3.1 Kinematic Changes During Seated Training 

 Twenty healthy subjects (20-30yrs, 12 males, 8 females, 19 right-handed, and 1 left-handed) 

were recruited and randomly assigned to either the experimental or control group. The training 

protocol was approved by Columbia University’s institutional review board and consisted of three 

stages: baseline (BL/pre-training), training (T), and post-training (PT). Before training, subjects 

were instructed about the training protocol, but were not told whether they were in the control or 

experimental groups. Retro-reflective markers were placed on the subject to record kinematics 
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using a Vicon motion capture system. The subjects were seated on a stool at the center of the 

TruST (Fig. 3.1). An adaptable but rigid three-inch wide belt was attached to the lower trunk 

(lumbar) region. During the BL, the pre-training tasks consisted of the functional reach test to 

determine the maximum lower trunk displacement and define the point of stability failure, and a 

pre-training nine-hole peg task without assistive forces. During the T stage, five blocks of two 

consecutive trials of the nine-hole peg task was conducted (massed practice). This was followed 

by PT stage in which both, functional reach and nine-hole peg tasks, were re-assessed after 

removing the external assistance from TruST. 

 

 

Fig. 3.1 Nine-hole peg test and the modified functional reach test, respectively, performed during the human 

experiment. 

 

 During the experiment, all subjects were asked to sit on a flat, wooden stool. The torso belt 

was firmly placed at the lower trunk. The subjects were asked not to use any foot or hand support 

while performing the functional reach task and the nine-hole peg task. However, they were allowed 

to move their body to complete all tasks to the best of their ability. All tasks started from a stable 
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neutral position with the head and trunk centered over the pelvis, with elbows in external rotation 

and bent 90-degrees in the air. Subjects were instructed to perform each task as fast and accurately 

as possible, while maintaining postural control. During training, subjects were allowed to use a 

finger or the volar area of the wrist for support on the table, only if posture stability was lost during 

the placement of the pegs.  

 For the functional reach test, the subjects were asked to displace a wooden block anteriorly as 

far as they could in a controlled and self-paced manner. If the subject used any support or lost 

balance, the task was stopped and the point of stability failure was kinematically recorded. If the 

subject lost balance prematurely, they were allowed to repeat the task. We defined premature loss 

of balance if 1) the subject touched the table surface for support, or 2) there was premature foot-

ground contact for displacing the piece of wood at further distance.  

 The reach test was performed at BL and PT, with the shoulders flexed at 90-degrees and arm 

parallel to the floor. The failure point was used to identify the boundary between postural stability 

and instability. This boundary specified the maximum anterior translation of the lower trunk before 

postural collapse.  

 The nine-hole peg board (3 x 3 holes of 4 mm diameter) was then placed in front of the subject, 

with the furthest row being in line with the position of the wooden block at the time of stability 

failure. The subjects were instructed to grab a peg from their dominant side and to place it onto 

the board from right to left, working from the closest row to the furthest. After inserting the nine 

pegs, subjects removed these in the same order. A complete cycle of inserting and removing pegs 

was identified as a single trial. Two consecutive trials conducted at a time were defined as a block. 
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Five blocks were conducted, with the assist-as-needed, error-based force for the experimental 

group at or beyond the predefined maximum lower trunk displacement (e.g. point of stability 

failure). Accordingly, the subjects moved independent of any assistance as long as they were inside 

the force tunnel but received assistance at and beyond their failure point. The assistive force was 

decreased by 2N (3.33%) after each block of training. The subjects were allowed as much rest time 

as they needed between sessions to a maximum of five minutes. The same protocol was followed 

for the control group but no assistive forces were provided. 

 

3.1.1 Data Analysis 

 The data were analyzed to assess the spatiotemporal changes in head, upper trunk, lower trunk, 

and pelvis translation and rotation between pre and post functional reach test. As exploratory 

performance measures, we analyzed the percentage of time the experimental subjects required 

assistive forces provided by TruST and postural behavior of subjects during the T stage. This last 

variable was assessed as the number of times the subjects would require 1) foot/reaching support 

due to postural collapse or 2) hand-table support for more than 1000ms due to lack of upper body 

stability and/or inability to recover postural verticality. 

 The data were analyzed using Matlab (MathWorks, Natick). The COM of the lower trunk was 

estimated using right and left belt markers. Translation of this trunk segment was measured in the 

anterior-posterior direction, from start of the trial (neutral position) to the point of stability failure. 

All the subjects were video-recorded from a 45-degree angle. Datavyu software 

(http://datavyu.org/) was used to characterize postural behavior. The statistical analysis was 
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conducted using SPSS 23 (SPSS, Chicago, Illinois). We conducted a two-factor mixed-design 

ANOVA with one within factor (Test Session: Pre-Training and Post-training) and one between 

factor (Group: Experimental and Control). Pairwise comparisons are reported if the interaction 

was significant and p values were adjusted using Bonferroni’s procedure. 

 Postural behavior variables were not normally distributed, as it was indicated by the non-

significant Shapiro-Wilk normality test (p < 0.05) and visual inspection of Q-Q plots. Therefore, 

a non-parametric Mann-Whitney U-test was applied to test the potential significant difference 

between control and experimental subjects in postural behavior during the T stage. The alpha value 

was set at 0.05 for both statistical procedures.  

 

3.1.2 Results 

 The anterior COM lower trunk displacement (e.g. position of belt) during the pre and post-

training stages is depicted in Fig. 3.2. The two groups started from a similar baseline in COM 

displacement (6.2 cm and 7.0 cm, p=0.368). There was a significant Test Session X Group 

interaction (F=11.33(1,18), p=0.003, η2=0.89), with the pairwise comparison showing a significant 

increase of 61.4% in experimental subjects (p<0.001) compared to an increase of 14% in the case 

of controls (p>0.05) during the post-training.  

 The changes in head, upper trunk, lower trunk, and pelvis rotations are shown in Fig. 3.3 – 3.7. 

The pelvis rotation was measured relative to the global frame, while each segment was measured 

in relation to its caudal segment (e.g. the upper trunk relative to the lower trunk). There was a 

significant Test Session X Group interaction for lower trunk (F=5.32(1,18), p=0.033, η2=0.59) and 
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pelvic rotation (F=8.01(1,18), p=0.011, η2=0.76) in the flexion/extension axes. These results 

indicate a significant increase in the rotatory component of both lower thorax and pelvis only for 

the experimental subjects that received the training with the TruST. Specifically, after training, 

lower trunk rotation increased towards flexion by 41.3% (p=0.028) and pelvic rotation increased 

towards extension by 81.0% (p<0.001) for the experimental group, while there was no significant 

change in the control group (p>0.05).  

 The number of reaching or foot placing reactions for postural support was not statistically 

different between the experimental and control groups (U = 26.5, p = 0.06). Nonetheless, controls 

(Mdn: 4, Min: 1, Max: 22) showed significantly greater number of hand contacts with the table for 

either postural support or recovering verticality (U = 23.5, p = 0.04) compared to experimental 

subjects (Mdn: 2, Min: 0, Max: 8). We should note that TruST was active and providing force 

assistance, on average, 97% of the total time of the seated reaching training across the 5 blocks of 

trials in the experimental group.      
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Fig. 3.2 Lower trunk COM displacement, measured from the stable/neutral position to the failure point 

during the functional reaching task, pre and post training for the experimental and control group (* = p < 

0.001). 

 

 

Fig. 3.3 Lower trunk and pelvis schematic, showing the average rotation in the anterior/posterior direction, 

pre and post training for both the experimental and control group. 
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Fig. 3.4 Pre and post head rotation relative to the upper trunk, for the experimental and control group (in 

degrees). 

 

 

Fig. 3.5 Pre and post upper trunk rotation relative to the lower trunk, for the experimental and control group 

(in degrees). 
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Fig. 3.6 Pre and post lower trunk rotation relative to the pelvis, for the experimental and control group (in 

degrees). 

 

 

Fig. 3.7 Pre and post pelvis rotation relative to the global frame, for the experimental and control group (in 

degrees). 
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3.1.3 Discussion 

 In this proof-of-concept study, we tested if specific practice of a seated reaching task at and 

beyond the individual’s point of postural stability failure, without foot support, could enhance 

volitional control of upper body and further the stability limits established by the configuration of 

the pelvis. Experimental results demonstrated that over a single training session, on average, the 

subjects were able to significantly translate their body further anteriorly from their neutral postural 

configuration and significantly increase the rotational profiles of the lower trunk and pelvic 

segments in the flexion-extension plane of motion following the assist-as-needed force training 

with the TruST. Additionally, the subjects of the experimental group did not require frequent and 

long-lasting hand contact with the table during the training phase.  

 As was seen with the control group, it was difficult for subjects to train at the border of stability 

failure without any external assistive forces. As subjects completed each trial of the nine-hole peg 

test, it was difficult for them to maintain dynamic postural stability with the motion of the arm 

during the reaching task at or beyond their stability boundaries without using their hand or wrist 

for support on the peg board. It is possible that without assistive forces, individuals often fail at 

their stability limits and are not able to explore a larger range of motion and a stable postural 

configuration required to maintain or recover seated balance while actively reaching to insert and 

remove the pegs. Therefore, the sensorimotor postural experience required for adjusting their 

postural kinematics to complete the task successfully may be diminished compared to the 

experimental group who were provided with the assist-as-needed force from TruST. It was seen 

that the experimental group spent on average 97% of their training task performance utilizing the 

assistive forces. This exploratory outcome suggests that reaching further past the maximum arm’s 
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extension and at and beyond the individual’s point of postural failure requires continuous volitional 

shifting of the lower trunk to avoid falling or using hands for body support.  

 Nikolai Bernstein’s theory of motor learning states that the central nervous system’s (CNS) 

hierarchy of control mechanisms for posture and movement are organized with distributed and 

parallel processing [20]–[23]. Neural mechanisms that integrate posture with dexterity movements 

(e.g. reaching control) are distributed in the CNS and are recruited in patterns that are task and 

context dependent [20], [23]. The manner in which the CNS recruits the DOF depends on the 

variables it uses to plan, time, and control the movement [23]. By providing an assistive force at 

an individual’s point of postural stability failure, the subjects experienced larger upper body 

displacements with the subsequent selective training in the control of key segments for maintaining 

postural stability during the reaching task practice. These segments were lower trunk and pelvis. 

Our results demonstrate that the control group was not able to enhance the degree of selective 

rotations of the lower segments (lumbar and pelvis) and these remain similar before and after the 

training. The movement of these lower segments followed an ‘in-block’ mode of control, in which 

the DOF of these key segments are constrained during the linear translation of the upper body 

during the functional reach task at and beyond the postural limits. However, in the case of the 

experimental group, the subjects were able to release the lower thorax and pelvic DOF and exploit 

their rotational amplitude in the flexion-extension plane of motion after providing the assist-as-

needed force control with the TruST. Thus, subjects in the experimental group were able to 

experience and control a set of postural kinematics that would have been impossible to undergo 

without the selective force field provided by the TruST. 
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 The overall goal of this assist-as-needed control strategy via the robotic device TruST is to 

train subjects in an accurate reaching task beyond maximum arm extensions and at/beyond their 

point of postural stability failure. With TruST, the volitional neuromuscular control of lower thorax 

and pelvis is continuous, allowing them to actively participate in the postural learning process 

required to attain this specific reaching task context. The effect of training and lack of subject-

TruST inter-dependence is observed because the assistive force was progressively reduced across 

the five blocks of practice. In addition to this, the TruST was inactive during the post-assessment 

and yet significant improvements were observed for the translational and rotational components 

in the voluntary control of seated posture beyond the point of stability failure.  

 The application of this device in combination with motor learning and control principles can 

be seen as potentially beneficial for use in patients with neurological or musculoskeletal disorders, 

such as in Cerebral Palsy or Spinal Cord Injury. In these pathological conditions, patients have 

little or no voluntary seated postural stability in both static and dynamic dimensions of control.  

 We cannot disregard other possible factors such as the level of fatigability of the paravertebral 

muscles, which could be reduced in experimental subjects compared to controls. Some of the 

technical limitations of this study may include the ability to distinguish between the changes in 

muscle activation, joint torques, and kinematics that lead to increased postural stability beyond the 

point of failure. Although posture is a combination of several intricate biomechanical processes, it 

would be beneficial to include these parameters in future experiments in order to identify which 

parameters are likely to play a larger role for adapting a more stable posture.  
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3.1.4 Conclusion 

 In this novel proof-of-concept study, we presented the first state-of-the-art, active posture 

training device, TruST. We also demonstrated benefits of training subjects at and beyond their 

point of stability failure for enhancing their maximum volitional control in seated trunk 

displacement with and without assist-as-needed forces. We defined postural stability as the ability 

to displace the estimated COM of the lower trunk segment further from the neutral postural 

configuration of reference without postural collapse of the upper body. The results demonstrate 

that the force field concept used in TruST has potential benefits in the rehabilitation of posture. 

Training with assistive forces at a person’s point of postural stability failure can increase the 

rotational amplitude of pelvis and lower thorax in order to displace the upper body under volitional 

control further away from the center of the pelvic configuration. These outcomes are in accordance 

with: (a) the principle of practice specificity in motor learning when providing appropriate assistive 

forces with the TruST and (b) Bernstein’s theory of motor learning, where the CNS can recruit and 

release the DOF to organize postural kinematics to attain the goal of reaching within and beyond 

the individual’s point of stability failure. In future studies, we plan to test our hypothesis applying 

the TruST in patient populations characterized by trunk instability. 

 

3.2 Translation of Training to a Virtual Environment 

 Virtual Reality (VR) offers a three dimensional user interface along with real-time computer 

simulation of an interactive environment [24], [25]. It can present complex multimodal sensory 
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information to the user and can elicit the feeling of realness and engagement [25]. The capability 

of VR can potentially offer many advantages in rehabilitation. Although physical reality (PR) 

training is the traditional and proven method towards rehabilitation, the successful integration of 

VR can allow access to unexplored rehab paradigms, and provide a quantitative and qualitative 

comparison of VR and PR based methods.  

 An advantage of VR over PR training activities of daily living (ADL) during rehabilitation is 

the added layer of cognitive engagement due to gaming aspect [26], [27]. With specific gaming 

scenarios that require a specific movement, VR based systems can allow exploration of how the 

brain controls movement, learns new movements, and relearns movement skills after an injury 

[28]. VR also provides the ability to vary a training task in a small space, without having to 

physically alter the environment. Being able to train on a variety of different tasks can provide a 

better overall improvement in function than repetition of the same task [28]. Specifically, VR has 

potential in rehabilitation of patients with neurological deficits, where the cost of treatment is high, 

therapist time is limited, and repetitive training is shown to produce positive outcomes [27], [28]. 

The use of VR systems, integrated with novel robotics, paves the way for testing a larger range of 

patient training paradigms and enhancing scientific exploration. In return, use of  such systems can 

reduce the cost of rehabilitation, allow therapists to be more productive in their training, and allow 

extended duration of rehabilitation [28]. VR can serve as a tool for sensory stimulation for neural 

and functional recovery by providing movement observation, imagery, repetitive massed practice, 

and imitation therapy [25].  

 Research also supports “task oriented training” for rehabilitation, where the motions relevant 

to a certain activity of daily living are part of the rehab training [28]. Studies have shown that 
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quantity, duration, and intensity are important variables in learning and relearning motor skills and 

in changing neural architectures [25]. Evidence demonstrates that plasticity is use dependent and 

intensive massed and repeated practice may be necessary to modify neural organization [25]. 

Using VR and robotics, various areas of motor rehabilitation can be studied. One such area is 

seated postural control. Seated postural control requires the stabilization and control of the head 

and trunk to complete many daily tasks, e.g., reaching for an object beyond maximum arm’s length 

[29]. Although sitting statically upright can be less demanding with the center of mass (COM) of 

the upper body centered over the base of support (BOS), large and quick displacements of the 

upper body outside the pelvic boundaries can cause a sudden shift of the COM away from the 

center of the BOS, creating a lack of a stable neutral upper body and pelvic position [29]. In this 

situation, a precise control of the upper body is required to recover verticality and maintain 

stability. In this work, we created a VR environment in correlation to a PR environment, and 

synchronized it with the TruST to compare the benefits of postural training using VR with TruST 

to PR with TruST and PR without TruST assistance (control group). In addition, assistive forces 

provide error-based haptic feedback for proprioceptive training. The TruST allows for self-control 

of postural adjustments during training. 

 In this work, we propose the use of VR based training tasks with TruST for improving 

volitional trunk displacement for direction specific kinematic adaptation. Our training activities 

consist of novel challenging postural tasks conducted without foot support, to challenge postural 

balance and coordination. We demonstrate our methods by training ten healthy adult subjects at 

their maximum trunk displacement, or failure point, in a VR environment and then compare with 

results in a real environment with physical objects [29], with and without the assist-as-needed 
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forces of the TruST. A motion capture system was used to determine the subject’s maximum seated 

lower trunk COM displacement and a force tunnel was created at that distance. During the 

experiment, subjects performed a total of five blocks of two trials each. For PR, this consisted of 

a nine-hole peg test placed at the subject’s point of stability failure, measured during the baseline 

stage, while for VR, this consisted of a virtual nine-coin collection with coins placed at the same 

measured point of stability failure. Our study tests and supports the hypothesis that a single training 

session in a VR environment, at a maximum stability region, increases lower trunk COM 

displacement and shows no significant difference to training in a real environment with physical 

object manipulation. 

 

 

Fig. 3.8 A) The study protocol for the different study groups. B) PR task consisting of nine-hole peg test. 

C)VR task consisting of nine-coin collection task. D) VR environment experienced during VR testing. E) 

Modified functional reach test to determine maximum region of stability and force field boundary. 
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3.2.1 Protocol 

Ten healthy adult subjects were recruited for the VR training group. They were compared to 20 

healthy adult subjects, who were randomly assigned to either the physical environment/reality 

training (PR) or control group (PR with no TruST support). The VR group consisted of seven 

males and three females (Avg: 25.7yrs/155lbs/174cm, 9 right-handed and 1 left-handed). The PR 

and control group consisted of 12 males and eight females (20-30yrs, 19 right-handed and 1 left-

handed). The training protocol was approved by Columbia University’s institutional review board 

and consisted of three stages: baseline (BL/pre-training), training (T), and post-training (PT), as 

outlined in Fig. 3.8. Before training, subjects were instructed about the training protocol. The PR 

and control groups were randomly assigned and were not told which group they were in. The VR 

group was aware of their group as they had to wear a VR headset. Retro-reflective markers were 

placed on the subjects to record kinematics using a Vicon motion capture system. The subjects 

were seated on a stool at the center of the TruST. An adaptable but rigid three-inch wide belt was 

attached to the lower trunk (lumbar) region.  
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Fig. 3.9 A) Coins appear at the distance of the maximum BL reach. The coins appear in the formation as 

the 3x3 peg board used in PR. Coins appear one at a time, after a button placed at the dominant side, is 

touched. B) Overlay of the TruST frame and VR environment demonstrates the synchronization between 

real spatial frame parameters and correlation within VR. The origin of the global coordinate system is linked 

between the VR and PR using a motion capture system. The appearance of the blue ball is equivalent to the 

position of peg retrieval prior to initiating the reach towards the peg board hole. 

 

The training activities were separated as PR training using a nine-hole peg task (Fig. 3.8B) or 

VR training using a virtual coin collecting game task (Fig. 3.8C & 3.8D) structured in the same 

format (collecting nine coins spaced out at the same distance as the peg board). The peg board had 

3 x 3 holes of 4mm diameter spaced at 5 cm apart, and the subjects were instructed to pick a peg 

from their dominant side and place it into the peg board. For the VR group, to simulate the same 

training in a virtual environment, the subjects were instructed to touch a button on their dominant 

side before collecting the coins spaced in a 3 x 3 configuration at 5 cm apart (Fig. 3.9).  

During the BL, the pre-training tasks consisted of the functional reach test to determine the 

maximum lower trunk displacement and define the point of stability failure for all three groups 

(Fig. 3.8A). The PR and control groups conducted a pre-training nine-hole peg task without 

assistive forces, while the VR group conducted the virtual coin collecting game task with no 

assistive force. During the training stage, five blocks of two consecutive trials of the nine-hole peg 
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task was conducted for the PR and control groups, while the VR group performed the virtual coin 

collecting game task. This was followed by PT stage in which the PR and control groups performed 

the functional reach and nine-hole peg tasks, and the VR group performed the functional reach and 

coin collecting task. These PT tasks were for re-assessment of postural kinematics without external 

assistance from TruST. 

 

 The purpose of an assist-as-needed force strategy is to minimize subject dependency on 

assistive forces and to motivate self-initiation and self-correction of postural kinematics. With the 

force field control, the subject is not administered any supportive forces within their measured 

stability region, as this is their pre-intervention workspace. As the subject is challenged to tasks 

outside their stability boundary, the assistive forces are triggered to support the posture and allow 

adequate time to explore further areas outside of their stability boundary. The haptic feedback 

provided through the assistive forces notifies the subject of their proximity to their stability 

boundary. As the subjects experience this new workspace and realize their ability to maintain 

stability, they are naturally encouraged to explore new postural configurations to successfully 

occupy the new workspace. In contrast to physical therapy based interventions for postural 

training, our protocol was designed to provide minimal required assistance, determined through 

system testing, to assist subjects during training tasks described in the following sections. 

 During the experiment, all subjects were asked to sit on a flat, wooden stool. The torso belt 

was firmly placed at the lower trunk. The subjects were asked not to use any foot or hand support 

while performing the functional reach task and the nine-hole peg task. However, they were allowed 

to move their body freely as desired, to complete all tasks to the best of their ability. All tasks 
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started from a stable neutral position with the head and trunk centered over the pelvis, with elbows 

in external rotation and bent 90-degrees in the air. Subjects were instructed to perform each task 

as fast and accurately as possible, while maintaining postural control. During training, subjects 

were allowed to use a finger or the volar area of the wrist for support on the table, only if posture 

stability was lost during the placement of the pegs.  

For the functional reach test, the subjects were asked to displace a wooden block anteriorly as 

far as they could in a controlled and self-paced manner. If the subject used any support or lost 

balance, the task was stopped and the point of stability failure was kinematically recorded. If the 

subject lost balance prematurely, they were allowed to repeat the task. We defined premature loss 

of balance if 1) the subject touched the table surface for support, or 2) there was premature foot-

ground contact for displacing the piece of wood at further distance.  

The reach test was performed at BL and PT, with the shoulders flexed at 90-degrees and arm 

parallel to the floor. The failure point was used to identify the boundary of postural stability. This 

boundary specified the maximum anterior translation of the lower trunk before postural collapse. 

This maximum anterior translation was set as the radius of the force field circle, allowing for the 

TruST device to provide assistive forces when outside this radius. 

 For the PR and control groups, the nine-hole peg board was then placed in front of the subject. 

The furthest row of the board was positioned in line with the position of the wooden block where 

the stability failure happened during BL. For the VR group, the coin position was set to the wooden 

block position, or the stability failure point. The subjects were instructed to grab a peg from their 

dominant arm and place it onto the board from the dominant side to opposite side, working from 

the closest row to the furthest. For VR group, the subjects were instructed to touch a button at their 
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dominant side and then reach to grab the coins, as these appeared one at a time in a specific order, 

from the dominant to the opposite side and from the closest to furthest away.  

The coins also ranged in color from bronze, silver, and gold, to identify from closest to furthest 

in distance. After inserting the nine pegs, subjects removed these in the same order, while the VR 

group recollected the coins in the same order. A complete cycle of inserting and removing pegs or 

collecting coins twice was identified as a single trial. Two consecutive trials conducted at a time 

were defined as a block. Five blocks were conducted, with the assist-as-needed, error based force 

for the VR and PR groups at or beyond the predefined maximum lower trunk displacements (e.g. 

point of stability failure). Accordingly, the subjects moved independent of any assistance as long 

as they were inside the force tunnel but received assistance at and beyond their failure point. The 

assistive force was decreased by 2N (3.33%) linearly after each block of training, starting from 

60N, determined through system testing. The subjects were allowed as much rest time as they 

needed between sessions to a maximum of five minutes. The same protocol with the peg board 

was followed for the control group but no assistive forces were provided. 

 

3.2.2 Data Analysis 

 The data were analyzed to assess the spatiotemporal changes in head, upper trunk, lower trunk, 

and pelvis translation and rotation between pre and post functional reach test between the VR, 

experimental, and control group. The data were analyzed using MATLAB (MathWorks, Natick). 

The COM of the lower trunk was estimated using right and left belt markers. Translation of this 

trunk segment was measured in the anterior-posterior direction, from start of the trial (neutral 

position) to the point of stability failure. The statistical analysis was conducted using SPSS 23 
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(SPSS, Chicago, Illinois). We conducted a two-factor mixed-design ANOVA with one within 

factor (Two Groups: Pre-Training and Post-Training) and one between factor (Three Groups: VR, 

PR, Control). Pairwise comparisons are reported if the interaction was significant and p values 

were adjusted using Bonferroni’s procedure. The alpha value was set at 0.05 for both statistical 

procedures. 

 

3.2.3 Results 

The anterior COM lower trunk displacement (e.g. position of belt) during the pre and post-

training stages is depicted in Fig. 3.10. There was a significant Test Session X Group interaction 

(F=4.47(2,27), p=0.021, η2=0.72), with the pairwise comparison showing a significant increase of 

61.4% in the PR group (p<0.001) and 34.4% in VR group (p=0.004) compared to an increase of 

14% in the case of controls (p>0.05) during the post-training. Both PR and VR showed 

significantly more range of motion in translation compared to the control, 515% (p=0.001) and 

278% (p=0.006) respectively, while there was no significant difference between the PR and VR 

group (p>0.05).   

The changes in head, upper trunk, lower trunk, and pelvis rotations are shown in Figs. 3.11-3.12. 

The pelvis rotation was measured relative to the global frame, while each segment was measured 

in relation to its caudal segment (e.g. the upper trunk relative to the lower trunk). There was a 

significant Test Session X Group interaction for lower trunk (F=3.41(2,27), p=0.048, η2=0.59) and 

pelvic rotation (F=5.37(2,27), p=0.011, η2=0.80) in the flexion/extension axes. These results 

indicate a significant increase in the rotatory component of both lower thorax and pelvic rotation 
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for the PR group compared to the control, with a tendency of interaction effect for pelvic rotation 

(p=0.056) between the VR and control group. 

Specifically, after training, lower trunk rotation increased towards flexion by 41.3% (p<0.001), 

while pelvic rotation increased towards extension by 81.0% (p<0.001) for the PR group. However, 

the VR group showed an increase toward flexion by 10.5% (p=0.516) and a pelvic rotation increase 

towards extension by 23.5% (p=0.123). There was no significant change in the control group 

(p>0.05) and no interaction effect between the PR and VR group. 

 

 

Fig. 3.10 Lower trunk COM displacement, measured from the stable/neutral position to the failure point 

during the functional reaching task, pre and post training for the experimental, VR, and control group (* = 

p < 0.001). 
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Fig. 3.11 Lower trunk and pelvis schematic, showing the average rotation in the anterior/posterior direction, 

pre and post training for the PR, VR, and control group. 
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Fig. 3.12 Results on pre/post segmental rotations during the modified functional reach test across each 

group. 

 

3.2.4 Discussion 

In this proof-of-concept study, we tested if specific practice of a seated reaching task (without 

foot support) in a virtual environment, at and beyond the individual’s point of postural stability 

failure, could enhance volitional control of upper body and extend the stability limits established 

by the configuration of the pelvis. We compared the results with experiments conducted in a real 

environment with physical object manipulation (PR) and with a control group to extract the 
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advantages of a VR based training. Experimental results demonstrated that on average, over a 

single training session, the subjects were able to significantly translate their body further anteriorly 

from their neutral postural configuration with both physical reality and virtual reality training with 

TruST. Physical reality training also significantly increased the rotational profiles of the lower 

trunk and pelvic segments in the flexion-extension plane of motion. On the other hand, the control 

group (physical reality training without assist-as-needed forces) did not show any significant 

change. 

The significant increase in anterior lower trunk translation seen with the PR and VR groups, but 

not with the control group demonstrates that the TruST robotic system has a significant beneficial 

effect in seated posture training. The assist-as-needed force strategy allows the subjects to train at 

their maximum stability limits without failing. This allows the subjects to explore a larger range 

of motion and a stable postural configuration required to maintain or recover seated balance. On 

the other hand, the control group does not get enough time to spend at the stability boundary 

without failing and thus has to use their hand for support. As a result, the sensorimotor postural 

experience required for adjusting their postural kinematics to complete the task successfully may 

be decreased compared to the PR and VR group who were provided with the assist-as-needed force 

from TruST. Furthermore, it was visually apparent that the control group had difficulty 

maintaining dynamic postural stability during the peg board test at positions beyond their stability 

limits. In this case, the subjects repetitively had to place their fingers for support while the PR 

group showed more consistency in their reaching, without often using the hand for support. 

Accordingly, the VR group did not have a table for support, as the experiments were virtual, and 

rarely placed their hands on the stool to regain stability during training. 
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 In comparing the PR and VR groups, to observe the difference between training requiring 

physical object manipulation or through a gaming experience, it was seen that the PR based 

training produced slightly better outcomes. Although both PR and VR groups showed significant 

increases in lower trunk translation, only the PR group showed significant increases in lower trunk 

and pelvic rotational profiles, while the VR group showed non-significant increases. The training 

effect with the TruST showed that the pelvis increased towards extension while the lower trunk 

increased towards flexion, but only the changes in the PR group were significant. This suggests 

that although both PR and VR training showed significant increases in postural range of motion, 

PR training can potentially show better outcomes. Yet, there were no significant differences in 

results between PR and VR. It was also noted that in VR, there was a tendency for an interaction 

effect for pelvic rotation (p=0.056). This can mean that with a larger sample size, VR could also 

show significant improvements in rotational profiles. Since there was no difference in statistical 

significance between PR and VR, we cannot specifically conclude that one is better than the other, 

yet both individually showed improvements in postural kinematics. As discussed in [29], Nikolai 

Bernstein’s theory of motor learning states that the central nervous system’s hierarchy of control 

mechanisms for posture and movement are organized with distributed and parallel processing 

[20]–[23], where neural mechanisms that integrate posture with dexterity movements (e.g. 

reaching control) are recruited in patterns that are task oriented [20], [23]. By providing an assistive 

force at an individual’s point of postural stability failure, the subjects experienced larger upper 

body displacements, and were better able to integrate the postural requirements within the context 

of the specified task [29]. As the task was practiced at the point of stability failure or maximum 

level of stability, the subjects were better able to control each segment separately, thus increased 

their range of motion.  
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The purpose of this study was to assess the improvements in seated postural range of motion 

with the use of an assist-as-needed force strategy from TruST, in a virtual and real training 

environment. For this reason, the virtual gaming experience was made to be less variable, and 

more repetitive in nature to mimic the training provided by a nine-hole peg test. Although 

controlling a drone and collecting coins add a gaming experience, the task can be seen as repetitive 

where a user can master the motion and timing required to successfully complete the training. For 

this reason, the level of cognitive engagement desired for a game based training may be 

diminished, leading to fewer improvements in outcomes as seen with the rotational profiles for the 

VR group. On the other hand, physical training such as the peg board, require adequately 

completing and witnessing an outcome (e.g. peg going into a hole) that feeds on visual and tactile 

stimulus, which might have led to an increased range of translational and rotational motion.  

The main advantage that a VR can provide is variability of training. With variation of training, 

the cognitive demands and engagement are increased, as the user is required to make decisions 

under time constraints and possibly rewarded for improving through a scoring system. It maybe 

that due to a lack of variability in the training task in the VR group, the outcomes were not as large 

as those seen with the PR group. Yet, there was no significant interaction or difference between 

the PR and VR groups.  

Even though the improvements are significant only in translation and not in rotation, VR training 

can be appreciated for its trade-offs. Although physical training would suggest a better outcome, 

VR training could be performed more readily without the need for added personnel, be more cost 

effective, and be extended to higher variability in training and in a low-cost environment, while 

physical (PR) training requires specific hardware and personnel for training. VR training can also 
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be conducted at home and therefore can be done more often than PR training. It may be that more 

sessions of training can show far better improvements than a more challenging training conducted 

with fewer sessions. Another advantage of VR is that we can create direction specific, task oriented 

trajectories for training and modify the training task according to the subject’s spatial position, 

recorded by a motion capture system. By using a virtual environment, we can adapt the difficulty 

of the training sessions progressively, challenging the subject and increasing the cognitive demand 

to complete the task successfully. This can be tested in future studies. 

Our work shows, by direct comparison of similar tasks, that VR training can improve postural 

range of motion when used with TruST. With the adherent similarity between VR and PR towards 

postural improvements, we are inclined to believe that the ease of conducting training and the low 

cost make VR an excellent source of providing rehab training. In areas such as rehab of children 

with musculoskeletal disorders, this may be an optimal way to incorporate rehab in their daily 

lives, along with school and homework, where the remaining time between PT visits and leisure 

time is limited, by combining the two together. It may be that with increased normalcy in daily 

schedules and decreased mental fatigue towards PT visits, children patients may show improved 

outcomes. We are raising questions for future investigation through this work, where positive 

rehab outcomes may not only be a factor of training but also the normalcy in lifestyle and the 

feeling of compromise between rehab and leisure time. Seeing preliminary benefits from VR, we 

believe that VR based rehab might show improvements in rehab outcomes, due to not only to the 

primary intervention, but the secondary factors that also improve the quality of life. 
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3.3 Seated Posture Training with Cerebral Palsy Patients 

Cerebral palsy (CP) is a permanent disorder caused by a non-progressive brain damage that 

impairs development of movement and posture, and disrupt reaching, grasping, and walking [30] 

[31]. CP is the most common childhood physical disability with 2.0-3.5 per 1000 births with a 

lifetime cost per person of $921,000 in the US [32], [33]. According to the Gross Motor Function 

Classification System-Expanded and Revised (GMFCS-E&R), children with GMFCS-E&R III-

IV have limited ambulation and impaired sitting control that require the use of wheelchairs with 

pelvic-trunk seating adaptations to carry activities of daily living [34], [35]. They constitute about 

25% of the CP population and their limited sitting abilities are associated with reduced life 

expectancy[36], [37].  

Sitting is critical to independence in ADLs for children with GMFCS-ER III-IV [36]. These 

children do not acquired independent sitting and their postural control systems in this position are 

highly impaired—orientation to maintain the spatial relation among anatomical segments and 

between the body and the environment and stability to control the body’s center of mass (COM) 

within the base of support (BOS)[38]. During development, trunk control in sitting is acquired 

progressively, from head to hips, throughout the first 8mos of life. Its acquisition promotes 

coordinated reaching, grasping, visual-manual-oral object exploration, and head orientation to 

direct gaze [39]–[41]. In this CP subpopulation, the neural insult disrupts this segmental 

progression of trunk control and sitting-related functions [42], [43]. Research has shown that 

children with CP GMFCS-E&R III-IV have trunk control deficits at low-thoracic and lumbar 

vertebral regions that hamper posture and reaching during sitting. However, when their torso is 

supported at mid-thoracic level, slightly above the more-affected trunk region, postural and arm 
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performance significantly improve during reaching [43]. This finding suggests that an external 

support at the impaired trunk region can be applied to train seated postural and reaching abilities 

in children with GMFCS III-IV.  

To date, conventional rehabilitation has failed to address this critical problem. In response to 

this long-standing need, we have developed the robotic Trunk-Support-Trainer (TruST). The 

TruST is a motorized-cable driven belt placed on the trunk. It creates a force field around the user 

that exerts active-assistive forces on the trunk when the body moves beyond the user’s postural 

stability limits. The TruST-intervention is based on motor control and learning principles and 

consists of two blocks, each lasting six sessions. In the 1stblock, in addition to the TruST belt, 

pelvic strapping was required during sitting. This belt was no longer needed during the 2ndblock. 

Tolerance and feasibility of the TruST and postural training were tested with a single-subject study 

of a 13-year-old child with cerebral palsy. Then, we longitudinally investigated short-term and 

long-term postural improvements in three children (6-14y).  

 

3.3.1 Protocol 

Participants were children and adolescents (M = 11y, SE: 1.5y) diagnosed with bilateral CP 

GMFCS III-IV and trunk control deficits at the low-thoracic region (T9-T12), according to the 

Segmental Assessment of Trunk Control (SATCo = 4) [44]. Three of the four children had 

difficulty sitting independently due to the trunk impairment.  

The GMFCS classified functionally all participants as wheelchair users [34] and The Manual 

Ability Classification System (MACS) and ABILHAND-kid indicated that participants had 

limited manual and bimanual abilities [45], [46]. The Gross Motor Function Measure Item-Set 
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(GMFM-IS) revealed motor limitations during sitting [47]. Manual dexterity and upper limb 

function was evaluated with the Box & Block test (B&B) in combination with video-coding to 

determine the rates of successful and unsuccessful responses, and to compute performance time 

(ms) of grasping and arm transport (upper extremity displacement) phases [48]. The GMFM-IS 

and B&B were used to report changes in gross motor and upper limb functionality after 

intervention. 

We examined seated postural control with the TruST belt placed on the low-thoracic region. 

To test postural across training sessions, participants performed the functional reach test (forward 

direction) and the postural star-sitting test, a customized postural test that measures the area of 

stable sitting control [49]. This test is based on the Star Excursion Balance Test to measure 

standing balance, in which a person displaces the foot along 8 star-shaped lines during one-leg 

stance [50]. Similarly, in the star test, participants move the trunk as far as possible while 

displacing a large ball with the head and without hand assistance.  

We collected upper body kinematics to explore postural improvements in both orientation 

(static control) and stability (active and proactive control). In static control, the participants had to 

orient upper body in the vertical plane and maintain sitting during 10s. Active control is the ability 

to move the upper body’s COM over the BOS without losing balance. The participants had to 

maintain upright sitting while visually following a toy to rotate the head 90deg to both sides. 

Proactive control is the ability to anticipate and counteract external and self-triggered postural 

perturbations, such as those encountered during reaching [38]. TruST was used to statically support 

the low-thoracic region during baseline and post-training assessments. In the single-subject study, 

we tested assistive-forces equivalent to 10% body weight and the functional reach test to compute 

the force field boundaries (Fig. 3.13). 
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In the single-subject study, the participant underwent five baselines. Two post-training 

evaluations were performed after each treatment block, 1day and 1week after the last training 

session, to measure immediate and short-term improvements. We computed means (M), ± standard 

errors (SE), the Minimal Detectable Change (MDC) constructed on 95% confidence intervals 

(95%CI), and the net percentage change with respect to the mean baseline measurement (∆%) to 

interpret substantial motor changes. In the longitudinal-group study (n = 3), two baseline 

assessments were averaged. Two post-training sessions were performed 1week and 3mos after the 

TruST intervention to address short-term and long-term postural improvements. We used 

Generalized Estimating Equations (GEE) for statistical analysis.  

The postural program comprised two training blocks that were subdivided into 6 sessions each. 

In the 1sttraining block (1st - 6th), the child underwent the motor-learning-and-control postural 

program with TruST and pelvic strapping. Data from our single-subject study suggested that pelvic 

strapping could be removed in the 5th or 6th session; and thus in the 2ndtraining block (7th - 12th), 

the participant followed the postural training with TruST in independent sitting without pelvic 

assistance. 
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Fig. 3.13 Trunk Support Trainer (TruST) design and force field configuration with the functional reach test.  

(A) The main TruST components are four steel cables (1) connecting a pliable belt (2) with the motor/spools 

(3) through pulleys (4). The cable tensions were measured with springs and load cells (5). A lift table (6) 

was used to regulate the height of the sitting child and keep the belt and cables in the horizontal plane. 

Infrared cameras (7) were used to track the position of the belt and collect kinematics. (B) Participants were 

instructed to perform the functional reach test in forward direction (red dotted arrow, left panel) to define 

the circular force field (red circle, left and right panels). The shadows represent the body transition from 

sitting to maximum body displacement to define the force field boundaries (red small arrows, right panel).
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The same pediatric physical therapist delivered the training in all sessions. Regardless of the 

task practiced, the training followed an organized set of learning and control parameters that could 

vary across participants and from one session to another. These training sessions were 90-120min 

long and consisted of massed practice with a 15min break. The training intensity was moderate-

high, but never beyond maximum fatigue. When it was possible, problem solving and decision-

making were part of the training to allow the child to experience trial-and-error and postural and 

reaching control strategies in complex actions. The task-oriented postural training was practiced 

sequentially, first within postural boundaries, then close to these boundaries, and finally beyond 

stability limits with active-assistive forces via TruST. Once the task was learned (≥ 50% success), 

movement variability was added and control parameters were modified.  

 

3.3.2 Data Analysis 

MATLAB (R2017b, Mathworks, 2017) was used for data processing. To examine seated static, 

active and proactive postural control, we applied kinematics (200Hz) and video-coding (60Hz) 

analyses. A LED light was used to synchronize video and kinematic data. We first trimmed through 

video-analysis the reaching task and then selected onsets/offsets with a kinematic-based analysis 

computing 5% of the reach peak velocity. Then, arm path profiles (i.e. resultant vector) were 

depicted to re-define reaching onsets/offsets [39]. The number of successful and unsuccessful 

reaches during the B&B was used to define the more-affected and less-affected hands of the 

participants. Additionally, Datavyu software (http://www.datavyu.org/) was used to video-code 

the behavioral frequency and the temporal windows of the grasping and arm transport components 
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of the reach during the B&B. Grasping was defined as the temporal window from the moment the 

hand contacted the block to the time this was raised from the box surface. Arm transport accounted 

for the arm movement from one side of the box to the other over the partition; and it was computed 

from the end of the grasping to the release of the block (1st frame at which the block was not in 

contact with the hand palm). 

Three-dimensional motion capture (VICON, Oxford Metrics) was used to collect upper body 

kinematics, rotations and translations. Data was smoothed with a zero time-lag 4thorder 

Butterworth filter with a 4Hz-cutoff [51]. Angular rotations were computed as inter-segmental 

angles, following the right-hand convention with an Euler sequence X-Y’-Z’’: flexion(-) / 

extension(+) around x-axis (rightwards: +), right-lateroflexion(+) / left-lateroflexion(-) around y-

axis (forward: +), and left-rotation(+) / right-rotation(-) around z-axis (upwards: +). We modeled 

the upper body as a 6 linked-segment system, including: head, upper-thorax, lower-thorax, pelvis 

and upper limbs. COM approximation of segments and upper body was based on anatomical 

landmarks and anthropometrics [52].  

To examine postural control, we computed the absolute summation of upper body COM 

displacement (cm) across x-y-z axes. Postural orientation (static) was estimated as the averaged 

angular motion of each segment across planes of motion. Angular movements in each plane were 

computed by subtracting absolute maximum and minimum angles. Total angular motion was 

calculated as the absolute summation of angles. The SD of angles was used as a measurement of 

dispersion to address postural variability.  

In the single-subject-design study, we applied a distribution-based approach to explore and 

interpret the data. We first calculated the standard error of measurement (SEM) to define the spread 
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in computation error and distinguish reliable substantial changes after the postural program with 

TruST [53].  

In the single-subject-design study, only postural/reaching control changes that met the MDC 

or were higher or close to 50∆% were interpreted as substantial changes. We hypothesized that the 

presence of clinical, functional and biomechanical improvements would demonstrate tolerance and 

feasibility of the TruST intervention; and thus, the longitudinal-group study would be justified.  

In the longitudinal-group study, the alpha rate was set at 0.05. Kinematic angles identified as 

extreme outliers (values three times greater than the interquartile data range) were removed. Data 

normality was examined with Shapiro-Wilk test and visual Q-Q plots. We originally planned to 

carry a within-subject ANOVA, but normality and sphericity were violated in most instances. 

Also, data were highly variable and required a trial-by-trial analysis. Thus, we applied GEEs to 

analyze events-in-trials following a repeated-measures procedure with subjects as clusters and 

training/evaluation sessions as the within-subject variable. A linear model was selected. An 

independent covariance structure was specified as correlation matrix based on the quasi-likelihood 

under independence criterion (QIC) goodness of fit coefficient, and because it is recommended in 

studies with small sample size [54]. Sequential Holm-Bonferroni method was used to increase the 

power of the statistical test while controlling the familywise error [55]. Post-Hoc tests were carried 

if the statistical model was significant.  

 

3.3.3 Single Subject Results 

 In the single-subject study, the participant acquired greater motor capability to displace the 

trunk and reach further along the sagittal plane. During training, the child progressively enhanced 
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his trunk control in the functional reach test. When the TruST intervention was completed, the 

child increased by ∆233% his ability to lean and reach without hand support or sitting failure 

(baseline: 6.3cm, 1week post-training: 21cm).  

At the beginning of each training block (first 2-3 days), we observed a detriment in trunk 

control during the functional reach test immediately after the training. We believe that this within-

session difference might be the minimum time that the child requires to adapt to the training 

features (pelvic support versus no pelvic assistance, and progressive increase in the force field 

diameter during active-assistive feedback) and to cognitive-muscle fatigue effects (low attention-

to-task and poor tone, strength and endurance of torso muscles). However, the child was able to 

adjust to the training parameters and the discrepancy in trunk displacement faded across training 

sessions. Fig. 3.14 shows the ability to reach anteriorly during the baseline assessment, pre and 

post training each day, and during the follow-up session. This shows that the first patients increased 

their ability to reach from roughly 6cm up to above 20cm and without any pelvic strapping. 
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Fig. 3.14 Trunk control improvement with TruST. The functional reach test was evaluated before (black 

lines) and after (red lines) the postural intervention with TruST across training and evaluation sessions. 

Trunk control improved progressively across the 12days. With respect to BL (1stPre-training session = 

6.31cm), the increase in trunk displacement was Eval1 = ∆128% (1day after 1sttraining block), Eval2 = 

∆118% (1week after 1sttraining block), Eval3 = ∆150% (1day after 2ndtraining block) and Eval4 = ∆233% 

(1week after 2ndtraining block). Note the substantial trunk control improvement after the 7thtraining session 

during independent sitting (without pelvic strapping). Pre-, Pre-training. Post, Post-training. Eval1, 

Evaluation 1day after the 1sttraining block. Eval2, Evaluation 1week after the 1sttraining block. Eval3, 

Evaluation 1day after the 2ndtraining block. Eval4, Evaluation 1week after the 2ndtraining block. 

 

After the TruST intervention, the child acquired more proficient upper body control in static 

upright sitting during 10s. The child obtained a stable posture with a ∆58% reduction in upper 

body COM translation across the anteroposterior, lateral and vertical axes (baseline: M = 26.7 ± 

7.6cm, MDC = 7.4cm; PT: M = 11.3cm). More specifically, there was a ∆41% reduction in head 

displacement (baseline: M = 40.4 ± 7.6cm, MDC = 10.1cm; 1week post-training = 23.93cm) and 

∆40% decrease in upper-thorax displacement (Baseline: M = 25.3 ± 3.9cm, MDC = 9.1cm; 1week 

post-training: M = 15.3cm). Moreover, the upper body segments above the TruST belt were more 

vertically aligned (Fig. 3.15). 
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Fig 3.15 Seated postural control kinematics in our single-subject-design study. (A) A more vertical position 

of H was observed in F/E (BL: M = 71.47 ± 13.66º, MDC = 6.76º; PT: M = 25.84º, ∆64%), M/L (BL: M = 

46.97 ± 7.99º, MDC = 6.27º; PT = 33.56º, ∆29%) and ROT (BL: M = 54.25º ± 7.21º, MDC = 7.43º; PT = 

37.22º, ∆31%). This was also true for UT in the F/E (BL: M = 43.21 ± 8.32º, MDC = 11.78º; PT: M = 

18.98º, ∆56%), M/L (BL: M = 20.82 ± 6.64º, MDC = 6.40º; PT = 9.57º, ∆54%) and ROT (BL: M = 27.40º 

± 5.37º, MDC = 6.88º; PT = 17.47º, ∆36%). # = MDC was achieved.  

 

3.3.4 Longitudinal Study Results 

 We trained three additional subjects in a longitudinal study. Two out of three children 

experienced functional improvements in the GMFM-IS after the postural TruST intervention. One 

participant (Subject 3) improved sitting control 1week post-training that returned to baseline 

values and another (Subject 4) demonstrated short-term and long-term gait improvements.  

We used TruST as a measurement tool to examine trunk control during the functional reach 

test. All participants significantly and progressively improved trunk control across the two training 

blocks (Wald χ2 = 41.63, P < 0.001) and research stages (Wald χ2 = 36.86, P < 0.001) compared 
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to baseline (M = 5.5 ± 1.4cm, 95%CI: 2.7-8.3). They enhanced trunk control during the functional 

reach test after the 1sttraining block (M = 12.5 ± 0.5cm, 95%CI: 11.5-13.5, P < 0.001) and 

2ndtraining block (M = 16.4 ± 1.7cm, 95%CI: 13.1-19.6, P < 0.001). Similarly, they showed 

significant improvements 1week post-training (M = 15.9 ± 0.6cm, 95%CI: 14.7-17.2, P < 0.001) 

that were retained after 3mos (M = 14.6 ± 1.3cm, 95%CI: 12.0-17.3, P < 0.001).  

Fig 3.16. shows how each subject in the longitudinal study improved their anterior reach. In 

addition, subjects were assessed for workspace and coordination, which showed improvements as 

well. Subjects were able to reach further in each direction around them, therefore able to increase 

their postural workspace. These findings were retained during the three month follow up. 

 

 
Fig. 3.16 Trunk control during the functional reach test in our longitudinal-group study. All participants 

improved gradually their trunk control. Note the reduction in trunk displacement after the 1sttraining block 

(TTr 6) when the pelvic straps were removed. This is particularly accentuated for participant 03, who had 

severe sitting control deficits. The three participants show a steady increase in trunk control and short-term 

and long-term improvements in independent sitting 1week (PT) and 3mos (FU) after the TruST 

intervention. BL, Baseline. TTr, Training. PT, 1week post-training. FU, 3mos follow-up. Numbers indicate 

the participant code. *P < 0.05. 
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Similar to the results obtained in the functional reach test, all the participants improved their 

360° of volitional trunk mobility and significantly expanded their area of stable sitting control 

during the postural training with TruST (Wald χ2 = 41.63, P < 0.001) and across research stages 

(Wald χ2 = 49.35, P < 0.001). A low increase rate and more variable trunk control responses were 

found during the 1sttraining block (Fig. 3.17 – 3.18). However, the participants significantly 

improved their trunk control after the 2ndtraining block (M = 409.9 ± 130.1cm2, 95%CI: 154.8 - 

665.0, P < 0.001) with respect to baseline (M = 127.6 ± 61.1cm2, 95%CI: 7.9-247.2). Furthermore, 

the postural gains were observed 1week post-training (M = 395.3 ± 48.3cm2, 95%CI: 300.7-490.0, 

P < 0.001) and at the 3mos follow-up session (M = 270.0 ± 30.4cm2, 95%CI: 210.49-329.56, P < 

0.001).  

 

Fig. 3.17 Trunk control area in the postural star-sitting test in our longitudinal-group study. (A) A gradual 

increase in the area of stable sitting control is observed for the participants across training sessions with 

greater trunk control during the 2ndtraining block (without pelvic strapping). The participants 02 and 03 

achieved their highest level of sitting control 1week post-training (PT). The participant 04 obtained his 

maximum level of sitting control during the training (9th-12th). They maintained their sitting control 

improvements 3mos after the TruST program; although, a slight decrease toward baseline, mainly for 

participant 04, was found (P < 0.001). BL, Baseline. TTr, Training. PT, 1week post-training. FU, 3mos 

follow-up. Numbers indicate the participant code. *P < 0.001. 
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Fig. 3.18 The BL is represented by black lines and unfilled area. The 1stTTr, 2ndTTr, PT and FU are 

represented by red lines and grey area. The plots show that all participants improve symmetrically their 

trunk control area immediately after completing the TruST intervention (2ndTTr block). In general, this 

increased area of trunk control was still present 1week and 3mos post-training. Note that for participant 04 

the area of trunk control overlapped between BL and 1stTTr block. BL, baseline. 1sttraining block (1st TTr), 

2ndtraining block (2nd TTr), 1week post-training (PT), 3mos follow-up (FU). A, anterior. R, right. 

 

 In the seated static task during baseline, the participants displayed the typical hyperextended 

head-trunk posture found in children with CP and severe balance deficits during sitting. They 

enhanced their postural configuration with an upright alignment of upper-thorax and lower-thorax 

after the TruST intervention (Fig. 3.19). The group significantly improved postural balance (Wald 

χ2 = 1567.78, P < 0.001), as demonstrated by a reduction in upper body COM displacement 1week 

post-training (P < 0.001). However, the 3mos follow-up assessment showed that upper body COM 
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displacement returned to baseline values. Interestingly, there was a specific-training effect in 

lower-thorax orientation (flexion-extension plane) (Wald χ2 = 16938.65, P < 0.001), which was 

the most impaired trunk region across all participants, according to the SATCo. The lower-thorax 

segment changed from an abnormal flexion in baseline to a vertically aligned position 1week post-

training (P = 0.003). Notably, this vertebral alignment was retained after 3mos (P < 0.01). 

Moreover, the upper-thorax configuration was significantly different across research stages (Wald 

χ2 = 117.68, P < 0.001). Participants demonstrated a flexed upper-thorax orientation 1week post-

training (P < 0.001) that was vertically realigned 3mos post-training (P < 0.001).  

 

 

Fig 3.19 Postural and reaching kinematics in our longitudinal-group study. (A) The models represent 

averaged postural configuration of head, upper-thorax and lower-thorax. Before training in BL (a), 

participants presented a stereotypical CP sitting configuration with hyperextended head and upper-thorax 

to prevent sitting failure. After the training in PT (b), participants showed neutral alignment of lower-thorax 

with respect to the pelvis, and head and upper-thorax hyperextension disappeared.  
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3.3.5 Discussion 

In historical CP reports, posture has been a central aspect in the motor disability that 

accompanies this condition [56]. However, most studies on postural interventions in CP involve 

high-functional ambulatory participants and neglect those who are wheelchair users and in critical 

need to improve their basic sitting abilities to fully participate in society. In this study, we show 

that robotics may be a solution to address this problem. We investigated the feasibility and 

potential of a robotic-mediated postural intervention with TruST. The overall outcomes of the 

current study indicate that the progressive application of haptic-force feedback on the torso, 

tailored to the user’s trunk stability limits, in combination with a motor-learning-and-control 

training approach, promotes independent sitting and maximizes functional postural and reaching 

abilities in children with CP GMFCS-E&R III-IV.  

To date, there are no successful conventional rehab programs (i.e. exercises or “hands-on” 

approaches) in children with CP GMFCS-E&R IV to promote independent sitting or with CP 

GMFCS-E&R III to obtain long-term improvements in seated postural and reaching abilities (16, 

17). Play-oriented therapy ensures motivation, high level of compliance, continuous attention-to-

task and engagement [57]. Learning and control principles have been satisfactorily implemented 

in other therapeutic approaches to train paretic upper extremities [58], bimanual control of hands 

and arms [59] and combined upper-lower extremity movements [60]. However, rehab programs 

in sitting control have not accounted for motor learning and control parameters with a robotic 

platform that has been designed to maximize functional outcomes. There is evidence showing that 

robotic platforms, such as TruST, address engagement, repetition and intensity during practice of 

task-oriented movements that enhance impaired upper limb motion in children with hemiplegic 
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CP [61]. TruST promotes training, based on trial-error and haptic-feedback depending on the 

user’s body position within or beyond stability limits, respectively.  

Unlike other robotic systems, TruST has not been designed to substitute the role of the 

rehabilitation professional. In contrast, the goal of this robotic-rehab paradigm with TruST is to 

create a dynamic robot-child-clinician interface during the implementation of postural training, 

based on motor learning and control principles. The TruST system displays online visual feedback 

to the clinician about the location of the trunk’s COM, where the belt is placed, while the 

participant practices goal-oriented postural tasks. The intensity of the haptic force-feedback on the 

torso corresponded to 10% of the child’s body weight and was programmed to be an “assist-as-

needed force” during training. Thus, when the participant was within the area of stable sitting 

control, the force field was inactive and the subject only experienced task-intrinsic feedback from 

visual, vestibular and somatosensory inputs during voluntary postural and reaching movements 

[12]. Only when the upper body was outside the predefined force field limits, the haptic-force 

feedback was applied to the trunk to actively train postural sitting recovery. A fundamental aspect 

of TruST is that the force field boundaries were progressively increased and systematically 

adjusted to the participant’s trunk control capabilities across training sessions. This configuration 

was crucial to avoid child-TruST interdependence that would inhibit learning of the postural 

improvements.  

In our single-subject and longitudinal-group studies, participants without sitting control 

acquired independent sitting after 12 training sessions. Three participants demonstrated gross 

motor improvements. Considering the GMFM minimum clinically important difference, two 

participants (03 and 04) showed a medium effect size change (1 point) and one participant (01) 

demonstrated a large effect size (2 points) between baseline and 1week post-training evaluation 
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[62], [63]. In the participant with GMFCS-III and sitting difficulties (04), the trunk control gains 

propagated to walking improvements. This is in line with previous work showing that trunk control 

is correlated with gross motor functions, and sitting is the strongest predictor in walking abilities 

compared to other factors such as spasticity, muscle strength and selectivity, and age [64], [65].  

 The progressive increase in sitting control measured by the functional reach and postural star-

sitting tests shed light on relevant clinical improvements at the functional and neuromuscular 

levels. The functional reach test measures proactive postural control, because it takes into account 

motor planning and unidirectional control of the trunk in the sagittal plane during reaching [66]. 

When participants started the experiment, they could reach no further than 6cm. However, 1week 

and 3mos after the robotic-mediated postural training with TruST, they could obtain a maximum 

trunk distance of 16cm during the reach. Although there is no known cut-off value in the functional 

reach test in CP, the reaching improvements were higher than the MDC (6cm) defined for people 

with stroke [67]. The postural star-sitting test is a customized play-oriented postural assessment 

with TruST to measure the 360º area of stable sitting control. This area was severely limited in our 

participants before the robotic-aided postural training with TruST, except for one participant (04) 

classified as GMFCS-E&R III. Children with CP and higher functional independence, but sitting 

control problems, could opt for a postural training with TruST in which pelvic strapping is removed 

early in the training. Our data show that there was not much difference in the area of stable sitting 

control for participant 04 between the baseline and end of the 1sttraining block. Accordingly, 

potential improvements in trunk control could have been expected earlier in the treatment if the 

pelvic straps had been removed from the beginning of the TruST intervention. Overall, participants 

tripled their area of stable sitting control after completion of the training and doubled it 3mos post-

training due to potential muscle strengthening, enhanced proprioception, improved spatial-
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temporal postural strategies, and fine control of the torso muscles. Specifically, in dynamic sitting 

tasks, the stability limits are larger in front of the body (forward direction) compared to behind. 

Children with severe postural dysfunction cannot sit upright and they lean forward to lock their 

trunk in a non-functional position to maintain stability (Movie S3). Despite this stereotypical 

sitting posture, the use of haptic-feedback  with the TruST force field in the posterior peripersonal 

space resulted in substantial improvements in posterior sitting balance [68]. The self-postural 

exploration and the expanded area of stable sitting control after the postural intervention with 

TruST could be explained by enhanced intrinsic sensorimotor feedback mechanisms [12].  

Postural kinematics showed significant improvements in static, active and proactive 

dimensions, which are mechanistically characterized by different modes of neural and 

musculoskeletal control [69]. Static control requires muscle tone regulation and long-lasting 

isometric co-activation of neck-torso muscles to maintain upright sitting [70]. Participants 

obtained a more aligned lower-thorax with respect to the position of the pelvis, which was the 

trunk region with the greatest level of instability and where the TruST belt was placed during 

training. This improvement could be due to more efficient regulation of paravertebral muscle 

stiffness [71]. Moreover, participants obtained a more vertically aligned upper-thorax, which could 

be critical to prevent vertebral pain and respiratory problems due to sustained spinopelvic 

misalignments during passive sitting [72], [73]. Active control is a dimension assessed by 

numerous clinical tests and it requires online sensorimotor control to maintain the body stable 

during ongoing movements [44], [74]–[76]. Participants acquired the ability to perform head 

rotations with reduced compensatory trunk displacements and variability during independent 

sitting. In regards to proactive control, participants acquired shorter, straighter and less variable 

reaching paths with proficient task-dependent postural strategies while sitting independently [38], 
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[77]. In our single-subject study, the child showed improved reaching control with increased trunk 

displacements, which most likely were used as a compensatory postural strategy to overcome the 

lack of elbow extension, paresis, and spasticity of arm muscles [78], [79].  

In summary, the single-subject-design study with a child with CP GMFCS-E&R IV proved 

tolerance, feasibility and short-term postural and reaching benefits after 12 postural training 

sessions with TruST. The longitudinal-group study replicated these results and added that these 

functional improvements were retained after a 3mos-washout period. A limitation was our sample 

size. Thus, cohort studies with large sample size and including different clinicians to drive the 

TruST intervention would serve to generalize our outcomes. Future research should address the 

efficacy of our postural intervention with TruST in randomized clinical trials compared to 

conventional therapy. 
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Chapter 4 

4 Standing Human Experiments with TruST 

 In this chapter, we translate the experiments in Chapter 3 from the seated to the standing 

position. The goal of this chapter is to assess if humans can change their trunk coordination and 

movement after training in the standing position with TruST. When in the standing position, the 

pelvis. A person in the standing position needs to maintain balance and coordination at the trunk, 

pelvis, and knees. For this reason, we have applied a passive belt to the pelvis. We also incorporate 

an instable surface for challenging healthy patient during our initial pilot study. In the following 

sections, we will discuss the modifications to the TruST for stand training, a study with healthy 

adults, and then a three session training with a  single patient with cerebellar ataxia. 

 

4.1 Stand Training in Healthy Adults 

 Elderly and people with neurological and musculoskeletal pathologies present with lack of 

postural control. Postural control profiles are characterized by increased postural sway, diminished 
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or excessive responses to perturbations, abnormal trunk oscillations, and poor control of 

equilibrium postures [16]. These balance deficits may be accompanied by exacerbated postural 

sway without a preferred direction and with increased intersegmental movement at the head, trunk, 

pelvis, and legs [16], [80]. In certain cases, movement is decomposed from a multi-joint strategy 

of control into a series of single joint motion at the trunk, hip, knee, and ankle [16]. Rehabilitation 

strategies have focused on muscle strengthening or coordination training alone to reduce 

intersegmental sway. However, some studies suggest that postural training that directly targets 

active balance control could be most beneficial for motor learning [16]. 

 Balance maintenance requires a complex correlation between different sensory modalities and 

optimal multisensory processing [81]. This includes a sensorimotor interaction from the vestibular, 

proprioceptive, and visual systems for motor coordination [82], [83]. Considering patients with 

cerebellar ataxia, spinal cord injury, cerebral palsy, or even the elderly, devising rehab strategies 

that target a multimodal strategy can be most beneficial. This is to provide training that consists of 

muscle coordination, muscle strengthening, and proprioceptive enhancement [16]. While current 

rehab strategies rely on manual techniques to provide these modalities where the training is limited 

to a single component at a given time, robotic platforms permit the integration of multiple modes 

of therapeutic training at once.  

 Poor sensorimotor control of postural stability and orientation increases the load of the 

cognitive system, which has been associated with higher prevalence of potential falls due to the 

presence of a dual cognitive-motor processing for controlling the postural task [83]. Furthermore, 

balance platforms have shown to improve body position awareness to serve as a means to improved 

balance [83], [84]. Active training that directly controls a person’s center of pressure (COP) in 
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combination with real-time feedback are thought to have beneficial impact on postural orientation 

and stability [83]. In addition, balance training that includes static and dynamic modes of control 

has proven to show beneficial effects [80].  

 

4.1.1 Previous Design Concepts 

 In past work, researchers have aimed to identify novel methods to improve postural balance. 

In [85], researchers utilized virtual reality training with a bicycle and correlated riding velocity 

with path trajectories to determine postural balance control. Yet, the proposal was for using such 

parameters for indirect balance rehabilitation. A device called the “Spider-bot” was proposed in 

[86], which allowed a subject to hold an end-effector using their hands and to practice activities of 

daily living. This device does not directly assist or train any segment of the body, but provides a 

single barrier for holding in cases of falls. The work does not show human studies and states a 

possible use in balance and strengthening exercises.    

 

Fig. 4.1 The novel robotic platform with a dual-belt system for multimodal and intersegmental training. 

Device consists of an active actuated assistive segment and a passive spring-based segment for stability 

training.  
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 We have modified our previous robotic platform for seated balance training, the Trunk Support 

Trainer (TruST) [29], to a stand balance training device with dual segmental control (Fig. 4.1). In 

addition to the active control, we have added resistive forces applied through a spring and pulley 

system. Four springs are mounted, one at each corner of the frame, and attached to a pelvic belt. 

A mechanical ratcheting crank is installed at each end to tighten and preload the spring forces as 

desired. 

The passive pelvic belt is composed of four cables at each corner of the belt, attached in series 

with a load cell and an extension spring (Stiffness: k = 0.3N/mm), to a ratcheting crank. The crank 

is used to preload the springs to 5% body weight, with the subject in a neutral configuration. The 

force follows Hooke’s law, 𝐹 = −𝑘∆𝑥, at each spring or attachment point creating a resultant 

force in the opposing direction of human movement. ∆𝑥 =  𝑥 − 𝑥0, where 𝑥0 is the original length 

of the spring at 40cm and x is the current length of the spring. 

 

4.1.2 Protocol 

 The research protocol was approved by Columbia University’s institutional review board. Ten 

healthy adults (7 males, 3 females) with average age: 27.6y, weight: 164.9lbs and height: 68.1in. 

were recruited. Nine of ten subjects were right-handed. They were randomly assigned to either the 

experimental (EXP) or control (CON) group across three stages: baseline (BL), training (T), and 

post-training (PT).  
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 The lower trunk was provided with actively controlled AAN forces using motors and load cells 

and a force-field control strategy, as done in our previous work on seated posture control [29], 

[87]. This was provided through a belt, placed firmly at the lower trunk. The subjects had no force 

administered to the lower trunk, as long they stayed within their predetermined workspace. As the 

lower trunk positioned out of the determined stability boundary, assistive forces provided haptic 

(proprioceptive) feedback and 10% body weight force to assist back towards the stability 

boundary. 

 The pelvis was controlled passively through resistive training with preloaded springs, load 

cells, and a ratcheting crank. A belt was placed at the pelvis and connected to springs using cables, 

one at each corner of the belt. The crank was used to pre-load the springs to 5% body weight, while 

the subject stood in their neutral configuration. The subjects performed all training standing on a 

balance ball, to simulate postural instabilities. This unstable surface required the subjects to 

provide additional balance at the knee, pelvis, and trunk level. 

 The EXP group wore both belts, for resistive forces at the pelvis and assistive forces at the 

lower trunk. The CON group wore both belts, but were not provided any assistance at the lower 

trunk or pelvis. The cables were removed to disengage the springs. 
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Fig. 4.2 The functional reach task to determine the lower trunk stability boundary and the peg task used for 

training and assessment, respectively. 

 During the experiment, subjects stood on a balance ball with a semi-sphere base while inserting 

and retrieving one peg (23mm x 6.4mm) in a small-diameter whole (7.8mm) that was placed at 

subject’s maximum reaching distance. This distance was obtained by having the subject displace 

a ball as far as possible in forward direction, while standing on a balance ball (Fig. 4.2A Forward 

Reaching Test).  

 In this unstable standing condition, all subjects were instructed to maintain standing balance 

and learn a new postural pattern during the peg task. It consisted of displacing first the pelvis with 

respect to the BOS (feet positioning) and then upper body in the direction of the reaching task. 

This was to consciously increase muscle activation at the pelvis for increased proprioception due 

to the resistive forces. In addition, it promotes experience of different postural configurations. 

Without such motion, the subject may focus solely on using the upper trunk, without possibly 

challenging themselves to experience more optimal pelvis-trunk configurations, under unstable 

conditions. This task was performed at the dominant side during BL stage. This task and the 

forward reach task were repeated again during the PT stage, after the training session. 
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 During training, subjects performed two blocks of 10 trials in five different directions: right, 

45deg right, forward, 45deg left and left. In each trial, the subjects had to insert and retrieve the 

peg from the peg board hole, while maintaining stability on the balance ball (Fig. 4.2B). The peg 

was placed at the maximum reach distance, or boundary of max stability, measured during the 

initial forward reach test.  

 Those subjects in the EXP group had to displace/rotate pelvis against an initial preloaded 

spring, equivalent to 5% of body weight resistance in each spring (passive component). This 

resistance however increased linearly as the subject pushed past their upright equilibrium point, 

due to the nature of a passive spring system. On the other hand, CON subjects had no resistance 

or assistance from the device. This allowed us to compare the effects of the training paradigm 

alone with that with the use of the robotic device.    
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4.1.3 Results 

 

Fig. 4.3 Upper trunk rotation profiles. These results show that using the TruST, the experimental group 

decreased their rotations in flex/extension, lateral rotation, and increased movement in axial rotation. The 

control group increased their rotations.  

 The results in Fig. 4.3 show that the experimental group significantly decreased their upper 

trunk flexion and extension and lateral rotation to the dominant side. However, they were able to 

complete the same task by utilizing axial rotation. This was while standing on an unstable surface. 

The control group increased their rotations with the unstable surface. This shows that training with 

the system can significantly alter the trunk kinematics, making an individual more vertical during 

a task. 

 

* 

* * * 
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4.2 Stand Training in Cerebellar Ataxia Patient 

 Ataxia is a neurological disorder associated with uncoordinated movements, which results 

from damage to the cerebellum. This damage can be congenital, result from a stroke or tumor, or 

be caused by an injury. This damage leads to abnormal proteins that attack the brain and the spinal 

cord, affecting motion planning and balance. This can be considered a feed-forward issue, meaning 

it can be challenging for an individual with Cerebellar Ataxia to plan an accurate movement. Other 

symptoms include lack of coordination, abnormal eye movements, slurred speech, tremors, 

difficulty with walking and poor balance, irregular gait, and loss of fine motor skills. 

 The cerebellum contributes to proprioception during motion [88]. Proprioception, by 

definition, is the spatial and temporal awareness of body position during motion, and is inherently 

essential for generating accurate movements. Research suggests that motions which rely more on 

spatial information provide a better proprioceptive acuity than motions which rely heavily on 

temporal parameters [88]. Cerebellar integrity is also essential for motor adaptation when 

presented with new tasks [16]. This may mean that active motion which requires a predictive motor 

output, such as a moving target, may be more challenging for individuals when the cerebellum is 

affected.  

 In terms of clinical features, balance abnormalities are characterized by increased postural 

sway, abnormal response to perturbations, variable control of equilibrium, and abnormal 

oscillations of the trunk [16], [89]. The region of cerebellar injury has a direct effect on the 

individual’s sway. Anterior lobe atrophy causes an increase in center of pressure sway in the 

anterior posterior direction, while the vestibulocerebellar lesion shows an increase in 

omnidirectional movement. In particular, anterior lobe damage results in high velocity, low 
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amplitude sway, while a vestibulocerebellar lesion results in low frequency, high amplitude sway 

[16].  

 Researchers have questioned whether patients can improve balance and coordination even 

though the damaged portions of their brains directly affect motor planning and motor learning 

[90]–[92]. Because of this, it has been traditionally considered that physiotherapy treatments that 

focus on remediation of impairments caused by cerebellar dysfunction would be ineffective [90]. 

Therefore, treatment strategies in the literature suggest compensatory approaches which use limb 

weight, gait aids, and coordination exercises [90], [93], [94]. However, recent studies suggest that 

motor learning is possible in patients with cerebellar damage, suggesting that physiotherapy 

interventions and motor retraining aimed at promoting neural plasticity may be beneficial [95]–

[97]. 

 A systematic review conducted by Martin et al. [90] documented the effectiveness of 

physiotherapy interventions on improving cerebellar based impairments. Majority of the studies 

were case studies. The interventions included proprioceptive neurofacilitation (PNF), balance 

exercises, vestibular habituation exercises, and Frenkel exercises. PNF is an intervention where 

muscles are stretched maximally to induce muscle activation and response. A prolonged and 

maximal stretch will loosen the muscle, preparing them for activation. In vestibular habituation 

exercises, a patient is asked to perform a series of bending, reaching, and alternating posture tasks. 

Among the many tasks are sitting, bending to the side, standing, and bending forward at the hip. 

The Frenkel exercises are coordination tasks which require reaching and aiming. This includes 

following a finger, touching the nose, touching a target, or other similar activities. These are 

progressed based on the needs of an individual. The basic concept includes constant repetition, 
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sensory cues, increased task speed, assistance as needed, rest periods, new tasks with performance 

cues such as instructions or sensory stimulation. Majority of the studies documented were case 

studies. The results of studies using these metrics showed modest improvements in gait, subjective 

trunk control during silent standing, and self-reporting of balance improvements. Often, the 

documentation of the training methodology was unclear and unreproducible. 

 Although it is known that the trunk plays an integral role in daily tasks, it is often overlooked 

or not addressed in rehabilitation [89]. The trunk is essential for maintaining balance and limb 

control, and relies on muscle strength, endurance, and sensory-motor control for stability. The 

trunk muscles, such as the rectus abdominis, external oblique, internal oblique, transverse 

abdominis, and erector spinae, provide stability through kinetic chain activities [98]. Since persons 

with cerebellar ataxia have difficulty regulating the force and speed of trunk muscle contractions, 

rehabilitation aimed at trunk stabilization may improve limb coordination and balance [89]. 

 Based on the literary findings described above, we have developed a novel approach for trunk 

posture rehabilitation. We have combined several aspects of physiotherapy that have shown 

benefits in posture and coordination for patients with cerebellar damage. Using the principles in 

Frenkel exercises, our training promotes several reaching and coordination tasks.  As seen with 

vestibular habituation, our task also incorporates alternating the trunk and pelvis position, 

requiring one to maintain stability to perform a task. Finally, using a robotic intervention, we 

provide sensory feedback and assistance at the trunk and pelvis. This is to promote sensory 

awareness in terms of spatial positioning, and assistance at extreme postures. We believe that 

training modalities which provide haptic feedback on spatial position, challenge muscle activation, 

and provide postural exploration can be beneficial for rehabilitation. Specifically, the training tasks 
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should include functional and goal-oriented performance. The nature of this training is described 

in detail in the next section.  

  

4.2.1 Protocol 

 In this study, we were interested in assessing whether a patient with ataxia can improve their 

reach and trunk workspace, when training with our robotic intervention. To quantify the difference, 

we recruited a single 18 year-old individual with cerebellar ataxia, who performed the training 

with assistance from the robotic device and then again six months later without the robotic 

intervention. The six-month wait period was to washout any training effect. This allowed us to 

document the changes in performance with our training methodology, with (experimental) and 

without (control) the robotic intervention. The training allows the subject to train at their maximum 

trunk displacement, perform a reaching task, and receive assistance at the trunk and resistance at 

the pelvis.  

 This individual underwent three non-consecutive days of training in a single week, followed 

by a post training assessment after the week (Fig. 4.4). Roughly six months later, the patient served 

as his own control, following the training protocol without robotic intervention. The training 

protocol was approved by Columbia University’s institutional review board. 

 

 

Fig. 4.4 Study timeline for training and post-training sessions for ataxia patient. 
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 In this study, we utilized the modified TruST platform in the standing position. This was based 

off our findings with a healthy adult population showing changes in reaching strategies [99], 

described in chapter 3.4. We replicated the healthy adult study with a few changes to the protocol. 

Since patients with ataxia have internal balance disturbances, the balancing platform was removed. 

The reach task was replaced from a peg board to a button. The button was a small 3 inch light up 

toy that was placed at 120% of maximum reach. This button light up if it was located and pressed 

properly. The individual was provided with actively controlled assist-as-needed forces through a 

belt placed firmly at the lower trunk, which was connected by cables to motors and load cells. A 

force-field control strategy was used, as done in our previous work on seated posture control [29], 

[87]. The patient had no force administered to the lower trunk within a predetermined workspace. 

As the lower trunk extended past the determined stability boundary, assistive forces provided 

haptic (proprioceptive) feedback through a 10% body weight force to assist the individual back 

towards the stability boundary. The force magnitude was chosen through trial and error and kept 

the same as previous healthy and patient studies. All tasks were performed in the standing position. 

  The pelvis was passively controlled through resistive training with preloaded springs, load 

cells, and ratcheting cranks, as shown in Fig. 4.1. A belt was worn at the pelvis and connected to 

springs using cables, one at each corner of the belt. The cranks were used to pre-load the springs 

to 5% body weight while the subject stood in their neutral configuration. The initial removed spring 

and cable slack. As the person moved away from their midline, the force increased in the opposite 

direction of movement. The patient stood on top of a force plate as they performed several reaching 

tasks. In the control experimentation, the subject underwent the same training protocol, but no 

cables or forces were applied to the trunk or pelvis. 
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 The force field applied on the trunk was determined through the 8-point Star Test. This is an 

assessment we devised to determine the force-field shape and boundary, as well as measure the 

changes in postural workspace. In this test, the patient is asked to displace a ball as far as they can 

in eight directions: anterior, posterior, right and left lateral, and four diagonals. An example of the 

force field shape is shown in Fig. 4.5, and shows the asymmetry in the patient’s reaching ability 

in different directions. At the boundary, the patient received haptic feedback, or low amplitude 

vibrations, to signal they were at their boundary. The plot on the right in Fig. 4.5 shows that the 

force did not activate until the trunk center moved outside the boundary of measured stability. 

 

Fig. 4.5 Active force-field profile at the trunk and passive spring based belt at the pelvis. The right graph 

shows the force activation occurs when the center of the trunk (orange) is outside the asymmetric stability 

boundary (blue and black). 
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Fig. 4.6 Protocol schematic showing the task progression for each training day. 

 

 The study protocol can be seen in Fig. 4.6. During the experiment, the patient stood on a force 

plate and was asked to press a button (3-inch diameter) placed at 120% of his maximum reaching 

distance. This distance was obtained by having the subject displace a ball as far as possible in the 

anterior direction (anterior reach test). The 20% distance outside the maximum reaching distance 

was added to further challenge the individual. 

 In this unstable standing condition, the individual was instructed to maintain standing balance 

while learning a new upper body postural pattern during the reach task. The postural pattern 

consisted of first displacing the pelvis with respect to the BOS (feet positioning), then displacing 

the upper body in the direction of the reaching task. This reaching strategy afforded a conscious 

effort to displace past the resistive pelvis forces. Without such motion, the subject may focus solely 

on using the upper trunk, without challenging themselves to experience more optimal pelvis-trunk 

configurations under unstable conditions. This maximum reach test was performed at the anterior 

and dominant lateral side during both the baseline and post-training stage.  
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During training, the patient performed 20 reaches in five different directions: right, 45deg 

right, forward, 45deg left, and left. In each trial, the subject had to locate and press a button while 

maintaining stability (Fig. 4.7). During the experimental session, he had to displace/rotate his 

pelvis against an initial preloaded spring, equivalent to 5% body weight resistance in each spring 

(passive component). This resistance increased linearly as he pushed past his upright equilibrium 

point, due to the nature of a passive spring system. On the other hand, during the control sessions, 

the patient had no resistance or assistance from the device. This allowed us to compare the effects 

of the training paradigm alone against the addition of the use of the robotic device.  

 

Fig. 4.7 Five reach directions during training and the task initiation and completion using the button. 

 

4.2.2 Results 

 To assess the workspace changes throughout the training protocol, we performed the 8-point 

star test at the beginning of each session. This was done for both the experimental and control 

subject. During the experimental training with the robotic device, the workspace area increased 



91 

 

each day, totaling 199% growth over three training sessions. Conversely, the control subject’s 

workspace decreased after each session, totaling a 66% reduction over the three non-robotic 

training sessions. The results can be seen in the graph below (Fig. 4.8-4.9). 

 

 

Fig. 4.8 The star test shows that the experimental subject improved the postural workspace measured at the 

beginning of each day, while the control decreased each day. 
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Fig. 4.9 The total area of the workspace was measured each day. The line graph shows the experimental 

subject improved the postural workspace area measured at the beginning of each day, while the control 

subject decreased each day. 

 

 The upper trunk (UT) and lower trunk (LT) translations were measured at the beginning of 

each training session as the patient performed the maximum reach test in the anterior and dominant 

lateral directions (Fig. 4.10). In the experimental training, the anterior LT and UT translations 

increased each session, elongating 161.8% and 75.7%, respectively. The control training showed 

a 17.1% decrease for the LT but a 2.7% increase for the UT. 

 For the lateral reach in the experimental training, the LT reach increased 54.5% and the UT 

reach increased 13.9%. On the other hand, the lateral reach in the control training decreased 50.5% 

for the LT and 18.4% for the UT. 
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Fig. 4.10 The total anterior and posterior translations increased each day of training with the experimental 

sessions and decreased with the control sessions. 

 

 The differences in the trunk’s center of mass (COM) and center of pressure (COP) were 

measured to account for the changes in reaching strategy (Fig. 4.11). In an ideal and stable 

configuration, the COM sits over the COP. In the experimental subject, as the patient reached 

further each day, he also decreased the deviation between the COM and COP. At the same time, 

the medial-lateral (ML), anterior-posterior (AP), and overall COP displacements also increased. 

This means that as the trunk moved farther, the COP moved farther, but stayed closer under the 

COM.  

 For the control subject, displacements were more variable. As the overall translation of the 

trunk decreased, the COP moved farther overall and in the ML direction. This may signify that the 

COP required a larger deviation to account for smaller trunk changes.  
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Fig. 4.11 The center of pressure (COP) translations during the anterior reach test. 

 

 Each body segment rotation was measured relative to its caudal segment. The rotational 

profiles associated with the anterior reach show that after the experimental training, the patient 

was able to increase the rotation of the upper and lower trunk, while rotating the pelvis back 

posteriorly (Fig. 4.12). After the control training, the upper trunk and pelvis rotated posteriorly, 

while the lower trunk rotated anteriorly, resulting in an overall decrease in effective reach. This 

presented as a “C-shaped posture” reach. The reaching posture for the experimental training can 

be seen in Fig. 4.13. 
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Fig. 4.12 Segmental rotations measured during the anterior reach test, at the beginning of each training 

session. 

 

 

Fig. 4.13 The illustration shows the rotation change during the anterior reach for the experimental training 

sessions. The pink was the initial reaching posture prior to training and the green was during the last day. 
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4.2.3 Discussion 

 Several studies have attempted to determine the most effective medical interventions for 

patients with cerebellar damage [16], [88], [90], [93], [95]. While the treatments vary between 

medical, surgical, stimulation, and physical therapy, no definitive training has been identified. 

However, outcomes from non-invasive interventions have implied that task-specific training may 

produce the most beneficial results. A majority of the focus on task-specific therapy has been given 

to gait rehabilitation, body weight support training, and compensatory weight training, which all 

focus on lower limbs. Although it is accepted that the trunk plays a large role in postural balance, 

research on trunk rehabilitation is limited and often neglected. 

 In our training paradigm, we utilized our robotic platform, which showed promise in seated 

posture training. We modified the system to accommodate multimodal control of the trunk and 

pelvis in the standing position. A strong measure of trunk stability is the size of the workspace in 

which the trunk can maintain control. By control, we mean the ability to actively coordinate the 

trunk to perform a specified task, then successfully navigate back to a neutral configuration without 

external assistance. By including the trunk and pelvis in our training paradigm, we challenge 

muscle and kinematic coordination through both assistance and resistance. While the pelvis 

received passive resistance due to the spring-crank system, the trunk was actively assisted with 

haptic feedback and assist-as-needed forces. These coupled training components afforded postural 

exploration. Our implemented goal-oriented tasks challenge an individual to reach further, 

maintain stability, then successfully return to their neutral postural configuration. To assess the 

difference between our training with and without our robotic platform, we conducted the training 

using the same patient with a washout period of roughly six months.  
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 The results from our experimental training show substantial improvements. The overall 

functional workspace improved 199% in just three training sessions. The translations in the 

anterior directions for the lower and upper trunk improved 161.8% and 75.7%, respectively. The 

translations in the lateral directions for the lower and upper trunk improved 54.5% and 13.9%, 

respectively. The range in the COP increased largely, while the difference between the COM and 

COP decreased. Finally, in terms of rotations, the trunk and pelvis dissociated from an in-block 

motion to opposing posterior pelvic rotation and anterior upper and lower trunk rotations. While 

the trunk and pelvis moved further away from the midline, the rotation between the segments 

provided a new reach strategy for the patient, leading to changes in the COP to account for the 

COM deviations. These findings clearly express that a person with cerebellar ataxia may possess 

the ability to learn or adapt to improve postural balance with the appropriate training. 

 On the contrary, the control training showed the opposite result. Over the training, the patient 

performed worse in their workspace assessment and reaches. They altered their reaching strategy 

by reducing pelvic and upper trunk rotation in the anterior direction. Yet the COP displacement 

from the center position increased. This may mean that the patient is using larger muscle 

activations at the ankle level to counter the perception of the COM shift. In general, COP changes 

are  

 Though the protocol was the same for both trainings, the patient performed all successful 

reaches in the experimental training sessions. This means that they were able to reach and press 

the button with each attempt. During the control sessions, the patient failed to touch the button in 

all of their attempted reaches, even though they attempted rigorously. This is likely due to the lack 

of assistance and resistance provided by our device during the reach. Without the device, the 

patient may have not experienced adequate time to adjust their posture and coordination, and 
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therefore may not have explored new postural configurations. In addition, the failure to hit the 

button may have had a psychologically demotivating component, which could result in a loss of 

confidence. With the experimental sessions, each successful reach might have provided more 

confidence to the patient. This may not have been the case with the control sessions, although the 

patient worked and challenged themselves with each reach. 

 Although this is only a case report, this study provided encouraging findings to support that 

multimodal training paradigms may provide a beneficial environment for rehabilitation. One of 

the essential components to our training is our robotic platform, which provides customizable and 

modular capabilities to fit the specific needs of each patient. We believe that continued 

investigation is necessary to apply our findings to a larger patient population. 
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Chapter 5 

5 Stand Trainer - Cable Robot Development 

 In this work, we have created a novel full-body cable robot for quantitatively engaging the 

trunk, pelvis, and the knees for training of balance and coordination (Fig. 5.1-5.2). Our system is 

called the “Stand Trainer” and it can apply assistive, resistive, or perturbation forces on the trunk 

and pelvis. This system builds upon our previous research on cable systems designed for training 

of sitting, standing, and walking  [17], [29], [87], [99]–[101]. The system utilizes patient specific 

assist-as-needed force-fields while facilitating active postural recovery. In addition, the system can 

apply postural disturbances and train balance/coordination. The system details are explained in the 

next sections. Two separate systems of the same type were built for studies to be performed in our 

laboratory at the Columbia Medical Center and at the University of Louisville. 

 The primary novelty of this system is the ability to have full body control. The device allows 

real-time control of the trunk, pelvis, and knees. This is essential for someone in the standing 
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position. By applying forces and moments at each segment, the body can be manipulated in the 

standing position. Furthermore, the device utilizes novel force-field algorithms for symmetric, 

asymmetric, and three-dimensional trunk and pelvis stability workspace, which are discussed later 

in this chapter. 

 

 

Fig. 5.1 Stand Trainer Robot CAD design 
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Fig. 5.2 A novel robotic platform for Stand Training. The device consists of cables actuated belts that allow 

control of the trunk, pelvis, and knees. This system allows training of balance through sophisticated 

algorithms. The device consists of 14 motors/encoders, 14 load cells, a real time motion capture system and 

controller, an electrical box housing the drivers and amplifiers, and two force plates. 

 

5.1 Mechanical Design 

 The modular design allows control of six degrees-of-freedom at the pelvis, three degrees-of-

freedom at the trunk, and extension of the knee joint. The system can apply assistive, resistive, and 

perturbation forces which can be adjusted in real-time using the software interface. The end 

effectors are belts that can be strapped on the pelvis or a region of the trunk as desired. Cables are 

attached to four points on the belt which is reinforced with thermoplastic for rigidity. The cables 

are routed through pulleys to DC motors mounted on an aluminum frame (80/20 Inc, Indiana). 

 The device consists of 14 DC motors with a 14:1 gearhead reduction and a three-channel 

encoder (Maxon Motor, Switzerland). Each motor is capable of generating up to 143.85Nm of 

output torque (8.81Nm nominal continuous torque). The motor shafts are fixed with a 4cm 

diameter winch spooled with a 1/16in PVC coated flexible steel cable allowing continuous tension 
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of 440N (Fig. 5.3). Each cable has a load cell/tension sensor (LSB302 Futek, California) in series 

which can measure up to 300lb load (1334N). The load cells are connected to a signal conditioning 

amplifier (IAA100 Futek, California). The motors are controlled through 14 Epos2 digital 

positioning controllers (Maxon Motor, Switzerland) that are daisy chained and communicate via a 

controller area network (CAN) serial bus (Fig. 5.4). A motion capture system with nine infrared 

cameras (Vicon Vero 2.2 from Vicon, Denver) is used to record the cable attachment points on the 

belt and pulleys to calculate the force directions in the cables. A two-stage control is implemented 

using LabView, PXI real time controller and data acquisition cards (National Instrument, Austin). 

Each of the three body segments (trunk, pelvis, knees) has its own two stage control, which operate 

individually but simultaneously. Two individual six-axis force plates (Bertec, Columbus, Ohio) 

are instrumented for measuring under-foot force, moments, and center of pressure changes. 

 

Fig. 5.3 Motor, encoder, gearhead, couple, bearings, motor shaft, and spool assembly can be seen here. 
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Fig 5.4 The motor driver, amplifier, and power supply enclosure box for powering and controlling the 

motors and tension sensors. 

 

5.2 System Model 

 The Stand Trainer operates similar to that explained for the TruST in chapter 2. The system 

operates using a two stage controller and a tension planner. The two stages, high and low level 

controllers, are implemented separately for controlling the trunk, pelvis, and knees. The difference 

lies in the CAN communication between motor drivers and the controller speeds. To account for 

the large quantity of motors, and the real-time calculation speeds, the low-level controller operates 

at 500Hz and the high-level at 200Hz.  

 Prior to use, the tension sensors were calibrated and characterized to ensure proper 

performance. For the motors, a current (mA) and force (N) relationship was created using empirical 

data. A current was applied and the tension force was measured for each motor and sensor 

combination. A linear relationship was obtained and the slope was used as the feed forward term, 

multiplied by the desired force (N). Fig. 5.5 shows the motor constants for 14 motors.  
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Fig. 5.5 Tension and current relationship modeled empirically for each motor.  
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5.3 Driver Communication 

 The device consists of 14 motors/encoders/drivers. We utilized a CAN serial bus to reduce the 

required number of cables between the drivers and PXI controller. In addition, the CAN protocol 

allows fault-tolerant real-time communication between the components. We divided the system 

into two CAN buses for communication, with seven drivers per bus. Using the CAN bus, we can 

read and write to the drivers using a unique node ID. Each high-speed CAN is set to transmit up 

to 1Mbits/sec (baud rate). The CAN devices send data across the network in packets called frames. 

We programmed the CAN bus to operate in stages to confirm communication prior to controlling 

the robot platform. During initialization, each driver confirms its node ID and enters into pre-

operational state with the instructed baud rate and service data objects (SDO). These allow a device 

to be configured with the communication object dictionary. Each driver enters a disabled 

operational mode where it becomes capable of reading process data objects (PDO). These carry 

the information to be exchanged, such as motor current and encoder position. Finally, the drivers 

enter enabled operational mode where they begin sending PDOs. The bus remains active until it 

enters the stop state at the end of system use. 

 The controller can be broken into the same two stages as described for the TruST above. The 

high-level solver solves for the force vector and plans the cable tensions. The low-level uses a PID 

to achieve the desired tension by minimizing the errors. There is a separate high and low level for 

each of the body segments being controlled. This includes the trunk, pelvis, and knees. 
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5.4 System Validation 

We tested the system to validate the end-effector forces. To do this, we fixed a six-axis force 

torque sensor (FT) at the center (Fig. 5.6). The sensor was mounted with an acrylic plate and cable 

attachment points (Fig. 5.7). Cable attachments and pulley positions were calculated using Vicon 

cameras. A desired force was generated with the robot and the accuracy of the tension values and 

end effector forces were analyzed.  

 

 

Fig. 5.6 Device setup for system validation. Acrylic plates are mounted to a force-torque sensor for 

measuring the external forces at the end effector. 
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Fig. 5.7 The setup shows the use of a force-torque sensor mounted on a rigid platform for device validation. 

 

For the cable tensions, the average error between the actual and desired tensions was 0.12N. In 

terms of the Cartesian forces, the average absolute error overall was 1.22% between the 

desired/actual and 1.73% between the desired and FT. All auxiliary forces were maintained within 

the desired constraints. This means that we were able to generate a desired force along a specific 

direction, while keeping forces in all other directions within a specified boundary. The individual 

breakdown can be seen in Table 5.1. Fig. 5.8 shows that the controller was able to follow the 

desired force. 

 

 

Table 5.1 The table shows absolute errors with respect to the desired force at the end effector. These were 

calculated with comparison between the actual and desired force measured at the cable and the end effector 

level. 

ABSOLUTE ERRORS IN CABLE TENSION 
AND FORCE SENSORS 

Direction Current/Desired FT/Desired 

Anterior 0.88% 0.68% 

Posterior 1.37% 2.27% 

Right 0.79% 1.25% 

Left 1.85% 2.72% 
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Fig. 5.8 Results show that the cable tensions were tracked accurately by the controller during both static 

and dynamic movement. 

 

5.5 Force-Field Algorithms 

 The Stand Trainer is capable of applying various planar and three-dimensional forces. 

Specifically, the device is programmed to apply various force-field algorithms. It can generate the 

planar circular force field, two ring planar force field, irregular force field, and the three-

dimensional ellipsoidal force field. 

 The planar force field creates a circle of a given radius around a body segment. If the body is 

within the circle, no force is applied at the end effector. If the person moves outside the circle, a 

force perpendicular to the circle is applied to assist the belt back inside the circle. This is done at 

a fixed body weight percentage magnitude. 

 The two ring force field uses two rings around the belt. Inside the first circle, no force is 

provided. Outside each of the rings, a different body weight percentage force is applied to assist 

the belt to the boundary of the ring. This may be effective for individuals with poor postural control 

the further they move.  
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 The irregular force field works in a similar way but provides an irregular shape around the 

person. This shape is defined by the persons asymmetry, giving earlier assistance in certain, 

smaller workspace quadrants. This is particularly useful for individuals with postural asymmetry. 

 Finally, the three-dimensional ellipsoidal force field provides assistance in the anterior 

posterior, lateral, and vertical direction. This can be specified to allow more unassisted motion in 

a certain direction, while providing earlier assistance in others. Specifically, this also assists the 

user in the vertical direction, in situation where they are collapsing or falling down. This maybe 

useful in patient groups with lower limb atrophy or as a fall prevention. 
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Chapter 6 

6 Human Experiments with Stand Trainer 

 Functional rehabilitation of patients with spinal cord injury remains a current challenge. 

Training these patients to successfully stand is the first step towards restoring advanced skills such 

as walking. To address this need, we developed a novel robotic stand trainer described in Chapter 

4. The Stand Trainer can apply controlled forces on the trunk and the pelvis of a user, while 

controlling the knee angle. The Stand Trainer utilizes cables to apply assistive, resistive, or 

perturbation forces at the trunk, pelvis, and the knees, simultaneously. We have conducted a human 

study to validate the system. In this study, we applied multi-direction perturbation forces either at 

the pelvis or the trunk while assist-as-needed forces were applied to the other segment to keep 

balance. This study characterizes the human kinematics and measures of balance under the 

perturbations and assistive forces on the human body. Results shows that the level of force-field 

assistance (trunk or pelvis) directly affects the motion of the trunk, pelvis, and center of pressure. 

This provides a quantitative framework to restore balance in patients while providing assistance 
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only when needed. This stand trainer can potentially free up therapists to attend to higher level 

rehabilitation goals and objectively assist patients to engage in interventions that challenge both 

their musculoskeletal and sensorimotor impairments. 

 

6.1 Assistance and Perturbation Characterization in Healthy Adults 

 Balance control is essential for performing many every day functional tasks. It allows 

individuals to maintain their gross posture, while precisely tune the body to the needs of a task. 

Often posture control is simplified to a single degree inverted pendulum approximation, but recent 

studies have clarified that balance involves the entire kinematic chain [102]. Balance requires 

control of postural joints while coordinating the center of pressure (COP) and center of mass 

(COM) [102].  

 Impaired balance control increases the risk of falls, which can have serious health 

consequences (fractures and related complications), and impact health care costs significantly [84], 

[103], [104]. Poor balance is often accompanied by postural sway with increased intersegmental 

movement at the head, trunk, pelvis, and legs [16], [80]. Impaired balance control can be due to 

aging and disuse, as well as neurological and musculoskeletal deficits such as that seen in cerebral 

palsy, stroke, Parkinson’s, cerebellar ataxia, and spinal cord injury patients.  

 Balance control can be improved by activity-based training interventions aimed at 

strengthening lower limbs, balance exercises, and perturbation based training [105]–[107]. 

General rehabilitation strategies have focused on muscle strengthening of lower extremities or 

balance training to reduce intersegmental sway and improve functionality. However, studies 
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suggest that postural training that directly targets active balance control could be quite beneficial 

for motor learning [16].  

 Many patient populations with balance and coordination deficits are trained using manual 

manipulation. Often the focus of these training strategies is to strengthen muscles and engage the 

ankle and knee joints. The rationale is that these are important for maintaining standing 

equilibrium. Specifically, researchers of Parkinson’s and stroke have shown that balance training 

improves stability and gait reducing the risk of falling[108], [109]. In  research with the elderly, 

computerized tests with foam or moving platforms have been used for balance assessment [110].  

 More severe neurological deficits such as motor complete SCI lead to paralysis, and 

compromise motor responses for postural control. Recent studies on complete animal models and 

humans suggest that activity-based training coupled with spinal cord epidural stimulation can 

promote partial recovery of postural control [111]–[113] . This can be of particular interest because 

recent findings suggest that standing and walking with assistance for balance control can be 

recovered after severe SCI by the combination of spinal epidural stimulation and activity-based 

training [112]. Therefore, a facility for multi-modal training that constrains, assists, perturbs or 

modulates stability could be important for task-oriented therapy in SCI. 

 Achieving postural equilibrium requires coordination of multiple body segments and postural 

strategies to stabilize the body COM during self-initiated reaching or external disturbances [114]. 

The strategies depend on the postural displacements,  individual’s expectations and goals [114]. 

Studies suggest that programs that involve motor learning principles in active balance control are 

more effective [16]. Furthermore, active training that directly controls a person’s center of pressure 

(COP) have beneficial impact on postural orientation and stability [81].  
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 The goal of rehabilitation is to advance patients along their course to regain balance, strength, 

and coordination, while moving from sitting, standing, to walking. The therapies may have aspects 

of strengthening through resistance, haptic feedback, proprioceptive and coordination training, and 

cognitive enrichment. While manual training has shown benefits in patients with SCI, it can require 

multiple therapists, induce training variability, and reduce motor learning.  

 In this work, we have created a novel full-body cable robot for quantitatively engaging the 

trunk, pelvis, and the knees for training of balance and coordination. Our system is called the Stand 

Trainer and it can apply assistive, resistive, or perturbation forces on the trunk and pelvis. This 

system builds upon our previous research on cable systems designed for training of sitting, 

standing, and walking  [17], [29], [87], [99]–[101]. The system utilizes patient specific assist-as-

needed force-fields while facilitating active postural recovery. In addition, the system can apply 

postural disturbances and train balance/coordination. In this work, we recruited 10 healthy adults 

to characterize the differences in COP and trunk/pelvis coordination, with and without an assistive 

force field at the trunk or the pelvis. We hypothesize that our system can reduce postural sway by 

use of a force-field. We further plan to explore the effects of perturbations with assistance on 

different body segments in terms of kinematics. Our results show that an assistive force field during 

postural perturbations decreases trunk and pelvis movement and COP trajectory excursions. The 

results of this study are beneficial in understanding the effects of assistance at different body 

segments and can provide insights into designing new training paradigms for different patient 

population groups. 
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6.1.1 Protocol 

 The research protocol was approved by Columbia University’s institutional review board. Ten 

healthy adults (7 males, 3 females) with average age: 27y, weight: 161lbs and height: 68in. were 

recruited. All subjects were right dominant. Each subject underwent four conditions with a 

combination of perturbations and assistive force field. As shown in Fig. 6.1, the conditions 

included trunk perturbation (Tpert), trunk perturbation with an assistive pelvis force field (Tpert-

Pff), pelvis perturbation (Ppert), and pelvis perturbation with assistive trunk force field (Ppert-

Tff). For simplicity of force application on the body and to minimize the number of cables along 

each body segment, we applied the perturbations and assistance separately to either the trunk or 

pelvis. The perturbations represented both internal disturbances, as with a patient group, and added 

disturbance. Our choice of conditions allowed us to test if: 1) force field assistance is sufficient to 

minimize sway and 2) determine which combination of assistance/disturbance would provide the 

largest kinematic constrain or the most challenging condition. 

 Vicon motion capture system was used to record kinematics sampled at 100Hz. This was used 

to detect the real-time center position of the trunk and pelvis during training. Retro-reflective 

markers were placed on the trunk and pelvis belt to determine the estimated centers. 

 Two separate belts were placed on each subject, at the trunk and pelvis. Four planar cables 

were connected to each belt. The subjects stood on a force plate with feet apart. The subjects were 

told to raise their hands up and to the side for consistency in data collection. The subjects were 

instructed to move their hands as needed, without touching or holding on to surrounding structures.  

 In each of the four conditions, the subjects received a total of eight perturbations, two in each 

direction: anterior (N), posterior (S), and right lateral (E) and left lateral (W). The perturbations 
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were randomized and occurred with a random time spacing. The subjects responded to the 

perturbations and returned back to their starting position after each perturbation. The perturbation 

was characterized as a 20% body weight trapezoidal force that had a 0.5s rise time, 0.5s constant 

value, and 0.5s fall time. The total force lasted 1.5s from start  

 

 

Fig. 6.1 The experimental design and the setup with two belts - one at the trunk and the other at the pelvis. 
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to finish. Our goal was to provide a force that was gradual and allowed time to initiate postural 

adjustments necessary to maintain a stable configuration. We also wanted the force to produce 

postural sway as one begins to lose balance, as opposed to be an unexpected “push”. We chose a 

percentage of body weight that was sufficient to challenge the user to adjust their kinematics to 

maintain stability. The choice of the perturbation force was determined after multiple trials.   

 The body level assist-as-needed force field was provided using motors and load cells [29], 

[87]. No force was applied if the subject stayed within a predetermined workspace. As the lower 

trunk moved out of the stability boundary, assistive forces were applied equivalent to 10% body 

weight to assist in movement towards the stability boundary. The force field provided a virtual 

circle of radius 10cm. This was determined based on anthropometric data reported in [115]. The 

50th percentile foot size is roughly 20cm. With a virtual circular force field of radius 10cm, we can 

assist the COM to remain within the BOS (boundary of the feet) in the anterior/posterior direction. 

 

6.1.2 Data Analysis 

 Performance variables were analyzed via kinematics. Data was collected and low-pass filtered 

with a 2nd-order Butterworth filter. Angular motion of the trunk and pelvis was computed 

following an Euler sequential rotation x-y’-z’’ and right-handed convention (flexion 

(+)/extension(-); right latero-flexion (+)/left latero-flexion (-); left rotation (+) and right rotation (-

). MATLAB (MathWorks, Natick) was used for data processing.  For the analysis, we divided the 

perturbations into cycles from the onset of the force to the offset (1.5s) and an additional (0.5s) 

response time. These 2s trials were then grouped separately based on the direction of the 

perturbation. All perturbations in the same direction were grouped and averaged. The statistical 
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analysis was conducted using SPSS 24 (IBM, Chicago, Illinois). Alpha rate was set at 0.05 to test 

significant differences with 95%CI. A one-way repeated measures (within subjects) Analysis of 

Variance (ANOVA) across 4 experimental conditions (A: Tpert, B: Tpert=Pff, C: Ppert & D: 

Ppert-Tff) was applied to test variables across directions (posterior & non-dominant lateral) that 

were dependent on on the maximum position of the body segment (max trunk and max pelvis). 

Bonferroni's inequality procedure was used to correct the P-values based on the number of 

comparisons. Post-hoc analyses were carried only if the ANOVA model was significant 

("Omnibus Test"). 

 

6.1.3 Results 

 We analyzed the data comparing the various conditions of perturbations. We wanted to identify 

the changes in human performance when the perturbation was applied to the trunk versus the 

pelvis, and with and without a force-field constraint at the opposite level. 

 Fig. 6.2 shows the area encompassing the overall area of movement for the trunk and pelvis 

geometrical center in each test condition. There was a significant effect for trunk area [F(3,27) = 

24.3, P < 0.001] and pelvis area [F(3,27) = 17.1, P < 0.001]. This takes into account eight 

consecutive perturbations for each, two in each of the N, S, E, and W, directions. For trunk, the 

results show that Tpert produced the highest area of movement compared to other conditions 

(M=273.8cm2, S=81.6, P<0.05). The pelvis area was similar with Tpert (M=213.5 cm2, S=56.7) 

and Ppert (M=199.9 cm2, S=75.8). Yet, both trunk and pelvis area decreased with the use of a force 

field (P<0.05). For the trunk, using a force field assistance during trunk perturbations decreased 

the area by 43.6% (P<0.05) and during pelvis perturbations by 60% (P<0.05). For the pelvis, using 
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a force field assistance during trunk perturbations decreased the area by 61.3% (P<0.05) and during 

pelvis perturbations by 54.4% (P<0.05).  

 

Fig. 6.2 Area of movement after eight perturbations under each condition. A sample data is shown below, 

identifying the boundary of movement. Lines indicate significant difference (P<0.05), where *<0.001).  

 

 We also analyzed the overall distance (path or trajectory) travelled by the trunk center, pelvis 

center, and the COP (RCOP-right force plate COP, LCOP-left force plate COP, and ACOP-

average COP) during posterior and non-dominant side perturbations. There was a significant effect 

within subjects for trunk trajectory [F(3,27) = 4.16, P < 0.001] and pelvis trajectory [F(3,27) = 

24.7, P < 0.001]. The results show that Tpert produced the longest path for the trunk and pelvis 

(M=35.5cm, S=5.0, P<0.001) and COP (M=7.4cm, S=3.1, P<0.05) compared to all other 

conditions. Applying a forcefield on the pelvis decreased trunk path (P<0.05), while there was no 

difference between Ppert with and without assistance. In terms of the pelvis, force field on the 

trunk or pelvis decreased the pelvis path (P<0.05). The COP path was longest with Tpert compared 

to all other conditions (P<0.05). In terms of non-dominant side perturbations, Tpert caused the 



120 

 

trunk to travel the longest path compared to all other conditions (P<0.05). Pelvis assistance 

decreased trunk and pelvis trajectory during Tpert (P<0.05). 

 Fig. 6.3 shows the trunk and pelvis trajectory during the posterior and non-dominant lateral 

perturbations. The dark middle of each plot shows the average trajectory while the shaded shows 

the variance. It is seen that the variance in the perturbation response increases over time. The larger 

the displacement in the posterior or lateral direction, the more variance in compensation strategy. 

The trunk perturbation shows the most variance and largest displacement as was seen with Fig. 

6.4. The time to maximum translation remains similar for all conditions (P>0.05). 

 

 

Fig. 6.3 The trunk and pelvis trajectories are shown during posterior and lateral perturbation in each of the 

experimental conditions. Trunk pert creates the largest postural deviations while the assistive conditions 

constrain the motion. 

 

 Fig. 6.4 shows the trunk and pelvis displacement in the direction of the posterior and non-

dominant side perturbation at maximum segment translation. There was a significant effect within 

subjects for trunk [F(3,27) = 34.4, P < 0.001] and pelvis [F(3,27) = 19.5, P < 0.001] posterior 

perturbations, and also trunk [F(3,27) = 29.8, P < 0.001] and pelvis [F(3,27) = 8.0, P = 0.001] non-

dominant perturbations. During posterior perturbation, the trunk translates most with Tpert 
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compared to any other condition (M=20.1cm, S=5.1, P<0.05). Tpert-Pff decreases trunk 

translation (M=13.1cm, S=3.7, P<0.05), while there is no difference in the trunk translation when 

perturbing at the pelvis with (Ppert-Tff, M=6.1cm, S=2.7) and without trunk assistance (Ppert, 

M=9.2cm, S=5.0). Non-dominant side perturbations follow the same performance. Pelvis shows 

no difference in translations when the posterior perturbation is at the trunk (Tpert, M=17.2cm, 

S=4.2) or pelvis (Ppert, M=15.2cm, S=3.3). Pelvis translates less with trunk perturbations with 

pelvis assistance (Tpert-Pff, M=7.4cm, S=2.4, P<0.05) compared to no assistance (Tpert). Non-

dominant side perturbations follow the same performance. 

 

Fig. 6.4 Trunk and pelvis displacement at max translation in the direction of the perturbation. Lines indicate 

significant difference (P<0.05). 

 

 Fig. 6.5 shows the trunk and pelvis rotations in the direction of the posterior and non-dominant 

side perturbation at maximum segment translation. There was a significant effect within subjects 
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for trunk [F(3,27) = 9.9, P < 0.001] and pelvis [F(3,27) = 8.1, P = 0.001] posterior perturbations, 

and also trunk [F(3,27) = 7.7, P =0.001] and pelvis [F(3,27) = 30.7, P < 0.001] non-dominant 

perturbations. Pelvis perturbation (Ppert, M= 21.60, S=14.2) provided the largest change in trunk 

angle relative to the pelvis during posterior perturbation. This was significantly decreased with 

trunk assistance (Ppert-Tff, M=5.20, S=7.0, P<0.05). During posterior perturbation, the pelvis 

flexed more with trunk pert (Tpert, M=10.20, S=7.9, P<0.05) than pelvis pert (Ppert, M= 0.60, 

S=3.7, P<0.05). During non-dominant lateral perturbation, the trunk rotated right (dominant side) 

the least with trunk perturbation and pelvis assistance (Tpert, M=1.60, S=3.4). The pelvis rotated 

in the direction of the perturbation, and the most with just trunk perturbations (Tpert, M=-14.10, 

S=5.8, P<0.05) compared to all other conditions. The pelvis was most constrained with pelvis 

perturbations with trunk assistance (Ppert-Tff, M=-0.70, S=1.7). 

 

Fig. 6.5 The trunk and pelvis rotations are shown during posterior and lateral perturbation in each of the 

experimental conditions  
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 In Table 6.1, we outline the number of steps a subject took with each condition. There was a 

significant effect within subjects for posterior perturbations [F(3,27) = 7.2, P = 0.001] and non-

dominant lateral perturbations [F(3,27) = 10.0, P < 0.001]. During posterior perturbations, the 

largest number of steps were taken during trunk perturbation (M=1.7, S=0.7, P<0.05). This was 

decreased when a pelvis force field was applied (M=0.6, S=0.8, P<0.05) and furthermore, during 

pelvis perturbations with trunk assistance (M=0.4, S=0.8, P<0.05). In the non-dominant direction, 

the trunk perturbations also produced the largest number of steps (M=1.8, S=0.6, P<0.05). This 

was significantly reduced with pelvis perturbations (M=0.7, P=0.9, P<0.05) and furthermore with 

pelvis perturbations and trunk assistance (M=0.1, S=0.3, P<0.05). 

 

 

Table 6.1 Average number of steps taken during perturbations in each of the conditions. The maximum 

number possible is two. Both pelvis and trunk assistance decrease the number of steps required to maintain 

stability. * indicate significant difference (P<0.05). 

  

Pert Dir. Tpert Tpert-Pff Ppert Ppert-Tff

Post. 1.7** 0.6* 0.9 0.4*

Non-Dom Lat. 1.8** 0.9 0.7* 0.1*

Average No. of Steps with Pert. (max 2)
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Table 6.2 Summary of the findings showing the best condition to challenge or maximally constrain a 

specific movement. The overall analysis shows that Ppert-Tff is best to constrain movement, while Tpert 

produces the most challenging conditions. 

 

6.1.4 Discussion 

 In this study, we characterized trunk and pelvis center and COP movement patterns during 

perturbations. We compared the changes in the movement when subjects were provided force field 

assistance. Our results show that the force field adequately decreases trunk and pelvis displacement 

during perturbations. Specifically, a force field assistance on the trunk will decrease the effect of 

a pelvis perturbation and a force field assistance on the pelvis will decrease the effects of a trunk 

perturbation. The overall area of movement (trunk and pelvis) is the largest with trunk disturbances 

compared to pelvis. This fits our hypothesis since disturbances at a higher body segment creates a 

larger moment arm at the feet. Ankle torques are the initial contributors for standing balance [116], 

Goal Variable Assesed Tpert Tpert-Pff Ppert Ppert-Tff Tpert Tpert-Pff Ppert Ppert-Tff

Overall trunk sway Area X X

Overall pelvis sway Area X X X X

Posterior trunk sway Total distance X X X

Posterior pelvis sway Total distance X X X X

Non-dom lateral trunk sway Total distance X X X

Non-dom lateral pelvis sway Total distance X X X

Maximally decrease trunk or pelvis 

COP path Total distance X X X X X

Trunk translation during posterior 

perturbation Translations X X X

Pelvis translation during posterior 

perturbation Translations X X X

Trunk translation during non-dom 

lateral perturbation Translations X X X

Pelvis translation during non-dom 

lateral perturbation Translations X X X X

Trunk rotation in flex/ext Rotations X X X X X

Pelvis rotation in flex/ext Rotations X X X X X

Trunk rotation in lateral Rotations X X X X X X

Pelvis rotation in lateral Rotations X X X X

Total Count Overall 2 10 7 12 15 2 7 2

Maximally Constrain Maximally Challenge
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and once the disturbance is too large, the ankles cannot sufficiently counter the postural imbalance. 

The force field limits the range of movement of the pelvis, which decreases the overall trunk 

movement. Since the force field is on the pelvis, we are directly constraining the pelvis. Therefore, 

largest decreases are seen at the pelvis. Applying a force field at the trunk further reduces the 

overall movement of the trunk compared to that of the pelvis.  

 The summary of the findings can be found in Table 6.2. This table shows several conditions 

and outlines the best training conditions to either maximally constrain or maximally challenge 

certain measurements. The X identifies the condition that either provided the maximum constrain 

to the variable (e.g. area of movement, etc.) or maximally challenged the individual for that 

variable. If the conditions had no significant difference, then multiple X are shown to signify that 

multiple conditions are appropriate. The summation of the results shows that best overall condition 

to constrain kinematic and biomechanical requirements is to use condition Ppert-Tff. This is where 

the assistance is provided at the trunk and perturbations are applied to the pelvis. In contrast, the 

best overall condition to maximally challenge a person is Tpert, where perturbations are applied 

to the trunk with no assistance.  

 The trunk and pelvis motion are most affected when a perturbation or disturbance is applied to 

the trunk. When the trunk is perturbed, and the pelvis is stabilized using an assistive force field, 

the trunk and pelvis motion both decrease significantly. It can be assumed that physically locking 

the trunk while applying a trunk perturbation will stop the disturbance. Though apparent, this does 

not allow the subject to actively control the segment of interest. On the other hand, the trunk moves 

significantly less with perturbation at the pelvis compared to those directly at the trunk. Yet, there 

is no difference to the pelvis movement if the perturbation is applied at the trunk or pelvis.  
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 We also see that a pelvis constraint can significantly decrease the number of steps a person 

takes to account for a posterior trunk perturbation. A pelvis posterior perturbation with trunk 

constraint will also significantly reduce the number of steps one takes, compared to trunk 

perturbation. In terms of non-dominant lateral side perturbation, pelvis perturbation causes 

significantly less stepping than trunk perturbation. Furthermore, pelvis perturbation with trunk 

assistance produces significantly less stepping that pelvis pert alone.  Recent studies have reported 

strategies that humans use to maintain standing equilibrium [114], [117]–[119]. In situations where 

there is a COM shift due to a sudden disturbance or a required functional task, the COP shifts in 

the opposite direction to maintain equilibrium. These postural adaptations get optimized to changes 

in environment, tasks, and subject’s intention [116]. Specifically, to maintain postural equilibrium 

during sudden COM shifts, humans may exert a higher torque at the  ankle or the hip, or use a 

combined strategy [116]. The ankle strategy uses torques about the ankle to control the anterior-

posterior sway during quiet stance or slow body translations. This strategy moves the COP further 

beyond the COM. In cases of sudden or large amplitude perturbations, flexion of the trunk at the 

hip joint allows for early activation of the abdomen and quadriceps muscles. If a disturbance is too 

large in amplitude and fast, a stepping reaction may be used to move the base of support (BOS) 

under the falling COM. While ankle strategy is efficient to maintain an erect posture during quiet 

standing, the hip strategy is often used during large amplitude perturbations. If a step is not taken, 

then hip flexion is coupled with ankle and neck counter rotation. In addition, in situations where 

the floor surface has low friction and does not allow for large torques, early activation is produced 

at the rectus abdominis and rectus quadratus (neck flexors), with little ankle coactivation [116]. 

This specific outcome addresses the safety of our stand trainer system to prevent falls while it is 

applied to train trunk and pelvis stability in standing. 
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 Our results show that assistive force fields, applied by our robotic platform, can significantly 

constrain pelvis and trunk motion. This is different than applying a rigid constraint as it provides 

a resistance to motion rather than rigidly locking a segment from moving. An individual is required 

to adjust various body segments such as the trunk, pelvis, and knees, to return to their stable 

configuration. Our results help us understand the kinematics and physical mechanisms by which 

we can alter the movement of an individual with internal trunk or pelvis disturbances due to 

balance deficits. The applied trunk and pelvis perturbations can represent the inherent disturbances 

one may have at the trunk or pelvis level. To minimize movement of a segment (trunk or pelvis), 

it may be best to apply a constraint directly to that region.  

 One of the primary benefits of our system and its use for training is its modular design and 

patient-specific assistance. The boundary of assistance around a subject (force field) can be easily 

adjusted to provide a larger or smaller range of independent movement. As the patient is able to 

increase the range of trunk motion, the force field radius can be increased. This will allow the 

subject to travel to a further distance before any force assistance is provided. In cases like SCI, in 

which people have very limited trunk control, we can also make the radius very small so the patient 

can successfully sway and configure their posture without being rigidly constrained. In addition, 

we can adjust the magnitude of assistance that is provided once the patient becomes unstable or 

goes outside the stability boundary. With the force field, we do not actively bring a subject upright, 

but provide a body weight percentage of assistance to prevent the subject from failing. This can 

give the patient increased time in adjusting their postural strategy for maintaining balance. The 

system also provides haptic feedback at the boundary of stability, signaling to the patient that they 

are at their limits. At this point, the subject can physically push past the boundary or configure 

themselves back to the neutral, upright position. As we mentioned in the introduction, studies show 
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that the magnitude and speed of disturbance change the balance strategy from the ankle/feet, to the 

hip, or stepping strategy. With our system, we can provide assistance objectively, based on the 

patient’s needs.  

 Our design largely stems from the need in rehab settings to implement balance training 

programs in patients with severely limited or inexistent volitional postural control such as SCI. As 

medical advancements are made to enable patients to regain control from paralysis or hemiplegia, 

training strategies are required to safely but independently explore postural configurations for 

maintaining upright stability. Our previous work on sitting balance training has shown that subjects 

can change their kinematics and movement strategies with assist as needed training [29], [99]. We 

have incorporated these capabilities into a full-body system that can provide an objective 

assessment of various training strategies. Our pilot study with healthy subjects show that the 

assistive nature of the device can significantly decrease the movement of the trunk and pelvis. In 

our future work, we plan to test the capabilities of the system on spinal cord injury patient 

populations and then initiate a longitudinal study for training patients with postural instability. We 

also plan to assess the effects of assistance and disturbance at the same level in both healthy and 

patient groups. We believe this system will be instrumental in conducting balance therapy, freeing 

therapists from hard manual labor, and providing a combination of neuromuscular and 

coordination improvements for patients with postural instabilities. 

 The goal of rehabilitation is to propel patients along their course to regain balance, strength, 

and coordination, moving from sitting, standing, to walking. Therapeutic modalities include 

strengthening through resistance, haptic feedback, proprioceptive and coordination training, and 
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cognitive postural aspects. While manual patient manipulation has shown benefits, it can require 

multiple therapists, induce training variability, and reduce motor learning.  

In this work, we have created a novel robotic system, the Stand Trainer, for rehabilitation of 

postural standing. In this study, we show the potential for objective assessment and selective 

training of stability of key body segments (trunk and pelvis) to maintain standing. Our system 

consists of trunk, pelvis, and knee belts for providing assistive, resistive, or perturbation forces. In 

this study, we recruited 10 subjects to assess the changes in trunk and pelvis movement and COP, 

when subjected to perturbations. This was conducted by providing assistance at two different 

levels, trunk and pelvis, and with and without assistance from a force field. Our results support our 

hypothesis that an assist-as-needed algorithm can constrain kinematics and COP movements. This 

is essential in understanding how to assist patients with various levels of weakness, without 

passively constraining their motion and coordination. In addition, our study identifies the 

mechanics used by healthy individuals to maintain stability. This gives us a comparison for 

characterizing the difference in patient strategies and will be instrumental in designing and training 

patient populations.  

 

6.2 Characterization of Incomplete and Complete Spinal Cord 

Injury Patients 

 Spinal Cord Injury, or SCI, is a multi-systemic condition characterized by muscle paralysis 

and deficits in the cardiopulmonary, integumentary, gastrointestinal, genitourinary, and sensory 

systems. Changes in these functions can reduce mobility and quality of life [120]. There are 

roughly 270,000 individuals in the United States with a SCI, and 12,000 new cases yearly [121], 
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[122]. Injuries can be classified as complete (cSCI) or incomplete (iSCI). This is in reference to 

the spinal cord, which carries information to and from the brain and the extremities. In incomplete 

cases, part of the spinal cord is severed, creating various changes to motor and sensory function. 

In cases of complete injury, all motor and sensory information below the lesion is lost. The level 

of injury determines which sensory and motor functions remain intact. The higher the injury on 

the spinal cord, the more detrimental are its effects. Spinal cord injuries are classified using the 

ASIA Impairment Scale to grade the severity of neurological loss. This ranges from A, complete 

SCI where there is no motor or sensory function, to B-D, incomplete SCI where some motor and 

sensory function is impaired, to finally E, meaning motor and sensory function are normal.  

  Many researchers in the area believe that the dysfunction stems from impaired neural control 

of the involved musculature coupled with decreased sensory information being transmitted to the 

brain [121]. A majority of individuals with SCI do not recover functional walking, and there has 

been very little progress in rehabilitative strategies [121]. Current rehab strategies focus on 

providing compensatory strategies for improving mobility and strength above the level of the 

lesion or injury. More recent studies suggest that training which utilizes sensory information 

associated with motion may provide some benefits [121].  

 Recent studies on complete SCI animal models and humans suggest that activity-based training 

coupled with spinal cord epidural stimulation can promote partial recovery of postural control 

[111]–[113]. In particular, Angeli et. al's findings suggest that assistive training to improve balance 

control may recover standing and walking capabilities after severe SCI when combined with spinal 

epidural stimulation and activity-based training [112]. Therefore, a facility for multi-modal 

training that constrains, assists, perturbs, or modulates stability could be important for task-

oriented therapy for individuals with a SCI. 
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 Achieving postural equilibrium requires coordination of multiple body segments as well as 

postural strategies which stabilize the body’s COM during self-initiated reaching or external 

disturbances [114]. The strategies depend on the postural displacements, individual’s expectations, 

and the goals of the task [114]. Studies suggest that programs which involve motor learning 

principles in active balance control are more effective [16]. Furthermore, active training that 

directly influences a person’s COP has a beneficial impact on postural orientation and stability 

[81].  

 In our work, we are interested in characterizing the motion of individuals with a SCI under 

several assistive and perturbation-based conditions. The purpose is to understand how assistance 

at the trunk or pelvis can affect the motion of the trunk, pelvis, and COP. In addition, we measure 

the trunk workspace changes to document the movement area under each of our conditions. This 

provides a baseline comparison between healthy adults, incomplete SCI, and complete SCI 

individuals. To perform this training, we utilize our Stand Trainer device. 

 

6.2.1 Incomplete SCI Protocol 

 After obtaining protocol approval from Columbia University’s Institutional Review Board, we 

recruited one patient with an incomplete spinal cord injury at the L4-5 level, AIS C. This was a 

64-year-old male, 6’2” in height, and weighed 190 lbs. The patient participated in the same 

protocol defined previously in the healthy adult stand trainer study. 

 The patient underwent four conditions with a combination of perturbations and assistive force 

fields. The conditions included trunk perturbation (Tpert), trunk perturbation with an assistive 

pelvis force field (Tpert-Pff), pelvis perturbation (Ppert), and pelvis perturbation with assistive 
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trunk force field (Ppert-Tff). For simplicity of force application on the body and to minimize the 

number of cables along each body segment, we applied the perturbations and assistance separately 

to either the trunk or pelvis (Fig. 6.6). The perturbations represented both internal disturbances, as 

experienced in a patient group, and added external disturbances. Our choice of conditions allowed 

us to: 1) test if force field assistance is sufficient to minimize sway and 2) determine which 

combination of assistance/disturbance would provide the largest kinematic constraint, or the most 

challenging condition. 

 A Vicon motion-capture system was used to record body kinematics sampled at 100 Hz. This 

was used to detect the real-time center positions of the trunk and pelvis during training. Retro-

reflective markers were placed on belts firmly attached at the trunk and pelvis to estimate the center 

of each body region. Four planar cables were connected to each belt. The patient was instructed to 

move his hands as needed, without touching or holding on to surrounding structures.  

 In each of the four conditions, the subject received a total of eight perturbations, two in each 

direction: anterior (N), posterior (S), and right lateral (E) and left lateral (W). The perturbation 

directions were randomized and occurred with a random time spacing to ensure the patient did not 

have predictive motion. The subject responded to the perturbations and returned to the starting 

position after each perturbation ended. The perturbation profile was characterized as a 20% body 

weight trapezoidal force that had a 0.5 sec rise time, 0.5 sec constant value, and 0.5 sec fall time. 

The total force lasted 1.5 sec from the initial onset.  
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Fig. 6.6 Incomplete SCI patient setup with the neutral and perturbed posture shown, respectively. 

 

6.2.2 Results 

 The iSCI patient underwent a series of eight randomized perturbations, two in each of the 

anterior, posterior, and both lateral directions. The total movements of the trunk and pelvis centers 

were measured to determine the overall workspace, or area of movement (Fig. 6.7). It was evident 

that both the trunk and pelvis showed the largest movement under the Tpert condition. The trunk 

was the most constrained during the Ppert-Tff condition. Similarly, the pelvis was most 

constrained during the Tpert-Pff condition. 
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Fig. 6.7 Trunk and pelvis area of movement during each of the four conditions for the iSCI patient. 

 

 The effects of the posterior and non-dominant lateral perturbations were analyzed individually 

for the trunk and pelvis in each experimental condition (Fig. 6.8). The pelvis perturbation 

conditions yielded the largest path travelled by the trunk in the posterior and lateral directions and 

by the pelvis in the lateral direction. Conversely, when the pelvis was applied with a force field 

assistance (Tpert-Pff), the trunk and pelvis were more constrained than all other conditions.  
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Fig. 6.8 Total distance travelled by the trunk and pelvis center during each of the four conditions, during 

posterior and lateral perturbations.  

 

 When looking at the maximum distance travelled by the trunk and pelvis in the posterior 

direction, Ppert condition produced the largest deviation (Fig. 6.9). On the other hand, there was 

no noticeable movement during Ppert-Tff condition with posterior perturbations. This may be due 

to an anticipatory reaction. 
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Fig. 6.9 Max translation by the trunk and pelvis center during each of the four conditions, during posterior 

and lateral perturbations.  

 

 The purpose of this study was to assess the kinematics of an iSCI patient under various 

assistance and perturbation conditions. The aim is to assess the changes in kinematics from the 

force field assistance and to compare the performance to healthy subjects. In the iSCI patient, the 

area of movement is similar to that of the healthy adult group previously studied. The trunk 

perturbation without any assistance provided the largest overall area of movement. This is quite 

fitting as trunk perturbations produce a larger moment arm about the ankle. The force field 

adequately decreases both trunk and pelvis motion. Enabling a force field around the trunk while 
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perturbing the pelvis produces the most constrained environment in the healthy adults and the 

single iSCI patient tested. Further detailed analysis can be found in the following discussion 

section. 

  

6.2.3 Complete SCI Protocol 

 After obtaining protocol approval from Columbia University’s and University of Louisville’s 

Institutional Review Boards, we recruited two patients with complete spinal cord injuries. This 

study was conducted at the University of Louisville’s Spinal Cord Injury Research Center in 

Kentucky. The first patient was a 23-year-old male, AIS B, with a T8 level injury. The second 

patient was a 20-year-old male, AIS B, with a C4 level injury. Each patient presented with different 

motor and sensory deficits. Both patients were wheel chair bound and required assistance from a 

therapist to enter and exit the robotic stand trainer platform (Fig. 6.10).  

 In this protocol, the patient participated in four conditions. In the first, the pelvis was 

constrained using the motorized cables, the trunk received force field assistance, and the hands 

were supported on an instrumented handle bar directly in front of the patient. In the second 

condition, the pelvis was constrained using the motorized cables, the trunk received force field 

assistance, and the hands were not supported. In the third condition, both the trunk and pelvis were 

constrained by the motorized cables and the hands were not supported. The final condition was the 

traditional manual therapy setting, where the trunk and pelvis were supported by therapists and the 

hands were supported. In all cases, the knees were manually assisted by the therapist.  

 The force field algorithm consisted of two circular perimeters around the trunk (Fig. 6.11). The 

first ring had a radius of 2 cm and the second was 6 cm. Inside the first ring, no assistance was 

provided by the Stand Trainer. Between the first and second ring, the patient received 5% body 
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weight assistance back towards the boundary of the first ring. Outside the second ring, the patient 

received 20% body weight assistance back towards the boundary of the second ring. These 

parameters were determined after several test sessions with research personnel. Due to the intrinsic 

instabilities within the patient, no external perturbations were applied. 

 

  

Fig. 6.10 Complete SCI patient preparation and experimentation, respectively. 
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Fig. 6.11 Schematic of the force-field assistance algorithm based on trunk position 

 

6.2.4 Results 

 Analysis of the workspace area (Fig. 6.12) shows that during manual therapy, the cervical 

injury patient (C4) exhibited the largest trunk and pelvis sway. This is while the therapists were 

manually working to prevent the segments from moving. Patient used the hand  during this training 

to maintain stability, which alters the base of support. This is due to the increase in contact points. 

With four contact points, the base of support is increased, providing a larger stable workspace. 

This is important because such a condition may make it easier to balance, while would reduce the 

intrinsic need of the patient to maintain balance and stability. In addition, use of hand forces for 

support may create static tension at the arms and shoulder, possibly minimizing training time. 

 The patient with the thoracic injury (T8) showed the largest trunk and pelvis sway when the 

Stand Trainer provided the force field at the trunk and constant resistance at the pelvis with no 
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hand support (Tff-Pcon-Nohands). This patient was also unable to perform the manual condition, 

where traditional PT assistance is provided, due to fatigue. 

 For both patients, using a large, constant force at the trunk and pelvis locked the segments in 

place. This condition (Tcon-Pcon-Nohands) produced the least movement. Also, both patients 

showed improved trunk and pelvis movement once the force field was applied to the trunk with 

constant pelvic assistance and hand support (Tff-Pcon-Hands). In both subjects, the device 

assistance was adequate and effective in reducing trunk and pelvis motion. While constant forces 

locked the segment’s motion, the force field assistance allowed active motion while limiting the 

overall movement workspace.  

 

 

Fig. 6.12 Area or workspace of the trunk and pelvis center during each of the four conditions. 
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 In analyzing the total distance travelled by the trunk, pelvis, and COP during 15 seconds of 

each condition (Fig. 6.13), it was noted that manual assistance had the most movement. This means 

that although the therapists’ hands were used to maintain stability, the unstable nature of the trunk 

and pelvis coupled with any external motion from the therapists caused a large sway in segment 

and COP activity to maintain balance. The Stand Trainer adequately decreased trunk and pelvis 

motion for both patients. However, for the cervical injury patient, the trunk and pelvis had larger 

displacements when force field assistance and hands were used compared to without hand support. 

Perhaps this individual used the support from their hands to attempt to regulate trunk center, 

causing a larger area of displacement. 

 

 

Fig. 6.13 Total distance travelled by the trunk, pelvis, and COP during each of the four conditions. 

 



142 

 

6.2.5 Discussion 

 Our analysis of both the iSCI and cSCI patients shows that the Stand Trainer conditions 

adequately and appropriately decreased trunk, pelvis, and COP motion. The purpose of the Stand 

Trainer system under the identified conditions is to constrain trunk and pelvis motion while 

providing the patient a safe environment in which to explore postural stability.  

 In the iSCI patient, the area of movement is similar to that of the healthy adult group previously 

studied. The trunk perturbation without any assistance provided the largest overall area of 

movement. This is quite fitting as trunk perturbations produce a larger moment arm about the 

ankle. The pelvis perturbation without assistance produced the second largest motion, which also 

manifested in the healthy adult population. The smallest areas of movement are conditions with 

the force field applied. The force field adequately decreases both trunk and pelvis motion. The 

therapist or engineer has full control in modifying the force field shape and boundary. Enabling a 

force field around the trunk while perturbing the pelvis produces the most constrained environment 

in the healthy adults and the single iSCI patient tested. This was expected, as providing support on 

both sides of the perturbation, with the force field at the trunk and ground contact at the feet, creates 

the most stable condition for the individuals being perturbed.  

 In analyzing the total distance travelled by the trunk and pelvis centers, it was noted that in the 

iSCI patient, the largest distance travelled is during the pelvic perturbation. Although only a single 

iSCI patient was tested, it is interesting to note this finding. The center of mass is estimated to be 

near the pelvis. Even though the largest trunk and pelvis path is expected during the trunk 

perturbation due to the larger moment arm about the ankle, it was seen during the pelvis 

perturbation. It may be that altering the COM directly has a greater affect in SCI patients. This can 

be evaluated further with a larger sample size. Similarly, the maximum distance travelled by the 
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trunk and pelvis during posterior perturbation was seen with the pelvis perturbation condition. This 

corroborates the findings seen with the total distance travelled. Again, the Stand Trainer force 

fields adequately decrease the overall movement. This illustrates that a force field at the trunk level 

may be most appropriate for a severely affected patient. 

 From analysis of data from collected from healthy individuals and iSCI patients with the Stand 

Trainer, it is increasingly evident that a force field applied at the trunk can produce the most 

constrained condition for a patient with postural instability. Accordingly, when working with the 

cSCI patients we started with this condition. We provided force field assistance to the trunk and 

held the pelvis using constant forces of 80 newtons in each cable. In comparison to traditional 

manual therapy, where the trunk and pelvis are supported by physical therapists and the patient 

uses their hands on a walker for support, the force field conditions decreased trunk, pelvis, and 

COP motion. The COP activity is directly related to muscle activations from the ankle to maintain 

stability and counters the effects of the COM shift. In a neutral and stable configuration, the COM 

would sit directly over the COP. The decrease in COP motion indicates increased stability of the 

patient during the condition.  

 In another condition, the trunk and pelvis were constrained using constant forces from the 

Stand Trainer. This is the most constrained configuration, and the trunk and pelvis accordingly 

showed the least motion, illustrating again the Stand Trainer’s capability of constraining motion. 

 This study provides both a characterization of the trunk and pelvis motions and the device 

feasibility in a patient population. The force field algorithms give the ability to modify the level of 

assistance through the size of the force field and the percentage of body weight assistance. 

Traditional manual therapy can be challenging both on the patient and therapists. It requires several 

therapists to hold the patient and stimulate the trunk, pelvis, and knees. In addition, the patient is 
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being manipulated subjectively, with inherent variations in these non-exact forces. The Stand 

Trainer provides full control over the training, objective intervention, and might provide ease to 

the patient as well. With complete control of the various conditions, we can provide an easier 

training starting point and challenge the user as much as desired. These findings can also be 

recorded scientifically to better understand and characterize SCI rehabilitation from an objective 

standpoint. 
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Chapter 7 

7 Conclusion 

7.1 Contributions of the Current Work 

 In this dissertation, we have identified novel methods to characterize and train posture in the 

seated and standing position. These findings are documented through healthy and patient 

population studies, after the development of a seated and standing posture training robotic device. 

The following is a list of novel contribution of this dissertation. 

 

1. Developed novel force-field algorithms for trunk posture training, which identify and 

account for the needs of patients with asymmetric trunk and pelvis workspace profiles, 

postural collapse, varying assistance over trunk and pelvis displacement. 

2. Developed a novel “Stand Trainer” robot which can control the trunk, pelvis, and knees of 

individuals to train standing posture. 
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3. Developed a novel method called the “8-point star test” to measure trunk and pelvis 

workspace and area of controlled movement.  

4. Tested and validated new posture training methods that train a person at and beyond their 

postural stability. Testing show kinematic changes in workspace and trunk displacement 

after training in the seated and standing position. 

5. Show preliminary results that document changes in coordination patterns of patients with 

cerebellar deficits.  

6. Show results that document how wheelchair bound cerebral palsy patients can improve 

postural stability by increasing their workspace boundary, translations, and vertical sitting. 

7. In summary, patients trained at their stability boundary using assistance modify their 

kinematic coordination which are retained after the assistance is removed. 

8. Test and document several assistance and perturbation based environments on spinal cord 

injury patients to show that a robotic force-field intervention adequately alters trunk and 

pelvis sway. Such a findings can be beneficial for future SCI training programs. 

  

7.1.1 Development of TruST & Stand Trainer 

 Using current cable driven robotic technologies used for gait rehabilitation [17], we developed 

new methods to utilize the same system for posture training. In the seated position, the device 

allowed us to apply planar forces at the trunk. A new modified version was created for standing 

posture training. This is called the Stand Trainer. The device uses the same cable driven principles 

but provided control of the trunk, pelvis, and knees, simultaneously.  Design of the system uses 

real-time human in the loop control and CAN communication to interact with 14 high torque 

motors.  
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 In cable robotics, load cell sensors are often placed in series with cables to determine the 

tension in the cable. Although this is an effect method, the movement of the sensor along with the 

cable can create unwanted noise in the signal processing. It also requires consideration of the 

workspace, to prevent the sensor from crashing into the robotic environment. We mounted sensors 

onto the frames and used a pulley to connect the wires to the sensors. We characterized the sensors 

value to that of the tension in the cable. This reduces moving parts during robot use. 

 We designed new “force-field” algorithms for posture training. These are simple shapes, but 

unique to the user at the end effector. This consisted of planar circles, donut rings with different 

force characteristics outside each ring, and three-dimensional ellipsoids with different force 

assistance in each cartesian direction. 

 

7.1.2 Novel Training Methods and Characterizations 

 The primary contribution of this dissertation is to identify and validate new posture 

characterization and training methods. Current posture rehabilitation methods are limited and not 

well documented. Often research primarily focuses on gait training. Yet, prior to train gait, it is 

necessary to train a patient to acquire independent sitting and independent standing. From this 

point forward, the patient should develop functional abilities such as leaning, reaching, and 

grasping which modulate the center of mass and the center of pressure. The oscillation of these 

components is what can lead to challenges in posture recovery, if the proper kinematic 

coordination and muscle activation is not achieved. Research suggests that task-oriented training 

and assist as needed interventions are best for motor adaptation and motor learning. Both are 

essential for the CNS to make new pathways and decisions regarding motor control. Although 
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these are not analyzed in this work, changes in human performance shed light to the ability of the 

human to relearn after prominent injury or disease condition.  

 Prior to training and studying posture, it is important to first characterize posture. This is 

important to both assess the changes from a rehab intervention, as well as make the robot and 

system fit the specific needs of the patient. We developed what we call the “reach test” and “8-

point star test”. These allow us to characterize the trunk and pelvis function in various direction 

and define the individual’s workspace, respectively. The important component of this test is to 

perform the test in full control and independently. This means being able to move to a maximal 

distance and then returning successfully and independently back to the neutral position. The force-

field assistance then takes the shape of this workspace to provide “assist-as-needed” forces only 

when outside the boundary and haptic feedback at the boundary to signal postural limits. The 

assistance is modular and allows for postural exploration along with various components of the 

task-specific strengthening and coordination.  

 

7.1.3 Postural Rehabilitation 

 Throughout the work in this dissertation, we explored the nature of individualized force field 

training on various patient populations. We also performed healthy adult validation studies prior 

to patient testing. Specifically, we tested on healthy adults and cerebral palsy, cerebellar ataxia, 

and spinal cord injury patients. Each required their own unique robotic assistance module.  

 In our initial studies, we validated the effects of the robotic intervention on seated training in 

healthy adults. The goal was to identify any motor adaptations which lead to a larger reach ability. 

Current literature does not show much evidence on postural rehab. Our results showed that healthy 

adults, when challenged and allowed adequate assistance for postural exploration, change their 
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reaching strategies to allow a further reaching ability. The kinematics show increased trunk and 

pelvis rotation and increased trunk translation in the desired direction. 

 After obtaining confidence from reaching studies, we performed a longitudinal study with 

cerebral palsy patients. This study provided 12 training sessions across 4-6 weeks, with baseline 

and post-training assessments. Although the sample size was small (n=4), results proved that 

wheelchair bound patients can learn to improve their postural control. The changes were evident 

in all patients, leaving the patients with the ability to sit independently without any pelvis support 

or straps. We identified changes in kinematics such as increased rotations, translations, and 

workspace boundaries. We attribute this to postural exploration and motor learning of new postural 

configurations, not previously experienced.  

 We also outlined a similar training in the standing position. In this group, the subjects received 

active trunk assistance using the force field and passive resistance at the pelvis. We promoted 

instability in healthy adults and had them perform a series of reach tasks. The experimental group 

modified their reaching strategy while the control group without the robotic intervention developed 

more unstable configurations. The provided assistance was adequate to promote sensory cueing 

through haptic feedback and postural changes required for a more stable performance.  

 For our final set of studies, we developed a full body posture training system. In this, we were 

interested in characterizing the behavior of healthy adults and spinal cord injury patients. We 

wanted to see how various levels of assistance and perturbations can change the trunk, pelvis, and 

center of pressure movement. In our study, we provided assistance at the trunk, then pelvis, and 

provided perturbations at the opposite level. We then provided perturbations without assistance. It 

being evident that the force field assistance provided by the robotic platform was adequate in 

decreasing postural sway during external disturbances. We also noted that support at the trunk was 
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more effective in reducing the sway, although the center of mass is approximated to be at the 

pelvis. We followed this with a single incomplete spinal cord injury patient and performed the 

same study. The patient performed similarly to the healthy adult group. 

 Finally, we characterized the effect of the device on two complete spinal cord injury patients. 

The patients, due to their degree of paralysis, were not provided external disturbances through 

perturbations. Instead, the study relied on internal disturbances due to balance deficits. The 

characterization compared traditional manual therapy with that given by the robot assistance, with 

and without hand support. Our results showed that the patients reduced their trunk and pelvis 

motion using the force field assistance at the trunk. Additionally, the patient was able to withstand 

self-standing without hand support. This is promising in terms of future rehab sessions. 

 Our studies give promise to the force field-based training paradigms in both the seated and 

standing positions. The device is modular and patient specific. All parameters are configured based 

on the specific needs of the patient. This can provide objective data in terms of rehab paradigms 

and also free up therapist so they can focus on patient interaction instead of physical support. Our 

results are promising, and we hope this dissertation provides a segue into new force-field based 

training paradigms and the understanding that patients have innate ways of adapting to their 

environment. 

 

7.2 Suggestions for Future Work 

 Our studies provide validation of new posture rehabilitation methods. In this dissertation, we 

outlined a new robotic platform for safe and effective rehabilitation. Yet, our sample sizes and 

study durations were typically small. Although our work provides a strong affirmation to the 
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benefits of postural exploration through robotic intervention, it is important to assess larger 

population sizes and analyze more information on kinematic coordination and muscle activation. 

 In our studies, sitting or standing, all subject groups showed motor adaptation and some degree 

of motor learning. Our only longitudinal study was one with cerebral palsy. With the strong 

evidence provided by the studies, it would be beneficial to invest 50-80 training sessions to study 

the changes in functional sitting or standing. In addition, a six month follow up may give better 

insight into whether the changes are retained or temporary. It is also recommended to obtain a 

control group. Through this requires large resources, it may serve as a strong method to tease out 

the effects of the training with those from the robotic intervention. Although many of our single 

session studies utilized a control for this very reason, a further investigation would give more 

strength to the findings. 

 In addition to the current methods, it would be beneficial to study changes at the muscle level. 

This includes looking at changes in muscle synergies during and after these robotic trainings. If 

possible, looking for methods to analyze changes in brain activity associated with the training can 

shed light to changes in brain stimulation. 

 It is also important to develop an outline and guidelines for post-training activities. Often after 

training, patients return to their sedentary lifestyles, where they become strapped to their 

wheelchairs or repeat use of walking aids. It would be beneficial to develop new physician or 

therapist monitored guidelines where the patient attempts to incorporate new reaching and 

workspace changes their have achieved. This may help retain the gains and develop them further. 

This includes gaining the appropriate confidence along with it.  
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 We hope this dissertation serves as a strong motivator for researchers to investigate new 

methods for postural rehabilitation. Our results proved to be very promising and we hope future 

research helps define the scientific change more in depth.  
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