

Hierarchical machine learning for IoT anomaly detection in SDN
Perekebode Amangele

University of Essex
p.amangele@essex.ac.uk

Nikolaos Thomos
University of Essex

nthomas@essex.ac.uk

Martin J. Reed
University of Essex

mjreed@essex.ac.uk

Mateusz Nowak
IITIS PAN, Poland
mateusz@iitis.pl

Mays Al-Naday
University of Essex

mfhaln@essex.ac.uk

Abstract— The Internet of Things is a fast emerging
technology, however, there have been a significant number of
security challenges that have hindered its adoption. This work
explores the use of machine learning methods for anomaly
detection in network traffic of an IoT network that is
connected through a Software Defined Network (SDN). The
use of SDN allows a hierarchical approach to machine
learning with the aim of reducing the packet level processing
of anomaly detection at the edge through applying additional,
centralized, machine learning in the SDN controller. For the
sake of evaluation, we compare several supervised
classification algorithms using a publicly available dataset.
The results support a decision-tree based approach and show
that the proposed solution promises a considerable reduction
in the per-packet processing at the network edge compared to
a single stage classifier.

Keywords - network security, SDN, anomaly detection, IoT

I. INTRODUCTION
The Internet of Things (IoT) is a fast-growing network of
physical devices that will soon encompass billions of devices.
However, there have been significant problems with security
in IoT devices due to a combination of: the constrained and
heterogeneous nature of the end devices themselves; the fact
that end-devices are often not visible and lack standard
management systems for firmware/software upgrades; and,
connecting to the Internet opens them up to attacks both from
and to the Internet. As the IoT devices themselves are often
highly constrained, it is not straightforward to operate
security services such as intrusion detection/prevention
systems on the devices themselves. Therefore, network-based
solutions to IoT security are required. Such a network
solution is the architecture proposed by the SerIoT project
[1], which uses SDN [2] as the network infrastructure to both
interconnect the IoT devices and provide the IoT security
solution. Our system uses a two-stage classifier to reduce the
packet processing effort in an edge classifier by utilising an
SDN architecture with an additional centralised anomaly
detection layer. Although we address the anomaly detection
within the SerIoT SDN architecture, the proposed method is
generic and, thus, applicable to other SDN based networks.
The work uses modelling of synthetic attack traffic to
demonstrate the benefit of the proposed mechanism. In
Section II we describe background literature before
presenting the proposed hierarchical machine learning
solution in Section III. Section IV outlines the classifier

design and evaluation while Section V concludes and
suggests further work.

II. BACKGROUND

A. SDN Overview
SDN is a next generation networking concept which

offers greater flexibility and control compared to traditional
networks. SDN provides logically centralised control over
the network and separates the control and data planes, by
abstracting the lower-level functionality allowing network
management and control to be directly programmable. This
is achieved by extracting the network control logic (control
plane) from the underlying switches and routers that perform
the actual task of traffic forwarding (data plane). With this
separation, network nodes become simple, efficient,
forwarding devices and the control function is implemented
in a centralised controller [2]. The centralised nature of SDN
allows the SDN controller to deploy network-wide policies
for both routing and security in a flexible and agile manner.
The centralised controller can instruct forwarding devices to
allow or block traffic (as well as deciding the route). In this
work, we will also use SDN to redirect potentially malicious
traffic.

Notably, despite its ability to enhance network security,
the SDN architecture introduces new security vulnerabilities
into the network: the centralised controller becomes a central
point of failure and thus a prime target for attacks [3].
However, due to constraints of space here we will not
consider these aspects in this paper.

B. Machine Learning Based SDN Security
In traditional networks, machine learning algorithms have

been widely used to detect malicious traffic and classify
network attacks [4]. These methods have demonstrated
significant potential in the classification of network traffic and
are widely used for classification and prediction problems [5].
The major advantage of using machine learning algorithms in
SDN is their ability to effect network-wide security rules
compared to a more local policy implementation in traditional
networks [4].

S. Nanda et al. [5] proposed the use of machine learning
algorithms to detect potentially harmful connections and
likely attack destinations. This solution utilises four widely
used machine learning algorithms to define security rules in
the SDN Controller to block potential attack traffic. L. Barki
et al. utilise a support vector machine classifier and a neural
network classifier to detect harmful DDoS traffic towards the
SDN controller [6]. The solution in [6] is implemented using
an emulation environment and demonstrates the effectiveness
of the solution on different network topologies. S. Gangadhar
et al. [4] extends the application of Machine Learning to
improve traffic tolerance in SDN by extending the
functionality of the SDN controller to integrate a resilient

Perekebode Amangele is sponsored by Petroleum Technology
Development Fund of Nigeria. The work was carried out within the project
SerIoT, which has received funding from the European Union’s Horizon
2020 Research and Innovation programme under grant agreement No
780139

framework, ReSDN. The ReSDN deploys machine learning to
detect DDoS traffic in a real-time system; achieving high
levels of traffic tolerance.

While the solutions above have demonstrated the
effectiveness of SDN as a basis for a security solution, in this
paper we explore how SDN can be used to improve the
efficiency of a machine learning approach by distributing the
learning process. In particular, the SerIoT project exploits the
SDN architecture to increase the security of IoT devices and
of the network itself [1],[7]. Detection of anomalies is crucial
for the proper operation of SerIoT network security
mechanisms thus the proposal described in this paper is a
natural fit into the framework of that project.

III. PROPOSED 2-STAGE HIERARCHICAL MACHINE
LEARNING BASED SDN SECURITY SOLUTION
This paper proposes a novel, 2-stage hierarchical machine

learning process, integrated into an SDN architecture for net-
work traffic anomaly detection and mitigation. We adopt
SDN in our framework because of the flexibility it offers, i.e.
it has the capacity to dynamically address security
requirements of networks, and the ability of a central
controller to have a global view of the network. The proposed
SDN solution integrates a 2-stage machine learning instance
as shown in Fig. 1. The first instance of machine learning,
i.e., Classifier 1, works on summarized network flow traffic
features captured using techniques such as IPFIX [8]. This
classifier is implemented in the SDN Controller and serves as
a central classifier that works on gross flow level information.
This is a reasonable approach as it is inefficient to send every
packet of the flow to a central classifier. Although, by using
gross flow level information this could result in a relatively
poorer false positive performance (some good packets may
be classified as bad), the aim of this classifier is to have low
false negatives (i.e., to identify all bad packets). Thus, the
central Classifier 1 is used to identify potentially harmful
network traffic which is fed into a second machine learning
stage, Classifier 2 as shown in Fig. 1, which works on a per-
packet basis at the network edge.

The key reason for employing the above two-stage
approach is to improve the efficiency of anomaly detection
compared to, less efficient, alternative strategies: edge
anomaly detection and centralised anomaly detection. In
traditional edge anomaly detection, traffic classification is
carried out at the edge, however, this involves processing
every packet in a classifier. This somewhat negates the use of
efficient switches in the network, as, if every packet is passed
through an anomaly detector it is effectively already process
switched and there is no need for the actual network hardware
switch. This means switches would need to be replaced by
expensive (both in hardware capability and cost) CPU
intensive devices. Additionally, an edge device cannot make
use of wider network knowledge. Alternatively, in the case of
centralised anomaly detection, if the processing is carried out
only in the central SDN controller (or some other central
monitoring position), it cannot make use of finer packet level
information as it is not scalable to send all the traffic to a
single network monitoring device.

The two-stage classifier proposed in this paper overcomes
the problems described previously, by combining both the
edge and centralised classifiers, as shown in Fig. 1. The SDN

architecture is ideally placed to provide this hierarchical
approach as the SDN controller already provides a central
computation resource that is designed to receive monitoring
information. Additionally, the SDN switch can highly
efficiently divert the, potentially, malicious traffic to
Classifier 2. Consequently, Classifier 1 identifies which
flows are potentially bad and only packets of such flows are
diverted to Classifier 2 using the SDN switch.

IV. CLASSIFIER DESIGN AND EVALUATION

A. Dataset for model selection and evaluation
The classifier selection was carried out using the

CICIDS2017 dataset which is specifically for network
security and intrusion detection testing [9]. The CICIDS2017
dataset is comprised of seven attack categories: denial of
service (DoS) (Slowloris, Hulk, Golden Eye, Heartbleed,
Slowhttptest), distributed DoS (DDOS), botnet traffic (BOT)
that does not include DoS traffic, Patator (SSH-patator, FTP-
patator), Infiltration, Portscan (PSCAN) and Web Attacks
(SQL injection, XSS, password brute force) [9]. While all of
these attacks were used in the preparation of this work, the
results report from a smaller subset to save space. The dataset
consists of both the packets captured and flow level
information for a mix of benign and attack traffic. The flow
level information used in this paper for Classifier 1 consists
of the aggregated information available from the unencrypted
fields of the packets, i.e. the IP and TCP/UDP headers, but
not the contents, which for most data is encrypted and, thus,
not available for interpretation. The information from the
headers of the packet are summarised into 80 fields including
the static field content for each flow (i.e. addresses, ports) and
the coarse level statistics (e.g. min, mean, max etc) from
header fields such as packet length and TCP window size, to
name only two.

Fig 1 Hierarchical Machine Learning Architecture for SDN Security (note
only one switch of the many is shown)

B. Classifier and feature selection
The quality metrics used in assessing the machine

learning algorithms include the standard accuracy, precision,
recall and F1 metrics which operate on true/false positive
(TP/FP) and true/false negative (TN/FN) occurrences as
defined below:

The recall metric is of particular importance in the design of
Classifier 1 because of the need for a very low false negative
but it is less concerned about the false positive rate as this is
dealt with by Classifier 2.

To ensure an efficient classification model, feature
selection was performed to remove unnecessary features. The
feature importance was determined using mean decrease
accuracy [10] with an example output for the 6 most
important features of the DDoS category of attack shown in
Table I. The features for the other attack types are not shown
here due to limitations of space, but it should be noted that
the selected features and trained model were different for
each attack type (as is to be expected).

Algorithm selection was performed over a number of
different metrics including both machine learning quality
metrics and prediction time. The latter is of concern as the
aim is to run the algorithm on real-time network traffic,
whereas the model fit time is less important as the fit can be
performed offline. Performance was compared across six
algorithms from the Scikit-learn Python package [11]: Linear
Regression (LR), Linear Discriminant Analysis (LDA), k-
Nearest Neighbour (KNN), Classification and Regression
Tree (CART), Naive Bayes (NB) and Support Vector
Classification (SVC). Fig. 2 shows the accuracy score of the
different algorithms when considering different feature sets
i.e. using all 80 features or only the first 6 or 3 most important
respectively. Initial results indicate CART and KNN both
return very high evaluation scores of approximately 99%

across all feature set combinations. Other attack types had
differing results but approximately the same trends in terms
of ranking of performance. The SVC had very slow fit and
high prediction times so it was rejected after this phase as it
had little advantage in terms of performance, and thus is not
included in later results.

The second phase of algorithm selection investigated the
prediction time with results shown in Table II, which also
shows the training times. From the first phase of selection,
KNN and CART were identified as the most promising
algorithms; whereas, the predict time shows CART has
significantly better runtime performance for similar quality
metric compared to KNN. Finally taking all performance
metrics into consideration, CART with the 6 highest features
was selected as the chosen model. Again, while other attacks
showed differing performances CART with the 6 most
important features performed well across all attack types. It
is interesting to note that CART performed well with
differing number of features but showed a significant
improvement to predict time without sacrificing quality when
moving to 6 features whereas other algorithms (excepting
KNN) showed significant performance degradation with
fewer features. Another significant advantage of CART is
that it provides straightforward interpretation of the classifier
through the decision tree, which allows the parameters to be
directly viewed; although, an example is not shown here due
to space restrictions. Fig. 3 presents further results which
include a range of model implementation metrics such as
accuracy, precision, recall and F1 score. From these results
we can see that CART performs well across them all.

Further detailed analysis of the results, not easily shown
in the overall aggregated results, opens up the selection
process discussion a little. The DDoS validation dataset had
a total of 45,143 traffic flows with 19,679 benign and 25,464

TABLE I
MOST IMPORTANT 6 FEATURES FOR DDOS

Feature Importance

1 Fwd Packet Length Max 0.7907
2 Destination Port 0.4464
3 Init Win bytes forward 0.3176
4 Total Length of Fwd Packets 0.047
5 Subflow Fwd Bytes 0.0421
6 Init Win bytes backward 0.0367

B. Classifier and feature selection

The quality metrics used in assessing the machine learning
algorithms include the standard accuracy, precision, recall and
F1 metrics which operate on true/false positive (TP/FP) and
true/false negative (TN/FN) occurances as defined below:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 = 2
Precision · Recall

Precision + Recall
(4)

The recall metric is of particular importance in the design of
Classifier 1 because of the need for a very low false negative
but it is less concerned about the false positive rate as this is
dealt with by Classifier 2.

To ensure an efficient classification model, feature selection
was performed to remove unnecessary features. The feature
importance was determined using mean decrease accuracy [10]
with an example output for the 6 most important features of
the DDoS category of attack shown in Table I. The features
for the other attack types are not show here due to limitations
of space, but it should be noted that the selected features and
trained model were different for each attack type (as is to be
expected).

Algorithm selection was performed over a number of dif-
ferent metrics including both machine learning quality metrics
and prediction time. The latter is of concern as the aim is to
run the algorithm on real-time network traffic, whereas the
model fit time is less important as the fit can be performed
offline. Performance was compared across six algorithms from
the Scikit-learn Python package [11]: Linear Regression (LR),
Linear Discriminant Analysis (LDA), k-Nearest Neighbour
(KNN), Classification and Regression Tree (CART), Naı̈ve
Bayes (NB) and Support Vector Classification (SVC). Fig. 2
shows the accuracy score of the different algorithms when con-
sidering different feature sets i.e. using all 80 features or only
the first 6 or 3 most important respectively. Initial results indi-
cate CART and KNN both return very high evaluation score of
approximately 99% across all feature set combinations. Other
attack types had differing results but approximately the same
trends in terms of ranking of performance. The SVC had very

Fig. 2. Performance Evaluation of the six Machine Learning algorithms for
DDoS using accuracy scoring.

slow fit and high prediction times so it was rejected after this
phase as it had little advantage in terms of performance, and
thus is not included in later results.

The second phase of algorithm selection investigated the
prediction time with results shown in Table II, which also
shows the training times. From the first phase of selection,
KNN and CART were identified as the most promising al-
gorithms; whereas, the predict time shows CART has signif-
icantly better runtime performance for similar quality metric
compared to KNN. Finally taking all performance metrics into
consideration, CART with the 6 highest features was selected
as the chosen model. Again, while other attacks showed dif-
fering performances CART with the 6 most important features
performed well across all attack types. It is interesting to note
that CART performed well with different number of features
but showed a significant improvement to predict time without
sacrificing quality when moving to 6 features whereas other
algorithms (excepting KNN) showed significant performance
degradation with fewer features. Another significant advantage
of CART is that it provides straightforward interpretation
of the classifier through the decision tree, which allows the
parameters to be directly viewed; although, an example is not
shown here due to space restrictions. Fig. 3 presents further
results which include a range of model implementation metrics
such as accuracy, precision, recall and F1 score. From these
results we can see that CART performs well across them all.

Further detailed analysis of the results, not easily shown in
the overall aggregated results, opens up the selection process
discussion a little. The DDoS validation dataset had a total
of 45,143 traffic flows with 19,679 benign and 25,464 DDoS.
The CART Classifier failed to classify 18 DDoS traffic flows
(false negative) while also returning a false positive of 10.
The 1st stage Classifier of the proposed Hierarchical Machine
Learning architecture is required to have very low false
negative. The LDA algorithm (using all features) had a lower
false negative result for this category with only 2 false negative
flows and thus could have been considered for the first stage
Classifier. However, LDA had 10,262 false positives, which
could have overloaded Classifier 2. On balance, using CART,
a very small number of DDoS packets would get through,

TABLE I. MOST IMPORTANT 6 FEATURES FOR DDOS

 Feature Importance

1 Fwd Packet Length Max 0.7907

2 Destination Port 0.4464
3 Init_Win_bytes_forward 0.3176
4 Total Length of Fwd Packets 0.047
5 Subflow Fwd Bytes 0.0421

6 Init_Win_bytes_backward 0.0367

Fig. 2. Performance Evaluation of the six machine learning algorithms for
DDoS using accuracy scoring.

TABLE II PREDICTION TIMES FOR DDOS USING DIFFERENT
FEATURE SELECTION RESULTS

Algorithm Train
Time

Predict Time for DDoS (s)
All Feat 6 Feat 3 Feat

LR 0.89 0.008985 0.001996 0.000998
LDA 0.11 0.007979 0.000998 0.000998
KNN 2.71 5.971206 5.626392 11.625983
CART 0.12 0.012965 0.002023 0.002023
NB 0.04 0.094778 0.006981 0.003963

DDoS. The CART Classifier failed to classify 18 DDoS
traffic flows (false negative) while also returning a false
positive of 10. The 1st stage Classifier of the proposed
hierarchical machine learning architecture is required to have
a very low false negative. The LDA algorithm had a lower
false negative result for this category with only 2 false
negative flows and thus could have been considered for the
first stage Classifier. However, LDA had 10,262 false

positives, which could have overloaded Classifier 2. On
balance, using CART, a very small number of DDoS packets
would get through, but this would be acceptable taking into
account the whole algorithm performance and attack type into
consideration. Thus, it is important to consider the wider
performance issues when selecting an algorithm, not just the
raw statistics.

The final analysis looks at the performance consideration
of the hierarchical approach when considering the second
stage classifier. Results for this comparison are shown in Fig.
4 for three different attack types: DDoS, BOT and PSCAN.
These results are using the selected CART algorithm for
Classifier 2 with the 6 most important features and compare
the effort if only implementing the single stage classifier at
the edge vs implementing the two stage classifier. The results
show the reduction on effort in the second stage classifier is
significant, in particular for the BOT and PSCAN traffic
(with BOT nearly zero). This is important as it shows the

benefit of moving from an edge-based classifier alone to the
proposed two-stage classifier can lead to a significant
reduction in packet level traffic needed to be processed in
Classifier 2, thus leading to a more scalable approach for
practical deployment.

V. CONCLUSION
A novel hierarchical machine learning architecture for SDN
security has been proposed in this paper. The architecture
consists of two classifier stages with the first classifier
implemented in the SDN controller and the second
implemented at the edge in a processing device co-located
with the SDN switch. A range of suitable machine learning
algorithms were evaluated, suggesting that a classification
and regression tree model is the most suitable algorithm from
those investigated. The results show that using the proposed
hierarchical approach there is a significant reduction in the
number of packets that have to be processed in the classifier
associated with the SDN switches. Future work will
investigate the second stage classifier in more detail.

REFERENCES
[1] E. Gelenbe, J. Domanska, T. Czchorski, A. Drosou, and D. Tzovaras,

“Security for Internet of Things: The SerIoT Project,” in Proc. of Int.
Symp. on Networks, Computers and Communications (ISNCC), Rome,
Italy, June 2018.

[2] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothen-
berg, S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, Jan. 2015.

[3] I.Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in Software
Defined Networks: A Survey,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, pp. 2317–2346, Apr. 2015.

[4] S. Gangadhar and J. P. Sterbenz, “Machine learning aided traffic
tolerance to improve resilience for software defined networks,” Proc. of
Int. Workshop on Resilient Networks Design and Modeling, RNDM
2017, Sep. 2017.

[5] S. Nanda, F. Zafari, C. Decusatis, E. Wedaa, and B. Yang, “Predicting
network attack patterns in SDN using machine learning approach,”
Proc. of IEEE Conf. on Network Function Virtualization and Software
Defined Networks, NFV-SDN 2016, pp. 167–172, Nov. 2017.

[6] L. Barki, A. Shidling, N. Meti, D. G. Narayan, and M. M. Mulla,
“Detection of distributed denial of service attacks in software defined
networks,” Proc. of Conf. on Advances in Computing, Communications
and Informatics, ICACCI 2016, pp. 2576–2581, Sep. 2016.

[7] J. Domanska, M. Nowak, S. Nowak, and T. Czachorski, “European cy-
bersecurity research and the seriot project,” in Computer and
Information Sciences, T. Czacho ́rski, E. Gelenbe, K. Grochla, and R.
Lent, Eds. Cham: Springer International Publishing, 2018, pp. 166–173.

[8] B. Trammell and E. Boschi, “An introduction to IP flow information
export (IPFIX),” IEEE Communications Magazine, vol. 49, no. 4, pp.
89–95, Apr. 2011.

[9] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization,” in Proc. of Int. Conf. on Information Systems Security
and Privacy (ICISSP), Funchal, Madeira, Portugal, Jan. 2018, pp. 108–
116.

[10] H. Han, X. Guo, and H. Yu, “Variable selection using Mean Decrease
Accuracy and Mean Decrease Gini based on Random Forest,” Proc. of
the IEEE Int. Conf. on Software Engineering and Service Sciences,
ICSESS, pp. 219–224, Nov 2017.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, Jan. 2011.

Fig. 3. Algorithm comparison for DDoS

Fig. 4. Comparison between 1st stage and 2nd stage processing times for
three attack types, where the 1st stage result shows the effort required if
using an edge-only classifier without the hierarchical approach proposed.
Note that for BOT the 2nd stage result is too small to measure

