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Abstract— The Internet of Things is a fast emerging 
technology, however, there have been a significant number of 
security challenges that have hindered its adoption. This work 
explores the use of machine learning methods for anomaly 
detection in network traffic of an IoT network that is 
connected through a Software Defined Network (SDN). The 
use of SDN allows a hierarchical approach to machine 
learning with the aim of reducing the packet level processing 
of anomaly detection at the edge through applying additional, 
centralized, machine learning in the SDN controller. For the 
sake of evaluation, we compare several supervised 
classification algorithms using a publicly available dataset. 
The results support a decision-tree based approach and show 
that the proposed solution promises a considerable reduction 
in the per-packet processing at the network edge compared to 
a single stage classifier. 
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I. INTRODUCTION  
The Internet of Things (IoT) is a fast-growing network of 
physical devices that will soon encompass billions of devices. 
However, there have been significant problems with security 
in IoT devices due to a combination of: the constrained and 
heterogeneous nature of the end devices themselves; the fact 
that end-devices are often not visible and lack standard 
management systems for firmware/software upgrades; and, 
connecting to the Internet opens them up to attacks both from 
and to the Internet. As the IoT devices themselves are often 
highly constrained, it is not straightforward to operate 
security services such as intrusion detection/prevention 
systems on the devices themselves. Therefore, network-based 
solutions to IoT security are required. Such a network 
solution is the architecture proposed by the SerIoT project 
[1], which uses SDN [2] as the network infrastructure to both 
interconnect the IoT devices and provide the IoT security 
solution. Our system uses a two-stage classifier to reduce the 
packet processing effort in an edge classifier by utilising an 
SDN architecture with an additional centralised anomaly 
detection layer. Although we address the anomaly detection 
within the SerIoT SDN architecture, the proposed method is 
generic and, thus, applicable to other SDN based networks. 
The work uses modelling of synthetic attack traffic to 
demonstrate the benefit of the proposed mechanism. In 
Section II we describe background literature before 
presenting the proposed hierarchical machine learning 
solution in Section III. Section IV outlines the classifier 

design and evaluation while Section V concludes and 
suggests further work. 

II. BACKGROUND 

A. SDN Overview 
SDN is a next generation networking concept which 

offers greater flexibility and control compared to traditional 
networks. SDN provides logically centralised control over 
the network and separates the control and data planes, by 
abstracting the lower-level functionality allowing network 
management and control to be directly programmable. This 
is achieved by extracting the network control logic (control 
plane) from the underlying switches and routers that perform 
the actual task of traffic forwarding (data plane). With this 
separation, network nodes become simple, efficient, 
forwarding devices and the control function is implemented 
in a centralised controller [2]. The centralised nature of SDN 
allows the SDN controller to deploy network-wide policies 
for both routing and security in a flexible and agile manner. 
The centralised controller can instruct forwarding devices to 
allow or block traffic (as well as deciding the route). In this 
work, we will also use SDN to redirect potentially malicious 
traffic. 

Notably, despite its ability to enhance network security, 
the SDN architecture introduces new security vulnerabilities 
into the network: the centralised controller becomes a central 
point of failure and thus a prime target for attacks [3]. 
However, due to constraints of space here we will not 
consider these aspects in this paper. 

B. Machine Learning Based SDN Security 
In traditional networks, machine learning algorithms have 

been widely used to detect malicious traffic and classify 
network attacks [4]. These methods have demonstrated 
significant potential in the classification of network traffic and 
are widely used for classification and prediction problems [5]. 
The major advantage of using machine learning algorithms in 
SDN is their ability to effect network-wide security rules 
compared to a more local policy implementation in traditional 
networks [4]. 

S. Nanda et al. [5] proposed the use of machine learning 
algorithms to detect potentially harmful connections and 
likely attack destinations. This solution utilises four widely 
used machine learning algorithms to define security rules in 
the SDN Controller to block potential attack traffic. L. Barki 
et al. utilise a support vector machine classifier and a neural 
network classifier to detect harmful DDoS traffic towards the 
SDN controller [6]. The solution in [6] is implemented using 
an emulation environment and demonstrates the effectiveness 
of the solution on different network topologies. S. Gangadhar 
et al. [4] extends the application of Machine Learning to 
improve traffic tolerance in SDN by extending the 
functionality of the SDN controller to integrate a resilient 
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framework, ReSDN. The ReSDN deploys machine learning to 
detect DDoS traffic in a real-time system; achieving high 
levels of traffic tolerance. 

While the solutions above have demonstrated the 
effectiveness of SDN as a basis for a security solution, in this 
paper we explore how SDN can be used to improve the 
efficiency of a machine learning approach by distributing the 
learning process. In particular, the SerIoT project exploits the 
SDN architecture to increase the security of IoT devices and 
of the network itself [1],[7]. Detection of anomalies is crucial 
for the proper operation of SerIoT network security 
mechanisms thus the proposal described in this paper is a 
natural fit into the framework of that project. 

III. PROPOSED 2-STAGE HIERARCHICAL MACHINE 
LEARNING BASED SDN SECURITY SOLUTION 
This paper proposes a novel, 2-stage hierarchical machine 

learning process, integrated into an SDN architecture for net- 
work traffic anomaly detection and mitigation. We adopt 
SDN in our framework because of the flexibility it offers, i.e. 
it has the capacity to dynamically address security 
requirements of networks, and the ability of a central 
controller to have a global view of the network. The proposed 
SDN solution integrates a 2-stage machine learning instance 
as shown in Fig. 1. The first instance of machine learning, 
i.e., Classifier 1, works on summarized network flow traffic 
features captured using techniques such as IPFIX [8]. This 
classifier is implemented in the SDN Controller and serves as 
a central classifier that works on gross flow level information. 
This is a reasonable approach as it is inefficient to send every 
packet of the flow to a central classifier. Although, by using 
gross flow level information this could result in a relatively 
poorer false positive performance (some good packets may 
be classified as bad), the aim of this classifier is to have low 
false negatives (i.e., to identify all bad packets). Thus, the 
central Classifier 1 is used to identify potentially harmful 
network traffic which is fed into a second machine learning 
stage, Classifier 2 as shown in Fig. 1, which works on a per-
packet basis at the network edge. 

The key reason for employing the above two-stage 
approach is to improve the efficiency of anomaly detection 
compared to, less efficient, alternative strategies: edge 
anomaly detection and centralised anomaly detection. In 
traditional edge anomaly detection, traffic classification is 
carried out at the edge, however, this involves processing 
every packet in a classifier. This somewhat negates the use of 
efficient switches in the network, as, if every packet is passed 
through an anomaly detector it is effectively already process 
switched and there is no need for the actual network hardware 
switch. This means switches would need to be replaced by 
expensive (both in hardware capability and cost) CPU 
intensive devices. Additionally, an edge device cannot make 
use of wider network knowledge. Alternatively, in the case of 
centralised anomaly detection, if the processing is carried out 
only in the central SDN controller (or some other central 
monitoring position), it cannot make use of finer packet level 
information as it is not scalable to send all the traffic to a 
single network monitoring device. 

The two-stage classifier proposed in this paper overcomes 
the problems described previously, by combining both the 
edge and centralised classifiers, as shown in Fig. 1. The SDN 

architecture is ideally placed to provide this hierarchical 
approach as the SDN controller already provides a central 
computation resource that is designed to receive monitoring 
information. Additionally, the SDN switch can highly 
efficiently divert the, potentially, malicious traffic to 
Classifier 2. Consequently, Classifier 1 identifies which 
flows are potentially bad and only packets of such flows are 
diverted to Classifier 2 using the SDN switch. 

 
 
 

IV. CLASSIFIER DESIGN AND EVALUATION 

A. Dataset for model selection and evaluation 
The classifier selection was carried out using the 

CICIDS2017 dataset which is specifically for network 
security and intrusion detection testing [9]. The CICIDS2017 
dataset is comprised of seven attack categories: denial of 
service (DoS) (Slowloris, Hulk, Golden Eye, Heartbleed, 
Slowhttptest), distributed DoS (DDOS), botnet traffic (BOT) 
that does not include DoS traffic, Patator (SSH-patator, FTP-
patator), Infiltration, Portscan (PSCAN) and Web Attacks 
(SQL injection, XSS, password brute force) [9]. While all of 
these attacks were used in the preparation of this work, the 
results report from a smaller subset to save space. The dataset 
consists of both the packets captured and flow level 
information for a mix of benign and attack traffic. The flow 
level information used in this paper for Classifier 1 consists 
of the aggregated information available from the unencrypted 
fields of the packets, i.e. the IP and TCP/UDP headers, but 
not the contents, which for most data is encrypted and, thus, 
not available for interpretation. The information from the 
headers of the packet are summarised into 80 fields including 
the static field content for each flow (i.e. addresses, ports) and 
the coarse level statistics (e.g. min, mean, max etc) from 
header fields such as packet length and TCP window size, to 
name only two. 

 
Fig 1 Hierarchical Machine Learning Architecture for SDN Security (note 
only one switch of the many is shown) 

 



 

B.  Classifier and feature selection 
The quality metrics used in assessing the machine 

learning algorithms include the standard accuracy, precision, 
recall and F1 metrics which operate on true/false positive 
(TP/FP) and true/false negative (TN/FN) occurrences as 
defined below: 

 

 
 
 
The recall metric is of particular importance in the design of 
Classifier 1 because of the need for a very low false negative 
but it is less concerned about the false positive rate as this is 
dealt with by Classifier 2. 

To ensure an efficient classification model, feature 
selection was performed to remove unnecessary features. The 
feature importance was determined using mean decrease 
accuracy [10] with an example output for the 6 most 
important features of the DDoS category of attack shown in 
Table I. The features for the other attack types are not shown 
here due to limitations of space, but it should be noted that 
the selected features and trained model were different for 
each attack type (as is to be expected). 

Algorithm selection was performed over a number of 
different metrics including both machine learning quality 
metrics and prediction time. The latter is of concern as the 
aim is to run the algorithm on real-time network traffic, 
whereas the model fit time is less important as the fit can be 
performed offline. Performance was compared across six 
algorithms from the Scikit-learn Python package [11]: Linear 
Regression (LR), Linear Discriminant Analysis (LDA), k-
Nearest Neighbour (KNN), Classification and Regression 
Tree (CART), Naive Bayes (NB) and Support Vector 
Classification (SVC). Fig. 2 shows the accuracy score of the 
different algorithms when considering different feature sets 
i.e. using all 80 features or only the first 6 or 3 most important 
respectively. Initial results indicate CART and KNN both 
return very high evaluation scores of approximately 99% 

across all feature set combinations. Other attack types had 
differing results but approximately the same trends in terms 
of ranking of performance. The SVC had very slow fit and 
high prediction times so it was rejected after this phase as it 
had little advantage in terms of performance, and thus is not 
included in later results. 
 

The second phase of algorithm selection investigated the 
prediction time with results shown in Table II, which also 
shows the training times. From the first phase of selection, 
KNN and CART were identified as the most promising 
algorithms; whereas, the predict time shows CART has 
significantly better runtime performance for similar quality 
metric compared to KNN. Finally taking all performance 
metrics into consideration, CART with the 6 highest features 
was selected as the chosen model. Again, while other attacks 
showed differing performances CART with the 6 most 
important features performed well across all attack types. It 
is interesting to note that CART performed well with 
differing number of features but showed a significant 
improvement to predict time without sacrificing quality when 
moving to 6 features whereas other algorithms (excepting 
KNN) showed significant performance degradation with 
fewer features. Another significant advantage of CART is 
that it provides straightforward interpretation of the classifier 
through the decision tree, which allows the parameters to be 
directly viewed; although, an example is not shown here due 
to space restrictions. Fig. 3 presents further results which 
include a range of model implementation metrics such as 
accuracy, precision, recall and F1 score. From these results 
we can see that CART performs well across them all.  

Further detailed analysis of the results, not easily shown 
in the overall aggregated results, opens up the selection 
process discussion a little. The DDoS validation dataset had 
a total of 45,143 traffic flows with 19,679 benign and 25,464 

TABLE I
MOST IMPORTANT 6 FEATURES FOR DDOS

Feature Importance

1 Fwd Packet Length Max 0.7907
2 Destination Port 0.4464
3 Init Win bytes forward 0.3176
4 Total Length of Fwd Packets 0.047
5 Subflow Fwd Bytes 0.0421
6 Init Win bytes backward 0.0367

B. Classifier and feature selection

The quality metrics used in assessing the machine learning
algorithms include the standard accuracy, precision, recall and
F1 metrics which operate on true/false positive (TP/FP) and
true/false negative (TN/FN) occurances as defined below:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 = 2
Precision · Recall

Precision + Recall
(4)

The recall metric is of particular importance in the design of
Classifier 1 because of the need for a very low false negative
but it is less concerned about the false positive rate as this is
dealt with by Classifier 2.

To ensure an efficient classification model, feature selection
was performed to remove unnecessary features. The feature
importance was determined using mean decrease accuracy [10]
with an example output for the 6 most important features of
the DDoS category of attack shown in Table I. The features
for the other attack types are not show here due to limitations
of space, but it should be noted that the selected features and
trained model were different for each attack type (as is to be
expected).

Algorithm selection was performed over a number of dif-
ferent metrics including both machine learning quality metrics
and prediction time. The latter is of concern as the aim is to
run the algorithm on real-time network traffic, whereas the
model fit time is less important as the fit can be performed
offline. Performance was compared across six algorithms from
the Scikit-learn Python package [11]: Linear Regression (LR),
Linear Discriminant Analysis (LDA), k-Nearest Neighbour
(KNN), Classification and Regression Tree (CART), Naı̈ve
Bayes (NB) and Support Vector Classification (SVC). Fig. 2
shows the accuracy score of the different algorithms when con-
sidering different feature sets i.e. using all 80 features or only
the first 6 or 3 most important respectively. Initial results indi-
cate CART and KNN both return very high evaluation score of
approximately 99% across all feature set combinations. Other
attack types had differing results but approximately the same
trends in terms of ranking of performance. The SVC had very

Fig. 2. Performance Evaluation of the six Machine Learning algorithms for
DDoS using accuracy scoring.

slow fit and high prediction times so it was rejected after this
phase as it had little advantage in terms of performance, and
thus is not included in later results.

The second phase of algorithm selection investigated the
prediction time with results shown in Table II, which also
shows the training times. From the first phase of selection,
KNN and CART were identified as the most promising al-
gorithms; whereas, the predict time shows CART has signif-
icantly better runtime performance for similar quality metric
compared to KNN. Finally taking all performance metrics into
consideration, CART with the 6 highest features was selected
as the chosen model. Again, while other attacks showed dif-
fering performances CART with the 6 most important features
performed well across all attack types. It is interesting to note
that CART performed well with different number of features
but showed a significant improvement to predict time without
sacrificing quality when moving to 6 features whereas other
algorithms (excepting KNN) showed significant performance
degradation with fewer features. Another significant advantage
of CART is that it provides straightforward interpretation
of the classifier through the decision tree, which allows the
parameters to be directly viewed; although, an example is not
shown here due to space restrictions. Fig. 3 presents further
results which include a range of model implementation metrics
such as accuracy, precision, recall and F1 score. From these
results we can see that CART performs well across them all.

Further detailed analysis of the results, not easily shown in
the overall aggregated results, opens up the selection process
discussion a little. The DDoS validation dataset had a total
of 45,143 traffic flows with 19,679 benign and 25,464 DDoS.
The CART Classifier failed to classify 18 DDoS traffic flows
(false negative) while also returning a false positive of 10.
The 1st stage Classifier of the proposed Hierarchical Machine
Learning architecture is required to have very low false
negative. The LDA algorithm (using all features) had a lower
false negative result for this category with only 2 false negative
flows and thus could have been considered for the first stage
Classifier. However, LDA had 10,262 false positives, which
could have overloaded Classifier 2. On balance, using CART,
a very small number of DDoS packets would get through,

TABLE I.  MOST IMPORTANT 6 FEATURES FOR DDOS 
 

  Feature  Importance 

1  Fwd Packet Length Max 0.7907 

2  Destination Port 0.4464 
3 Init_Win_bytes_forward 0.3176 
4 Total Length of Fwd Packets 0.047 
5  Subflow Fwd Bytes 0.0421 

6  Init_Win_bytes_backward 0.0367 
 

 
Fig. 2. Performance Evaluation of the six machine learning algorithms for 
DDoS using accuracy scoring. 

 
TABLE II PREDICTION TIMES FOR DDOS USING DIFFERENT 
FEATURE SELECTION RESULTS 
 

Algorithm Train 
Time 

Predict Time for DDoS (s) 
All Feat 6 Feat 3 Feat 

LR 0.89 0.008985 0.001996 0.000998 
LDA 0.11 0.007979 0.000998 0.000998 
KNN 2.71 5.971206 5.626392 11.625983 
CART 0.12 0.012965 0.002023 0.002023 
NB 0.04 0.094778 0.006981 0.003963 

 



DDoS. The CART Classifier failed to classify 18 DDoS 
traffic flows (false negative) while also returning a false 
positive of 10. The 1st stage Classifier of the proposed 
hierarchical machine learning architecture is required to have 
a very low false negative. The LDA algorithm had a lower 
false negative result for this category with only 2 false 
negative flows and thus could have been considered for the 
first stage Classifier. However, LDA had 10,262 false 

positives, which could have overloaded Classifier 2. On 
balance, using CART, a very small number of DDoS packets 
would get through, but this would be acceptable taking into 
account the whole algorithm performance and attack type into 
consideration. Thus, it is important to consider the wider 
performance issues when selecting an algorithm, not just the 
raw statistics. 

The final analysis looks at the performance consideration 
of the hierarchical approach when considering the second 
stage classifier. Results for this comparison are shown in Fig. 
4 for three different attack types: DDoS, BOT and PSCAN. 
These results are using the selected CART algorithm for 
Classifier 2 with the 6 most important features and compare 
the effort if only implementing the single stage classifier at 
the edge vs implementing the two stage classifier. The results 
show the reduction on effort in the second stage classifier is 
significant, in particular for the BOT and PSCAN traffic 
(with BOT nearly zero). This is important as it shows the 

benefit of moving from an edge-based classifier alone to the 
proposed two-stage classifier can lead to a significant 
reduction in packet level traffic needed to be processed in 
Classifier 2, thus leading to a more scalable approach for 
practical deployment. 

V. CONCLUSION 
A novel hierarchical machine learning architecture for SDN 
security has been proposed in this paper. The architecture 
consists of two classifier stages with the first classifier 
implemented in the SDN controller and the second 
implemented at the edge in a processing device co-located 
with the SDN switch. A range of suitable machine learning 
algorithms were evaluated, suggesting that a classification 
and regression tree model is the most suitable algorithm from 
those investigated. The results show that using the proposed 
hierarchical approach there is a significant reduction in the 
number of packets that have to be processed in the classifier 
associated with the SDN switches. Future work will 
investigate the second stage classifier in more detail. 
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Fig. 3. Algorithm comparison for DDoS 

 
 

 
Fig. 4. Comparison between 1st stage and 2nd stage processing times for 
three attack types, where the 1st stage result shows the effort required if 
using an edge-only classifier without the hierarchical approach proposed. 
Note that for BOT the 2nd stage result is too small to measure 

 


