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Abstract 

The dynamic change of vegetation cover exerts significant influences on the energetic 

and chemical circulation worldwide. Systematically monitoring the global vegetation 

cover change is critical to promote a better understanding of the basic biogeochemical 

processes, and their possible feedbacks to the global climate system. It is of great 

practical value to study dynamic vegetation variation related to climate change, human 

activities, and natural factors to explore the underlying relationships between vegetation 

cover change and its driving forces and the responding mechanisms of vegetation cover 

to the variability of the driving forces. 

Vegetation degradation is continually proceeding worldwide, but the degradation 

situation is more serious in developing countries than in developed countries. China is 

the largest developing country, and it has been experiencing significant socio-economic 

development, rapid urban expansion, and sharp population growth in eastern China in 

particular after launching the program of reform and opening-up termed "Socialism with 

Chinese Characteristics" in China in 1978. The unprecedented socio-economic 

development, urban expansion, and population growth have led to land use and land 

cover change, soil fertility decline, vegetation degradation, water contamination, and 

biodiversity loss in eastern China. Eastern China, a place with a highly developed 

socioeconomic status than other regions of China, covers seven provinces (e.g., 

Liaoning, Hebei, Shandong, Jiangsu, Zhejiang, Fujian, and Guangdong) and three 

municipalities (e.g., Beijing, Tianjin, and Shanghai) with an area of about 1.0277 million 

km2.  

It is of critical importance for monitoring the dynamic vegetation variation on multi-

spatiotemporal scales, exploring the underlying relationship between vegetation cover 

change and its driving forces (e.g., climate forces, topographic forces, and socio-

economic forces), and investigating the time lag effects of vegetation variation in 

response to climate variables (e.g., precipitation and temperature) in eastern China from 

2001 to 2016. To achieve the objectives of this study, the Moderate Resolution Imaging 

Spectroradiometer Normalized Difference Vegetation Index (NDVI) time series with a 

250 m spatial resolution and a 16-day temporal resolution, monthly meteorological data 
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from meteorological (automatic) base station , Digital Elevation Model data with a 30 m 

spatial resolution, socio-economic statistical data, and the map of land use types, gross 

domestic product, and population density in 2000 and 2015 with an 1 km spatial 

resolution, and the vector map of eastern China at city level were used. A set of 

mathematical methods such as the maximum value composite method, linear regression 

analysis, rescaled range analysis, coefficient of variation, Person’s correlation coefficient, 

t-test, and spatial analysis methods (e.g., surface analysis and overlap analysis) were 

applied in this study. 

This study aims at monitoring the dynamic change of vegetation cover and investigating 

the relationship between vegetation cover and its driving forces on multiple 

spatiotemporal scales in eastern China from 2001 to 2016. The objectives of this study 

are fulfilled and the main findings and new results of this study are summarized in 

following. 

The overall annual NDVI displays a distinctive spatial heterogeneity across eastern 

China, presenting a gradient decrease from the south to the north of eastern China. The 

spatial distribution of NDVI in spring, summer, and autumn follows a similar pattern, but 

the overall NDVI value is higher in summer than in spring and autumn. Our calculation 

indicated that, during the past 16 years, the vegetation cover had gradually increased in 

eastern China with a magnitude of 0.0003 year-1. Areas with a greening trend and areas 

with a browning trend account for 49% and 33% of the study area, respectively. Spatially, 

we found that the browning areas are mainly distributed in city centers and the three 

economic zones and its surrounding areas. Considering the vegetation variation on 

seasonal scale, NDVI performs an increasing trend in spring and autumn but a 

decreasing trend in summer.  

In this study, we detected that areas expected to show consistency accounting for a 

larger proportion when compared with the areas expected to show anti-consistency on 

annual scale, while an opposite phenomenon was found on seasonal scale. In terms of 

the future changing trend of vegetation cover, areas with certain vegetation degradation 

will be larger than areas with certain vegetation improvement for eastern China both on 

annual and seasonal scales in the future. Estimating the vegetation stability on the basis 
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of variation of coefficient, we found that the vegetation cover is relatively stable in the 

south of the study area, but it fluctuated wildly in the north of the study area. 

Our calculation suggested that temperature can be considered as the dominant climate 

factor controlling the vegetation growth in eastern China. The relationship is more 

pronounced between NDVI and temperature than between NDVI and precipitation both 

on annual and seasonal scales in eastern China for the study period. Moreover, the 

relationship between NDVI and precipitation is higher in autumn than in spring and 

summer, while the response of NDVI to temperature is stronger in spring than in autumn, 

followed by in summer. In this study, we observed, spatially, the overall maximum 

correlation coefficients between NDVI and precipitation as well as NDVI and temperature 

are basically higher in the north and lower in the south of the study area both on annual 

and seasonal scales. Temporally, on annual scale, the NDVI shows no lag time to 

changes in temperature but a 1-month lag time to precipitation variation. On seasonal 

scale, the maximum responses of NDVI to changes in precipitation and temperature 

establish 1-month longer in summer than in spring and autumn. Spatially, the lag time for 

maximum NDVI response to precipitation and temperature gradually increase from the 

north to the south of the study area. 

Elevation is regarded to be a dominant factor affecting the vertical distribution of 

vegetation cover. Our findings indicated that both the vegetation cover and vegetation 

stability increase with the elevation increase and reach its peak at an elevation of about 

500 m. The vegetation degradation is more serious at the elevation range of 0 to 100 m 

than at higher elevation ranges. It is worth noticing that, in this study, our result is against 

our initial assumptions that the vegetation growth on the north-facing slope is better than 

the vegetation growth on the south-facing slope. However, we found that the vegetation 

cover, vegetation cover change, and vegetation stability show no statistical difference on 

the south-facing slope and north-facing slope. Similar to the responding mechanisms 

between the elevation-vegetation cover and elevation-vegetation stability, the vegetation 

cover and vegetation stability show a gradient upward trend with slope range increase. 

Furthermore, the proportion of the areas with a greening trend shows a “humped” pattern 

with the slope range increase, and it reaches the peak at the slope range of 6° to 15°. 
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Our findings indicated that vegetation degradation is generally attributed to socio-

economic development, urban expansion, and population growth, particularly in Tianjin, 

Shanghai, Jiangsu, Zhejiang, Fujian, and Guangdong. However, implementing large-

scale reforestation and afforestation programs such as the Natural Forest Conservation 

Program, Three-North Shelter Forest Program, Beijing and Tianjin Sandstorm Source 

Controlling Program, and Grain for Green Program contribute to the vegetation greening 

phenomenon since 1978, in Liaoning, Beijing, Shandong, and Hebei in particular. We 

further observed that, spatially, the dynamic change of vegetation cover is negatively 

coupled with socio-economic development, urban expansion, and population growth. 

Areas with a high-speed socio-economic development, rapid urban expansion, and 

sharp population growth are along with severe vegetation degradation and strong 

vegetation oscillation spatially. 

Keywords: MODIS NDVI; climate factors; topographic factors; socio-economic factors; 

coefficient of variation; precipitation; temperature; south-facing slope; socio-economic 

development; urban expansion; population growth; maximum correlation coefficients; 

vegetation improvement; vegetation degradation 
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1 Introduction 

1.1    Background 

Functioned as the bond of the air, soil, and water, vegetation is considered as a sensitive 

indicator for global environment variation (de Jong et al., 2013). As an important 

component of the geographical environment, vegetation occupies high proportion in the 

land surface system and becomes the core and the functional part of the biosphere and 

the ecosystem (Fabricante et al., 2009). Variation of the vegetation exerts significant 

influence on the energetic and chemical circulation all over the world. Systematically 

monitoring the global vegetation cover change is critical to promote a better 

understanding of the basic biogeochemical processes, and their possible feedbacks to 

the global climate system (Arneth et al., 2010). Meanwhile, human beings are 

anticipated to benefit significantly from it when undertaking environment and social-

economic activities. 

It is of great practical value to study dynamic vegetation variation related to climate 

changes, human activities, and natural factors to explore the underlying relationships 

between vegetation cover change and its driving forces and the responding mechanisms 

of vegetation cover to the variability of driving forces. Environmental and ecological 

destruction and the intensifying human-land conflict are critical issues that block human 

beings on the way of sustainable development, as exemplified by the sharp decline of 

the forests and farmland, the soil erosion and species extinction (Zou and Shen, 2003). 

These phenomena can be driven by global warming and socio-economic factors.  

According to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC) (IPCC, 2013), the mean global temperature has increased by 0.85 ℃ 

over the past 130 years. The relevant research has proved that global warming has 

exerted certain effects on the vegetation cover variation since the 1980s. Vegetation 

biomass of the middle and high latitudes in the northern hemisphere has significantly 

increased. Moreover, the vegetation season commences earlier and the growing season 

is evidently extended (Myneni et al., 1997, Parmesan and Yohe, 2003). Human activities 

such as urbanization and the abuse of natural resources have brought in environmental 

issues, which lead to the decline of the vegetation cover (Guan et al., 2018). Besides, 
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the distribution of the vegetation cover is closely connected with the natural factors such 

as topography (Wang et al., 2016b).  

Remote sensing (RS) technique, regarded as an alternative to time-consuming and 

labor-intensive field observation, makes monitoring dynamic vegetation cover possible. It 

has remarkable economic and social benefits, compared with traditional methods. As an 

important technique to collect spatial and temporal information, RS data are widely 

applied to study global and regional vegetation in the perspective of temporal and spatial 

variation trend (Fensholt and Proud, 2012, Eckert et al., 2015), which establishes the 

basis of research on vegetation variation monitoring. The emergence of time series 

Normalized Difference Vegetation Index (NDVI) data from multiple satellite sensors, e.g. 

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer 

(MODIS), as well as Satellite Pour l'Observation de la Terre Vegetation (SPOT VGT) 

provides foundation for research on vegetation variation from pixel scale, regional scale 

to global scale, which makes great progress in vegetation variation research (Zhou et al., 

2009, Barbosa et al., 2006, Hazarika et al., 2005).  

NDVI is the specific figure reflecting the different reaction of vegetation to visible light, 

near-infrared reflectance, and soil background, and it is employed to make a quantitative 

description of the surface vegetation cover and vegetation growth status under certain 

conditions. It is always applied to monitor the state of vegetation growth, vegetation 

cover and vegetation dynamic variation. Analysis of terrestrial ecosystem using time 

series NDVI data is important to monitor vegetation dynamic variation responding to 

climate change. It is possible to directly express the spatial difference of vegetation 

cover trends using NDVI data, harvesting an insight on the impact of natural forces and 

human activities exert to the vegetation variation. The different phases of vegetation 

index in a given area can be used to monitor the vegetation variation trends (Fensholt 

and Proud, 2012), the vegetation growth conditions (Jiang et al., 2002), leaf area index 

(Auslander et al., 2003), net primary productivity (NPP) (Hazarika et al., 2005), and 

vegetation phenology (Richardson et al., 2010).   

Ecosystems in eastern China are particularly fragile and vulnerable due to the rapid 

urbanization and industrialization and significant economic growth after initiating the 
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program of reform and opening-up termed "Socialism with Chinese Characteristics" in 

China in 1978. In addition, four special economic zones are established in Shantou, 

Shenzhen, and Zhuhai in Guangdong province and Xiamen in Fujian province after 

implementing this program. On the one hand, this program promoted the progress of the 

transformation of agricultural society to an industrial society. On the other hand, it led to 

negative impacts on the local terrestrial ecosystem such as soil erosion, deforestation, 

over-cultivation, air and water contamination, biodiversity loss, and agricultural land loss. 

In this study, the NDVI data from MODIS will be used to study the spatiotemporal 

characteristics in eastern China, a typical developing coastal area in China. To explore 

the relationships between the NDVI variation and the driving forces (e.g., climatic factors, 

socio-economic factors, and topographic factors), monthly temperature and precipitation 

data, Digital Elevation Model (DEM) data, and socio-economic data are used to analyze 

vegetation dynamic variation responding to climatic factors, topographic factors, and 

socio-economic factors. A comprehensive quantitative analysis is made based on 

various mathematic methods. This study is focused on different temporal scales 

(monthly, seasonal, annual, and inter-annual) and different spatial scales (pixel, station, 

and provincial). 

1.2    Problem statement and motivation 

Over the past three decades, China’s environment has seriously deteriorated, especially 

in highly developed areas, along with global climate change, complicated geographic 

conditions, rapid economic growth, high urbanization and industrialization, and further 

caused tremendous socio-economic impacts (Liu and Diamond, 2005). It has also been 

recognized that the dynamic variation of vegetation is driven by three major forces: 

natural forces, climatic forces, and socio-economic forces. Natural forces include stable 

soil condition, surface roughness, and topographic; climatic forces include surface 

temperature, precipitation, evapotranspiration, soil moisture, albedo, and cloud; socio-

economic forces include transformation of farming methods, policy guidance, population 

density, Gross Domestic Product (GDP), household consumption, total employment, 

total investment in fixed assets, urbanization rate, and reforestation projects. 
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Figure 1-1. The synergism between vegetation cover and its driving forces 

In the long term, natural forces and climatic forces are decisive for vegetation evolution. 

Changes in global climate exert significant influence on terrestrial vegetation system (de 

Jong et al., 2013). The interaction between climate and vegetation can be found in two 

aspects: on the one hand, climate determines the spatial distribution of the vegetation, 

and each type of climate corresponds to one kind of vegetation. On the other hand, 

different types of vegetation react with the matter and energy and exert influence on the 

climate. In the short term, the dynamic evolution of vegetation is mainly directly and 

indirectly influenced by human activities, which exerts a stronger impact on vegetation 

variation than the impact of climate change and topographic factors on vegetation 

variation both in speed and extent. The increasing population, developing industrial and 

the urbanization have proved the decisive socio-economic forces on local, regional and 

even global scales. It is the consistent irrational exploit of resources that lead to 

environmental issues. To conclude, long-term climate change determines the overall 
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pattern of vegetation distribution, while human activities have a direct or indirect impact 

on the dynamic evolution of local vegetation (Qu et al., 2015). 

The capacity to recover from a disturbance can be diminished by vegetation degradation. 

To alleviate the expansion of degradation and desertification to reinforce the resilience in 

China’s terrestrial ecosystem, the government of China has launched multiple forest 

conservation and restoration programs. Vegetation reforestation and restoration is an 

evolving concept in the face of challenges in environmental deterioration and 

degradation. During the last three decades, the vegetation cover in China has 

significantly improved at the national level due to the implementation of these 

reforestation and restoration programs (Lu et al., 2015). It has taken place in the context 

of rapid social and economic development and dramatic climate changes over the same 

period (Liu and Diamond, 2008). Although there is an increasing trend of vegetation 

cover at the large nationwide scale in China over the last three decades (Peng et al., 

2011), some decrease trends can be found at the local scale. Because of the impact of 

rapid urbanization and industrialization boosted the land use and land cover change, the 

vegetation cover in the Pearl River Delta and Yangtze River Delta has significantly 

decreased (Qu et al., 2015). The rising urbanization level, structural adjustment of 

agriculture, and the non-agricultural construction have greatly accelerated the speed of 

farmland shrinking (Gu et al., 2009).  

This study is motivated to explore the spatiotemporal variation characteristics of 

vegetation cover in eastern China, a typical developing coastal area in China, consisting 

of seven provinces (Hebei, Liaoning, Jiangsu, Zhejiang, Fujian, Shandong, and 

Guangdong) and three municipalities (Beijing, Tianjin, and Shanghai). To understand the 

temporal trends of the regional NDVI, above seven provinces and three municipalities 

were adopted to be ten independent administrative units. It is interesting to explore 

vegetation cover variation driven by climate, socio-economic, and natural forces. This 

study is aimed to analyze the relationships between vegetation cover and the three 

driving forces in eastern China from three major aspects, such as the changing trend, 

fluctuation degree, and consistency. The socio-economic driving forces include the total 

population, density of population, GDP (e.g., primary industry product, secondary 

industry product, tertiary industry product, and per capita GDP (PCGDP)), urbanization 
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rate, household consumption (e.g., rural household consumption and urban household 

consumption), total investment in fixed assets, and total employment. The three 

topographic factors (e.g., elevation, slope, and aspect) are considered as the natural 

driving forces. Temperature and precipitation are considered as the two major climatic 

driving factors. This study will provide a reference for eco-environmental monitoring and 

protection, as well as vegetation sustainability and promote a better understanding of the 

interaction between vegetation cover change and its driving forces in eastern China. 

1.3    Research objectives and key questions 

1.3.1 Research objectives 

This study aims at monitoring the NDVI changing trend, NDVI fluctuation degree, and 

future NDVI changing trend on different spatial and temporal scales in eastern China 

using the MODIS NDVI time series from 2001 to 2016. It further explores the temporal 

and spatial interaction between NDVI and its driving forces such as climate force, 

topographic force, and socio-economic force. In addition, the lag time for maximum NDVI 

response to climate variation has to be investigated in this study. This study aims at the 

following objectives:  

1) To display the spatial pattern of NDVI value, NDVI stability, and future NDVI 

changing trend and further explore the spatiotemporal characteristics of NDVI 

changing trend in eastern China both on annual and seasonal scales from 2001 to 

2016. 

2) To analyze the relationships between NDVI and precipitation as well as NDVI and 

temperature both on spatial and temporal scales and further quantitatively 

investigate the lag time for maximum NDVI response to changes in temperature 

and precipitation for each administrative unit and 184 meteorological stations. 

3) To illustrate the characteristics of spatial coupling of the dynamic change of 

vegetation cover to topographic factors (e.g., elevation, aspect, and slope) and 

determine the statistical relationships between vegetation variation and the three 

topographic factors. 
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4) To answer the questions: How and to what degree did socio-economic factors 

influence the vegetation cover, and how is the spatial responding mechanism of 

vegetation cover change to socio-economic development, urban expansion, and 

population growth in eastern China over the last two decades. 

1.3.2 Research questions 

The main challenge of this study is how to quantitatively determine the spatiotemporal 

change of vegetation cover, climate factors, and socio-economic factors over the last two 

decades, and how to promote a better understanding of vegetation cover variation in 

response to its driving forces on different spatial and temporal scales in eastern China 

effectively. To address these challenges, the following questions are proposed and need 

to be answered: 

1) Which metrics can be used to reflect the long-term vegetation cover variation, and 

how to quantify the vegetation changing trend and vegetation cover stability? 

2) How to quantitatively determine the relationships between NDVI and climate 

factors, and how to determine the lag time for maximum NDVI response to 

changes in climate factors? Which climate factor is the dominant factor controlling 

the vegetation growth in eastern China? 

3) How to map the spatial interaction and how to determine the quantitative 

relationships between vegetation variation and topographic factors and socio-

economic factors? 

4) Do all the socio-economic factors negatively affect the vegetation growth over 

eastern China from 2001 to 2016? 

5) What is the underlying cause of the spatial heterogeneity of vegetation cover over 

eastern China? 

1.4 Structure of the dissertation 

In this section, the structure of the dissertation will be clearly showed up. This 

dissertation consists of 6 chapters: introduction, theoretical background, the introduction 
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of the study area, methodology, results and discussion, and summary and conclusion, 

reflecting the logical framework of this study. 

Chapter 1 provides general background information of this study, incorporating research 

problem statement and motivation, research objectives, and key questions into the 

introduction, which establishes the critical challenges of this study and the importance of 

this research topic. 

Chapter 2 presents the theoretical background of this study, which provides a solid 

theoretical infrastructure for this research topic. In addition, this chapter is divided into 

two parts. Firstly, it reviews that many scholars using different satellite data and implying 

various mathematical methods to monitor the vegetation cover variation, which has 

occurred throughout the world across local to national scales. Then this chapter looks 

back the relationships between vegetation variation and its driving forces on the basis of 

previous studies.  

Chapter 3 is concerned with the study area of eastern China. The geographic, 

meteorological, and socio-economic characteristics of eastern China are presented in 

this chapter. Moreover, the database for this study is described, including RS data, 

meteorological data, DEM data, socio-economic statistical data, as well as other spatial 

variables. 

Chapter 4 describes the methodology initiated in this study. It provides all of the 

mathematical methods used for quantifying the dynamic change of vegetation cover, 

climate factors, and socio-economic factors. Furthermore, it establishes that based on 

various mathematical methods, how to quantitatively determine the correlation of 

vegetation responses to its driving forces on different spatiotemporal scales in eastern 

China.  

Chapter 5 presents and discusses the main findings generated by the mathematical 

methods, which are described in chapter 4. To improve the readability of this dissertation, 

the results of this study are presented in this chapter, being consisted of maps, tables, 

graphics, and texts. Previous studies are also used to demonstrate and verify the results 

of this study. Further explanation is released in this chapter when the main findings are 

not in line with previous works. 
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Chapter 6 summarizes and discusses the main findings of this study in the context of the 

whole dissertation. The strengths and limitations of this study are promoted in this 

chapter. Based on the results of this study, future research related to this study is also 

presented. 
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2 Theoretical background  

Many scholars have undertaken plenty of exploration on monitoring vegetation variation 

using NDVI time series. However, no generally accepted conclusion is drawn on the 

relationships between vegetation variation and the three driving forces (e.g., climatic 

forces, socio-economic forces, and topographic forces). In this chapter, a brief outline of 

the strength and limitation of the related mathematical methods used to monitor the 

vegetation variation and the correlation of vegetation in response to its driving force 

variation will be then generated. The time lag effects between vegetation growth and 

climate variation are outlined. Furthermore, the vegetation variation, climate change, 

urbanization and industrialization processes, and economic growth both on national and 

regional scales are identified. In addition, the coupled effect of climate forces, 

topographic forces, and socio-economic forces on vegetation degradation and 

restoration in different studies were concluded in this chapter. 

2.1    Estimation of the vegetation cover based on data processing methods 

RS has been regarded as the major means for detecting the vegetation cover. The RS 

images are capable of reflecting the information and variation trend of vegetation cover 

on different scales. Multi-source RS images can be used together regardless of the 

discrepancy among the spatial resolution, spectral resolution, and temporal resolution. 

Estimating vegetation cover based on multi-spectral RS data requires the development 

and optimization of mathematical methods, such as linear regression analysis, 

vegetation index, mixed pixel decomposition, decision tree classification, artificial neural 

network algorithm, and landscape ecology method. However, this chapter focuses on 

establishing the vegetation cover variation from regional to global scales based on the 

method of linear regression analysis, which is determined to be employed to detect the 

vegetation cover variation in this study. 

2.1.1 The overview of different mathematical methods 

Regression analysis and mixed pixel decomposition are the two most widely accepted 

methods (Table 2-1). It has been turned out that non-linear regression analysis is more 

precise in detecting the turning point of the vegetation variation than linear regression 
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analysis, but linear regression analysis is more commonly and effectively used for 

mapping the spatial distribution of long-term vegetation cover variation. Dymond et al. 

(1992) and Wittich et al. (1995) obtained valuable results of vegetation cover estimation 

using non-linear regression analysis, while Fensholt and Proud (2012) adopted linear 

regression analysis and their estimation turned out to be rough on temporal scale but 

much practical on spatial scale.  

Mixed pixel decomposition is favored by scholars for its high accuracy, and the function 

to eliminate other factors that have impacts on the estimation of vegetation cover such 

as bare soil and shadows. The combination of data from Landsat, SPOT VGT, NOAA 

AVHRR, and MODIS optimized the result for mixed pixel decomposition (Gutman and 

Ignatov, 1998, Al-Abed et al., 2000, Pech et al., 1986, Wu et al., 2015). Dimidiate pixel 

model was used by many scholars to estimate the vegetation cover in Hai River Basin, 

Yellow River Basin, Shaanxi Province, Fen River basin, Three Gorges Reservoir Area, 

Jungar Banner, and Xilinguole in China (Hou et al., 2013, Li et al., 2010, Ma et al., 2012, 

Tian et al., 2014, Wu et al., 2010, Yuan et al., 2013, Wu et al., 2012). Mid-resolution and 

high-resolution RS images were applied to monitor the cover of arbor based on the 

decision tree classification method. The results of this study proved to be of high 

accuracy (Goetz et al., 2003, Hansen et al., 2002).  

The vegetation index method was also employed to monitor the vegetation cover 

variation in Beer-Sheva and Jing River Basin, but the results turned out to be coarse. 

The artificial neural network algorithm was employed to calculate the vegetation cover of 

northwest Pacific and mid-Atlantic oceanic region. Their results turned out to be better 

than those derived by using regression analysis and mixed pixel decomposition 

(Atkinson et al., 1997, Boyd et al., 2002). The only restriction of the artificial neural 

network algorithm is that it requires the accuracy of geometrical registration and 

availability of training samples. Due to the restriction, it did not be popularized in the 

research of vegetation cover variation. Mountain ecosystems have been accorded 

higher priority in global conservation strategies (Brooks et al., 2006).  Segmented 

regression analysis and Sen Slope were employed to detect the vegetation cover 

variation for mountain protected areas in 5 biodiversity hotspots. The NDVI in five 
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continental regions showed a moderate greening trend until the middle of the 19th 

century and shifted to browning trend afterward (Krishnaswamy et al., 2014).  

Different research methods may produce different research results. For instance, the 

conclusion was contrast in two studies using different methods focused on the 

vegetation variation trend (from 1980s to 2000s) in northwest China on the basis of 

AVHRR NDVI data (Li et al., 2006, Ma et al., 2003): Ma et al. (2003) adopted the 

difference ratio and one-dimensional linear regression and concluded that the vegetation 

cover, on the whole, is on the decline and only local vegetation is optimized. However, Li 

et al. (2006) employed the landscape ecology method and concluded that the vegetation 

cover was greatly improved and only locally deteriorated. The contradictory conclusions 

derived from above two studies can be ascribed to different research methods 

application. The correct adoption of methods and the verification of the results are 

therefore both essential to the estimation of vegetation cover.  

2.1.2 Vegetation variation on regional scale 

As being detected by many scholars that the greening trends of vegetation cover were 

established in many areas of the world, particularly in Europe, the Sahel, India,  and 

China (Zhang et al., 2017, Julien et al., 2006, Fensholt et al., 2009, Jeyaseelan et al., 

2007). It is undeniable that vegetation degradation has continuously swept through many 

parts of the world such as in Cambodia, Indonesia, and the Philippines (Mather, 2007), 

while the browning trend has already stalled or even reversed in some areas. For 

instance, the trend converting from browning to greening started occurring during the 

18th century in Western Europe (Mather, 1992) and has also emerged in China and 

Vietnam around the 1980s (Mather, 2007).  

MODIS land cover products proved suitable data resources for identifying the greening 

or browning trends in vegetation cover from regional to global scales. To promote the 

view of vegetation cover variation at global level, a linear trend model and a seasonal 

non-parametric model were combined to detect the changing trend of vegetation cover 

by using Global Inventory Modeling and Mapping Studies (GIMMS) NDVI dataset. The 

results of this study pointed out that the vegetation cover change in the northern 

hemisphere was dominated by a greening trend, while in the southern hemisphere, the 
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browning trend in tropical Africa, Indonesia/Oceania, and northern Argentina were 

identified (de Jong et al., 2011).  

The linear regression analysis has been popularized to evaluate the vegetation changing 

trend on the basis of long-term NDVI time series on spatial scale. In the northern 

hemisphere, the vegetation cover is dominated by a greening trend, which is in line with 

the results generated by de Jong et al. (2011), and the areas with a significant increase 

account for more than 50%. However, the vegetation cover in part of central Europe, 

northern North America, and central Siberia even shifted from greening to browning 

trends in the growing season (Kong et al., 2017). The Mongolian Plateau is one of the 

largest steppe ecological environment in Asia as well as in the world. In terms of the 

regional vegetation variation, the vegetation cover change in the People's Republic of 

Mongolia and the Inner Mongolia Autonomous Region of China contributes a significant 

impact on regional climate system as well as the carbon cycle. To generate a map of 

significant trends in Mongolia, simple linear regression analysis was applied to detect the 

land degradation and regeneration based on an 11-year (2001 to 2011) MODIS NDVI 

satellite data record. The results of this study demonstrated that vegetation cover in the 

north and northeast of Mongolia mainly shows a positive trend, and the negative trends 

are sparsely located in the center of Mongolia (Eckert et al., 2015).  

The MODIS NDVI data has been only available since February 2000, it is impossible to 

evaluate the vegetation variation before that based on MODIS NDVI data. However, third 

generation GIMMS NDVI data provided a possibility to extend the research period to the 

20th century. Based on greenness anomaly method, the temporal scale of vegetation 

dynamics in Mongolia and the Inner Mongolia Autonomous Region of China was 

extended forward 1982 by using third generation GIMMS NDVI data. The changing trend 

of vegetation cover in Mongolia was investigated and the trend was in line with the 

results generated by Eckert et al. (2015). The results of this study indicated that the 

vegetation cover is slightly better in Inner Mongolia than in Mongolia with increasing 

magnitude of 0.0182 year-1 and 0.0176 year-1, respectively (Miao et al., 2015).  

The continuous upward trend of NDVI in the growing season in Eurasia and North 

America has been reversed or stalled since the late 1990s due to water shortage (Piao 

et al., 2011, Wang et al., 2017b, Xu et al., 2017, Bogaert et al., 2002). In contrast, the 
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NDVI in the growing season (April to October) in China has considerably increased from 

1982 to 2010, although the magnitude of the upward trend declined after the early 2000s 

in comparison with the magnitude of the upward trend from 1982 to 1999. Concerning 

the spatial pattern of vegetation cover variation, the vegetation cover improved in many 

parts of southern China over the period of 1982 to 2010, but the vegetation cover kept 

almost unchanged in northern China for the same period (Peng et al., 2011).  

Moreover, Rescaled Range (R/S) analysis was adopted to calculate the Hurst exponent 

of NDVI time series. The Hurst exponent is widely applied to identify the consistency and 

the anti-consistency of NDVI time series, which can effectively predict the future 

changing trend of the vegetation cover (Li et al., 2019, Liu et al., 2017, Liu et al., 2019, 

Peng et al., 2012, Tong et al., 2018). Previous studies have unitized Hurst exponent to 

study the consistency and the anti-consistency of the NDVI time series in the Qinghai-

Tibet Plateau and Yarlung Zangbo River Basin (Han et al., 2018, Liu et al., 2017, Peng 

et al., 2012) and the results evidenced that the consistency of the NDVI changing trend 

is greater than the anti-consistency of the NDVI changing trend in the Qinghai-Tibet 

Plateau and Yarlung Zangbo River Basin.   

However, it is worth mentioning that the same research method may produce different 

research results. For example, the conclusion was contradictory in two studies using 

both the same method focused on the future variation trend of vegetation cover in Inner 

Mongolia (Liu et al., 2019, Tong et al., 2018). Liu et al. (2019) adopted Hurst exponent to 

identify the consistency of NDVI changing trend based on GIMMS NDVI data from 1982 

to 2015 and demonstrated that the areas showing consistency are larger than the areas 

showing anti-consistency in Inner Mongolia in the future. However, Tong et al. (2018) 

applied Hurst exponent to study the future variation trend of vegetation cover on the 

basis of GIMMS NDVI data from 1982 to 2013 and found an opponent result to former 

study that most of the area exhibits anti-consistency characteristic in Inner Mongolia in 

the future.   

2.1.3 Vegetation variation in different types 

Vegetation ecosystem consists of different vegetation types, not only sustaining 

biodiversity but also producing essential ecological performances. Knowledge of the 
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dynamics of different vegetation types is critical for developing adaptation strategies to 

restore vegetation to sustain the fragile ecological system. To investigate the 

spatiotemporal pattern of vegetation variation in central Asia, linear regression analysis 

was applied to detect the decreasing and increasing trends of different vegetation types 

using MODIS NDVI data. The results of this study showed that the decreasing areas are 

mainly distributed in shrubs and sparse vegetation covered regions (Jiang et al., 2017). 

The same analysis method was employed to detect the temporal trends and spatial 

patterns of land use and land cover change in northern China, which not only reinforced 

the understanding of the spatiotemporal dynamics of vegetation variation but also 

expounded the underlying mechanisms of long-term land use transformation. The results 

of this study suggested that the forest and closed shrub land in northern China increased 

greatly from 2001 to 2013. Furthermore, the urban areas gained 23129 km2 due to a 

great number of people migrated from rural to urban areas, which promoted the 

urbanization processes, particularly in the north China plain and northeast China plain 

(Wang et al., 2016a).  

Temperate grasslands are known as an important role in regional climate change and 

preventing and managing soil erosion. To better understand patterns of NDVI change for 

temperate grasslands, mostly located in northern China, Piao et al. (2006b) detected the 

temporal variation of NDVI. The mean NDVI for temperate grasslands was firmly 

increased in the growing season (April to October), and the magnitude of the upward 

trend was slightly greater in spring and autumn than in summer from 1982 to 1999. In 

terms of each grassland type in different seasons, the magnitude of the increase for 

temperate meadow was greater in spring than in summer and autumn, whereas an 

opposite result was observed in both temperate steppe and temperate desert steppe. 

Furthermore, the coefficient of variation (CV) of NDVI can be considered as a very useful 

and efficient indicator for identifying the amplitude of the inter-annual vegetation cover 

oscillation. To investigate the degree of the vegetation fluctuation, NDVI CV was applied 

to quantify temporal vegetation cover variation and to express the magnitude of inter-

annual variability in 5 biome groups (forest, grassland, desert, alpine vegetation, and 

cropland) over China for the last two decades of the 20th century  (Fang et al., 2001). 
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2.1.4 Vegetation variation in response to multiple reforestation programs  

China’s government has invested enormous funds and made great efforts in vegetation 

deterioration mitigation, poverty eradication, livelihoods improvement, and rural economy 

restructure. Reduced government ability of natural resources management (China’s 

Cultural Revolution) accelerated the unrestricted forest harvesting activities and 

promoted environment degradation and deterioration from 1966 to 1976. Soon after, a 

set of large-scale ecological restoration program such as Grain for Green Program 

(GGP), Beijing and Tianjin Sandstorm Source Controlling Program (BTWSSCP), Natural 

Forest Conservation Program (NFCP), and Three-North Shelter Forest Program (TNSFP) 

has been initiated to alleviate the vulnerable terrestrial ecosystem (Bryan et al., 2018). 

The NDVI changing trend can be used to evaluate the effectiveness of the ecological 

restoration programs. The slope of the linear regression was proposed to assess the 

vegetation variation after implementing the GGP, BTWSSCP, and TNSFP in Horqin 

Sandy Land, China. The results of this study showed that the vegetation cover in 76% of 

the sand dune areas was improved, particularly in Naiman Banner, Hure Banner and the 

south of Horqin Left Back Banner (Zhang et al., 2012). Reforestation and restoration 

programs would be the most effective way to upgrade vegetation cover on regional scale 

at short-term. After implementing the TNSFP for more than two decades, linear 

regression analysis was applied to explore the greening and browning trends using 

GIMMS NDVI data. The results of this study pointed out that the vegetation cover has 

remarkably improved over most of the TNSFP region, particularly in eastern regions of 

China and in the northern Piedmont of Tianshan Mountains (Duan et al., 2011).  

The linear regression analysis was also employed to quantify the magnitude of 

vegetation restoration in the Shaanxi-Gansu-Ningxia Region after implementing the GGP 

for 10 years. A remarkable upward trend of vegetation cover was observed in most 

areas of this region, particularly in Yulin in Shaanxi province. The magnitude of 

vegetation improvement was significantly greater in the Shaanxi-Gansu-Ningxia Region 

than in northern China, which has launched the TNSFP approximately two decades. 

Areas distributed in the east of this region experienced significant fluctuation was 

identified, which might be caused by initiating the GGP in this area (Li et al., 2013).  
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The NFCP maintains natural forests by way of logging bans and afforestation activities, 

while the GGP transforms farmland to forest land or grassland through relative grain and 

financial allowance to farmers. The NFCP has made great achievement in natural forest 

restoration and soil conservation. For instance, the timber logging in the northeast of 

China and Inner Mongolia reduced by 11 million m3 from 1997 to 2005, which led to 

immeasurable ecological and socio-economic effects. To offset the market demand for 

timber, China’s government enhanced the total import volume of 29.4 million m3 in 2005 

(Liu et al., 2008b). 

2.1.5 Comparing different data sources for vegetation monitoring 

The NDVI data derived from Terra MODIS and SPOT VGT are considered to be a more 

precise and robust data source to assess the long-term vegetation trends than AVHRR 

GIMMS NDVI data. GIMMS NDVI was employed to detect the vegetation variation in 

Dahra, Senegal from 2000 to 2007 using linear regression analysis, while Terra MODIS 

and SPOT VGT are used as reference datasets to evaluate the accuracy of the GIMMS 

NDVI. The results of this study exhibited that the vegetation variation trend derived from 

SPOT VGT NDVI is greater than Terra MODIS and AVHRR GIMMS NDVI data. 

Furthermore, the slope value derived from GIMMS NDVI data was in line with the 

MODIS NDVI in semi-arid areas (Fensholt et al., 2009).  

To verify whether the results and the method of this study can be popularized on global 

scale. Linear regression analysis was again employed to perform the vegetation cover 

change spanning from 2000 to 2010 on global scale, comparing the global Terra MODIS 

NDVI and GIMMS NDVI time series data. The results of this study showed that the 

temporal trends derived from GIMMS NDVI are in line with the trends generated from 

MODIS NDVI data. However, more areas of positive trends were produced by the 

MODIS NDVI data in arctic regions than GIMMS NDVI data (Fensholt and Proud, 2012). 

By exceeding the study area from regional to global, Fensholt et al. (2012) verified that 

the accuracy of variation patterns derived from MODIS NDVI dataset is higher than 

GIMMS NDVI data when it was used to monitor the vegetation cover variation from 

regional to global scales. 



2 Theoretical background   19 

It is critical to monitor the global vegetation variation accurately by using different RS 

imageries for a better understanding of the functions and processes of the vulnerable 

ecological system. Zhang et al. (2017) attempted to carry out the global vegetation cover 

trend from 2001 to 2015 by means of comparing the MODIS NDVI and MODIS 

Enhanced Vegetation Index (EVI) data derived from Collection 6 (C6) and Collection 5 

(C5).  After applying the linear regression analysis at pixel level to both MODIS NDVI 

and MODIS EVI data and found that the global vegetation cover established a significant 

increasing trend in Terra-C6 EVI, while a contrasting phenomenon was observed in 

Terra-C5 EVI. Based on Terra-C5 NDVI and EVI, a huge number of browning areas was 

detected in tropical regions. However, it was not identified in Terra-C6 NDVI and EVI.  

Figure 2-1. Estimation of the vegetation variation based on different methods 

Study Area Data Source Method Reference 

Global GIMMS NDVI 

 
 

 
Linear 

Regression 
Analysis 

 
 

 
 

de Jong et al., 
2011 

Global GIMMS NDVI, MODIS 
NDVI 

Fensholt and 
Proud, 2012 

Northern 
hemisphere GIMMS NDVI Kong et al., 2017 

Central Asia MODIS NDVI Jiang et al., 2017 

China GIMMS NDVI Peng et al., 2011 

Western Germany AVHRR NDVI Wittich et al., 1995 

South Island SPOT VGT Dymond et al., 
1992 

Mongolia MODIS NDVI Eckert et al., 2015 

Dahra MODIS NDVI, SPOT 
VGT 

Fensholt et al., 
2009 

Horqin Sandy Land SPOT VGT Zhang et al., 2012 

Beer-Sheva, Israel MODIS NDVI, Kodak 
DC-40 Vegetation 

Index Method 

Gitelson et al., 
2002 

Jing River Basin MODIS NDVI Guo et al., 2006 

https://en.wikipedia.org/wiki/Enhanced_vegetation_index
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Australian Landsat MSS 

 
Pixel 

Decomposition 
Model 

Pech et al., 1986 

Global AVHRR NDVI Gutman et al., 
1998 

Syrian Coast SPOT VGT Al-Abed et al., 
2000 

Three Gorges 
Reservoir Area MODIS NDVI Wu et al., 2012 

Mid-Atlantic Region IKONOS Goetz et al., 2003 

Western Province, 
Zambia 

MODIS NDVI, IKONOS, 
LandSat ETM+ 

Hansen et al., 
2004 

United Kingdom AVHRR NDVI, SPOT 
HRV Artificial 

Neural 
Network 

Atkinson et al., 
1997 

United States, 
Pacific Northwest AVHRR NDVI 

Boyd et al., 2002 

Eurasia, North 
America GIMMS NDVI Landscape 

Ecology 
Methods 

Bogaert et al., 

2002 

Northwest China AVHRR NDVI Li et al., 2006 
 

2.2    Study on driving forces of vegetation variation 

Many scholars have accumulated very good experience and carried out rewarding 

research on the correlation between vegetation cover change and multiple driving forces, 

such as climatic forces, topographic forces, and socio-economic forces. Vegetation 

cover shows apparent spatial heterogeneity. The spatial pattern of different vegetation 

species varies from each other. Even in the same region, different vegetation cover 

represents different inter-annual and seasonal characteristics, which results from the 

influence of climatic forces, topography forces, and socio-economic forces. Vegetation 

cover has a time lag in response to changes in temperature and precipitation and is, to a 

certain degree, subject to topographic factors (e.g., elevation, slope, and aspect) and 

socio-economic activities (e.g., population density, GDP, and urbanization). 
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2.2.1 The correlation between NDVI and climatic factors 

Spatiotemporal variation of vegetation cover of territorial ecosystems has been intimately 

associated with climate change. The unique spatiotemporal pattern of climate variations 

may lead to a distinct spatial and temporal pattern of vegetation cover regarding the 

generally recognized interaction between vegetation growth and climate change (de 

Jong et al., 2013). Previous literature on the correlation between NDVI and climate 

factors were mainly focused on precipitation and temperature. However, the reaction of 

NDVI to precipitation and temperature variation is varied from different vegetation types 

as well as on different spatial scales. Many scholars pointed out that NDVI is either 

dominated by a single climate factor (precipitation or temperature) or the combined effect 

of precipitation and temperature. Moreover, the lag time for maximum NDVI response to 

precipitation and temperature variations has been proven in many parts of the world. 

2.2.1.1 The dominant effect of precipitation or temperature variation to NDVI 

Vegetation is always considered to be a sensitive indicator in the study of the vulnerable 

biosphere and global climate change (Salim et al., 2008). Temperature and precipitation 

act as the most direct and significant factors for vegetation growth (Chen, 2001, Lin et al., 

2017, Zhao et al., 2001). Many scholars have announced that NDVI is closely related to 

precipitation, which is the main factor limiting the growth of vegetation, particularly in arid 

and semi-arid regions (Fensholt et al., 2012, Bao et al., 2014). The inter-annual 

vegetation cover in arid and semi-arid regions in the middle north and northwest parts of 

China was dominant by precipitation, except that the vegetation variation was ascribed 

to changes in temperature. An analogous phenomenon was observed in spring and 

autumn that temperature favored the vegetation growth. Abundant precipitation 

promoted the vegetation growth in summer, but high temperature negatively affected the 

vegetation growth (Liang et al., 2015).  

The response relation between vegetation cover and precipitation in Sahelian on inter-

annual, annual and seasonal scales has been analyzed. The results of this study 

showed that, apart from the inter-annual scale, the vegetation cover responded to 

precipitation intimately both on the annual and seasonal scales (Anyamba and Tucker, 

2005). NDVI is recognized as a surrogate of vegetation cover and reflects the vegetation 
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growth status. Duan et al. (2012) calculated the relationships between NDVI-precipitation 

and NDVI temperature to determine the primary climate factor controlling the vegetation 

cover variation in the TNSFP region. The results of this study suggested that vegetation 

growth and plant photosynthesis are dominated by precipitation from 1982 to 2006, 

particularly in northwestern China (Duan et al., 2011). In Sudan, the vegetation growth is 

highly positively correlated with precipitation, particularly during the heavy precipitation, 

whereas the relationship between NDVI and precipitation was complicated rather than a 

linear trend (Salim et al., 2008).  

Many scholars have declared that temperature is the main factor affecting the spatial 

and temporal pattern of vegetation cover in many parts of the world. Understanding the 

interaction between ecosystems and climate factors on regional, continental, and global 

scales is crucial to detect the sensitivity of vegetation growth responding to changes in 

climate effectively. The vegetation cover was remarkably influenced by a summer 

temperature increase in the Arctic, except in recently deglaciated areas, particularly, the 

vegetated and graminoid vegetation types were positively responded to the warming 

summer temperature (Raynolds et al., 2008). The vegetation cover in the northern 

hemisphere has been generally increased over the last three decades (Peng et al., 2013, 

Kong et al., 2017).  

The impact of climate change on vegetation growth has been intensively debated and 

the patterns of the interaction are complicated, which is varied on different spatial and 

temporal scales. The onset and cessation of the growing season, which are greatly 

sensitive to temperature change and potentially influence the vegetation growth. As 

suggested by Kong et al. (2017), temperature is considered as a dominant factor 

affecting the vegetation growth in the northern hemisphere, particularly in North America 

and Siberia. The vegetation growth in central Canada, eastern of the United States of 

America (USA), and western Africa was primarily correlated to soil moisture, which is 

closely related to precipitation and underground water storage. The vegetation growth is 

highly related to the upward trends of temperature and solar radiation in southeastern 

China, while precipitation alleviates the negative impact of soil moisture downtrend on 

vegetation variation.  
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The change of vegetation cover in response to climate variation is varied in different 

ecosystem types. The warming temperature can prospectively extend the growing 

season, and a greening trend can be anticipated (Buermann et al., 2014, Garonna et al., 

2014). As being proved that the NDVI in the growing season showed an upward trend in 

all types of ecosystems except for desert ecosystem in the context of an increasing trend 

in temperature at the same time in China, indicating a significant relationship between 

temperature and NDVI for all ecosystems in the growing season (Peng et al., 2011).  

China is one of the largest countries in the world and covers 9.597 million km² territory. 

Due to the width range of territory, different types of climate coexist in China and refer 

various functions for vegetation growth in the corresponding ecosystem (Cui, 2010, Dai 

and Zhang, 2010, Guo et al., 2008, Wang et al., 2014). Guo et al. (2008), Dai et al. 

(2010), Cui et al. (2011), and Wang et al. (2014) analyzed the correlation coefficients 

between NDVI and precipitation as well as NDVI and temperature in northwestern China, 

Qilian Mountains, eastern China, and southern China on the basis of NDVI data and 

meteorological data. Results have shown distinctive spatiotemporal distributions of NDVI 

responding to temperature and precipitation. Furthermore, the correlation coefficient with 

temperature is generally higher than that with precipitation. Bao et al. (2014) focused on 

investigating the correlation between NDVI and precipitation as well as NDVI and 

temperature in Mongolia plains from 1982 to 2010. Results of this study demonstrated 

that NDVI had a positive correlation with temperature and precipitation before the 1990s, 

but it turned out to be a negative one after the 1990s. There are distinct spatial 

differences in the distribution of NDVI responding to temperature and precipitation.   

The vegetation cover increased in southern China continuously because of plenty of 

forest inventories and multiple large-scale afforestation activities (Pan et al., 2011, Peng 

et al., 2011). In addition, an increasing trend in temperature during the last several 

decades stimulated the vegetation growth in southern China, where is not a water-limited 

ecosystem (Lin et al., 2010). Hence, temperature can be regarded as a primary climate 

factor for vegetation growth over southern China. Due to the apparent annual and 

seasonal behaviors of vegetation growth, vegetation status is always considered to be a 

sensitive indicator on the research of the evolution of ecosystem processes under the 

impact of climate change and human activities. NPP is always considered as a good 
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proxy of vegetation growth and adopted to detect the spatiotemporal pattern of 

vegetation evolution related to its driving forces. For example, in the Huai River Basin 

and heavy industry areas, covering Harbin, Changchun, and Shenyang in the northeast 

of China, positive correlations were found between NPP-sunshine duration and NPP-

accumulated temperature. In addition, the precipitation is determined to be a negative 

factor affecting the vegetation growth in the Huai River Basin (Salim et al., 2008). 

The temperature and precipitation interact to propose complex and various constraints 

on vegetation growth throughout the world. Global climate change was regarded as the 

main factor affecting mountain ecosystems. The relationships between vegetation cover 

and climate factors are varied in different mountain ecosystems. A positive relationship 

between NDVI and temperature was found over the mountain preserved areas located in 

Africa and Southeast Asia, while temperature showed a negative impact on mountain 

vegetation in Central America, South America, and South Asia. Furthermore, 

precipitation presented a weaker influence or no influence on mountain ecosystems 

(Krishnaswamy et al., 2014). The Namoi catchment, located in eastern Australia, is a 

typical semi-arid riparian area with diverse plant species. In general, the maximum 

temperature was the main factor negatively affecting the vegetation growth over Namoi. 

In addition, more precipitation was needed during the warmer months than cooler 

months to reach the same NDVI value over this riparian zone (Fu and Burgher, 2015). 

However, the climate factors were not the determining factors controlling the vegetation 

growth in North America and Africa, places the NDVI showed no relationship or only a 

weak relationship to climate change (Fang et al., 2001). 

2.2.1.2 The combined effect of precipitation and temperature to NDVI 

Many scholars have exhibited that the vegetation growth is neither dominated by the 

precipitation or temperature, while it has been further proposed that the manifestations of 

these two factors are usually lumped together. It has been demonstrated that inter-

annual changes of vegetation cover were closely related to changes in temperature 

during spring and summer in the middle and high latitudes in the northern hemisphere, 

while in semi-arid areas, apart from the temperature, the precipitation is also an 

important factor (Ichii et al., 2001). The vegetation greening and browning trends are 

intimately associated with moisture stress generated by temperature and precipitation 
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variations. For instance, warming temperature cooperated with no significant increase in 

the precipitation had a negative impact on plant growth in northwestern Canada and the 

positive relationship between tree-ring width and temperature has weakened (D'Arrigo et 

al., 2004). The cooling temperature could also promote vegetation growth in low-latitude 

ecosystems by the way of decreasing evapotranspiration and respiration rate. 

Meanwhile, the increasing temperature has alleviated several serious climate constraints 

to vegetation growth as well and led to an improvement in NPP in many parts of the 

world (Nemani et al., 2003). 

Many studies have demonstrated that vegetation cover appears an upward trend in 

many parts of China from 1982 to 2010 at national level due to a long-term warming 

trend (Peng et al., 2011). Regarding the vegetation growth on seasonal scale, the 

magnitude of the increasing trend in vegetation growth is greater in spring than in 

summer and autumn (Piao et al., 2003). The warming temperature not only prolonged 

the growing season of vegetation growth but also promoted the photosynthesis rate in 

plants (Piao et al., 2006a). However, a downward trend swept in the northern 

hemisphere, covering parts of China, caused by the widespread drought stress and less 

moisture availability has been evidenced since the 1990s (Jeong et al., 2011, Park and 

Sohn, 2010). For example, in northern China, the NDVI in the growing season 

significantly increased before the 1990s due to temperature and precipitation increases. 

However, the NDVI in the growing season presented a downtrend afterward because of 

the prolonged drought season caused by global warming and precipitation decrease 

(Peng et al., 2011).  

Previous climate changes have not only converted vegetation behavior, but they also 

have influenced the nature of vegetation-climate relationships. Due to climate change, 

the sensitivity of vegetation to temperature variation has reduced or shifted in temperate 

latitudes (Barber et al., 2000). A global assessment demonstrated that the greening 

trend was closely related to warming and/or increased precipitation, while the browning 

trend was ascribed to increased temperature and/or decreased precipitation (Xiao and 

Moody, 2005).   
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2.2.1.3 The impact of climate factors on different vegetation types 

Correlation analysis between NDVI and climate factors is essential for exploring the 

interaction between global climate change and the processes in terrestrial ecosystems 

(Potter and Brooks, 1998). Maps of greening and browning trends of vegetation cover 

were produced under the impact of the temperature, precipitation, and incident solar 

radiation variation on global scale. The results of this study showed that over 50% of the 

spatial vegetation variation could be ascribed to the variation of climate factors. The 

most remarkable greening and browning trends were distributed in Argentina and 

Australia. This study further proved that the pattern of different land use types in 

response to climate change was heterogeneous. The forests establish a negative 

relationship to temperature variation under the warming conditions and a significant 

positive relationship was observed in shrub lands responding to precipitation variation 

(de Jong et al., 2013).  

Effective green leaf area index, indicating the growth of vegetation, was highly correlated 

with precipitation variation in European shrubland, whereas changes in annual 

temperature could not explain the differences in effective green leaf area index, except 

for a negative correlation was revealed at the north of European (Mänd et al., 2010). 

NOAA AVHRR NDVI data was applied to research how the precipitation affects different 

types of vegetation in southern Israel and found that vegetation in the sample region was 

sensitive to the precipitation (Schmidt and Gitelson, 2000).  

Trends in the growing season for precipitation, temperature, and NDVI follow each other 

fairly well in China, with an increasing trend in whole over the temperate grasslands. In 

terms of each grassland types, the relationship between temperature and NDVI for 

temperate meadow was significantly greater than that of precipitation, whereas a 

contrasting phenomenon was found in temperate desert steppe, indicating that 

precipitation is the key factor affecting the temperate desert steep and the temperate 

meadow is potentially controlled by temperature in the growing season (Piao et al., 

2006b). The vegetation growth in the alpine meadow of the Three-River Source Region 

on the Qinghai-Tibetan Plateau was inconsiderable with temperature variation before 

1995, whereas the relationship was converted from insignificant to significant after 1995 

(Xu et al., 2011).   
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2.2.1.4 The time lag effect of NDVI in response to climate factors 

Owing to the spatiotemporal heterogeneity of terrestrial ecosystems, the diverse 

spatiotemporal patterns of vegetation cover is fairly correlated with climate forces and 

presents complicated time lag effects from regional to global scales. However, most of 

the studies only concentrated on the influence of the concurrent climatic forces and did 

not pay attention to the time lag effects of climatic forces on plant growth. Regarding the 

time lag effects of vegetation growth is pretty crucial for a better understanding and 

quantifying the vegetation evolution in the context of global warming and drought wide 

spreading. For instance, 64% of the vegetation cover change was dominated by the 

climate characteristics, which was 11% greater than neglecting the time lag effect on 

vegetation growth on global scale, which improved the accuracy and precision of the 

study and provided a reference to natural vegetation management and conservation (Wu 

et al., 2015).  

Zeng et al. (2013) employed Pearson’s correlation analysis to detect the time lag effects 

between NDVI and precipitation as well as NDVI and temperature on global scale. The 

results of this study showed that vegetation growth was mostly influenced by 1-month 

preceding precipitation and concurrent temperature. In addition, the correlations between 

NDVI and precipitation as well as NDVI and temperature were more complicated on 

regional scale. The time lag effects of NDVI and precipitation as well as NDVI and 

temperature were variedly extending from 0 up to 6 months and from 0 to 4 months on 

regional scale, respectively. For example, the vegetation growth in central North America, 

central Eurasia, India, and the Sahel was closely correlated to the precipitation when the 

precipitation preceded NDVI by 1 month, while in Central Europe, the vegetation 

presented the largest correlations when the temperature preceded NDVI by 3 to 4 

months.  

The time lag effects of NDVI in response to precipitation implied that most of the 

vegetation in high latitude regions in the northern hemisphere exhibited an appreciable 

correlation with the concurrent precipitation, while the vegetation in arid and semiarid 

showed a 1-month time lag to changes in precipitation (Rundquist and Harrington, 2000). 

Furthermore, most of the vegetation in the Qinghai–Tibet Plateau, southern Australia, 

and southern South America showed no time lag effects to temperature, and the 
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vegetation growth was considerably influenced by the concurrent temperature (Wu et al., 

2015).  

To gain an overall impression of the delay mechanisms of the response of vegetation 

growth to climate change on the annual and seasonal scales, NDVI has been exhibited 

to demonstrate variation in vegetation productivity responding to climate variation. The 

relationships between NDVI and precipitation as well as NDVI and temperature in 

Kansas were carried out and found that a high correlation between the average value of 

NDVI in the growing season and precipitation during the current growing season and 7 

preceding months (15 months duration) (Wang et al., 2003). The NDVI in response to 

precipitation variation appears obvious annual and seasonal features across northern 

Patagonia. In northern Patagonia, the annual NDVI was significantly correlated with 

previous precipitation. Furthermore, the seasonal NDVI showed a similar reaction to 

precipitation variation. No significant relationship could be found between NDVI and 

concurrent precipitation both on the annual and seasonal time scales (Fabricante et al., 

2009).  

Distinct time lag effects of vegetation growth responding to precipitation variability were 

found in western and central North America that the vegetation growth in summer was 

highly influenced by precipitation derived from spring even winter in last year (Zeng et al., 

2013). In Central Eurasia, the vegetation growth presented seasonal behaviors to 

climate characteristics. Vegetation growth in summer was significantly affected by 

precipitation, indicating that precipitation is the key factor controlling the vegetation 

behaviors. However, the vegetation growth in spring was mostly related to the 

temperature. These results suggested a time lag effect existed between vegetation 

growth and climate factors (Xu et al., 2017).  

Climate change influences vegetation cover variation by controlling the metabolism rate 

in the process of vegetation growth (Parmesan and Yohe, 2003). In other words, climate 

change is accountable for the renovation of vegetation cover on a certain level. The 

restriction of water-heat climate conditions is in charge of the spatial pattern of 

vegetation. The spatiotemporal characteristics of vegetation cover response to 

temperature and precipitation on the annual and seasonal scale in eastern China were 

detected by Cui et al. (2010). The conclusion of this study exhibited that NDVI showed a 
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10 days lag to the variation of temperature, and a 30 days lag to precipitation generally. 

Summer is the primary season for plant growth, especially in the northern hemisphere 

due to relatively high temperature and abundant precipitation. For instance, the 

maximum NDVI value is greater in August than other months in northeastern China, 

whereas the highest temperature and precipitation are in July preceding maximum NDVI 

by 1 month (Yang et al., 2009).  

Terrestrial ecosystems display complex behavior on different spatial and temporal scales 

in the response of different vegetation types to climatic change. Better understanding of 

the mechanism of vegetation growth responses to climate change is a decisive demand 

for evaluating the dynamics of the future terrestrial ecosystem (Wang et al., 2011). 

Inspect the relationships for diverse vegetation types, it has been demonstrated that the 

relationships between forests and precipitation were significantly weaker than that of 

grasslands, shrublands, croplands, and savannas (Zeng et al., 2013).  

Different vegetation types exhibited distinct time lag effects of vegetation growth 

responding to temperature or precipitation variation (Shen et al., 2013). Moreover, the 

same vegetation type also presented different time lag effects of vegetation growth in 

response to temperature and precipitation. For instance, the majority of global forest 

ecosystem has no obvious time lag effect to temperature in whole, whereas more than 

60% of the evergreen needle leaf forest and the deciduous broadleaf forest showed 1- 

and 2- month time lags to temperature, respectively. The time lag effects of shrubs 

response to temperature exhibited an obvious spatial pattern in different latitude regions. 

The shrubs in high latitude regions in the northern hemisphere were mostly correlated 

with the concurrent temperature, while a 1-month time lag was examined in low and 

middle latitude regions. Wood savanna and savanna greatly reacted to temperature 

when the temperature preceded NDVI by approximately 2 months. The cropland showed 

the minimum time lag effects to temperature, and more than 74% of the cropland mostly 

correlated with the concurrent temperature (Wu et al., 2015). In terms of the time lag 

effects of different vegetation types to precipitation, shrubs presented 1-month time lag 

to precipitation in high latitude regions and an approximately 2-month time lag in low 

latitude regions. The grasslands and deserts exhibited the closest relationships with 

precipitation in summer (Xu et al., 2017). 
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2.2.2 The correlation between NDVI and topographic factors 

Topographic factors, including elevation, aspect, and slope, are intently related to the 

spatial and temporal patterns of the vegetation cover at a certain level. In the northern 

hemisphere, plants on the south-facing slope (SFS) obtain more solar radiation than on 

the north-facing slope (NFS), which may lead to both inhibition and promotion for 

effective energy and mass transfer to the plant and result in differences in vegetation 

growth consequently. There is an opposite phenomenon in the southern hemisphere 

(Auslander et al., 2003, Rasmussen et al., 2015). Under the influence of the combined 

functions of light condition, water stress, and heat energy, the NDVI value was greater 

on the NFS than on the SFS for both wet and dry seasons in the Guadalupe Valley, 

located in the northwest of Mexico. Furthermore, the NDVI value was higher in wet 

seasons than in dry seasons, implying a better vegetation development and growth in 

wet seasons due to the contradiction and balance between water demand and water 

availability for vegetation growth (Toro Guerrero et al., 2016). It has been demonstrated 

previously that the patterns of vegetation cover in response to different aspects were 

uneven both on spatial and temporal scales for the Santa Monica Mountains in California. 

The NDVI value was on the NFS higher than on the SFS, particularly in May, July, and 

September (Deng et al., 2009).  

Topographic factors are the major factors affecting the spatial distribution of the 

vegetation for mountain areas in the long-term. Moreover, it was highly expected that 

elevation contributes much more to vegetation variation in comparison with the effects of 

aspect and slope on vegetation variation (Busing and White, 1993). It was observed that 

the vegetation growth and vegetation indices improved along with the increase in 

elevation in the Darab Mountain, Iran. During the elevation range of 1500 to 3000 m, the 

vegetation cover was apparently better than below areas. The vegetation indices such 

as NDVI, EVI and Difference Vegetation Index (DVI) reached the maximum value in the 

vertical zone of 3000 m. In terms of the vegetation cover on different aspects, the 

vegetation cover was much better on the northwest-facing slope (NWFS) than other 

aspects because the shady aspect reduced the evapotranspiration and maintained the 

soil moisture to favor the vegetation growth in this semi-arid region (Mokarram and 

Sathyamoorthy, 2015).  
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Moreover, in the mountain regions of semi-arid Central Asia, elevation and aspect are 

still considered to be the principal factors influencing the spatial distribution and growth 

status of vegetation.  The upper forest line started at 1800 m in the west and raised to 

2200 m in the east in the northern front ridge, holding a vertical range of 200 m to the 

lower forest line, whereas the upper forest line lied at an elevation of 2400 m in the 

southern mountain ridge. When the slope degree is less than 5º, no significant effects of 

the topographic pattern was observed in vegetation distribution. This underlying cause of 

the differences in vegetation distribution and growth to topographic factors originally 

comes from the natural environmental conditions (Klinge et al., 2015). In the Upper 

Uruguay River Basin, Brazil, the processes of intensification and extensification of forest 

management were significantly correlated with the distance from water bodies, while the 

processes of intensification were simultaneously related to the elevation range (de 

Freitas et al., 2013). The vegetation recovery was affected by the magnitude of the 

elevation in northern Arizona. The vegetation rehabilitation and regeneration in higher 

elevation areas were weaker than that of in lower elevation areas (Kim, 2013). 

The vegetation structure was intimately correlated with the aspects of the Mediterranean 

zone in Chile. The floristic composition on the east-facing slope (EFS), west-facing slope 

(WFS), and SFS is likely homologous that the number of evergreen species and the 

plant size in these three aspects were larger than on the NFS. A set of xeromorphic 

species was found on the NFS, which can be explained by species invasion. Moreover, 

a large number of hygrophilous species was detected on the SFS, but it was curbed by 

the unbalanced water demand and supply (Armesto and Martίnez, 1978). The resilience 

of the terrestrial ecosystem and the surfaces of potential vegetation growth are likely 

linked with the species richness and species diversity, which not only enhanced the 

ecological diversity but also reinforced the vegetation resilience and afforded a possibility 

to combat the disturbances from natural disasters and human activities. The species 

richness and species diversity for different aspects in different climate zones such as 

Mediterranean, semiarid, arid, and extreme-arid were disparate. For instance, an inverse 

phenomenon was observed in the Mediterranean zone, where the species richness and 

species diversity on the SFS was greater than that on the NFS. In arid and extreme-arid 

zones, the species richness was remarkably lower on the SFS than that on the NFS. In 
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terms of vegetation cover on different aspects for different climate zones, vegetation 

cover was significantly greater on the NFS than that on the SFS, except for no 

remarkable differences were observed on the SFS and the NFS in the extreme-arid zone 

(Kutiel and Lavee, 1999).  

In the northern hemisphere, the microclimate on the SFS and the NFS is different in light, 

heat and water conditions, which further influences the vegetation growth status such as 

the height of the plant and plant physiological characteristics ( e.g., the size of the leaf 

and the density of the gall). Due to the effect of solar radiation, NFS is cooler and wetter 

than SFS. Auslander et al. (2003) analyzed the relationships between plant traits and 

aspects on different sites in Israel and found that the leaf size and plant height were 

greatly related to the aspects. The leaf size/plant height was remarkably larger/taller on 

the NFS than on the SFS. The leaf size was not closely related to the site and slope. In 

contrast to the leaf size on different aspects, on the one hand, the falling density was 

greater on the SFS than on the NFS. On the other hand, the gall density varied at 

different sites, particularly in Keziv, the gall density on the SFS was 16 times greater 

than on the NFS.  

Vegetation acts as an essential role in maintaining and rehabilitating fragile terrestrial 

ecosystems. The relationships between vegetation restoration and topographic factors 

vary from region to global scales. It is pivotal to comprehend the mechanism of 

vegetation restoration in response to topographic factors to improve the fragile ecological 

environment, especially in opencast coal mine dumps. Topographic factors (e.g., 

elevation, aspect, and slope) exert a large impact on plant group composition, structure, 

density, species richness, as well as species distribution. The progress of vegetation 

restoration was greatly influenced by the slope variation in Shanxi Pingshuo Antaibao 

opencast coal mine dumps. A positive relationship was performed between slope/aspect 

and surface biomass and herb cover, whereas an opposite relationship was obtained 

between slope/aspect and canopy density. The impact of elevation on vegetation 

improvement did not show a distinct difference due to the maximum height difference of 

the elevation is only 125 m in this coal mining area. Though the progress of the 

vegetation restoration exhibited a considerable connection to local topographic factors, 

the soil factors dominated the progress in this region (Wang et al., 2016b). However, it 
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has been demonstrated that the spatial pattern of vegetation diversity and growth status 

were highly related to the aspect and elevation (more than 300 m) for Longjiao Mountain 

forest areas in China (Wang et al., 2006).  

Topography factors could also influence the progress of vegetation restoration by 

affecting soil properties and fertility. Daqing Mountain is a nature reserve located in the 

center of Inner Mongolia, a place an arid and semi-arid transition zone is. The vegetation 

cover in Daqing Mountain showed a distinct spatial distribution with the changes in 

elevation and aspects. The NDVI value was higher on the NFS than on the SFS in all 

elevations. Typically, the vegetation cover on the SFS was dominated by grassland and 

shrubland. With an increase in elevation on the NFS, the vegetation cover transited from 

grassland to woodland. Both on the NFS and SFS, the vegetation appeared a significant 

vertical distribution and it was noticeably improved with the elevation increase when the 

elevation under 1400 m (Jin et al., 2015). 

Climate change on micro-scale is determined by topographic factors and plant species 

composition. With the elevation ranging from 147 m to 7000 m in the Yarlung Zangbo 

River Basin, China, the vegetation cover responded to changes in climate derived from 

elevation variation and hence exhibited a unique vertical and horizontal pattern. It has 

been verified that the NDVI has been improved in the Yarlung Zangbo River Basin from 

1999 to 2003, and the most obvious enhancement was observed when the elevation is 

lower than 500 m. The magnitude of the upward trend slightly increased for the elevation 

from 500 to 2000 m, and then the increasing trend stalled or even reversed when the 

elevation reaches 4000 m, which was ascribed to a combination function of an overall 

precipitation reduction and temperature warming in this region, especially at the 

elevation over than 2500 m (Li et al., 2015a). 

The vegetation cover showed a considerable relationship with the elevation and slope 

variation in Henan. The greatest vegetation cover was distributed in lower elevation 

areas and the vegetation cover decreased remarkably with the elevation increase. The 

overall vegetation cover had decreased from 2000 to 2003, areas with an elevation 

ranging from 200 to 600 m in particular. The better vegetation covers were mainly 

distributed in smaller slope degrees. The vegetation cover reduces with the rise in the 
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slope degree. Furthermore, the vegetation cover presented no obvious differences in 

different aspects (Li et al., 2015b).  

2.2.3 The correlation between NDVI and socio-economic factors  

The spatial pattern of browning and greening trends appeared in many parts of the world 

alternately, implying that they could not be fairly related to climate forces (de Jong et al., 

2013). Along with climatic forces and topographic forces, changes in vegetation cover 

might be caused by socio-economic forces, affecting the interactions of the atmosphere, 

hydrosphere, geosphere, and biosphere of the Earth’s ecosystems and the land cover 

and land use change. Socio-economic factors mainly consist of human-induced land use 

and land cover change, urbanization, economic development, and population growth or 

a combination effect. By 2050, approximately 66% of the world population is projected to 

live in urban areas, as reported by the World Health Organization (WHO). Urbanization 

has sobering impacts (e.g., deplete resources, produce water and air contamination, and 

convert cultivable lands to urban areas) on local ecosystems, but these adverse impacts 

are complicated on different spatial and temporal scales. Identifying the negative and 

positive interactions between socio-economic forces and terrestrial ecosystems are 

essential for managing and maintaining the urban and economic development as well as 

biodiversity conservation appropriately.  

Due to the frequency of human activities, the human-induced land cover and land use 

changes are continually proceeding in developing countries than in developed countries. 

Especially in developing counties, the ecosystem and environment are more sensitive to 

human-induced effects. The World Bank released a report in 2007, which announced 

that a considerable number of megacities would be settled in developing countries by 

2020, which mostly caused by population growth and economic development in urban 

areas and may further exacerbate the vulnerable ecosystem degradation (Bank, 2007). 

A severe degradation trend was detected in Zimbabwe on national scale, particularly in 

the heavily-utilized, communal areas, which was primarily ascribed to human-induced 

land use and land cover change (Prince et al., 2009). As the main performance of socio-

economic activities, human-induced land use and land cover change, converting from 

tropical forests to rubber and palm oil, might be related to the extension of vegetation 

browning in Indonesia and other parts of Southeast Asia (Koh et al., 2011, Mann, 2009).  

https://www.climatescience.cam.ac.uk/research/atmos-bios
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The intact vegetation cover in South Africa was negatively associated with the scale of 

the settlement and the amount of settlement population because the construction of new 

settlements and intensive human agriculture activities in rural areas resulted in the sharp 

conversion of surrounding natural vegetation (Coetzer et al., 2013). The vegetation cover 

has been devastated to satisfy the processes of urbanization and industrialization in the 

context of frequency exploration and exploitation activities of oil and gas in northern 

West Siberia. Especially in the south of this region, urbanization has reduced the 

vegetation cover not only within the recently expanded urban areas but also the 

surrounding areas, particularly with a distance approximately 5 to 10 km around the 

urban areas. However, the vegetation cover in many cities of this region within or near 

the old urban areas presented an increasing trend, which was ascribed to the 

succession and evolution of generative plants developing under a warming context 

(Esau et al., 2016).  

The degradation of the ecosystem and environment is highly connected with population 

density, PCGDP, and urbanization and industrialization level. For instance, the total 

population and PCGDP were the absolute factors accelerating the environmental 

degradation in Nigeria. The coastal areas in southern Nigeria, a region experienced 

significant environmental degradation was ascribed to the high population density and 

intensive socio-economic activities recently or previously, while a contrasting 

phenomenon was found in northern Nigeria, a region with low population density and 

inferior economic development (Madu, 2009). The above research verified the 

hypothesis proposed by Dietz et al. (2007) that population and PCGDP are the primary 

factors influencing the terrestrial ecosystem stability and environment security. For 

example, Dhaka, the capital of Bangladesh, has experienced massive population growth, 

dramatic urban sprawl, and significant economic development since the 1980s, which 

converted a large number of non-urban areas (e.g., water bodies, cultivated land, 

vegetation, and wetlands) to urban areas and built plenty of roads and infrastructure. 

These urbanization processes further resulted in a deterioration in local ecosystems, 

alteration in plant behavior and degradation in vegetation cover (Dewan and Yamaguchi, 

2009).  
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The environment and ecological problems derived from vegetation destruction are very 

serious. Vegetation variation trend varies from region to region under the impacts of 

human interruptions. In China, the primary challenge we faced is how to effectively 

distinguish the effects on vegetation variation caused by climate changes and human 

activities in different ecosystems. Especially, the effects of human activities on 

vegetation variation are hard to be distinctly segregated due to the heterogeneity of 

vegetation on different spatial and temporal scales and the close relationships with 

localized climate characteristics (Buyantuyev and Wu, 2009, Wessels et al., 2007).  For 

instance, the urbanization and industrialization were demonstrated to be the pivotal 

driving forces accelerating the vegetation browning in the east part of the Qilian 

Mountains and oasis areas by way of exorbitant exploitation and depletion the natural 

resources. Particularly, the vegetation growth not only within the urban areas but also 

within the distance of 0 to 4 km to urban areas was highly disturbed or even remarkably 

curbed by human activities due to immense construction works and land use 

transformation from the non-urban area toward urban settlement (Guan et al., 2018).  

After investigating the links between socio-economic variation and vegetation dynamic in 

32 residential communities over southeastern Australia, the result of this study 

demonstrated that the vegetation cover was closely related to socio-economic 

development, particularly in recent years. The housing density was negatively correlated 

with community vegetation cover, whereas education level, income, home ownership, as 

well as immigration status produced positive effects to vegetation dynamics (Luck et al., 

2009). In addition, Buyantuyev and Wu (2009) demonstrated that in the Phoenix 

metropolitan region, USA, a large amount of natural vegetation was transferred into 

agricultural lands and urban areas parallel with rapid urbanization and strong socio-

economic variables. The spatial vegetation heterogeneity and vegetation cover were 

improved by human-modified land covers and landscapes. Meanwhile, the vegetation 

cover in the eastern and southern America has been remarkably improved due to 

successful forest management (Hicke et al., 2002). 

China has experienced rapid urbanization and industrialization since the 1980s, leading 

to 6% of the national land went through remarkably vegetation change. For example, in 

most of the big cities (the capital city of each province) of China, the urban development 
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intensity was negatively correlated with the vegetation cover (Zhou et al., 2014). In 

Yangtze River Delta and Pearl River Delta, in particular, places have suffered significant 

vegetation deterioration and degradation because tremendous economic growth and 

urban development boosted a huge amount of forests and farmlands to convert into 

built-up land (Qu et al., 2015).   

China has experienced explosive economic growth in recent decades. Particularly in 

eastern China, with the rapid progress of industrialization and urbanization, the gross 

regional product (GRP) has gone through enormous growth after implementing the 

program of reform and opening-up. In terms of NPP in eastern China, it showed a 

negative correlation to the magnitude of GRP growth, indicating a negative impact of 

economic growth on vegetation succession and evolution. The vegetation deterioration 

was mostly ascribed to a large amount of farmland converted into urban areas to satisfy 

the huge residence demand for immigration and the development of industrialization and 

urbanization (Piao et al., 2010). Meanwhile, the tremendous economic development 

accompanied by a lower NPP in many parts of China, especially in eastern China, which 

can be regarded as an admonition that it is undesirable to develop the economy at the 

cost of the ecosystem deterioration (Wang et al., 2017b).  

The vegetation restoration programs such as the GGP, TNSFP, the BTWSSCP, and 

NFCP have remarkably alleviated land desertification, land conversion, and vegetation 

deterioration in many parts of China and obtained great achievement in ecological 

construction, forest conservation, and environmental protection since 1978 (Zhang et al., 

2016). In terms of vegetation restoration in Shaanxi-Gansu-Ningxia Region, it benefited 

significantly from the program of GGP, which converted massive of croplands into forest 

land and grassland and closed hillsides to promote afforestation with sustained 

professional services and technical support (Li et al., 2013). The ecological protection 

and restoration program of NFCP was launched in 2005 in the Three-River Source 

Region, which restricted the livestock numbers and alleviated the grazing intensity. It has 

been evidenced that the vegetation cover improved significantly in many parts of the 

Three-River Source Region after implementing the program NFCP, and this program can 

be regarded as a key promoting factor for vegetation restoration and evolution (Xu et al., 

2011).  
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The forest biomass in northeastern China has been increased due to effective forest 

management and afforestation policy implementation. Afforestation and reforestation 

activities have a great impact on biomass dynamics (Zhang and Liang, 2014). 

Furthermore, the vegetation cover has significantly improved in the upstream of Yangtze 

River basin from 2001 to 2010 because of the reforestation and forest protection 

program boosted the land use and land cover change, and they finally resulted in a 

remarkable enhancement in terrestrial ecosystem productivity. However, it has been 

demonstrated that a considerable amount of croplands transformed into urban areas, 

which brought negative impacts on vegetation cover, but this negative impact offset by 

the transformation of shrublands to forests soon (Zhang and Liang, 2014).  

Most of the deteriorated vegetation can be rehabilitated by effectively sound land use 

policies or regularized management that convert farmlands to forest land, close hillsides 

to facilitate afforestation and maintain stocking rates at a reasonable range. For example, 

human activities (e.g., overgrazing, cultivation, and urbanization) were observed to be 

the key driving factor affecting the vegetation cover in Inner Mongolia from 1981 to 2006. 

Particularly, after launching the household production responsibility policy in the 1980s, 

the stocking rates have extraordinarily increased at the cost of vegetation cover 

degradation and deterioration. In addition, new institutional arrangements (e.g., 

BTWSSCP and GGP) for grasslands protection and restoration were practiced in 2000, 

which has inhibited or even shifted the upward trend of stocking rates, leading to 

enormous vegetation enhancement in Inner Mongolia (Li et al., 2012). In most areas of 

China, the vegetation cover may negatively relate to population density, agriculture 

activities, urban expansion, as well as economic development, while it benefited 

significantly from the implementation of multiple afforestation and conservation programs 

(Qu et al., 2015). 
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3 Introduction of the study area 

This chapter primarily introduces the study area of eastern China, including the socio-

economic status, geographic features, land cover and land use change, population 

growth, and climate variation. To carry out the objectives of this study, the MODIS NDVI 

data, monthly meteorological data, DEM data, socio-economic statistical data, as well as 

other vector data and raster data applied in this study are further introduced in this 

chapter.  

3.1    Study area  

 

Figure 3-1. The geographical boundary of the study area, the location of the 
meteorological station, and the location of the three economic zones 

This study is focused on eastern China, extending from 109°39′ to 125°46' E longitude 

and 20°13′ to 43°26' N latitude. Eastern China, a place exhibits high spatial differences 

on the distribution of fundamental natural resources, is composed of seven provinces 

(e.g., Liaoning, Hebei, Shandong, Jiangsu, Zhejiang, Fujian, and Guangdong) and three 
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municipalities (e.g., Beijing, Tianjin, and Shanghai) spanning a total area of about 1.0277 

million km2 (Figure 3-1). Eastern China is a highly developed region in China due to the 

deep influence of the program of reform and opening-up termed "Socialism with Chinese 

Characteristics" launched in China in 1978. Especially, Beijing is the capital of the 

People’s Republic of China, the political center of China, and the cultural center of China. 

Moreover, Beijing is also considered as a key transportation hub of the world. In addition, 

Shanghai is recognized as one of the most import economic centers of China, and it 

takes an essential role in Chinese economic reform and development. Jiangsu is one of 

the most socially, economically and culturally developed provinces in the whole China, 

ranking at the top list of PCGDP and Development and Life Index (DLI).  

 

Figure 3-2. The total GDP of eastern China and the proportion of primary, 
secondary, and tertiary industry products from 2001 to 2016 

Source: Own illustration; Based on Statistical Yearbook of China, 2002-2017 

Figure 3-2 shows that the total GDP in eastern China had significantly increased from 

60.847 billion Renminbi (RMB) in 2001 to 428.38 billion RMB in 2016 with a considerable 

increase rate of 23 billion RMB year-1. The proportion of the primary sector had 

continuously decreased from 10.7% of the total GDP in 2001 to 5.4% of the total GDP in 

2016. The proportion of the secondary sector presented a small increase from 2001 to 

2004, and the increasing trend was curbed or even reversed afterward. The proportion of 

the secondary sector reached a maximum magnitude in 2004 with a proportion of 53.1% 
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of the total GDP. The tertiary sector showed an upward trend from 2001 to 2016 and 

contributed over half of the total GDP of eastern China in 2016 (Statistical Yearbook of 

China, 2002-2017).  

 

Figure 3-3. The total population, urban population, and proportion of the urban 
population of eastern China 

Source: Own illustration; Based on Statistical Yearbook of China, 2002-2017 

After launching the policy of reform and opening-up, rapid urbanization and magnificent 

economic growth have taken place over the whole of China, particularly in eastern China. 

The population in eastern China accounts for approximately 40.8% of the total 

population in China in 2016, while eastern China accounts for only 10.7% of China’s 

terrain. Figure 3-3 shows that along with the rapid urbanization and dramatic economic 

growth, the total population in eastern China had increased by approximately 19.3% 

from 472.74 million in 2001 to 564.12 million in 2016 because a large amount of 

population had migrated from rural areas to urban areas to satisfy the work labor 

demand under the background of the rapid pace of industrialization. The significant 

amount of immigration came from the neighbor provinces or other regions of China. In 

these provinces and regions, with the development of agricultural intensification and 

mechanization system, a large amount of surplus labor existed in rural areas, particularly 

in the middle and southwest of China. Figure 3-3 shows that the urban population had 

constantly increased from 2001 to 2016 and reached about 373.4 million in 2016. In 
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addition, the urbanization rate had promoted by 20.3% from 45.9% in 2001 to 66.2% in 

2016 in eastern China, which are significantly greater than the magnitude of 37.7% in 

2001 and 57.4% in 2016 in China (Statistical Yearbook of China, 2002-2017).  

The three China’s largest economic zones such as the Pearl River Delta, Yangtze River 

Delta, and Bohai Economic RIM are located in eastern China, where the socio-economic 

status, urbanization rate, and population density are much higher than other regions of 

the study area. The urbanization rate of the three economic zones has reached the top 

level nationwide. Particularly, Jiangsu has formed an increasing gradient of urbanization 

level from the north to the south. In recent years, the growing urbanization, 

industrialization, and traffic infrastructure construction have led to the expansion of urban 

areas and the shrink of farmland and forest land in eastern China remarkably. Human 

activities result in more negative impacts on vegetation cover, especially in the middle-

lower reaches of the Yangtze River and Pearl River, where have become the least 

vegetation-covered areas. 

Topographically, eastern China spreads from the south to the north along with the 

eastern coastline in China. The Yangtze River and Yellow River are the major rivers in 

eastern China, which are the longest and second longest rivers in Asia, respectively. 

Apart from this, The Huai River Basin acts as a climate transition zone, and it is located 

in Jiangsu province. The Huai River is considered as the geographical dividing line 

between the northern and southern China, where present two distinct types of climatic 

characteristics. The landscape of eastern China is varied, and the elevation of eastern 

China ranges from -281 to 2849 m (Figure 3-4). Vast plain areas are located in the 

middle of eastern China with an elevation ranging from 0 to 40 m, particularly in Jiangsu, 

Shandong, Tianjin, and southern Hebei. High elevation areas are distributed in the south 

and north parts of eastern China, particularly in part of Fujian, Zhejiang, and the northern 

Hebei. Figure 3-4 shows that the elevation is significantly lower in the middle of Liaoning 

than in the east and west, while the elevation is greater in the middle of Shandong than 

the surrounding areas.  

A remarkable land use and land cover change has been detected in eastern China, 

including the transformation of farmland to urban areas in the three economic zones and 

city center, the deterioration in grassland due to overgrazing, as well as the reforestation 



3 Introduction of the study area    43 

and afforestation in the northwest of Hebei and Beijing as a result of the implementation 

of a serious of ecological conservation and forest restoration programs. The major land 

use types in eastern China are farmland, forest land, grassland, built-up land, and water 

body (Figure 3-5). The farmland is mainly located in the middle of eastern China, 

covering 42.2% of the study area, such as Jiangsu, Shandong, and Hebei. Especially in 

Jiangsu, the landscape is mostly flat, with its plain area covering 68.8% of the whole 

province, including the Yangtze-Thai Lake Plain, Coastal Plain, and Lixiahe Plain. 

Affected by intensive agriculture planting pattern for years, eastern China enjoys a 

relatively high rate of vegetation cover, which is relatively higher in Shandong, Jiangsu, 

and Zhejiang in the growing season. Due to the abundant agricultural products, Jiangsu 

and Zhejiang have long enjoyed its reputation as “a land flowing with milk and honey”.  

Low vegetation cover mainly distributes in the outskirts and center of cities and the 

eastern coastal areas. Densely interconnected water channels and dotted waters are 

distributed in the south of the Huai River Basin. These surface water and groundwater 

resources primarily satisfy the water demand of the inhabitant consumption, vegetation 

growth, and the processes of the urbanization and industrialization. In addition, to ease 

the water shortage in the north of the Huai River Basin, the South-to-North Water 

Diversion Project was put into action in 2002 to channel water from the Yangtze River to 

Beijing, Tianjin, and Hebei to secure the domestic, municipal, and industrial water supply 

in these regions. Forest lands account for more than 35.6% of the study area, which 

mostly and coincidentally spread at the high elevation areas. These areas are sparsely 

distributed in Guangdong, Fujian, and Zhejiang and wide-ranging in the north of Hebei 

and east of Liaoning.  
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Figure 3-4. The elevation of eastern China 
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Figure 3-5. The land use types of eastern China in 2015 



46  Yong Xu 

Eastern China is located in the East Asian monsoon climate zone, which is sensitive and 

vulnerable to climate variation (Cui, 2010). The Huai River is located in the north of 

Jiangsu. Areas located in the south of the Huai River are dominated by humid climate, 

and areas located in the north of the Huai River are under the control of sub-humid 

climate and semi-arid climate (Yin et al., 2018). Figure 3-6 shows that the precipitation 

increases from January to July/August and decreases afterward. Precipitation is 

primarily concentrated in summer. The monthly temperature shows a similar variation 

pattern to precipitation, but it reaches the highest temperature in July. The average 

annual temperature ranges from 15 to 16.5 ℃ in eastern China, and the accumulated 

annual precipitation within the study area varies widely from 1000 to 1500 mm, all of 

which are beneficial for vegetation growth.  

 

Figure 3-6. The monthly precipitation and temperature in eastern China from 2001 
to 2016 

Source: Own illustration; Based on monthly in situ observed temperature and 

precipitation data, 2001-2016 

Spatially, due to the influence of monsoon climate, an apparent south-to-north 

precipitation gradient leads to a downward trend in accumulated annual precipitation 

from more than 2000 mm (Guangdong) in the south of eastern China to less than 400 

mm (Hebei) in the north (Figure A-5(a)). The accumulated mean annual precipitation is 

distinctly heterogeneity in eastern China. Jiangsu can be regarded as a transition zone 

http://www.baidu.com/link?url=dygd5WKshdq1w8GDI0VMPnZmCIzDMvbBR-TeaHK3PkqZwdCdiWI4OiiXJ1Z8IAn6EvaH1HIY4aAuvR8o37jo8W8-QbMTitKcbFbib8qKDCq
http://www.baidu.com/link?url=dygd5WKshdq1w8GDI0VMPnZmCIzDMvbBR-TeaHK3PkqZwdCdiWI4OiiXJ1Z8IAn6EvaH1HIY4aAuvR8o37jo8W8-QbMTitKcbFbib8qKDCq
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of the humid region to sub-humid/semi-arid region. Due to the conversion of the climate 

zone, the precipitation converts from “rich” to “poor” from the humid region to the sub-

humid/semi-arid region. The precipitation in Guangdong, Zhejiang, and Fujian is 

remarkably higher than in other provinces and municipalities. The annual and seasonal 

temperatures situated at different latitudes are mainly influenced by the angle of solar 

radiation and elevation. The mean annual temperature decreases with the latitude 

increase in the study area. Figure A-6(a) shows that the highest temperature occurs in 

Guangdong with a magnitude of more than 24 ℃ and the lowest temperature exhibits in 

Liaoning. It is worth mentioning that the temperature in the middle of Shandong and the 

middle and north of Fujian is lower than the surrounding areas because the altitude of 

the sensor of these meteorological stations is relatively higher than the surrounding 

meteorological stations. 

3.2    Data 

To explore the spatiotemporal variation of vegetation cover and the driving forces that 

influence the vegetation variation, the following datasets are required: MODIS NDVI 

dataset, the vector map of eastern China, monthly meteorological dataset from 

meteorological (automatic) base station, DEM data, the map of land use types, the map 

of GDP, the map of population density, and socio-economic statistical data. Detailed 

information about the data sources is listed in Table 3-1. The study period was 

determined by the availability of RS data, which is available from February 2000 to the 

present. To obtain a completed annual MODIS NDVI data to secure the accuracy of this 

study, the study period is determined from January 2001 to December 2016.  All of the 

raster layers and the vector layers applied in this study are reprojected to the coordinate 

system of World Geodetic System (WGS) 84, Urchin Tracking Module (UTM) Zone 50 N 

and the spatial reference system of WGS 84 by using the MODIS Reprojection Tool 

(MRT) software and ArcGIS 10.3 platform. 
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Table 3-1. The list of data sources 

Category Data Scale Year Sources 

MODIS13Q1 MODIS NDVI 250 m spatial resolution; 16-
day temporal resolution 2001-2016 National Aeronautics and 

Space Administration (NASA) 

Climate Data 
Precipitation Monthly in situ observed from 

meteorological (automatic) 
base station 

2000-2016 
China Meteorological 

Administration and State 
Information Center Temperature 

Topographic 
Data DEM 30 m spatial resolution - Shuttle Radar Topography 

Mission (SRTM) 

Socio-economic 
Data  

GDP 

Administrative unit 2001-2016 National Bureau of Statistics  
of China 

Primary Industry Product 

Secondary Industry Product 

Tertiary Industry Product 

Total Investment in Fixed Assets 

PCGDP 

Household Consumption 

Rural Household Consumption 

Urban Household Consumption 

Population 

Total Employment 

Population Density 

Urbanization Rate 

http://www.baidu.com/link?url=dygd5WKshdq1w8GDI0VMPnZmCIzDMvbBR-TeaHK3PkqZwdCdiWI4OiiXJ1Z8IAn6EvaH1HIY4aAuvR8o37jo8W8-QbMTitKcbFbib8qKDCq
http://www.baidu.com/link?url=dygd5WKshdq1w8GDI0VMPnZmCIzDMvbBR-TeaHK3PkqZwdCdiWI4OiiXJ1Z8IAn6EvaH1HIY4aAuvR8o37jo8W8-QbMTitKcbFbib8qKDCq
http://www.baidu.com/link?url=dygd5WKshdq1w8GDI0VMPnZmCIzDMvbBR-TeaHK3PkqZwdCdiWI4OiiXJ1Z8IAn6EvaH1HIY4aAuvR8o37jo8W8-QbMTitKcbFbib8qKDCq
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Spatial Socio-
economic Data 

GDP Map 

 1 km spatial resolution 2000, 
2015 Resource and Environment 

Data Cloud Platform 

Land Use Map 

Population Density Map 

Vector Map The Vector Map of China at City 
Level 1:1 000 000 2015 
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3.2.1 MODIS NDVI Data 

NDVI can be considered as a measure of the "greenness" of terrestrial landscapes. 

NDVI has been widely employed in vegetation variation detection and practical 

application evaluation from regional to global scales. The MOD13Q1 NDVI data adopted 

in this study is released by National Aeronautics and Space Administration (NASA) 

(https://ladsweb.modaps.eosdis.nasa.gov/), spanning from January 2001 to December 

2016, with a 250 m spatial resolution, a 16-day temporal resolution, and a total of 23 

temporal images in a whole year. Each temporal image is mosaicked by six MODIS tiles 

(h26v04, h26v05, h27v04, h27v05, h28v05, and h28v06) derived from MOD13Q1 C6, 

which covers the whole study area. It has been demonstrated that the accuracy of the 

MODIS NDVI C6 is higher than the MODIS NDVI C5 due to sensor degradation of C5 

(Zhang et al., 2017, Li et al., 2018). The MODIS NDVI C6 dataset has been processed 

by geometric precision correction and radiation correction.  

A batch processing procedure is applied to MODIS data for projection and format 

conversion, including the use of the MRT tool, the projection transformation tool, and 

Cygwin. After mosaicking and re-projecting, the regional MODIS data is extracted in a 

batch using the vector map of the study region on the basis of the Environment for 

Visualizing Images (ENVI) 5.3 platform. To obtain the maximum value of monthly NDVI 

data for each pixel, the maximum value composite (MVC) approach is applied to select 

the maximum value over a certain time interval. After that, the maximum value of 

monthly NDVI over such an interval is likely to be a cloud-free value. Finally, the NDVI is 

calculated from the initial Digital Number (DN) in MOD13Q1, which ranges from -3000 to 

10000. As the range of NDVI value is between -1 and 1, the calculation of NDVI is 

accomplished by multiplying the DN by a scaling factor 0.0001. 

When NDVI value is higher than 0.4, it indicates that lands covered by green, leafy 

vegetation, otherwise, indicating that lands where there is only a few or even no 

vegetation cover. Figure 3-7 (a) and (b) reflect the spatial pattern of vegetation cover in 

eastern China in 2001 and 2016, respectively, and the vegetation cover indicates by DN. 

The greenish color indicates where higher vegetation cover has, and the reddish color 

indicates where the lower vegetation cover or no vegetation is dominated. 

app:ds:radiation
app:ds:correction
app:ds:format
app:ds:conversion
app:ds:projection
app:ds:transformation
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Figure 3-7. The spatial pattern of MODIS NDVI in eastern China in 2001 and 2016
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3.2.2 Meteorological data 

Due to the effect of East Asian monsoon, the climate shows a complex pattern in eastern 

China, which results in significant impacts on vegetation evolution and succession. To 

display the interaction pattern between vegetation cover and climate factors, the 

temperature and precipitation are employed in this study. The meteorological dataset 

includes temperature and precipitation, covering from October 2000 to December 2016. 

This study uses monthly in situ observed temperature and precipitation data from 

meteorological (automatic) base station. The meteorological data can be downloaded 

from the China Meteorological Science Data Sharing Service System 

(http://data.cma.cn/) provided by the China Meteorological Administration and State 

Information Center. This dataset is under high-quality control. The temperature data hold 

a precision of 0.1 degrees, and the precipitation data hold a precision of 0.1mm.  

204 meteorological stations are located in the study area. Due to the availability of the 

time period of the meteorological dataset and the location of the station, 184 stations are 

selected for this study. For instance, the station of Bohai A platform which is located on 

the sea and there is no vegetation cover within a distance of 5 km, which is meaningless 

to detect the interaction between vegetation cover and climate factors for this 

meteorological station. Furthermore, the meteorological dataset of Shengzhou is only 

available from 2007 to 2008, which is unsuitable for analyzing the relationships between 

vegetation cover and climate variables.  

3.2.3 DEM data 

DEM is a surrogate of the Earth's terrestrial surface topography. It can be applied to 

acquire topographic features, geomorphometric parameters, morphometric variables or 

even terrain information (Prasannakumar et al., 2011). DEM can be freely downloaded 

from Shuttle Radar Topography Mission (SRTM) (https://gdex.cr.usgs.gov/gdex/). Three 

types of SRTM-DEM products are available, the SRTM 1’, SRTM 3’ and SRTM-

GTOPO30 with a spatial resolution of 1 arc second (30 m), 3 arc seconds (90 m), and 30 

arc seconds (1 km), respectively (Global Land Cover Facilities website 2005) 

(Prasannakumar et al., 2011). The DEM data with a 30 m spatial resolution is applied in 

this study, covering the whole of China. The DEM data from SRTM is accessed as tiles 

http://www.baidu.com/link?url=dygd5WKshdq1w8GDI0VMPnZmCIzDMvbBR-TeaHK3PkqZwdCdiWI4OiiXJ1Z8IAn6EvaH1HIY4aAuvR8o37jo8W8-QbMTitKcbFbib8qKDCq
app:ds:DEM%20data
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at each 1º× 1º grid. The individual DEM tiles are spliced into an integrated map covering 

the whole study region. After splicing and re-projecting, the integrated map is extracted 

by the vector map of the study region using the ArcGIS 10.3 platform.  

Eastern China is a coastal region with high variability in elevation and terrain nature. The 

vegetation growth is assumed to closely relate to the topographical differences due to 

the influence of topography on heat, water, and light conditions. In this study, three 

factors (e.g., elevation, slope, and aspect) are considered as the natural topographic 

driving factors influencing the dynamic change of vegetation cover. The three factors can 

be obtained by implementing surface analysis based on the ArcGIS 10.3 platform.  

3.2.4 Socio-economic statistical data 

The vegetation change is closely related to socio-economic development, urban 

expansion, and population growth. The socio-economic factors are the most obvious 

way reflecting the status of social and economic development. Hence, it is essential to 

adopt the socio-economic factors to analyze the relationships between NDVI and socio-

economic factors. The socio-economic data derived from Statistical Yearbook of China 

(2002 to 2017) is published by the National Bureau of Statistics of China 

(http://www.stats.gov.cn/tjsj/ndsj/). The socio-economic datasets are categorized into 

three classes: general economic vitality, household consumption, and human population. 

The general economic vitality includes GDP, primary industry product, secondary 

industry product, tertiary industry product, PCGDP, and total investment in fixed assets. 

Household consumption is composed of household consumption, rural household 

consumption, and urban household consumption. Moreover, the human population 

consists of urbanization, population density, total population, and total employment. All of 

these datasets are collected for each province and municipality from 2001 to 2016. The 

13 statistical datasets can represent the major socio-economic driving forces that 

contribute to the spatiotemporal distribution and variation of vegetation cover. Detailed 

statistical data can be seen in appendix B. To detect the relationships between the 

socio-economic factors and the annual NDVI, the statistical datasets are pre-processed.  
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Table 3-2. The socio-economic statistical data from 2001 to 2016 

Category Factor Unit Year 

General 
Economic 

Vitality 

GDP  

 

100 million RMB 
 

 

 

 

 

 

2001-2016 
 

Primary Industry Product 

Secondary Industry Product 

Tertiary Industry Product 

Total Investment in Fixed Assets 

PCGDP  

RMB 
 

Household 
Consumption 

Household Consumption 

Rural Household Consumption 

Urban Household Consumption 

Human 
Population 

Population 
Ten thousand 

Total Employment 

Population Density People per sq. km 

Urbanization Rate % 
 

3.2.5 Vector map and raster map of the study region 

The vector map of China is obtained from the Resource and Environment Data Cloud 

Platform (http://www.resdc.cn/Default.aspx). This map contains the administrative 

divisions at city scale, which is highly controlled for precision and quality. The vector map 

of eastern China is extracted from the vector map of China at the city level, and it can be 

used as a mask for the extraction of NDVI, the raster map of topographic factors (e.g., 

elevation, aspect, and slope), the raster map of socio-economic factors (e.g., GDP, 

urban areas, and population density), as well as the raster map of climate factors (e.g., 

precipitation and temperature) at different levels.  

The raster map of land use types, population density, and GDP is generated with a 5-

year interval with a spatial resolution of 1 km provided by Resource and Environment 

Data Cloud Platform (http://www.resdc.cn/Default.aspx). These raster maps are 

available for every five years. Thus, the raster map of land use types, population density, 

http://www.resdc.cn/Default.aspx
http://www.resdc.cn/Default.aspx
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and GDP in 2000 and 2015 is applied in this study to detect the spatial interaction 

between annual NDVI and the topographic factors from 2001 to 2016. All of the raster 

datasets cover the whole of China. The land use types, population density, and GDP can 

be extracted by the vector map of eastern China. 

Table 3-3. The land use types 

Land Use Type Description 

Farmland Paddy field and dry land 

Forest Land Dense forest land (with forest land), shrubland, sparse forest land, 
and other forest lands 

Grassland High-cover grassland, medium-cover grassland, and low-cover 
grassland 

Water Body Wetlands, canals, lakes, reservoirs, glaciers, permanent snow, and 
beaches 

Built-up Land Urban areas, rural residential areas, as well as industrial and mining 
areas 

Desert Sandy land, Gobi, saline-alkali land, and alpine desert 

Barren Land Barren land  and bare rock gravel 
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4 Methodology 

The dynamic change of vegetation cover and the spatiotemporal pattern of vegetation 

growth in response to its driving forces are complicated because the climate system 

varies from regional to global scales, from different topographical conditions, and from 

frequency of disturbances derived from human activities (Buermann et al., 2014, Gamon 

et al., 2013, Nemani et al., 2003, Zhang et al., 2013b, Buyantuyev and Wu, 2009, Liu et 

al., 2008b, Liu and Diamond, 2008). This study proposes a practical framework for 

monitoring the spatiotemporal vegetation cover change, estimating the vegetation 

stability, and predicting the future variation trend of vegetation cover in eastern China, 

and further presents a series of mathematical methods to analyze the spatiotemporal 

dynamics of NDVI and the relationships between NDVI and its driving factors (e.g., 

climate factors, topographic factors, and socio-economic factors). In this study, MODIS 

NDVI was used as a representation of vegetation productivity, which indicates the 

biomass of the vegetation during the study period in eastern China.  

The framework consists of four sections. A set of mathematical methods and analysis 

modules are applied to achieve the research objectives of this study. Section 4.1 exhibits 

the quantification of spatiotemporal pattern of vegetation cover change. Regarding the 

MODIS NDVI data, MVC method, geographical mean value calculation, linear regression 

analysis, stability analysis, and R/S analysis were adopted to display the distribution 

pattern, changing trend, future changing trend, and fluctuation degree on spatiotemporal 

scales.  

Section 4.2 exhibits the pattern of NDVI in response to climate change both on spatial 

and temporal scales. In this section, the linear regression analysis was applied to 

analyze the changing trend of the climate factors, and Pearson’s correlation analysis 

was adopted to determine the correlation coefficients between NDVI and the climate 

factors both on annual and seasonal scales. Furthermore, t-test was employed to test 

the significance level of the correlation coefficients. Moreover, the lag time for maximum 

NDVI response to climate variation was investigated, and the spatial characteristics of 

the lag time for maximum NDVI response to climate variation were displayed both on 

annual and seasonal scales. 
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Section 4.3 exhibits the spatial pattern of NDVI in response to topographic variation. The 

surface analysis module was utilized to acquire the raster data of the elevation, aspect, 

and slope. The raster data of elevation, aspect, and slope were further used to overlap 

the map of the annual NDVI, changing slope of the annual NDVI, as well as the CV of 

the annual NDVI.  

Section 4.4 reveals the interplay between the annual NDVI and socio-economic 

development. Pearson’s correlation analysis was applied to explore the strength of the 

relationships between the annual NDVI and the socio-economic factors. In this section, 

we further analyzed the spatial coupling features of NDVI variation referring to changes 

in socio-economic factors. Buffer analysis and overlay analysis were employed to detect 

the spatial pattern of the annual NDVI responding to socio-economic development, 

urban expansion, and population growth in eastern China for the study period. 

With the support of Geographic Information System (GIS) and RS technologies, the 

spatiotemporal variation of vegetation cover and its driving forces are analyzed. The flow 

charts of data processing and analysis are as follows: 

 
Figure 4-1. The workflow for calculation of the spatiotemporal variation of NDVI 
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Figure 4-2. The workflow for calculation of the relationship between NDVI and 
climate factors 

 

Figure 4-3. The workflow for investigation of interaction between NDVI and 
topographic factors
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Figure 4-4. The workflow for calculation of the relationship between NDVI and socio-economic factors 
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4.1 Quantification of spatiotemporal pattern of vegetation cover change 

4.1.1 The pre-processing of the MOD13Q1 dataset 

It is essential to mention that the monthly mean NDVI can be applied to quantify the 

vegetation vitality (Zhang et al., 2017). In this study, monthly mean NDVI is used to 

estimate the vegetation activity both on spatial (pixel and regional) and temporal (inter-

annual, seasonal, and annual) scales. The NDVI data applied in this study is derived 

from MODI3Q1 products, which can be directly used to monitor the vegetation 

productivity over a specified area. Monthly mean NDVI is the most basic data employed 

to quantify the dynamic change of vegetation cover. To obtain the monthly mean NDVI 

dataset, a series of pre-processing has to be executed.  

 

Figure 4-5. The workflow of MOD13Q1 dataset pre-processing 
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As shown in Figure 4-5, the workflow of the pre-processing work is divided into four 

steps. In step 1, a parameter file (PRM) was produced in the background of the 

MOD13Q1 sample data by using MRT software. The PRM file was used as a template 

file in batch processing of the MOD13Q1 dataset. Step 2 illustrates the workflow of the 

batch processing of the MOD13Q1 dataset, in which the band of NDVI was selected and 

mosaicked covering the entire study area. Step 3 treated all of the negative NDVI value 

as zero, which decreases the uncertainty of the estimation of the vegetation activity and 

enhances the accuracy of the NDVI time series. The maximum NDVI value in each pixel 

was composited in step 4 using the MVC approach. Eventually, the monthly NDVI 

dataset was generated on the basis of the above processing steps. 

The MOD13Q1 dataset was stored by the format of Hierarchical Data Format (HDF), 

which contains NDVI, EVI, pixel quality assurance (QA), and Blue, Red, near-Infrared 

(NIR) and mid-Infrared (MIR) reflectances (Huete et al., 2002). In this study, the MRT, 

which is available for free to all registered users and is developed to support higher level 

MODIS Land products, was employed to produce a PRM file. Six HDF tiles acquired 

during the same period were used as the MOD13Q1 sample data, which was utilized to 

produce the PRM file. The PRM file defines the band, format, spatial resolution, and 

spatial projection of the output MODIS NDVI dataset, and it will be used in step 2, batch 

processing of MOD13Q1 dataset.  

Cygwin is a set of GNU and Open Source tools, which supports functionality comparable 

to a Linux distribution on Windows. It can be used to produce the NDVI images 

systematically by creating a batch processing program. In terms of the rules of naming 

MOD13Q1 HDF files, the file’s name was combined by the product type, data acquisition 

time, tile identify, dataset version, and data production time. According to the data 

acquisition time of the HDF files, every six files acquired for the same period were 

identified, mosaicked, and then resampled automatically based on Cygwin programming. 

To keep the consistency of the NDVI dataset, the NDVI band was extracted. The format 

was reformatted from HDF to GeoTIFF, and the spatial projection was then reprojected 

to Lambert Azimuthal Equal Area (LAEA), while the spatial resolution kept no change 

with a resolution of 250 m. 23 images of each year, 368 images in total from 2001 to 

https://en.wikipedia.org/wiki/Linux_distribution
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2016, were produced, but it cannot be directly used to reflect the monthly vegetation 

activity. It has to be further processed. 

In this study, vegetation activity was quantified based on monthly mean NDVI, while 

some negative monthly NDVI values were existed due to the influence of cloud, water, 

snow, and ice. Because of the meaningless of the negative monthly NDVI value for 

vegetation dynamics analysis over vegetation covered region, all of the negative monthly 

NDVI values were treated as zero by applying the module of Band Math on the basis of 

ENVI 5.3 platform before adopting MVC approach. 

The MVC approach was used to select the maximum NDVI value over a certain time 

period on pixel scale to remove the influences from residual cloud, residual mist, cloud 

shadow, and terrain shadow with the aid of ENVI 5.3 platform, the module of Layer 

Stacking and Band Math (Zhang et al., 2012). The formula is as follows： 

)(i ijNDVIMaxNDVI =                                                                                                       (1) 

where iNDVI  is the NDVI value of the month i , ijNDVI  is the NDVI value of the j  period 

(16-day interval) among the month i . The maximum NDVI value of each month in each 

pixel is selected to compose the maximum NDVI time series. This method is also 

effective to remove the interference from the cloud, atmosphere, and solar altitude. After 

compositing, the monthly NDVI dataset was extracted by the vector map of the study 

area on the basis of ENVI 5.3 platform, the module of Batch Extraction. Then, the 

monthly NDVI dataset was reprojected to WGS_1984_UTM_Zone_50N projection to 

maintain the data consistency with the aid of ArcGIS 10.3 platform, the module of 

Projections and Transformations.  

Each year encompasses 23 NDVI time-series images. The monthly composed NDVI 

images are composited by one or two images, which depends on whether the year is a 

leap year or non-leap year. The study period ranges from 2001 to 2016, in which only 

2004, 2008, 2012, and 2016 are leap years. Table 4-1 shows that the NDVI images in 

November in leap years and in October in non-leap years are composed by only one 

image. Except that, the NDVI images in the other 11 months are composited by two 



64  Yong Xu 

images (Testa et al., 2017). The detailed information of the composite periods of the 

NDVI images was categorized in Table 4-1.  

Figure 4-6(a), (b), and (c) display the spatial patterns of the NDVI, representing by DN, 

on 14th September 2014, 30th September 2014, and September 2014 in eastern China, 

respectively. Figure 4-6(c) was composited by Figure 4-6(a) and (b) using the MVC 

approach. Figure 4-6(c) shows that the NDVI value gradually decreases from the south 

to the north of eastern China. Especially, the NDVI values are significantly lower in the 

Pearl River Delta and Yangtze River Delta than the surrounding areas. Comparing the 

NDVI value in the Figure 4-6(a), (b), and (c), the NDVI value is greater in the northern 

part of eastern China in the Figure 4-6 (c) than in Figure 4-6; meanwhile, the NDVI value 

is higher in the southern part in Figure 4-6(c) than in the Figure 4-6(b). The spatial 

differences pictured in Figure 4-6(a), (b), and (c) can be ascribed to the functionality of 

the MVC approach. 
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Table 4-1. The composite periods of the NDVI images 

Category Number Date in a 
leap year 

Month in a leap 
year 

Date in a non-
leap year 

Month in a  
non-leap year 

1 001 01. Jan 
January 

01. Jan 
January 

2 017 17. Jan 17. Jan 

3 033 02. Feb 
February 

02. Feb 
February 

4 049 18. Feb 18. Feb 

5 065 05. Mar 
March 

06. Mar 
March 

6 081 21. Mar 22. Mar 

7 097 06. Apr 
April 

07. Apr 
April 

8 113 22. Apr 23. Apr 

9 129 08. May 
May 

09. May 
May 

10 145 24. May 25. May 

11 161 09. Jun 
June 

10. Jun 
June 

12 177 25. Jun 26. Jun 

13 193 11. Jul 
July 

12. Jul 
July 

14 209 27. Jul 28. Jul 

15 225 12. Aug 
August 

13. Aug 
August 

16 241 28. Aug 29. Aug 

17 257 13. Sep 
September 

14. Sep 
September 

18 273 29. Sep 30. Sep 

19 289 15. Oct 
October 

16. Oct October 

20 305 31. Oct 01. Nov 
November 

21 321 16. Nov November 17. Nov 

22 337 02. Dec 
December 

03. Dec 
December 

23 353 18. Dec 19. Dec 
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Figure 4-6. The spatial pattern of MODIS NDVI on 14th September, 2014 (a), 30th September, 2014 (b), and 
September_Composite, 2014 (c) in eastern China 

Figure 4-6(a) and (b) display the spatial pattern of NDVI on 14th September 2014 and 30th September 2014 in eastern China, 

respectively. Figure 4-6(c) is composited by Figure 4-6(a) and Figure 4-6(b) using the MVC approach. 
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4.1.2 Estimation of the spatiotemporal pattern of NDVI 

This study aims to explore the spatial and temporal patterns of the vegetation cover in 

eastern China. As mentioned previously, in this study, monthly mean NDVI was used as 

the main sources for monitoring the dynamic change of vegetation cover to exhibit the 

geographical distribution characteristics of vegetation activity on different spatial and 

temporal scales. A set of mathematical methods and data processing platforms are 

utilized to achieve the objectives of this study. Before monitoring the vegetation activity, 

the DN has to be converted to unitless NDVI value using the formula (2). The scale 

factor is available on the web page of Land Processes Distributed Active Archive Center 

(LPDAAC) (https://lpdaac.usgs.gov).  The formula is as follows: 

0001.0*DNNDVI =                                                                                                          (2) 

The spatial distribution pattern of the seasonal vegetation activity was monitored using 

the time series of the mean NDVI in each season (spring: March to May, summer: June 

to August, autumn: September to November, winter: December to next February). With 

the exception of winter, the mean NDVI in spring, summer, and autumn were adopted to 

reflect the seasonal vegetation vitality. In the north of eastern China, lands were 

dominated by deciduous forest, and it might be covered by snow in winter. Furthermore, 

in the middle part of eastern China, the cropland was withered or harvested in late 

autumn. Due to the above reasons, the NDVI change in winter was not considered in this 

study. The calculation of seasonal NDVI ( sNDVI ) follows the formula below, taking the 

summer as an example: 

8,7,6,3/)
8

6
== ∑

=

iNDVINDVI
i

is （                                                                                          (3) 

where sNDVI  is the mean NDVI of summer, iNDVI  is the largest NDVI composite of the 

month i , and i  is the month number, ranging from 6 to 8. Similarly, the mean NDVI of 

spring and autumn in each year was obtained based on the formula (3). Figure 4-8(a) 

displays the spatial distribution of the summer NDVI in 2014, which is produced by using 

ArcGIS 10.3 platform, the module of Map Algebra, applying the formula (3).  
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Annual variation of the NDVI was an essential component for temporal analysis of 

vegetation cover. This study utilized the mean annual time series ( yNDVI ) for the spatial 

and temporal analysis of the annual NDVI. The calculation of mean annual NDVI 

( yNDVI ) follows the formula below: 

12,...,3,2,1,12/)(
12

1
== ∑

=

iNDVINDVI
i

iy                                                                                (4) 

where yNDVI  is the mean annual NDVI, iNDVI  is the largest NDVI composite of the 

month i , i  represents the number of the month, which ranges from 1 to 12. Figure 4-8(b) 

shows the annual NDVI calculated against the background of applying the formula (5), 

displaying the spatial pattern of the annual NDVI in eastern China in 2014. 

Multi-annual monthly mean NDVI, multi-annual seasonal mean NDVI, as well as multi-

annual mean NDVI can not only be applied to reflect the surface biomass, but they can 

also be employed to display the spatial dynamic of general vegetation activity on monthly, 

seasonal, and annual scales, respectively. In this study, multi-annual monthly mean 

NDVI was defined on the basis of the average NDVI for 16 years at a certain month. The 

formula is as follows： 

16

16

1
∑
== i

ij

j

NDVI
NDVI                                                                                                          (5) 

where jNDVI  is the multi-annual monthly mean NDVI of the month j , ijNDVI is the 

largest monthly composite NDVI of the month j  in the year i , j  represents the number 

of the month, ranging from 1 to 12. i  is the number of the year, extending from 1 to 16.  

The multi-annual seasonal mean NDVI was calculated based on the formula (3) and 

formula (5) under the support of ArcGIS 10.3 platform, the module of Map Algebra.  

Similarly, using the formula (4) and formula (5), the multi-annual mean NDVI was 

acquired. To quantitatively evaluate the vegetation cover on different spatial and 

temporal scales, the NDVI value was reclassified into five classes based on ArcGIS 10.3 
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platform, the module of Reclass (Table 4-2, Figure 4-8). The method of generating 

regional mean NDVI would be issued further. 

Table 4-2. The thresholds for the classification of NDVI value 

Category Range Description 

1 0≤NDVI≤0.2 The NDVI value is higher than 0.4, 

indicating that lands covered by green, 

leafy vegetation, otherwise, indicating 

that there is only a few or even no 

vegetation cover in this region. 

2 0.2<NDVI≤0.4 

3 0.4<NDVI≤0.6 

4 0.6<NDVI≤0.8 

5 0.8<NDVI≤1 
 

To understand the temporal trends of the regional NDVI, the ten administrative units 

(Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, and 

Guangdong) and eastern China were adopted to be 11 independent regions (units). 

Thus, the regional NDVI change and the relationships between regional NDVI and its 

driving forces were carried out. To show the general characteristics of the vegetation 

activity on regional scale, the regional-average NDVI time series datasets were 

generated, which can be used to analyze the vegetation variation in different provinces 

and municipalities quantitatively. The formula is as follows: 

NiNDVI
N

NDVI
N

i
ir ,...,3,2,1,1

1
== ∑

=

                                                                                   (6) 

where N is the total number of the pixels in a specified region, rNDVI  represents the 

regional-average NDVI, iNDVI  is the maximum value of each pixel, and i  is the pixel 

number. It is worth mentioning that the calculation of sNDVI , yNDVI and jNDVI is 

focused on temporal scale, while rNDVI is calculated based on spatial scale. That is to 

say, we can further calculate the regional-average sNDVI , yNDVI and jNDVI  based on 

the above mean value calculation method.  

Figure 4-8(a) and (b) show the mean summer NDVI and mean annual NDVI in eastern 

China in 2014, respectively. Figure 4-7(a) and (b) illustrate the percentage of the 

regional summer NDVI and annual regional NDVI in different categories of each 
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administrative unit. The calculation of Figure 4-7(a) was based on the formula (3) and 

formula (6), while the calculation of Figure 4-7(b) was based on the formula (4) and 

formula (6). 

 
Figure 4-7. The statistical results of the percentage of regional summer NDVI and 

annual NDVI in 2014 
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Figure 4-8. The spatial pattern of summer NDVI and annual NDVI in 2014 
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4.1.3 Estimation of the spatiotemporal pattern of NDVI changing trend 

Depending on the periodical variation of ground vegetation biomass, NDVI time series 

indicates a strong seasonal and annual change of vegetation activity (Jong et al., 2012). 

To estimate the spatiotemporal pattern of NDVI changing trend in eastern China, the 

spatial and temporal fluctuation of the seasonal and annual NDVI was analyzed using 

linear regression analysis method (Zhang et al., 2012). Vegetation variation (greening 

and browning) can be reflected by the changing trend of the NDVI value, and the 

changing trend is defined in the background of the slope of the linear regression. NDVI 

changing slope is a widely used proxy, evaluating the strength of the NDVI changing 

trend. 

The dynamic change of vegetation cover was detected both on spatial (pixel and 

regional) and temporal (seasonal and annual) scales. Taking the calculation of the 

changing slope of the annual NDVI as an example. Similarly, the changing slope of the 

seasonal NDVI can be obtained in the background of the same methods. The workflow 

of the annual NDVI time series processing consists of 3 steps. In step 1, the annual 

NDVI images were stacked into a 16 image-long annual NDVI time-series based on the 

ENVI 5.3 platform, the module of Layer Stacking. Particularly, the 16 annual NDVI 

images were acquired previously, deriving from the formula (4).  

In step 2, the annual NDVI time-series images were processed by linear regression 

analysis method. With a set of variables which vary with testing time processed by linear 

regression analysis, the changing trend of each grid can be estimated. The changing 

slope of the mean annual vegetation cover can be obtained by applying linear regression 

analysis on the pixel scale. Thus, the changing trend and spatiotemporal distribution of 

vegetation cover were revealed. Specifically, the changing slope of the annual NDVI was 

computed using formula (7) (Zhang et al., 2012):  
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where n  represents the total number of the years, iNDVI  is the NDVI value in the year i . 
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Slope is the vegetation changing rate. If the Slope  > 0, it means, there is a trend of 

greening during n  years; if Slope  < 0, then a trend of browning. The larger the absolute 

value of Slope  is, the more obvious change of vegetation cover occurs. With the support 

of ENVI Interactive Data Language (IDL) programming, each pixel is processed by linear 

regression analysis. The changing trend of each pixel is obtained, and then it was turned 

into the GeoTIFF format, which depicts the spatial features of vegetation cover change.  

Step 3 qualitatively evaluated the changing trend of vegetation cover, the changing slope 

was classified into five classes: significant decrease, slight decrease, unchanged, slight 

increase, and significant increase (Table 4-3).  

Table 4-3. The thresholds for the classification of NDVI changing slope 

Category Range [year-1] Description 

1 Slope≤-0.009 Significant Decrease 

2 -0.009< Slope ≤-0.003 Slight Decrease 

3 -0.003< Slope ≤0.003 Unchanged 

4 0.003< Slope ≤0.009 Slight Increase 

5 Slope >0.009 Significant Increase 
 

The regional NDVI changing trend reflects the overall picture of vegetation dynamic 

variation in a specified regional. Taking the calculation of the changing slope of the 

regional annual NDVI as an example, similarly, the changing slope of the seasonal NDVI 

can be computed by the seasonal NDVI dataset instead of implementing the annual 

NDVI dataset. In this study, the 11 independent regions (units) were adopted to analyze 

the regional annual NDVI change. Based on the formula (6), 11 regional annual NDVI 

time series were computed and then extracted by using annual NDVI images and the 

vector map of eastern China. Each annual NDVI image generates 11 corresponding 

regional annual NDVI data with the aid of ArcGIS 10.3 platform, the module of Extraction. 

The 11 generated regional annual NDVI datasets were then analyzed by linear 

regression analysis method. The 11 generated regional annual NDVI will then be applied 
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to create curves to illustrate the annual NDVI changing trend on regional scale on the 

basis of Microsoft Excel, the module of insert. 

4.1.4 Estimation of the spatial pattern of future vegetation changing trend 

In this study, R/S analysis method is applied to study the consistency of vegetation cover 

on the basis of NDVI time series. R/S analysis method is initially proposed by Hurst 

when analyzing the hydrologic data of the Nile (Hurst, 1951) and further developed into 

an analysis theory by Mandelbrot and Wallis to analyze time series (Mandelbrot and 

Wallis, 1969). This method is extensively applied in many fields (e.g., hydrology, 

economics, climatology and geology). Based on the R/S analysis method, it is possible 

to predict future changing trend against the background of the current changing trends. 

Fundamental principle of R/S analysis method: 

To define a time series{ })(τNDVI , n,...,2,1=τ  

To define the mean sequence of the time series, 
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A non-dimensional ratio (R/S) is introduced to rescale R. 
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If there is a number H fitting the formula HcSR )(/ τ=  (c is a constant), then there are 

Hurst phenomena in time series{ })(τNDVI  , and H is called the Hurst exponent. In the 

double logarithm coordinate (ln τ , ln SR / ), the least-squares fitting is used to get the 

Hurst exponent of each pixel. Hurst exponent ranges from 0 to 1. There are three 

situations: 

(1) When 0＜H＜0.5, there is a negative correlation between the past and future 

changing trends of NDVI, which indicates that the NDVI will reverse the current changing 

trends in the future. 

(2) When H = 0.5, it indicates that the current changing trend and the future changing 

trend of NDVI are independent. 

(3) When 0.5＜H＜1, there is a positive correlation between the past and future 

changing trends of NDVI, which indicates that the NDVI will remain the current changing 

trends in the future. 

Applying R/S analysis and linear regression analysis to every pixel, the spatial 

characteristics of the future changing trend of NDVI can be illustrated. To monitor the 

future changing trend of vegetation cover for eastern China, the NDVI changing slopes 

were reclassified into three classes: decrease (significant and slight decreases), 

unchanged, and increase (significant and slight increases) and the Hurst exponent was 

classified into two types: 0＜H＜0.5 and 0.5＜H＜1. Then the reclassified NDVI 

changing trend was overlapped on the Hurst exponent maps to exhibit the spatial 

characteristics of future NDVI changing trend. 

It is worth mentioning, as detailed in Table 4-4 that (1) areas expected to switch the 

decreasing trend can be considered as vegetation improvement in the future; (2) areas 

expected to remain the decreasing trend can be considered as vegetation consistent 

degradation in the future; (3) areas expected to remain the increasing trend can be 
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considered as vegetation consistent improvement in the future; (4) areas expected to 

shift the increasing trend can be considered as vegetation consistent improvement in the 

future; (5) areas expected to experience unchanged can be considered as vegetation 

unchanged in the future; and (6) areas predicted to switch from unchanged to a 

decreasing trend (degradation) or an increasing trend (improvement) can be considered 

as uncertainty vegetation changing trend in the future. In this study, to quantitatively 

analyze the improvement area and degradation area in eastern China in the future, we 

only took the areas with a certain future changing trend (1-5) into consideration. 

Table 4-4. Predicted future vegetation changing trends 

 

4.1.5 Estimation of the spatial pattern of NDVI stability 

The NDVI CV was applied to capture the terrestrial landscape ecosystem’s resilience 

and stability to changes in its driving forces. The stability of the vegetation cover in the 

corresponding region during different years can be revealed from the CV of NDVI on 

pixel scale. In this study, the NDVI CV value was considered as a measure of the NDVI 

variability related to the mean NDVI value both on the annual and seasonal scales. Its 

stability in time series can be estimated using the following formulas (Barbosa et al., 

2006) : 
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where Cv  represents the CV of the NDVI time series, σ  is the standard deviation of the 

NDVI images from 2001 to 2016, NDVI  is the mean NDVI value for a given time period. 
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n  represents the total number of the years. iNDVI  is the NDVI value in the given year i . 

Cv  indicates the dispersion degree of data distribution. Larger Cv  indicates higher 

dispersion degree and higher stability. 

To statistically analyze the stability of the vegetation cover both on spatial and temporal 

scales, the NDVI CV value was reclassified into four classes based on ArcGIS 10.3 

platform, the module of Reclass (Table 4-5). After reclassification, 11 NDVI CV maps at 

the administrative unit level were extracted to analyze the percentage of the NDVI CV in 

different categories for each administrative unit.  

Table 4-5. The thresholds for the classification of NDVI CV 

Category Range Description 

1 0≤CV≤0.05 The larger value of NDVI CV indicates 

a stronger fluctuation occurring in 

vegetation cover. 

2 0.05<CV≤0.1 

3 0.1<CV≤0.15 

4 0.15<CV≤1 
 

4.2    The spatiotemporal characteristics of NDVI in response to climate factors 

4.2.1 The pre-processing of meteorological data 

Changes in either water availability or temperature might induce changes in vegetation 

activity (de Jong et al., 2013). For many parts of China, the water availability is 

determined by the amount of precipitation, water storage, and snowmelt. In this study, 

precipitation and temperature are regarded as two main climate factors affecting the 

vegetation activity in eastern China. To analyze the relationships between NDVI and 

precipitation as well as NDVI and temperature, the monthly precipitation and 

temperature data have to be processed. The monthly precipitation and temperature 

datasets cover 204 meteorological stations, whereas only 184 meteorological stations 

are adopted to generate the correlation coefficients between NDVI and precipitation as 

well as NDVI and temperature due to data availability. On the basis of the Microsoft 
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Visual Studio programming, the monthly precipitation and temperature datasets will be 

selected based on the identification code of the 184 meteorological stations.  

In this study, the seasonal and annual temperatures are defined against the background 

of the mean temperature during a corresponding time period, which are acquired by 

applying the formulas (3) and (4), respectively, as introduced previously. However, the 

annual and seasonal precipitations are the amount of the accumulated precipitation over 

specified time periods. The calculation of seasonal precipitation ( sPRE ) follows the 

formula below, taking the summer as an example: 

8,7,6),(
8

6
== ∑

=

iPREPRE
i

is                                                                                                 (15) 

where sPRE  is the amount of the precipitation of summer, iPRE  represents the amount 

of the precipitation of the month i , and i  indicates the month number, ranging from 6 to 

8. The accumulated precipitation in spring and autumn in each year can be computed 

based on the formula (15).  

The accumulated annual precipitation reflects the total amount of the precipitation during 

an entire year, which is beneficial for plant growth and plant succession. The calculation 

of the accumulated annual precipitation ( yPRE ) follows the formula (16): 
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=

iPREPRE
i

iy                                                                                         (16) 

where yPRE  is the amount of the annual precipitation, iPRE  is the amount of 

precipitation in the given month i , and i  represents the number of the month, extending 

from 1 to 12. 

Regional mean precipitation and temperature are measured as the amount of mean 

precipitation and the mean temperature of all meteorological stations over a specified 

region. The calculation of the regional mean precipitation and temperature follow the 

formula below, taking the regional mean temperature as an example: 
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where mTEM  is the regional mean temperature, iTEM  indicates the temperature in the 

given meteorological station i , i  ranges from 1 to N , and N  is the total number of the 

meteorological stations within a specified region.  

To explore the spatiotemporal characteristics of climate change and the spatiotemporal 

patterns of NDVI in response to climate variation, as shown in Table 4-5, the following 

datasets are acquired to achieve the objectives of this study. All of the datasets are 

obtained on the basis of the following formulas and platforms. 

Table 4-6. Used formulas for pre-processing of precipitation and temperature with 
the help of Microsoft Visual Studio programming 

 Dataset Used Formula 

1 Monthly 
Precipitation/Temperature - 

2 Seasonal 
Precipitation/Temperature Based on the formula (15)/(3) 

3 Annual 
Precipitation/Temperature Based on the formula (16)/(4) 

4 Regional Monthly 
Precipitation/Temperature Based on the formula (17) 

5 Regional Seasonal 
Precipitation/Temperature Based on the formulas (15) and (17)/(3) and (17) 

6 Regional Annual 
Precipitation/Temperature Based on the formulas (16) and (17)/(4) and (17) 

7 Multi-annual Monthly Mean 
Precipitation/Temperature Based on the formula (5)  

8 Multi-annual Seasonal Mean 
Precipitation/Temperature Based on the formulas (5) and (15)/(3) and (5) 

9 Multi-annual Mean 
Precipitation/Temperature Based on the formulas (5) and (16)/(4) and (5) 
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4.2.2 The spatiotemporal characteristics of maximum NDVI response to climate factors 

Climate change generates great impacts on vegetation growth in Earth’s landscape 

ecosystems. Due to the spatial heterogeneity of ecosystems, vegetation in response to 

climate variation performs diverse spatial and temporal patterns and time lag effects (Wu 

et al., 2015). This study intends to explore the relationships between NDVI and 

precipitation as well as NDVI and temperature and further investigate the lag time for 

maximum NDVI response to precipitation and temperature on multiple spatial and 

temporal scales on the basis of NDVI time series, monthly precipitation dataset, as well 

as monthly temperature dataset. 

To detect the relationships between NDVI and climate variables and investigate the lag 

time for maximum NDVI response to climate variables for each meteorological station 

(184 meteorological stations) and each administrative unit (ten administrative units and 

eastern China), the NDVI time series of each meteorological station and each 

administrative unit has to be produced. To obtain the monthly NDVI dataset of each 

station, the monthly NDVI dataset was downscaled to a 3 km spatial resolution NDVI 

dataset in ArcGIS 10.3, the module of Raster, which averaged all of the pixels value in 

the 3 km output pixel. Based on the geographical location of the 184 meteorological 

stations, the NDVI value in each 3 km × 3 km surrounding areas was then extracted to 

form 184 monthly NDVI time series datasets from January 2001 to December 2016.  

Based on the formula (6), the NDVI time series of the 11 administrative units was 

calculated and formed into 11 NDVI time series afterward. Above calculating processes 

were achieved based on ArcGIS 10.3. 

The analysis of vegetation activity in response to precipitation and temperature was 

carried out in 3 aspects: (1) the temporal characteristics of NDVI in response to changes 

in precipitation and temperature, (2) the spatial patterns of NDVI in response to 

precipitation and temperature variation, (3) the spatiotemporal mechanisms of the lag 

time for maximum NDVI response to precipitation and temperature. To achieve these 

three objectives, particularly quantitatively investigating the maximum correlation 

coefficients between NDVI and precipitation as well as NDVI and temperature, the 

Pearson’s correlation analysis is regarded as a common methodology of quantifying the 

strength of the relationships between NDVI and precipitation as well as NDVI and 
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temperature at different time lags (Kileshye Onema and Taigbenu, 2009). A t-test is 

further applied to test the significant statistical relationship. The correlation coefficient at 

different time lag periods can be computed. The formula is as follows: 
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where xyR  is the correlation coefficient between x  and y , n  represents the total number 

of years, i  is the year number, ix  and iy  are the value of impact factors in the given 

year i , x  and y  are the mean values of impact factors during the study period. The xyR  

ranges from 0 to 1. The larger the correlation coefficient is, the higher the correlation is. 

Previous studies have demonstrated that the time lag effects of NDVI in response to 

changes in precipitation and temperature take place in precipitation and temperature 

preceding NDVI by 0 to 3 months primarily (Cui, 2010, Wu et al., 2015, Anderson et al., 

2010). Considering the time lag effects of NDVI in response to precipitation and 

temperature variation (Braswell et al., 1997), not only the concurrent monthly 

precipitation and temperature are taken into account, but also the preceding precipitation 

and temperature of 1 to 3 months are considered to explore the relationships between 

NDVI and precipitation as well as NDVI and temperature in this study. Moreover, the 

correlation coefficients between NDVI and precipitation as well as NDVI and temperature 

are detected both on seasonal and annual scales. The impacts of precipitation and 

temperature on NDVI are expected to show finite time lags due to variability in the 

temporal response of NDVI to temperature and precipitation variations.  

To investigate the lag time for maximum NDVI in regard to climate variables, I examined 

the relationships between NDVI and precipitation as well as NDVI and temperature at 

different time lags (0 to 3 months) by shifting temperature and precipitation series 1 

month backward at a time. For instance, as shown in Table 4-6, to explore the temporal 

characteristic of the annual NDVI in response to changes in the temperature of previous 

0 to 3 months in Beijing, the monthly NDVI dataset of Beijing from January 2001 to 

December 2016 was selected and formed into an NDVI time series. Similarly, the 
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monthly temperature from January 2001 to December 2016, December 2000 to 

November 2016, November 2000 to October 2016, as well as October 2000 to 

September 2016 in Beijing were selected and formed into four temperature time series. 

The correlation coefficients between NDVI and the temperature of previous 0 to 3 

months were calculated on the basis of the formula (18), respectively. The maximum 

correlation coefficient of these four correlation coefficients was picked, which indicates 

the maximum response of NDVI to temperature variation in Beijing. In addition, the 

corresponding month of the maximum correlation coefficient determines the lag time for 

maximum NDVI response to temperature on annual scale in Beijing. Similarly, the 

response of annual NDVI to precipitation of previous 0 to 3 months and the seasonal 

NDVI to precipitation and temperature of previous 0 to 3 months were computed by 

implementing the same methods.  

To reveal the spatial characteristic of NDVI in response to climate variables, the 

relationships between NDVI and precipitation as well as NDVI and temperature on each 

meteorological station are investigated. Utilizing the method, which was mentioned 

previously, the correlation coefficients between NDVI and the precipitation and 

temperature of previous 0 to 3 months of each station were computed for the whole year, 

spring, summer, and autumn, respectively. The maximum correlation coefficients of 

NDVI and precipitation as well as NDVI and temperature of each meteorological station 

were selected and the lag time was identified according to the corresponding month of 

the maximum correlation coefficient. In the background of the location of the 184 

meteorological stations, the maximum correlation coefficients and its corresponding lag 

time of each station were displayed based on ArcGIS 10.3 platform, respectively. Thus, 

the lag time for maximum NDVI response to precipitation and temperature were 

performed both on annual and seasonal scales. 
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Table 4-7. Data for the calculation of the correlation coefficient between NDVI and 
temperature of previous 0 to 3 months on annual scale in Beijing 

 

4.3 The spatial characteristics of annual NDVI in response to topographic factors 

The three primary topographic factors (e.g., elevation, aspect, and slope) affect the 

spatial pattern of the vegetation activity by controlling the solar radiation and 

microclimate (Mokarram and Sathyamoorthy, 2015, Allen and Peet, 1990). Elevation is 

considered to be the most important topographic factor. The synergistic effects of 

elevation-aspect and elevation-slope determine the vertical structure of the vegetation 

biomass (Busing and White, 1993). To explore the spatial interaction between the annual 
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NDVI and topographic factors, the three topographic factors such as elevation, aspect, 

and slope, have to be acquired on the basis of the DEM data. 

The DEM tiles, covering the study area, were merged and reformatted into GeoTIFF 

format and then reprojected into the projection of WGS_1984_UTM_Zone_50N under 

the support of ArcGIS 10.3. Elevation is derived from the DEM dataset. To illustrate the 

spatial interplay between the annual NDVI and elevation and to statistically analyze the 

vertical annual NDVI variation along with the elevation increase, the elevation was 

categorized into seven classes using ArcGIS 10.3, the module of Reclass (Table 4-8). 

The proportion of each elevation range was acquired on the basis of the zonal statistic. 

Table 4-8. The thresholds for the classification of the elevation 

Category Range [m] Percentage Description 

1 -282≤ Elevation ≤0 2% The elevation is the most 

important topographic factors 

dominating the vertical 

distribution of vegetation by 

affecting water availability and 

temperature. 

2 0< Elevation ≤100 45% 

3 100< Elevation ≤200 11% 

4 200< Elevation ≤300 8% 

5 300< Elevation ≤400 7% 

6 400< Elevation ≤500 6% 

7 500≤ Elevation ≤2849 21% 

The two significant features of Earth’s land surface are aspect and slope. They play 

important roles in the processes of surface morphology evolution, self-organizing 

ecological restoration, and soil erosion (Prasannakumar et al., 2011). Aspects reflect the 

direction of the slopes, which face a certain area. Aspects are expressed by degrees 

from the north, a clockwise direction forming an entire circle, ranging from -1° to 360° 

(Bennie et al., 2008). The aspect-value of -1° indicates the flat areas. Aspect data is 

derived from the DEM data with the aid of ArcGIS 10.3, the module of Raster Surface 

Analysis. Differences in the NDVI values on the NFS and SFS are analyzed in this study. 

NFS corresponds to slope directions to the northwest (292.5° to 337.5°), north (337.5° to 

22.5°), and northeast (22.5° to 67.5°). SFS consists of slope directions of the southwest 

(202.5° to 247.5°), south (157.5° to 202.5°), and southeast (112.5° to 157.5°) (Toro 
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Guerrero et al., 2016) (Table 4-9). Areas on the NFS account for 29% of the study area 

and areas on the SFS occupy 37% of the study area. Figure 4-9 displays the spatial 

pattern of the NFS and SFS. In addition, the flat (-1°), EFS (67.5° to 112.5°), and WFS 

(247.5° to 292.5°) were not adopted into this study. 

Table 4-9. The thresholds for the classification of the aspects 

Category Aspect Range [°] Percentage Description 

1 NFS 

Northeast (22.5°–67.5°) 

29% 

The NFS and SFS 

affect vegetation 

activity by accepting 

unbalanced solar 

radiation and sunshine 

duration. 

North (337.5°–22.5°) 

Northwest (292.5°–337.5°) 

      2 SFS 

Southeast (112.5°–157.5°)  
 
     37% South (157.5°–202.5°) 

Southwest (202.5°–247.5°) 

A slope angle is an essential factor in determining the steepness of slopes. In this study, 

the slope data is derived from the DEM data extension from 0° to 90° based on ArcGIS 

10.3 platform, the module of Raster Surface Analysis. Human disturbances and 

agricultural activities are particularly intense within the areas with slope degree ranging 

from 0 to 15°, and the areas with slope degree ranging from 15 to 25° are appropriate for 

forest succession and restoration. To statistically analyze the spatial mechanism of the 

dynamic NDVI change at different slope ranges, as shown in Table 4-9, the slopes were 

categorized into five classes using ArcGIS 10.3 platform, the module of Reclass. Figure 

4-10 illustrates the spatial pattern of the slopes. Table 4-10 shows that the proportion of 

the slope ranges decreases with slope degree increase. 

Table 4-10. The thresholds for the classification of the slopes 

Category Range [°] Percentage Description 

1 0°≤ Slope ≤2° 30% The larger the value of the slope is, 

the steeper is the slope. The 

frequency of human disturbances and 

agricultural activities decrease as the 

degree of a slope angle increases. 

2 2°< Slope ≤6° 25% 

3 6°< Slope ≤15° 18% 

4 15°< Slope ≤25° 17% 

5 25°< Slope ≤90° 11% 
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In this study, three vegetation metrics (e.g., annual NDVI, annual NDVI changing slope, 

and annual NDVI CV) are utilized to explain the dynamic change of vegetation cover. 

The topographical factors affect the geographical distribution of NDVI by interplay with 

vegetation activity. The three topographic factors do not drive NDVI in similar ways, 

potentially performing synergistic associations when driving vegetation activity. To 

display the spatial pattern of the annual NDVI in different categories of the elevation, 

aspect, and slope ranges, the datasets of elevation, aspect, and slope are adopted to be 

overlapped on the three vegetation metrics, respectively (Zhang et al., 2015). For 

instance, the annual NDVI was extracted on the basis of the reclassified elevation, 

aspect, and slope datasets not only to display the spatial dynamic of the annual NDVI 

along with the elevation, aspect, and slope gradient, but also to statistically analyze the 

changing characteristics of the annual NDVI in terms of in different categories of 

elevation, aspect, and slope ranges. Theoretically, on the basis of the above methods, 

the spatial interaction between the three vegetation metrics (e.g., annual NDVI, annual 

NDVI changing slope, and annual NDVI CV) and the three topographic factors (e.g., 

elevation, aspect, and slope) was illustrated, and then their quantitative relationships 

were determined, respectively. 
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Figure 4-9. The spatial pattern of aspect in eastern China 
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Figure 4-10. The spatial pattern of slope in eastern China 
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4.4 The spatiotemporal characteristics of annual NDVI in response to socio-

economic factors 

Along with the accelerating process of urbanization and industrialization, the economic 

status has been promoted significantly, which resulted in vegetation deterioration and 

environmental exacerbation in many parts of the world, particularly in developing 

countries (Dewan and Yamaguchi, 2009). In this study, the 13 socio-economic factors 

are regarded as the socio-economic forces and categorized into three classes: general 

economic vitality, including GDP, primary industry product, secondary industry product, 

tertiary industry product, total investment in fixed assets, and PCGDP; household 

consumption, covering household consumption, rural household consumption, and urban 

household consumption; and human population, encompassing total population, total 

employment, population density, and urbanization. These socio-economic factors are 

utilized to indicate economic development, urban expansion, and population growth in 

eastern China.  

To explore the relationships between annual NDVI and the 13 socio-economic factors on 

temporal scale, a 16-data-long (each year a data) time series of each socio-economic 

factor in each administrative unit was formed. Meanwhile, based on the formulas (4) and 

(6), annual NDVI in each administrative unit was computed and then formed a 16-data-

long dataset. On the basis of the datasets of the annual NDVI and the 13 socio-

economic factors, Pearson's correlation coefficient was implemented to quantify the 

strength of the relationships between annual NDVI and the 13 socio-economic factors. 

Scholars have demonstrated that negative impacts of urbanization on NDVI have 

gradually declined from urban centers toward rural areas, particularly in metropolitan 

areas (Zhou et al., 2016, Zhou et al., 2014, Dewan and Yamaguchi, 2009). To observe 

how the spatial feedback mechanism of NDVI reacts to urban expansion from urban 

centers toward marginal urban areas, the urban areas were categorized into two types: 

old urban areas and new urban areas. Old urban areas are defined in the background of 

the conditions before 2001. As new developments have taken place, the urban areas 

which were generated from 2001 to 2015 were considered to be the new urban areas in 

this study. Furthermore, the urban areas in 2000 and 2015 were merged together to 
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produce merged urban areas. Based on the merged urban areas, a set of buffers 

extending outward from 0 to 5 km, 5 to 10 km, and 10 to 15 km from the urban edge was 

created (Figure 4-11(a)), respectively, to observe the spatial mechanism of vegetation 

cover change in the marginal urban areas. 

In this study, the three vegetation metrics (e.g., annual NDVI, annual NDVI changing 

slope, and annual NDVI CV) in the old urban areas, new urban areas, and the three 

surrounding buffer areas were extracted to illustrate the spatial interaction of vegetation 

change to each corresponding area. The statistical data of the three vegetation metrics 

in each corresponding area was adopted to quantitatively and comparably analyze the 

magnitude of the NDVI cover change and vegetation stability extension from the urban 

centers toward the surrounding areas. The above data processing steps were 

accomplished under the support of ArcGIS 10.3, based on different functioning modules. 

Economic development and population growth are projected to promote rapid changes in 

vegetation activity and increase spatial heterogeneity in vegetation cover. GDP is a 

surrogate for the economic performance of a specified region. Population density 

indicates the potential frequency of human activities in a community. The GDP and 

population density map are available both in 2000 and 2015 with a 1 km spatial 

resolution. These four maps were utilized to detect the spatial coupling between 

economic development and population growth and vegetation variation.  

For example, the GDP maps of 2000 and 2015 were used to generate a GDP difference 

map from 2000 to 2015 (Figure 4-11(b)), which illustrates the differences of the spatial 

distribution of the economic development in eastern China. This GDP difference map is 

quantified by the Chinese currency (RMB). The GDP difference map was categorized 

into five classes. Then the reclassified GDP difference map was overlapped on the three 

vegetation metric maps to exhibit the spatial characteristics of NDVI change in response 

to GDP variation. The annual NDVI, annual NDVI changing slope, and annual NDVI CV 

in each GDP category were extracted, respectively. The corresponding statistical data of 

the three vegetation metrics in each GDP difference category was further generated. 

Using the above all methods, the spatial characteristics of the three vegetation metrics 

with regard to population growth were performed. 
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Figure 4-11. Spatial distribution of the differences in socio-economic development, urban expansion, and population 
growth in eastern China from 2000 to 201
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5 Results and discussion 

In the former chapters, the objective, theoretical background, and methodology of this 

study are introduced. To provide a better understanding of NDVI in response to climate 

factors, topographic factors, as well as socio-economic factors, the mathematical 

methods are employed to carry out the objectives of this study on the basis of the 

MODIS NDVI data, meteorological data, DEM data, socio-economic data, as well as 

other raster and vector data. This chapter, which consists of 4 sections, presents and 

discusses the main findings of this study. Section 5.1 exhibits the spatiotemporal 

variation of NDVI both on annual and seasonal scales. Section 5.2 presents the 

relationships between NDVI and climate factors and the lag time for maximum NDVI 

response to changes in climate factors. Section 5.3 displays the spatial interaction 

between annual NDVI and topographic factors. Section 5.4 shows the impacts of socio-

economic development, urban expansion, and population growth on vegetation cover 

change both on spatial and temporal scales. 

5.1 The spatiotemporal variation of vegetation cover in eastern China 

5.1.1 The temporal variation of NDVI 

5.1.1.1 The temporal variation of monthly NDVI 

On the basis of the 16-year (2001 to 2016) regional average monthly NDVI, the monthly 

patterns of the NDVI variations of the ten administrative units and the entire study area 

are shown in Figure 5-1, indicating the dynamic changes of average vegetation 

productivity from January to December over eastern China. These patterns are against 

the background of the average monthly values of all NDVI pixels in each corresponding 

administrative unit. Each point represents the monthly climatological average from 2001 

to 2016. Figure 5-1 reflects the dynamic changes of monthly NDVI from January to 

December in the ten administrative units and the entire study area. The monthly NDVI 

value ranges from 0.376 to 0.741 over the study area, and the maximum and minimum 

NDVI values take place in January and July, respectively.  

The trends of the monthly NDVI in Liaoning, Beijing, Tianjin, Hebei, and Shandong follow 

each other fairly well, presenting that a monotonic upward trend occurs from January 
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toward July and then the NDVI value decreases steadily from July toward December, but 

differ remarkably in amplitude. However, the monthly NDVI in Jiangsu, Shanghai, 

Zhejiang, Fujian, and Guangdong increases continually and reaches a peak in August, 

then the increasing trend reverses and presents a steady downward trend afterward. 

It is worth mentioning that the monthly NDVI in Jiangsu exhibits a downward trend from 

April to June and then increases from June to August, which is caused by a unique crop 

rotation system in Jiangsu. The agriculture activity in Jiangsu is dominated by winter 

wheat/paddy rice and rapeseed/paddy rice double cropping rotation. The winter wheat 

and rapeseed crops are harvested in late May and early June, which result in dropping in 

NDVI value in May and June immediately. Soon, the farmlands are irrigated, plowed, 

and then transplanted by paddy rice. The NDVI value in these areas enhances fairly with 

the rice growth within a short period of time (Xiao et al., 2010). Above explanation 

demonstrates why the NDVI value presents a valley in June in Jiangsu. 

The maximum NDVI value of each administrative unit is generally greater than 0.7, 

particularly in Fujian, the maximum NDVI value reaches 0.791 in August. Exceptionally, 

the maximum NDVI value in Tianjin appears in July, which is only 0.635. The minimum 

NDVI value in Beijing, Tianjin, Fujian, and Guangzhou exhibits in February. Apart from 

that, the minimum NDVI value in other administrative units presents in January. The 

minimum NDVI value is only 0.160 in Tianjin, while it reaches 0.633 in Fujian. In addition, 

the monthly NDVI value from January to December is significantly higher in Zhejiang, 

Fujian, and Guangdong than in other administrative units for the corresponding period. 

Furthermore, the amplitude of the monthly NDVI value is obviously weaker in these three 

administrative units than in other administrative units. The maximum amplitude of the 

monthly NDVI value takes place in Liaoning with an interval of 0.607, and the minimum 

amplitude of the monthly NDVI value takes place in Fujian with an interval of 0.157.  
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Figure 5-1. The temporal variation of regional monthly NDVI 

5.1.1.2 The temporal variation of annual NDVI 

The variations of the annual and seasonal NDVI in eastern China, covering the ten 

administrative units, from 2001 to 2016 were computed to illustrate the dynamic change 

of vegetation cover over eastern China for the study period. Each point relates to a mean 

NDVI value measured on the basis of the values of all the pixels located in the 

corresponding administrative unit. Against the background of the linear regression 

analysis method, the temporal variation of the NDVI for different administrative units is 

shown in Figure 5-2 and Table 5-1. The annual NDVI shows a slightly increasing trend 

with a changing value of 0.0003 year-1 in eastern China. The maximum NDVI value 

takes place in 2014 with a magnitude of 0.543, and the minimum NDVI value shows in 

2001 and 2015, exhibiting a 0.024 difference to the maximum NDVI value.  

Considering the temporal variation of the annual NDVI in each administrative unit, from 

Figure 5-3 and Table 5-1, it can be seen that the annual NDVI in different administrative 

units presents distinct increasing and decreasing trends. More specifically, the annual 

NDVI exhibits increasing trends in Beijing, Hebei, Liaoning, and Shandong but 

decreasing trends in Tianjin, Shanghai, Jiangsu, Zhejiang, Fujian, and Guangdong. It is 

worth noticing that the magnitude of the increasing trends is slightly larger in Beijing, 
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Hebei, and Liaoning than in Shandong. Particularly, the magnitude of the absolute 

changing slope values is 0.0036 year-1 in Shanghai and 0.0031 year-1 in Jiangsu, 

implying that the vegetation cover had remarkably decreased in Shanghai and Jiangsu 

for the study period.  

5.1.1.3 The temporal variation of seasonal NDVI 

The maximum NDVI value appears both in 2014 with a magnitude of 0.519 in spring and 

0.542 in autumn, respectively, whereas the NDVI value ranges from 0.675 in 2015 and 

0.716 in 2013 in summer. Generally, the NDVI value is higher in summer than in autumn, 

followed by in spring in eastern China, except that the NDVI value in 2002 is slightly 

lower in autumn than in spring. In terms of the NDVI changing trend in eastern China on 

seasonal scale, Figure 5-2 and Table 5-1 show that the NDVI value presents an upward 

trend in spring and autumn but a downward trend in summer. The magnitude of the 

changing trend is largely greater in summer (-0.0013 year-1) than in spring (+0.0003 

year-1) but almost the same as in autumn (+0.0012 year-1), indicating that the dynamic 

change of vegetation cover is significantly stronger in summer and autumn than in spring. 

This result is not fully in line with the results distributed by Piao et al. (2003). Piao et al. 

(2003) investigated the seasonal NDVI changing trend over China and demonstrated 

that NDVI increased in all season, with an increasing changing trend of 0.0018 year-1 in 

spring, 0.0012 year-1 in summer, and 0.0009 year-1 in autumn，respectively (Piao et al., 

2003).  

The opposite changing trend in summer between Piao et al. (2003) and our study might 

be caused by the differences of the data source, study period, as well as the study area. 

Piao et al. (2003) focused on monitoring the vegetation changing trend from 1982 to 

1999 over China on the basis of GIMMS NDVI with an 8 km spatial resolution, but we 

detected the dynamic change of vegetation cover in eastern China based on MODIS 

NDVI with a 250 m spatial resolution. On the one hand, the NDVI data derived from 

MODIS is recognized to be a more precise and robust data source to assess the long-

term vegetation trends than GIMMS NDVI data. On the other hand, eastern China is a 

highly developed region in China, the socio-economic status, urbanization rate, and 

population density are much higher than in other regions of China, particularly in the 21st 
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century, which is at the cost of local ecological deterioration and vegetation degradation. 

The explanations provided above answer why the vegetation changing trend in summer 

in our study is not in line with the result generated by Piao et al. (2003). 

Furthermore, many scholars have demonstrated that the length of the growing season 

has profoundly extended in the northern hemisphere (Linderholm, 2006, Myneni et al., 

1997, Karlsen et al., 2008). Eastern China is located in the mid- to the high-latitudes 

northern hemisphere. The NDVI value in eastern China had experienced an increasing 

trend in spring and autumn during the study period. This result is highly in line with 

previous studies. The growing season extension is attributed to the advance in the start 

of the growing season in spring and prolonged the growing season in autumn for these 

areas (Parmesan and Yohe, 2003, Gill et al., 2015).  

NDVI exhibits seasonal variation for each administrative unit distinctly. Regarding the 

temporal variation of the seasonal NDVI in each administrative unit, Figure 5-3 and 

Table 5-1 show that the NDVI in spring presents an increasing trend in Beijing, Tianjin, 

Hebei, Liaoning, and Shandong, while an opponent changing trend is observed in 

Shanghai, Jiangsu, Zhejiang, Fujian, and Guangdong. The magnitude of the increasing 

trend is slightly higher in Beijing (0.0039 year-1) than in Hebei, Liaoning, and Shandong 

but considerably higher than in Tianjin. The magnitude of the decreasing trend is double 

or even triple higher in Shanghai than in Jiangsu, Zhejiang, Fujian, and Guangdong, 

indicating that a more serious vegetation degradation had swept most parts of Shanghai 

and reduced the vegetation activities consequently from 2001 to 2016. 

Results of the NDVI change for each administrative unit in summer are given in Figure 

5-3 and Table 5-1. In summer, the NDVI in Beijing, Hebei, and Liaoning shows an 

upward trend, while the magnitude of the increasing trend is triple higher in Liaoning than 

in the two former administrative units. The magnitude of the decreasing trend of the 

NDVI is remarkably stronger in Shanghai and Jiangsu than in Tianjin, Zhejiang, Fujian, 

Shandong, and Guangdong. Especially, the magnitude of the decreasing trend reaches 

0.0075 year-1 in Jiangsu, implying that an even more critical vegetation deterioration had 

happened in Jiangsu for summer from 2001 to 2016.  
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The number of the administrative units experienced a vegetation browning trend is less 

in autumn (three administrative units) than in spring (five administrative units) and 

summer (seven administrative units). In autumn, the decreasing trends in Zhejiang and 

Guangdong can be neglected. The increasing rate of NDVI in autumn reaches 0.0046 

year-1 in Beijing, while the magnitude of the changing trend in Shandong, Hebei, 

Liaoning, Fujian Tianjin, and Jiangsu gradually increases from -0.0024 year-1 to less than 

-0.00001 year-1 (Figure 5-3 and Table 5-1).  

Combining the view of the seasonal NDVI in the ten administrative units, Figure 5-3 

shows that the NDVI is generally higher in summer than in autumn, followed by in spring. 

Particularly noteworthy point is that the NDVI in Jiangsu is obviously higher in spring 

than in autumn (Figure 5-3(f)), and the NDVI in spring and autumn in Shandong is 

interlaced (Figure 5-3(i)). This phenomenon in Jiangsu and Zhejiang is caused by crop 

harvesting taking place in later October in Jiangsu and Shandong (Xiao et al., 2010). 

Crop harvesting results in vegetation cover decrease over vast farmlands. It is worth 

notifying that the maximum NDVI in spring, summer, and autumn occurs in Fujian with a 

magnitude of 0.703, 0.790, and 0.754, respectively (Figure 5-3(h)), suggesting a superior 

vegetation cover and a more stable vegetation activity in Fujian than in other 

administrative units.  

 

Figure 5-2. The temporal variation of annual and seasonal NDVI from 2001 to 2016 
for eastern China 
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Figure 5-3. The temporal variation of annual and seasonal NDVI in ten 
administrative units from 2001 to 2016
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Table 5-1. The equation and R-squared value of annual and seasonal NDVI of eastern China and ten administrative 
units (Unit: year-1) 

Administrative unit 
The equation and R-squared value of annual and seasonal NDVI  

Annual Spring Summer Autumn 

Beijing y = 0.0033x + 0.4009 
R2 = 0.6995 

y = 0.0039x + 0.3459 
R2 = 0.2985 

y = 0.0014x + 0.6724 
R2 = 0.1835 

y = 0.0046x + 0.3891 
R2 = 0.5877 

Tianjin y = -0.0003x + 0.3594 
R2 = 0.0199 

y = 0.0013x + 0.2669 
R2 = 0.1008 

y = -0.004x + 0.6352 
R2 = 0.374 

y = 0.0002x + 0.373 
R2 = 0.0043 

Hebei y = 0.002x + 0.3902 
R2 = 0.5228 

y = 0.0025x + 0.3334 
R2 = 0.3184 

y = 0.0011x + 0.6556 
R2 = 0.0667 

y = 0.0024x + 0.3744 
R2 = 0.4416 

Liaoning y = 0.0021x + 0.3962 
R2 = 0.6036 

y = 0.0028x + 0.303 
R2 = 0.4988 

y = 0.0034x + 0.7119 
R2 = 0.6416 

y = 0.0013x + 0.3851 
R2 = 0.1255 

Shanghai y = -0.0036x + 0.4933 
R2 = 0.4431 

y = -0.0046x + 0.4959 
R2 = 0.4715 

y = -0.0054x + 0.6248 
R2 = 0.5974 

y = -0.0016x + 0.4869 
R2 = 0.083 

Jiangsu y = -0.0031x + 0.5285 
R2 = 0.456 

y = -0.0014x + 0.561 
R2 = 0.0516 

y = -0.0075x + 0.7059 
R2 = 0.8066 

y = 5E-05x + 0.4624 
R2 = 7E-05 

Zhejiang y = -0.0015x + 0.6727 
R2 = 0.2812 

y = -0.002x + 0.6611 
R2 = 0.2864 

y = -0.0037x + 0.7874 
R2 = 0.5276 

y = -6E-05x + 0.6818 
R2 = 0.0004 

Fujian y = -0.0006x + 0.7194 
R2 = 0.1215 

y = -0.0015x + 0.6986 
R2 = 0.2122 

y = -0.0021x + 0.7963 
R2 = 0.3246 

y = 0.0005x + 0.7342 
R2 = 0.0468 

Shandong y = 0.0013x + 0.435 
R2 = 0.2464 

y = 0.0023x + 0.4125 
R2 = 0.3402 

y = -0.003x + 0.6899 
R2 = 0.3522 

y = 0.0029x + 0.3912 
R2 = 0.3275 

Guangdong y = -0.0006x + 0.6712 
R2 = 0.0473 

y = -0.0025x + 0.6561 
R2 = 0.1902 

y = -0.0006x + 0.7323 
R2 = 0.0357 

y = -0.0002x + 0.7023 
R2 = 0.0031 

Eastern China y = 0.0003x + 0.527 
R2 = 0.0458 

y = 0.0003x + 0.4957 
R2 = 0.0188 

y = -0.0013x + 0.7167 
R2 = 0.2342 

y = 0.0012x + 0.5182 
R2 = 0.1985 
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5.1.2 The spatial pattern of vegetation cover 

5.1.2.1 The spatial pattern of annual NDVI  

Mean NDVI is a simple graphical indicator, which can be used to reflect the general 

spatial characteristics of vegetation vitality and to estimate the overall above-ground 

vegetation biomass over a certain region during a corresponding period of time. In this 

study, the multi-year mean annual NDVI from 2001 to 2016 is utilized to monitor the 

spatial heterogeneities of the vegetation cover over eastern China. The NDVI values are 

divided into five classes: 0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1. Higher 

NDVI value indicates a higher possible density of green leaves, and lower NDVI value 

represents a sparse vegetation cover or even no vegetation over a specified region. In 

this study, the annual NDVI displays a distinct and uneven spatial distribution over 

eastern China (Figure 5-5(a)). The proportion of each category of the annual NDVI for 

each administrative unit is computed against the background of the map of the mean 

annual NDVI and the administrative map. Figure 5-4(a) provides the proportion of the 

mean annual NDVI value in each category for eastern China and the ten administrative 

units. 

From Figure 5-5(a), it can be seen that the mean annual NDVI exhibits a clear spatial 

differentiation in eastern China, showing a gradient decline from the south to the north of 

the study area. Areas with high NDVI values are mainly located in Zhejiang, Fujian, and 

Guangdong, while areas distributed in the west of Liaoning, east of Beijing, Tianjin, 

Hebei, and Shanghai are dominated by low NDVI values. Most of the areas with 

moderate NDVI values are distributed in Jiangsu, a place regarded to be a transitional 

zone of the southern part of eastern China to the northern part. In other words, the NDVI 

value is converted from high NDVI value to low NDVI value, and the NDVI values in 

Jiangsu are in between the two areas. Moreover, the NDVI values are significantly lower 

in the center of the Pearl River Delta and Yangtze River Delta than its surrounding areas.  

The spatial pattern of the annual NDVI is closely correlated with the land use types. The 

land use type in Zhejiang, Fujian, and Guangdong is largely characterized as forest land 

dominated by evergreen broadleaf forest. NDVI values are therefore remarkably higher 

in these three administrative units than in other administrative units. Figure 5-4(a) shows 
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that the annual NDVI values from 0.6 to 1 accounts for 88% in Fujian, 71% in Zhejiang, 

and 77% in Guangdong, respectively, which is significantly higher than in other 

administrative units.  

The main terrestrial land use type in Jiangsu is farmland (Xiao et al., 2010). The annual 

NDVI in this region is dominated by moderate NDVI values, ranging from 0.4 to 0.6, 

which takes 67% of the total corresponding area. Additionally, the land use and land 

cover types in the east of Liaoning are monopolized by temperate coniferous-

broadleaved mixed forests, deciduous broadleaf forests, and woods and shrubs, 

whereas the land use and land cover types in the west of Liaoning are mostly possessed 

by typical and desert steppes. The farmland and meadow steppes are distributed in the 

middle of Liaoning (Gao and Yu, 1998, Wang et al., 2015a, Wang et al., 2017a). Due to 

the distinct spatial pattern of the land use types in Liaoning, the NDVI values in the east 

of Liaoning are greater than in the west part, and the lowest NDVI value is presented in 

the middle part. Figure 5-4(a) shows that the proportion of the NDVI values ranging from 

0 to 0.4 accounts for 36% in Beijing, 62% in Tianjin, 44% in Hebei, and 53% in Liaoning, 

separately, which is far above the average level for the entire study area (24%). It is 

worth noticing that all of these four above administrative units are located in the Bohai 

Economic Rim, a place with a highly developed socio-economic status. In addition, the 

pace of urbanization and industrialization has been accelerated since 1978 when the 

program of reform and opening-up put into action in China (Qu et al., 2015, Zhou et al., 

2014, Zhou et al., 2016). 

5.1.2.2  The spatial pattern of seasonal NDVI 

Multi-year mean seasonal NDVI can reflect the spatial features of the regional vegetation 

cover for each season. The distribution pattern of the mean NDVI in spring, summer, and 

autumn display noticeable spatial discrepancy in eastern China from 2001 to 2016 

(Figure 5-5(b) and Figure 5-6(a) and (b)). In terms of the NDVI value in spring, Figure 

5-5(b) shows that the NDVI values from Guangdong toward Jiangsu are incontestably 

higher than in other administrative units, particularly in Tianjin, the middle of Shandong, 

as well as in the west of Hebei and Liaoning. Overall, the NDVI values ranging from 0 to 

0.4 account for 34% of the study area in spring, which takes one-third of the study area, 
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and the proportion is greater than in summer and autumn. Moreover, the proportion of 

the NDVI values spanning from 0.8 to 1 takes only 1% of the study area.  

Inspection of the NDVI value in each category in spring for each administrative unit, 

results are given in Figure 5-4(b), a homologous phenomenon is observed that the 

proportion of the NDVI values ranging from 0.6 to 0.8 is larger in Fujian (71%), Zhejiang 

(65%), and Guangdong (69%) than in other administrative units. In particular, more than 

95% of the NDVI values in Beijing, Tianjin, Hebei, Liaoning, and Shanghai are lower than 

0.6, indicating that a lower vegetation density spreads in these five administrative units. 

In addition, the NDVI values ranging from 0.2 to 0.4 in Beijing, Tianjin, Hebei, and 

Liaoning account for more than 50% of the corresponding areas, especially this 

proportion reaches 66% in Tianjin.  

The vegetation cover situation dramatically upgraded in summer (Figure 5-5(b)). The 

best vegetation cover displays in Zhejiang, Fujian, Guangdong, the east of Liaoning, and 

the north of Hebei. However, the vegetation cover is relatively poor in the west of Hebei, 

Shanghai, and the coastal areas of Guangdong, where the NDVI values are significantly 

lower than the surrounding areas. As detailed in Figure 5-4(c) that the proportion of the 

NDVI values ranging from 0.6 to 0.8, and from 0.8 to1 accounts for 59% and 26% of the 

study area, respectively. In addition, the magnitude of the NDVI values ranging from 0 to 

0.4 occupies only 3% of the study area. The conclusions provided above suggest a 

considerable high vegetation cover in summer in eastern China. Comparing to Figure 

5-4(b) and (c) shows that the vegetation vitality in the ten administrative units has 

considerably improved from spring to summer. For instance, the proportion of the NDVI 

values ranging from 0.6 to 1 increased by 75% in Beijing, 64% in Tianjin, 71% in Hebei, 

and 90%, respectively, in Liaoning from spring to summer. 

The spatial distribution of multi-year mean NDVI in autumn is shown in Figure 5-6(b). 

The vegetation cover markedly and gradually reduces from the south of Guangdong to 

the north of Liaoning, and the NDVI value reaches the lowest value in the north of Hebei 

and Liaoning. Comparison of the vegetation cover in the north of eastern China (the east 

of Liaoning and north of Hebei) and the south of eastern China (Zhejiang, Fujian, and 

Guangdong) in summer and autumn, the NDVI values in the north of eastern China are 
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dramatically declined. This phenomenon can be ascribed to the structure of the local 

vegetation types and the related features of plant growth behavior.  

Figure 5-4(d) shows that the vegetation cover in eastern China is dominated by 

moderate vegetation cover. Areas with the NDVI value ranging from 0.4 to 0.6 occupy 

41% of the study area. Comparing to the Figure 5-4(c) and (d) suggests that the 

proportion of the high NDVI values (from 0.6 to 1) rapidly decreased from summer to 

autumn in seven of the ten administrative units, except for Zhejiang, Fujian, and 

Guangdong presenting a slight decrease. Figure 5-4(b) and (d) show that the proportion 

of the NDVI values in each category for Beijing, Tianjin, Hebei, Liaoning, and Shanghai 

is homologous, but the proportion of the NDVI values ranging from 0.6 to 1 in Shandong 

and Jiangsu in spring exceeds by 68% and 44% in autumn, respectively, suggesting a 

better vegetation situation in autumn in Shandong and Jiangsu than in spring, which can 

be explained by the harvest activities in autumn in these regions. 

The spatial patterns of vegetation cover in spring, summer, and autumn follow the same 

pattern: namely, the NDVI value is higher in the east of Liaoning, northwest of Hebei, 

Zhejiang, Fujian, as well as in Guangdong than in other regions of the study area (Figure 

5-4(b), (c), and (d)). The most intensive variation of vegetation activity appears in the 

west of Liaoning, north of Hebei, middle of Shandong, and entire Jiangsu. The 

vegetation cover shows unique seasonal characteristics in these regions, which are 

different from other parts of the study area. Above results are generated by the 

combined effects of local climate systems, topographic forces, as well as intensive 

human intervention.  

Generally, the overall NDVI values in summer are higher than in autumn, followed by 

spring. The vegetation cover displays a significant downward trend from the south to the 

north of eastern China in all seasons with the exception of the NDVI values in Jiangsu 

and the west part of Shandong where the NDVI values in spring are noticeably larger 

than in autumn. This phenomenon is attributed to the land use types and the agriculture 

rotation system in Jiangsu and Shandong (Xiao et al., 2010). The vegetation cover in 

Jiangsu and Shandong is dominated by agricultural plants, which are significantly 

influenced by effective man-management during the processes of crop sowing, growing 

to harvesting. The rapeseed and winter wheat are harvested from the second half of May 
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to early June (spring), then the farmlands are plowed and flooded, and then replanted to 

paddy rice and spring wheat. Therefore, a downward trend of NDVI value can be found 

from May to June but increases in July in Jiangsu at once. In addition, the spring wheat 

and paddy rice harvesting take place from early September to late October (autumn), 

resulting in a decline in NDVI values instantly in Jiangsu and Shandong (Hu et al., 2017, 

Huang et al., 2012). The explanation provided above answers the question of why the 

NDVI values in Jiangsu and the west of Shandong are lower in autumn than in spring.  

 

Figure 5-4. The statistical results of the annual and seasonal NDVI for eastern 
China and the ten administrative units 
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Figure 5-5. The spatial patterns of the annual and spring NDVI in eastern China from 2001 to 2016 
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Figure 5-6. The spatial patterns of summer and autumn NDVI in eastern China from 2001 to 2016 
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5.1.3 The spatial pattern of vegetation changing trend 

5.1.3.1 The spatial pattern of annual NDVI change 

On the basis of the 16-year annual NDVI time series with the aid of ENVI IDL 

programming, the changing slope of the annual NDVI on each pixel was computed, 

which can be used to illustrate the spatial characteristics of the annual NDVI dynamic 

over eastern China from 2001 to 2016. Figure 5-8(a) shows that vegetation cover had 

experienced a significant degradation in many regions of the study area for the study 

period. An impressive decreasing trend is found in Jiangsu, Shanghai, the junction areas 

of Hebei, Tianjin, and Beijing, and many parts of Zhejiang, Fujian, and Guangdong, and 

the decreasing trend cannot be ignored. The overall vegetation cover in eastern China 

had gradually increased for the study period, and the vegetation change exhibited 

evident regional characteristics and obvious spatial heterogeneous. To quantitatively 

analyze the degree of the vegetation restoration or deterioration in eastern China from 

2001 to 2016, the vegetation changing slope was classified into five classes in the 

background of the magnitude of the annual NDVI changing slope: significant decrease, 

slight decrease, unchanged, slight increase, and significant increase (Table 4-3).  

Figure 5-8(a) shows that the vegetation cover had improved across many regions of the 

study area during the study period, particularly in the east and west of Liaoning, north of 

Hebei, Beijing, as well as in the middle and north of Shandong. This improvement is 

ascribed to the implementation of diverse afforestation and reforestation programs in the 

north of China, such as the GGP, NFCP, BTWSSCP, and TNSFP. These Programs 

have been carried out since 1978 and they have achieved enormous positive results in 

desertification prevention, soil and water protection, vegetation rehabilitation, and 

ecological conservation (Miao et al., 2015, Gutiérrez Rodríguez et al., 2016, Zhang et al., 

2016, Viña et al., 2016, Lu et al., 2015, Piao et al., 2015, Cao et al., 2011, Bryan et al., 

2018, Li et al., 2015c). In addition, the improvement of vegetation cover in Beijing is 

tightly correlated with the 2008 Olympic Games. After winning the right to host the 2008 

Olympic Games in 2001, the local government returned some of the lands back to 

forests. Therefore, the vegetation cover in Beijing in 2008 reached 51.6%, which is also 

an essential factor for explaining why the vegetation cover enhanced in Beijing within a 

relatively short period of time (Duan et al., 2011).  
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The vegetation cover in the north of Zhejiang, west of Fujian, as well as in entire 

Shanghai, Jiangsu, and Tianjin is more sensitive and fragile. The vegetation browning 

trend is more serious in these areas than in other regions of the study area. These 

browning areas are distinctively spatially coupled with the areas with sharp population 

growth, rapid urban expansion, and high-speed economic development of the last three 

decades. All of these disturbing developments are at the cost of land use change, soil 

fertility decline, vegetation degradation, water contamination, and biodiversity loss (He, 

2009, Liu et al., 2008b, Lu et al., 2015). We further noticed that all of these browning 

areas are located within the three largest China’s economic zones (the Pearl River Delta, 

the Yangtze River Delta, and the Bohai Economic RIM), which play irreplaceable roles in 

China’s socio-economic development.  

Along with the effects of socio-economic development, vegetation degradation is also 

closely associated with changes in local climate systems. For instance, NDVI had 

gradually declined from 1982 to 2003. It was largely affected by prolonged drought 

seasons, which were generated by an annual mean temperature increase and an 

accumulated annual precipitation decrease, both taking place at the same time (Liu et al., 

2008a). 

Figure 5-7(a) shows that the vegetation cover in 33% of the study area exhibits a 

decreasing trend, in which 10% of these areas had undergone a significant decrease 

mainly distributed in Shanghai, the south of Jiangsu and sparsely distributed in Zhejiang, 

Fujian, Tianjin, and Hebei. Areas with vegetation cover remaining unchanged account for 

18% of the study area, which is evenly spaced over the entire study area. Moreover, the 

vegetation cover in nearly half of the study area (49%) had improved, in which 

accounting for 29% of these areas had experienced a significant improvement. These 

improved areas are mostly concentrated in Beijing, Liaoning, the northwest of Hebei, and 

middle of Shandong.  

From 2001 to 2016, the changing trend of the annual NDVI varies from different 

administrative units. A higher proportion of the significant increase exists for Tianjin, 

Shanghai, Jiangsu, Zhejiang, and Fujian (Figure 5-7(a)). Areas with slight increases 

account for 52% in Shanghai and 48% in Jiangsu. Areas with remaining unchanged and 

a slight increase account for almost the same proportion for all of the administrative units. 
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Besides, more administrative units with an NDVI enhancement are quantitatively 

identified. Areas with significant increases account for 69%, 50%, and 56% in Beijing, 

Hebei, and Liaoning, respectively, and these proportions are evidently larger than in 

other administrative units. Particularly, areas with a significant increase account for only 

2% in Shanghai and 4% Jiangsu. 

5.1.3.2 The spatial pattern of seasonal NDVI change 

To facilitate the analysis of the characteristics of the spatial pattern of the seasonal NDVI 

changing trend from 2001 to 2016, the linear regression analysis method was applied to 

detect the changing trend of the seasonal NDVI at pixel level in eastern China during the 

corresponding period. Three changing slope maps of the seasonal NDVI were 

reclassified into five classes under the support of ArcGIS 10.3 platform. Figure 5-8(b) 

and Figure 5-9(a) and (b) display the spatial characteristics of the NDVI change in spring, 

summer, as well as in autumn, respectively.  

Figure 5-8(b) shows that the NDVI changing trend presents prodigious spatial 

variabilities in eastern China in spring. NDVI increases slightly over large areas of the 

northern part of the study area, extending from Shandong to Liaoning. Areas with a 

slightly decreasing trend are widespread from the north of Guangdong to the south of 

Jiangsu. Meanwhile, vegetation cover in 38% of the study area had remained 

unchanged during the study period, which mostly coexists with the areas with a slight 

decrease but vaster geographical region, stretching from Guangdong to the north of 

Shandong. NDVI in approximately 10% of the study area shows a significant increase, 

and these areas are concentrated in the middle of Liaoning and north of Hebei.  

Figure 5-9(a) displays a distinct spatial pattern of the NDVI change in summer in eastern 

China. Comparison of the NDVI change between spring and summer, as evidenced in 

Figure 5-7(b) and (c), the vegetation degradation is even more critical in summer than in 

spring. Especially, areas with a slightly decreasing trend account for 33% of the study 

areas in summer, but account for only 22% of the study area in spring. Areas with a 

slight decrease take the second largest proportion in summer, and these areas extend 

from Fujian to the south of Hebei. Moreover, areas with an increasing trend are primarily 

distributed in Liaoning and the north of Beijing and Hebei, which account for 25% of the 
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study area, in which 7% of these areas had experienced a significant improvement 

predominantly distributed in the east of Liaoning and sparsely distributed in the north of 

Beijing and Hebei. NDVI in 40% of the study area had remained unchanged in summer, 

which is mostly located in the north of Guangdong, middle of Shandong, as well as in the 

southeast of Hebei. 

The vegetation cover had widely and slightly enhanced over many parts of the study 

area in autumn (Figure 5-7(d)). Comparison of the spatial patterns of the NDVI change 

between autumn and the two former seasons, Figure 5-7(d) shows that areas with a 

decreasing trend and areas with an increasing trend are alternately distributed in eastern 

China in autumn. In autumn, NDVI remaining unchanged accounts for 40% of the study 

area, which is in the same proportion as in summer but slightly higher than in spring. The 

slightly greening areas, that is, areas with a slight increase, account for 36% of the study 

area mostly distributed in the middle of Shandong, north of Hebei, west of Liaoning, and 

Beijing. The proportion of the slightly increased areas is considerably higher in autumn 

than in the two former seasons. The proportion of the areas with significant and slight 

decreases in autumn is about half of that in summer, indicating a comparable 

improvement in vegetation activity in autumn when compared with in summer. Generally, 

the vegetation cover had diffusely increased in autumn in most areas of eastern China 

from 2001 to 2016, and areas with a significant and slight vegetation deterioration only 

take place in around one-fifth of the study area.  

Figure 5-7(b), (c), and (d) reveal the proportion of different categories of the seasonal 

NDVI changing slope for different administrative units simultaneously. The proportion in 

different categories of the NDVI changing slope varies in each administrative unit in 

spring (Figure 5-7(b)). It can be seen that the vegetation cover in Beijing, Tianjin, Hebei, 

Liaoning, and Shandong had undergone a vegetation greening surplus (a positive 

difference between the proportion of significant and slight increases and the proportion 

of significant and slight decreases) in spring from 2001 to 2016. Particularly, areas with 

an increasing trend account for 73% of the study area in Liaoning, followed by Beijing 

(64%). Areas remaining unchanged account for 68% in Guangdong and 54% in Jiangsu. 

These proportions are remarkably higher than in other administrative units, suggesting a 

more stable vegetation cover in Guangdong and Jiangsu in spring for the study period. A 
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higher proportion of the areas with a slightly decreasing trend exhibits in Shanghai, 

Zhejiang, as well as in Fujian with a magnitude of 53%, 40%, and 35% of the 

corresponding total areas, respectively.  

In summer the proportion of the areas with significantly and slightly decreasing trends is 

higher than the proportion of the areas with significantly and slightly increasing trends in 

seven of the ten administrative units, except for Beijing, Hebei, and Liaoning, implying 

that a serious vegetation degradation had swept most of the study area in summer 

(Figure 5-7(a)). Figure 5-7(a) shows that the top five administrative units ranked by a 

vegetation browning surplus (a negative difference between the proportion of significant 

and slight increases and the proportion of significant and slight decreases) in descending 

order are Jiangsu, Shanghai, Zhejiang, Shandong, and Fujian. The proportion of the 

areas with a slight decrease increased by 42% in Jiangsu and 28% in Shandong from 

spring to summer.  

However, areas with significant and slight increases in vegetation cover account for 54% 

in Beijing, 44% in Hebei, and 72% in Liaoning, respectively. All of these administrative 

units benefited significantly from a huge investment in initiating various vegetation 

restoration programs in the north of China. These programs not only turned some of 

croplands into forest lands and grasslands, but they also afforested a huge number of 

unused lands and barren lands into forest lands (Cao et al., 2017, Liu et al., 2008b, Lu et 

al., 2011, Lu et al., 2015).  

Furthermore, the vegetation cover change is also closely associated with climate 

variability. Piao et al. (2011) demonstrated that the vegetation degradation in the 

southeast of China was basically influenced by the decreasing autumn precipitation, 

whereas the enhancement of vegetation cover in boreal regions is caused by the 

warming autumn temperature (Dragoni et al., 2011, Vesala et al., 2010). It is worth 

noticing that both vegetation degradation and vegetation restoration are more significant 

on annual scale than on seasonal scale, which can be attributed to the cumulative 

effects of positive and negative influences from each season. 

The proportion of the areas with a slight decrease in nine out of the ten administrative 

units is lower in autumn than in the two former seasons, except for Liaoning (Figure 
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5-7(b), (c), and (d)). As detailed in Figure 5-7(d), areas with significant and slight 

increases in Beijing, Hebei, and Shandong sprawl over more than 50% of the 

corresponding total areas, respectively. The proportion of the areas with significantly and 

slightly increasing trends reaches 81% in Beijing in particular. Except for Beijing, areas 

with vegetation cover remaining unchanged take an equivalent proportion in other 

administrative units. It is worth noticing that both vegetation degradation and vegetation 

restoration are significant on annual scale than in all three seasons, which can be 

attributed to the accumulative effects of positive and negative influences from each 

season. 

 

Figure 5-7. The statistical results of the annual and seasonal NDVI change for 
eastern China and the ten administrative units 
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Figure 5-8. The change trends of the annual and spring NDVI in eastern China from 2001 to 2016 
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Figure 5-9. The change trends of the summer and autumn NDVI in eastern China from 2001 to 2016 
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5.1.4 The spatial pattern of the future vegetation changing trend 

5.1.4.1 The spatial pattern of the future annual NDVI changing trend 

It is of great practical value to apply R/S analysis to study the consistency of the 

vegetation cover and further to predict the future changing trend of vegetation cover in 

eastern China. Hurst exponent can be used to indicate the consistency of the NDVI time 

series. In this study, firstly, R/S analysis was applied to generate the Hurst exponent for 

every pixel against the background of the 16-year NDVI time series with the aid of 

MATLAB programming. Then overlay analysis was used to overlap the results of the 

NDVI changing trend and Hurst exponent of NDVI time series. Thus the spatial pattern of 

the future changing trend of NDVI was displayed both on annual and seasonal scales 

(Figure 5-11 and Figure 5-12). Furthermore, zone analysis was applied to generate the 

statistical results of the future changing trend of NDVI for eastern China and the ten 

administrative units (Figure 5-10).  

Hurst exponent ranges from 0 to 1. When Hurst exponent is greater than 0.5, indicating 

that NDVI will remain the current changing trend in the future, and when Hurst exponent 

is lower than 0.5, indicating that NDVI will shift the current changing trend in the future. It 

is worth noticing that, on annual scale, the mean Hurst exponent of the study area is 

0.51, suggesting a weak consistency of NDVI time series for eastern China. Moreover, 

the areas expected to maintain the current changing trends (57%) are larger than the 

areas expected to shift the current changing trends (43%) for eastern China.  

Figure 5-11(a) displays the spatial characteristics of the future changing trend of the 

annual NDVI. The future changing trend of the annual NDVI shows distinctive spatial 

heterogeneity over the study area. Figure 5-10(a) and Figure 5-11(a) show that the 

consistent improvement area accounts for the largest proportion (25%) of the study area, 

which spreads from Shandong to Liaoning. The improvement area accounts for 12% of 

the study area. The consistent degradation area accounts for 21% of the study area, 

which is concentrated in the north of Jiangsu and scattered over the study area. The 

degradation area accounts for 24% of the study area, which is primarily distributed in 

Liaoning and the north of Beijing and Hebei. Areas expected to experience unchanged in 

the future accounting for 11% of the study area, and areas with uncertain future 
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changing trend accounting for only 7% of the study area. Above results suggest that the 

areas with certain vegetation degradation will be larger than the areas with certain 

vegetation improvement in eastern China in the future. 

From the perspective of the future changing trend of the annual NDVI for each 

administrative unit, the proportion of the areas expected to degrade in the future in nine 

of the ten administrative units (except for Shandong) is larger than the proportion of the 

areas expected to improve in the future. Particularly in Beijing and Liaoning, the 

degraded area expected to reach half of the corresponding area in the future. 

5.1.4.2 The spatial pattern of the future seasonal NDVI changing trend 

In terms of the future changing trend of the seasonal NDVI in eastern China, accounting 

for 53% in spring, 57% in summer, and 60% in autumn of the study area predicted to 

reverse the current changing trends in the future, and accounting for 47% in spring, 43% 

in summer, and 40% in autumn of the study area predicted to maintain the current 

changing trends in the future. Above results generated two statements that (1) the areas 

expected to remain the current changing trend are slightly greater than the areas 

expected to switch the current changing trend in all seasons; and (2) the areas expected 

to switch the current changing trend in the future are largest in autumn, followed by 

summer and then spring.  

As displayed in Figure 5-11(b), in spring, the consistent improvement area is located in 

the middle of Liaoning and the junction area of Hebei and Shandong, accounting for 15% 

of the study area. The improvement area is sparsely scattered from the south of Jiangsu 

to Guangdong, accounting for 11% of the study area. The degradation area accounts for 

the largest proportion (23%), which is mainly distributed in the north of Hebei and Beijing 

and the east and west of Liaoning. The consistent degradation area accounts for 13% of 

the study area. 

Figure 5-12(a) shows in summer the consistent improvement area accounts for the 

smallest proportion (11%), which is sparsely scattered from Shandong to Liaoning. The 

improvement area in Jiangsu is larger than in other regions of the study area. The 

degradation area and the consistent degradation area account for 32% of the study area, 
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which is primarily located in Tianjin, the junction area of Shandong and Hebei, the north 

of Beijing and Hebei, and the east of Liaoning.  

Figure 5-12(b) displays that in autumn the improvement area and consistent 

improvement area account for 24% of the study area, which is primarily located in the 

junction area of Fujian and Zhejiang and sparsely scattered over the study area. The 

degradation area takes the largest proportion (28%), which is predominantly located in 

the middle and north of Shandong, north of Beijing and Hebei, and west of Liaoning. The 

consistent degradation area accounts for only 8% of the study area. 

Regarding the future changing trend of the seasonal NDVI for each administrative unit, 

the proportion of the areas expected to degrade in the future in eight of the ten 

administrative units in spring (except for Shandong and Zhejiang), in six of the ten 

administrative units in summer (except for Shanghai, Jiangsu, Zhejiang, and Fujian), and 

in seven of the ten administrative units in autumn (except for Shanghai, Zhejiang, and 

Fujian) is larger than the proportion of the areas expected to improve in the future. It is 

worth noticing that areas expected to degrade in the future in Beijing reaching 52% in 

spring, 54% in summer, and 66% in autumn, indicating that the current improving trend 

of vegetation cover in Beijing may reverse and a server vegetation degradation may 

occur in the future.  

Above results suggest that the areas with certain vegetation degradation will be larger 

than the areas with certain vegetation improvement for eastern China both on annual 

and seasonal scales in the future. This result is in line with the results generated by Li et 

al. (2019). Li et al. (2019) demonstrated that areas with an increasing trend and an anti-

persistence characteristic account for the largest proportion both on annual and 

seasonal scales in the 400 mm annual precipitation fluctuation zone, China, indicating a 

server vegetation degradation in the future in this region.  

However, our result is not in line with the results generated by Tong et al. (2018). Tong 

et al. (2018) evidenced that the areas with vegetation improvement are larger than the 

areas with vegetation degradation in the Mongolian Plateau in the future, particularly in 

Inner Mongolia. Inner Mongolia located in the north of China, the vegetation cover has 

significantly improved in recent years due to large-scale reforestation and afforestation 
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programs implementation and practical ecological management in this region (Tong et 

al., 2018, Zhang et al., 2016, Duan et al., 2011). However, eastern China is located in 

the eastern coastal area of China, a region has highly developed in the last three 

decades. Although the vegetation cover has restored in this region in recent decades, 

the tolerance and resilience of terrestrial ecosystem are limited. Therefore, the continued 

socio-economic development, urban expansion, and population growth may result in 

vegetation degradation in eastern China in the future. Above explanation may answer 

the question of why the areas with vegetation degradation predicted to be larger than the 

areas with vegetation improvement in eastern China in the future. 

Along with rapid urbanization and industrialization occurring in eastern China, 

environmental concerns have become increasingly serious in recent decades in this 

region. Large-scale reforestation and afforestation programs have exerted great impacts 

on regional vegetation restoration and rehabilitation, in the north of the study area in 

particular, but the terrestrial ecosystem in more regions is becoming more vulnerable 

and unstable. To prevent the environmental degradation in eastern China effectively, the 

large-scale reforestation and afforestation programs should be continuously 

implemented, and, meanwhile, it is urgent to put new vegetation-protection programs 

into action to protect existing vegetation cover and alleviate the environmental 

deterioration, particularly in the south of eastern China.  

The transformation of land use functions (e.g., forest land, grassland, shrubland, and 

farmland to built-up land) and enhanced human activities contributed to vegetation 

degradation directly and inevitably. Therefore, appropriate ecological-conservation 

policies should be formulated by authorities and put into practice to regulate 

inappropriate land use change. These policies can not only protect existing vegetated 

areas but provide a sustainability way to further enhance vegetation resource inventory, 

particularly in the areas with vegetation degradation currently and the areas expected to 

degrade in the future.  
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Figure 5-10. The statistical results of the future changing trends of annual and 
seasonal NDVI for eastern China and the ten administrative units 
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Figure 5-11. The spatial patterns of the future changing trends of the annual NDVI and spring NDVI in eastern China 
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Figure 5-12. The spatial patterns of the future changing trends of summer NDVI and autumn NDVI in eastern China
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5.1.5 The spatial pattern of vegetation stability 

5.1.5.1 The spatial pattern of annual vegetation stability 

The fluctuation of the vegetation cover is largely influenced by the overall vegetation 

activity over a certain period. In this study, NDVI CV is applied as an indicator to 

measure the overall vegetation stability in eastern China from 2001 to 2016. To 

quantitatively determine the degree of the vegetation variability, the NDVI CV was 

divided into four classes, as shown in Table 4-4. A larger value of the NDVI CV tends to 

show a stronger fluctuation in vegetation activity, and a smaller value indicates a stable 

vegetation cover (Barbosa et al., 2006). The proportion of the annual NDVI CV in each 

category for the ten administrative units and the study area is simultaneously calculated 

based on the map of the NDVI CV and the vector map of the study area. The proportion 

of the annual NDVI CV in different categories for the study area and the ten 

administrative units are detailed in Figure 5-13(a). 

Figure 5-14(a) illustrates the spatial pattern of the annual NDVI CV across the study area, 

which indicates the variability of the vegetation cover for the study period. The annual 

NDVI CV shows distinct spatial differences in the northern and southern parts of the 

study area, suggesting that the vegetation cover is comparatively stable in the south 

than in the north of the study area. Areas with the annual NDVI CV values ranging from 

0 to 0.05 are densely distributed in the east of Liaoning, Zhejiang, Fujian, and 

Guangdong and sparsely located in the north of Beijing and Hebei, which account for 

45% of the entire study area. These areas are mostly dominated by stable forest land. 

Many scholars have demonstrated that the forest land has a better sustainable ability in 

ecological resilience in resisting disturbances from regional climate change and 

frequency of human activities (Wang et al., 2015b, Gazol et al., 2018, Cui et al., 2013).  

Areas with the NDVI CV values ranging from 0.05 to 0.1 account for 43% of the study 

area, which stretch from Jiangsu to the east of Liaoning. However, the NDVI CV values 

in Shanghai, Tianjin, the eastern coastal areas of Guangdong, south of Jiangsu, as well 

as in the northwest of Hebei range from 0.1 to 1, indicating that an intensive vegetation 

oscillation had occurred in these areas during the study period. It is worth noting that an 

NDVI CV value suggests the magnitude of the NDVI fluctuation, but it does not indicate 
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the oscillation direction of the vegetation activity. Higher NDVI CV value indicates a 

stronger positive or negative NDVI changing trend. It is clear that the areas in Shanghai, 

Tianjin, the eastern coastal areas of Guangdong, and in the south of Jiangsu had 

experienced a negative NDVI fluctuation due to the rapid urban expansion and socio-

economic development that occurred in these areas in recent decades. These changes 

happened at the cost of tremendous ecological degradation. Another reason for these 

changes was the usage of farmlands and forest lands as urban areas (Qu et al., 2015, 

Zhao et al., 2017, Zhou et al., 2016). 

A set of vegetation afforestation and reforestation programs has been launched in the 

north of China, covering most areas of Hebei, Beijing, and Liaoning. Due to effective 

regional forest management, not only the negative effects derived from socio-economic 

advancement were offset, but the vegetation cover in these areas also had 

comprehensively improved (Zhang et al., 2016, Bryan et al., 2018, Cao, 2011). High 

NDVI CV values in these areas can be basically considered as a positive NDVI 

fluctuation. All explanations provided above account for the higher NDVI CV value in 

these areas. In addition, they explain why the spatial pattern of the NDVI CV value 

shows a poor spatial coupling with the spatial patterns of the annual NDVI value and 

annual NDVI changing slope. 

In terms of the proportion of the annual NDVI CV in different categories for each 

administrative units, inspection of Figure 5-13(a), it shows that higher proportion of the 

annual NDVI CV values ranging from 0 to 0.05 takes place in Liaoning, Zhejiang, Fujian, 

and Guangdong. Particularly, this proportion reaches 72% in Zhejiang and 80% in Fujian, 

implying that the vegetation stability in these two administrative units is better than in 

other administrative units. Proportion of the annual NDVI CV values ranging from 0.15 to 

1 in Tianjin, Jiangsu, and Shanghai occupies around 15% of their total corresponding 

areas, which are higher than in other administrative units (the proportion of the annual 

NDVI CV values ranging from 0.15 to 1 in other administrative units is less than 5%). 

This phenomenon is caused by vulnerable vegetation growth conditions such as high- 

speed urbanization, industrialization, and population growth in these regions. 
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5.1.5.2 The spatial pattern of seasonal vegetation stability 

The spatial characteristics of the seasonal vegetation stability were carried out in this 

study at pixel level to evaluate the fluctuation of the vegetation activity over eastern 

China from 2001 to 2016. The spatial distribution of the NDVI CV in spring, summer, and 

autumn shows an apparent spatial heterogeneous across the entire study area. 

Particularly, obvious seasonal differences are displayed in the north of the study area. 

Figure 5-14(b) and Figure 5-15(a) and (b) display the spatial distribution pattern of the 

NDVI CV in spring, summer, and autumn, respectively.  

In spring the NDVI CV values are lower in the middle than in the southern and northern 

parts of the study area (Figure 5-14(b)), indicating that a stronger vegetation fluctuation 

had taken place in the southern and northern parts of the study area over the study 

period. Areas with the NDVI CV values ranging from 0.15 to 1 account for 16% of the 

study area, which is mostly distributed in the center of the three economic zones. Areas 

with the NDVI CV values ranging from 0 to 0.05 are mainly distributed in Zhejiang and 

the north of Fujian, which account for 12% of the study area. The NDVI CV values in 

Liaoning display a distinct geographical difference between the east and the west: 

namely, higher values are concentrated in the west part, and lower values are located in 

the east part, indicating an unbalanced vegetation oscillation.  

Comparison of Figure 5-14(b) and Figure 5-15(a) show that the overall vegetation 

activity is more stable in summer than in spring, except for the northwest of Hebei, a 

place where the NDVI CV values are higher in summer than in spring. Areas with the 

NDVI CV values ranging from 0 to 0.05 in summer account for 31% of the study area, 

and this proportion is higher than in spring by 19%. Moreover, the NDVI CV values in the 

center of the three economic zones range from 0.15 to 1, which are considerably higher 

than the surrounding areas. Figure 5-14(b) and Figure 5-15(b) show that the NDVI CV 

values in autumn present a similar spatial pattern to spring, but the amplitude of the 

vegetation variability is slightly lower in autumn than in spring. With an exception of the 

NDVI CV values in the northwest of Shandong is higher in autumn than in spring. 

Comparison of the overall vegetation stability in spring, summer, and in autumn, we 

noticed that the vegetation activity shows a clear geographical distribution difference in 
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all seasons, but the overall vegetation stability is better in summer than in autumn, 

followed by in spring.  

Figure 5-13(b), (c), and (d) illustrate the proportion of the season NDVI CV in different 

categories for eastern China and the ten administrative units. Figure 5-13(b) shows that 

the proportion of the NDVI CV values ranging from 0.15 to 1 in Tianjin reaches 47% in 

spring, which is higher than in other administrative units, particularly in Liaoning, 

Zhejiang, and Fujian, where the proportion of the NDVI CV values ranging from 0.15 to 1 

is only 8%, 7%, and 5%, respectively. However, the proportion of the NDVI CV values 

ranging from 0 to 0.05 accounts for 54% in Fujian and 38% in Zhejiang. Figure 5-13(b) 

and (c) illustrate that in summer the proportion of the NDVI CV values ranging from 0 to 

0.05 is enhanced in nine out of the ten administrative units in comparison with the 

proportion of the NDVI CV values ranging from 0 to 0.05 in spring. However, the 

proportion of the NDVI CV values ranging from 0 to 0.05 in Shanghai and Jiangsu is still 

relatively low with a magnitude of 1% and 6%, respectively. An analogous pattern of the 

proportion of the NDVI CV in each category is observed in spring and autumn, except for 

the proportion of the NDVI CV values ranging from 0 to 0.05 in Guangdong and from 

0.05 to 0.1 in Tianjin are greater in autumn than in spring, respectively. 

Fang et al. (2001) evaluated the fluctuation of the NDVI of the forest, grassland, desert, 

alpine vegetation, and cropland on annual scale in China from 1982 to 1999 and Peng et 

al. (2015) assessed the vegetation stability of different regions of eastern China from 

1999 to 2008 on the basis of CV.  Fang et al. (2001) and Peng et al. (2015) concentrated 

on evaluating the overall vegetation fluctuation characteristics. However, in this study, 

CV is utilized to spatially quantify the magnitude of the vegetation variability both on 

annual and seasonal scales. Not only the spatial characteristics of the vegetation 

stability were displayed, but also the magnitude of the vegetation fluctuation for each 

pixel and each administrative unit was quantified against the background of CV, which 

comprehensively explored the vegetation stability in eastern China.  
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Figure 5-13. The statistical results of the coefficient of variation of annual and 
seasonal NDVI for eastern China and the ten administrative units
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Figure 5-14. The spatial patterns of the coefficient of variation of the annual and spring NDVI in eastern China from 
2001 to 2016 
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Figure 5-15. The spatial patterns of the coefficient of variation of summer and autumn NDVI in eastern China from 
2001 to 201
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5.2 The relationship between NDVI and climate factors in eastern China 

5.2.1 The temporal characteristics of NDVI in response to climate factors 

Climatic factors could have diverse impacts on vegetation growth for different regions 

(Albani et al., 2006, Brown and de Beurs, 2008). Among these factors, precipitation and 

temperature are regarded as primary factors determining the rate of respiration and 

photosynthesis in plants, thereby affecting the vegetation vitality (Biebl and Mcroy, 1971). 

In this study, the relationships between NDVI and precipitation as well as NDVI and 

temperature were investigated for NDVI and the precipitation and temperature of 

previous 0 to 3 months on the basis of eastern China, the ten administrative units, and 

the 184 meteorological stations both on annual and seasonal scales. The maximum 

correlation coefficients between NDVI and precipitation as well as NDVI and temperature 

were selected based on four correlation coefficients, and the lag time for maximum NDVI 

response to changes in precipitation and temperature was determined on the basis of 

the corresponding time period of the maximum correlation coefficient. 

The relationships between NDVI and precipitation as well as NDVI and temperature on 

annual scale present in Table 5-2 and Table 5-3, respectively. In eastern China, the 

maximum correlation coefficients between the annual NDVI and temperature are 

generally higher than that of between the annual NDVI and precipitation during the same 

period. The annual NDVI has the largest correlation with the precipitation of previous 1 

month with a correlation coefficient of 0.872 in eastern China, while the annual NDVI is 

mostly affected by the concurrent temperature (the temperature of previous 0 month) 

with a correlation coefficient of 0.945 (Table 5-2, Table 5-3, and Table 5-4), therefore, 

suggesting that the maximum response of annual NDVI to precipitation presents a 1-

month time lag, and the maximum response of annual NDVI to temperature shows a 0-

month time lag in eastern China.  

The maximum correlation coefficients between NDVI and precipitation as well as NDVI 

and temperature in spring, summer, and autumn were computed for the study area, and 

all of the maximum correlation coefficients are statistically significant at the p<0.01 level. 

The maximum correlation coefficients of NDVI in response to precipitation are higher in 

autumn than in spring and summer, whereas the maximum correlation coefficients of 
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NDVI in response to temperature are larger in spring than in autumn, followed by in 

summer. It is worth noting that the lowest maximum correlation coefficients between 

NDVI and precipitation as well as NDVI and temperature are both reported in summer, 

indicating that the response of NDVI to changes in precipitation and temperature is 

weaker in summer than in spring and autumn.   

Table 5-2 and Table 5-3 indicate that in spring, summer, and autumn the maximum 

response of NDVI to temperature is more noticeable than the maximum response of 

NDVI to precipitation in eastern China. In spring and autumn, NDVI shows the maximum 

relationship with the precipitation of previous 1 month and the temperature of previous 0 

month, respectively (Table 5-4), indicating a 1-month lag time between NDVI and 

precipitation and no time lag between NDVI and temperature both in spring and autumn. 

However, a 2-month lag time between NDVI and precipitation and a 1-month lag time 

between NDVI and temperature are reported in summer over the study area.  

The maximum response of annual NDVI to temperature is more pronounced than the 

maximum response of annual NDVI to precipitation: namely, temperature is the 

dominant factor controlling the vegetation activity in eastern China. This conclusion is in 

line with former studies. For instance, Cui (2010) examined the relationships between 

NDVI and precipitation as well as NDVI and temperature for eastern China and found 

that the maximum response of NDVI to the variation of temperature was stronger than 

that of between NDVI and precipitation. Chen et al. (2001) analyzed the impact of the 

variations of precipitation and temperature on NDVI over China. The results of this study 

demonstrated that temperature was regarded as the main climate driving factor affecting 

vegetation growth in the eastern coastal areas of China. Peng et al. (2015) computed the 

correlation coefficients between NDVI and precipitation as well as NDVI and temperature 

in 210 meteorological stations in eastern China, and the results showed that the absolute 

value of the correlation coefficients between NDVI and temperature was higher than that 

of between NDVI and precipitation in 120 meteorological stations. Consequently, the 

temperature was considered as the primary driving factor of vegetation change in 

eastern China. Peng et al. (2011) investigated the changing trending of vegetation 

growth and its climate driving factors in China. The result pointed out that the vegetation 
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activity in the growing season (April to October) in the east of China was dominated by 

temperature. 

The maximum response of NDVI to temperature is considerably pronounced in spring 

and autumn in comparison with the maximum response of NDVI to temperature in 

summer in northern mid- to high-latitudes (Zeng et al., 2013, Mao et al., 2012). Figure 

5-2, Figure A-1, Table 5-1, and Table A-2 indicate that in spring and autumn changes of 

both NDVI and temperature followed each other fairly well in eastern China with a similar 

upward trend during the study period. The temperature in spring and autumn had 

increased with a magnitude of 0.0418℃ year-1 and 0.0738℃ year-1, respectively, from 

2001 to 2016. Meanwhile, the NDVI in spring and autumn had changed with an 

increasing rate of 0.0003 year-1 and 0.0012 year-1, individually. Many scholars have 

demonstrated that temperature changes at the beginning and end of the growing season 

have significant impacts on vegetation variability (Angert et al., 2005, Piao et al., 2008). 

The rise in spring and autumn temperatures has extended the growing season and 

further enhanced the vegetation productivity in the northern hemisphere in the context of 

global warming (Richardson et al., 2010, Piao et al., 2008, Zhang et al., 2013b). Thus 

the above views are further confirmed by upward trends of NDVI and temperature for 

spring and autumn and the corresponding correlation coefficients between NDVI and 

temperature in eastern China.  

Figure A-2 and Table A-2 show that the temperature had increased with a magnitude of 

0.0381℃ year-1 in summer from 2001 to 2016. Meanwhile, the NDVI had declined with a 

changing rate of 0.0013 year-1 across eastern China. These results are in line with most 

of the previous studies, which evidenced that recent warmer and drier summer climatic 

conditions led to a decline in plants growth over Eurasia and the northern hemisphere 

(Angert et al., 2005, Piao et al., 2011, Park and Sohn, 2010, Lotsch et al., 2005). 

Temperature in summer resulted in an increase in evapotranspiration rate and in a 

decline in soil moisture, thereby in reducing or even curbing the vegetation activity in 

eastern China. It has to be mentioned that, considering the correlation coefficients 

between NDVI and temperature on seasonal scale, Cui (2010) pointed out that the 

highest correlation coefficients are in autumn, while a different phenomenon was found 

in our study. We found that the correlation coefficient between NDVI and temperature is 
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higher in spring than in autumn, followed by in summer, which is not in line with the 

results generated by Cui (2010). 

The lag time for maximum NDVI response to precipitation is more apparent than the lag 

time for maximum NDVI response to temperature, and the lag time between NDVI and 

precipitation as well as NDVI and temperature is apparently longer in summer than in 

spring and autumn. The conclusions provided above are in line with the results of 

previous studies. Cui (2010) analyzed the lag time for maximum NDVI response to 

precipitation and temperature in eastern China and demonstrated that the NDVI was 

mostly related to the temperature with a time lag of 10 days, but the NDVI primarily 

reacted to the precipitation with a lag of about 30 days on annual scale. Cui (2010) 

further revealed the lag time for maximum NDVI response to climate factors on seasonal 

scale. The lag time for maximum NDVI response to precipitation and temperature was 

longer in summer than in spring and autumn. For instance, the maximum correlation 

coefficients between NDVI and temperature were acquired when the temperature 

preceding NDVI by 20 days in spring and autumn but 40 days in summer. Liang et al. 

(2015) firstly investigated the spatial and temporal patterns of NPP in China and then 

calculated the relationships between NPP and precipitation as well as NPP and 

temperature. The results of this study suggested that no obvious time lag effects were 

observed in NPP responses to temperature, while NPP presented an obvious lag time to 

changes in precipitation. Zeng et al. (2013) detected the time lag effects between NDVI 

and climate factors on global scale and turned out that vegetation growth was mostly 

influenced by 1-month preceding precipitation and concurrent temperature. In addition, in 

northern Patagonia, the annual and seasonal NDVI were significantly related to previous 

precipitation. Moreover, no significant relationship was detected between NDVI and 

concurrent precipitation (Fabricante et al., 2009). 

For a better understanding of the seasonal characteristics of NDVI change in regard to 

climate variation, the maximum correlation coefficients between NDVI and precipitation 

as well as NDVI and temperature for each administrative units were carried out in spring, 

summer, and autumn. Table 5-2 shows that all of the maximum correlation coefficients 

between NDVI and temperature are statistically significant at the p<0.01 level. All of the 

maximum correlation coefficients between NDVI and precipitation are statistically 
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significant at the p<0.01 level, except for the correlation coefficients in Jiangsu and 

Shanghai for spring and in Shanghai, Zhejiang, and Fujian for summer (Table 5-3).  

We noticed that the maximum correlation coefficients between NDVI and temperature 

are generally greater in spring than in autumn (in seven out of the ten administrative 

units in spring are greater than in autumn) (Table 5-3). However, the maximum 

correlation coefficients between NDVI and precipitation in nine out of the ten 

administrative units are greater in autumn than in spring except for in Fujian (Table 5-2). 

Noteworthy point is that the maximum correlation coefficients between NDVI and 

temperature are generally higher than that of between NDVI and precipitation for the 

same period, implying that temperature plays a more important role in controlling 

vegetation growth, and it appears to be a better climate driving factor for explanation the 

dynamic changes of vegetation in the ten administrative units. 

Comparison of the lag time between NDVI and precipitation as well as NDVI and 

temperature in the ten administrative units, the lag time for maximum NDVI response to 

precipitation is significantly pronounced than the lag time for maximum NDVI response to 

temperature, particularly in summer and autumn (Table 5-4). In spring and autumn, the 

NDVI is mostly correlated with the concurrent temperature, except for Liaoning, a place 

where the NDVI is influenced by the temperature of previous 1 month in spring. 

Furthermore, distinct and complex lag time is shown in summer for maximum NDVI 

response to temperature in the ten administrative units. NDVI in Beijing, Tianjin, Hebei, 

Jiangsu, Shanghai, Zhejiang, as well as in Fujian is closely associated with the 

temperature of previous 2 months, while NDVI in Liaoning and Shandong presents 0-

month and 1-month lag time to changes in temperature, respectively.  

In terms of the lag time for maximum NDVI response to precipitation and temperature, 

the lag time is more complex and apparent for maximum NDVI response to changes in 

precipitation. 2-month lag time is observed in Zhejiang for spring and in Shanghai, 

Zhejiang, and Fujian for summer. In addition, NDVI shows a 1-month lag time to 

precipitation in nine out of the ten administrative units in autumn except for Beijing. It is 

north notifying that NDVI in Guangdong is mostly affected by the preceding temperature 

and precipitation of 3 months.  
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Table 5-2. The maximum correlation coefficient between NDVI and precipitation for eastern China and the ten 

administrative units 

  

Table 5-3. The maximum correlation coefficient between NDVI and temperature for eastern China and the ten 
administrative units 
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Table 5-4. The lag time for maximum NDVI response to precipitation and temperature for eastern China and the ten 
administrative units 
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5.2.2 The spatial pattern of maximum NDVI in response to climate factors 

5.2.2.1 The spatial pattern of maximum NDVI in response to precipitation 

To explore the spatial characteristics of NDVI in response to climate variability both on 

annual and seasonal scales, the correlation coefficients between NDVI and the 

precipitation and temperature of previous 0 to 3 months for each meteorological station 

were calculated on the basis of the monthly NDVI time series and the data of the 

monthly precipitation and temperature of 184 selected meteorological stations. Then, the 

maximum correlation coefficients between NDVI and precipitation as well as NDVI and 

temperature for each meteorological station were selected and displayed to monitor the 

spatial pattern of maximum NDVI in response to climate variables. The significant level 

of each maximum correlation coefficient was tested by t-test. The spatial pattern of the 

maximum correlation coefficients reports the spatial characteristics of the driving effects 

of precipitation and temperature on NDVI change. Hence, the operating mechanisms of 

the driving forces of precipitation and temperature on vegetation growth are illustrated in 

Figure 5-17, Figure 5-18, Figure 5-20, and Figure 5-21, respectively.  

Figure 5-17(a) shows that the maximum correlation coefficients of the annual NDVI to 

precipitation display a distinct spatial pattern in eastern China. Geographically, the 

response of the annual NDVI to precipitation is more pronounced in the north of eastern 

China than in the south. The annual NDVI is positively associated with the precipitation 

at all of the meteorological stations, and 97% of the maximum correlation coefficients are 

statistically significant at the p<0.01 level, as shown in Figure 5-16(b). Figure 5-17(a) and 

Figure 5-16(a) show that the maximum correlation coefficients between the annual NDVI 

and precipitation ranging from 0.75 to 1 account for 4% of the total meteorological 

stations, which are mainly distributed in the north of Hebei. Areas expansion from the 

north of Jiangsu to Liaoning, except for the north of Hebei, are dominated by the 

maximum correlation coefficients ranging from 0.5 to 0.75, which account for 44% of the 

total meteorological stations. However, the maximum correlation coefficients distributed 

from the middle of Jiangsu to Guangdong basically range from 0.25 to 0.5, which occupy 

45% of the total meteorological stations. 
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Figure 5-17(b) and Figure 5-18(a) and (b) display the spatial pattern of the seasonal 

maximum correlation coefficients between NDVI and precipitation. The maximum 

correlation coefficients between NDVI and precipitation are generally larger in spring and 

autumn than in summer. The spatial distribution of the maximum correlation coefficients 

in spring and autumn is homologous. As shown in Figure 5-16(b), accounting for about 

50% and 58% of the maximum correlation coefficients in spring and autumn are 

statistically significant at the p<0.01 level, respectively. However, in summer, only 21% 

of the maximum correlation coefficients are statistically significant at the p<0.01 level.  

In spring and autumn, the maximum correlation coefficients of NDVI in response to 

precipitation in most of the meteorological stations located in the north of the study area, 

covering Liaoning, Hebei, Beijing, Tianjin, as well as in Shandong, are larger than 0.5. 

The maximum correlation coefficients of NDVI in response to precipitation located in the 

south of the study area, including Jiangsu, Shanghai, Zhejiang, Fujian, and Guangdong, 

are generally from 0 to 0.5. In spring, the NDVI is slightly and negatively correlated with 

the precipitation in five meteorological stations, which are located in the eastern coastal 

areas of eastern China. In summer, the maximum correlation coefficients between NDVI 

and precipitation from 0 to 0.25 and from 0.25 to 0.5 account for 46% and 40% of the 

total meteorological stations (Figure 5-16(a)), respectively, which coexist across Liaoning, 

Jiangsu, Shanghai, Fujian, Zhejiang, as well as in Guangdong. Moreover, the negative 

maximum correlation coefficients of NDVI in response to precipitation account for 6% of 

the total meteorological stations in summer (Figure 5-16(a)), which are mainly distributed 

in the southwest of Fujian and the junction areas of Jiangsu and Zhejiang. 

Spatially, the maximum correlation coefficients of NDVI in response to precipitation are 

generally higher in the north and lower in the south of the study area, suggesting that 

precipitation plays a higher-level control on vegetation growth in the north of the study 

area. This result is in agreement with the views of previous studies that NDVI in the north 

of eastern China is closely and positively correlated with the precipitation (Duan et al., 

2011, Cui, 2010, Peng et al., 2015). Areas located in the north of eastern China are 

controlled by sub-humid and semi-arid climate. Thus, precipitation plays a vital role in 

vegetation growth (Yin et al., 2018). Figure A-3 and Table A-1 show that precipitation 

had considerably increased in Liaoning, Beijing, Tianjin, as well as in Hebei from 2001 to 
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2016. Part of the increased precipitation could directly retain in the soil and then improve 

the soil moisture. Consequently, the soil moisture could provide enough water to 

promote the photosynthetic rates, thereby improving vegetation productivity (Duan et al., 

2011, Yang et al., 2014). In contrast, areas located in the south of eastern China (from 

Guangdong to the south of Jiangsu) are controlled by a humid climate. Thus, the 

relationship between NDVI and precipitation is less pronounced in the south of the study 

area due to sufficient precipitation throughout a year (Table A-1 and Figure A-5).  

In addition, precipitation is relatively rich in the south of eastern China and poor in the 

north of eastern China. Due to the sufficient precipitation in the south of eastern China, 

the water supply could satisfy the demand for vegetation activities. Therefore, the 

precipitation is not the decisive factor determining the vegetation growth in this region 

(Cui, 2010, Xu et al., 2003). All explanations provided above demonstrate why the 

maximum correlation coefficients between NDVI and precipitation are relatively lower in 

the south than in the north of eastern China for all three seasons. 

Temporally, the maximum correlation coefficients of NDVI in response to precipitation 

are generally higher in spring and autumn than in summer, suggesting that the impact of 

precipitation on vegetation growth is less pronounced in summer than in spring and 

autumn. The uneven precipitation in spring, summer, and autumn is the underlying 

cause of the differences in the seasonal maximum correlation coefficient. Precipitation is 

more plentiful in summer than in spring and autumn, particularly in the south of the study 

area. In summer, the relatively richer precipitation is basically sufficient for vegetation 

growth across the study area. The excessive precipitation could not continually improve 

the photosynthesis rate of plants, but it instead increased the surface latent heat flux of 

evaporation. The increasing evaporation resulted in an increase in cloud cover, thereby 

curbing the photosynthesis and respiration in plants (Liang et al., 2015, Piao et al., 

2006a). These explanations answer the questions why NDVI in response to precipitation 

in more pronounced in spring and autumn than in summer and why in some 

meteorological stations in the south of the study area the maximum correlation 

coefficients between NDVI and precipitation are negative. These conclusions are also 

confirmed in previous studies (Zhao et al., 2001, Cui, 2010).  
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Additionally, the maximum correlation coefficients between NDVI and precipitation in all 

seasons are comparatively lower in Guangdong, Fujian, Zhejiang, Shanghai, and 

Jiangsu. On the one hand, densely interconnected water channels are distributed in 

these administrative units. On the other hand, farmland in these regions is dominated by 

irrigated crops. The water demand for vegetation growth can, therefore, supply by a 

large area of artificial irrigation and surface water resources at a certain level, which 

reduces the sensitivity of the vegetation growth to changes in precipitation. 

 

Figure 5-16. The statistical results of the maximum correlation coefficient between 
NDVI and precipitation and the significance level of the maximum correlation 

coefficient on annual and seasonal scales 
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Figure 5-17. Spatial distribution of the maximum correlation coefficient between annual NDVI and precipitation (a) as 
well as spring NDVI and precipitation (b) 
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Figure 5-18. Spatial distribution of the maximum correlation coefficient between summer NDVI and precipitation (a) 
as well as autumn NDVI and precipitation (b) 
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5.2.2.2 The spatial pattern of maximum NDVI in response to temperature 

Similar to the spatial distribution of the maximum correlation coefficients between the 

annual NDVI and precipitation, the maximum correlation coefficients of the annual NDVI 

in response to temperature distributed from the north of Jiangsu toward Liaoning are 

more pronounced than that of distributed from the middle of Jiangsu toward Guangdong. 

The annual NDVI and temperature present a positive relationship at all of the 

meteorological stations, and 100% of the maximum correlation coefficients between the 

annual NDVI and temperature are statistically significant at the level of p<0.01 (Figure 

5-19(b)). In terms of the dominant factor in each meteorological station, 183 out of 184 

meteorological stations are primarily controlled by temperature on annual scale. 

Comparison of the maximum correlation coefficients between the annual NDVI and 

precipitation as well as the annual NDVI and temperature (Figure 5-17(a) and Figure 

5-20(a)), temperature shows a stronger regulation on the annual NDVI variation than the 

effects of precipitation on the annual NDVI across the study area. The maximum 

correlation coefficients between the annual NDVI and temperature ranging from 0.75 to 1 

account for around 45% of the total meteorological stations, which exceeds the 

proportion of the maximum correlation coefficients between the annual NDVI and 

precipitation ranging from 0.75 to 1 by 41%. These meteorological stations are mainly 

distributed from the north of Jiangsu to Liaoning and in the east of Zhejiang. The 

maximum correlation coefficients between the annual NDVI and temperature ranging 

from 0.5 to 0.75 account for around 42% of the meteorological stations, which are mostly 

distributed from the middle of Jiangsu to Guangdong. Only 13% of the maximum 

correlation coefficients are lower than 0.5, which are generally located in the eastern 

coastal areas of Fujian and Guangdong (Figure 5-19(a) and Figure 5-20(a)). 

In spring and autumn, the maximum correlation coefficients of NDVI in response to 

temperature are basically positive and display a similar spatial pattern (Figure 5-20(b) 

and Figure 5-21(b)). As detailed in Figure 5-19(b), 74% and 85% of the maximum 

correlation coefficients between NDVI and temperature in spring and autumn are 

statistically significant at the p<0.01 level, respectively. The overall relationship between 

NDVI and temperature in summer is relatively weaker or even negative across eastern 

China. The meteorological stations located in Jiangsu and the junction areas of 
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Shandong and Hebei, the maximum correlation coefficients between NDVI and 

temperature in these meteorological stations are higher than the surrounding 

meteorological stations (5-18(a)). Moreover, only 35% of the maximum correlation 

coefficients pass the p<0.01 significant level in summer. It is worth mentioning that the 

vegetation cover variation is decisively controlled by temperature at 160 meteorological 

stations in spring, 124 meteorological stations in summer, and 170 meteorological 

stations in autumn. 

Similarly, in spring and autumn, the maximum correlation coefficients between NDVI and 

temperature distributed in Shandong, Hebei, Tianjin, Beijing, as well as Liaoning are 

higher than 0.75 (Figure 5-20(b) and Figure 5-21(b)). However, the maximum correlation 

coefficients between NDVI and temperature distributed in the north of Jiangsu are 

generally greater in autumn than in spring. In summer, the maximum correlation 

coefficients of NDVI in response to temperature ranging from 0.75 to 1 account for 

around 8% of the total meteorological stations mainly distributed in Jiangsu and the 

junction areas of Shandong, Hebei, and Tianjin. The maximum correlation coefficients 

between NDVI and temperature are relatively lower in Zhejiang, Fujian, and Guangdong. 

Figure 5-21(a) shows that in some meteorological stations of the three administrative 

units, NDVI is negatively related to the temperature, which accounts for 6% of the total 

meteorological stations.  

Geographically, the maximum correlation coefficients between NDVI and temperature 

gradually decrease with the decrease in latitude in eastern China both on annual and 

seasonal scales. This phenomenon has been evidenced by previous studies (Peng et al., 

2015, Lin et al., 2007, Li and Shi, 2000). Li and Shi (2000) pointed out that the 

correlation coefficients between NDVI and temperature increased from the southeastern 

to the northwestern of China. Lin et al. (2007) further concluded that the seasonal 

variability of NDVI in Hunan was mostly affected by temperature, and the impact of 

temperature on NDVI enlarged from the south toward the north of Hunan. Temperature 

plays an essential role in affecting the rate of vegetation growth and development but 

differs in plant species (Hatfield and Prueger, 2015).  

We further displayed the spatial pattern of the correlation coefficients between NDVI and 

precipitation as well as NDVI and temperature both on annual and seasonal scales. 
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However, distinctive spatial differences of the correlation coefficients between NDVI and 

precipitation as well as NDVI and temperature are observed between our results and the 

results derived from Cui (2010) and Li et al. (2019). For instance, Li et al. (2019) 

evidenced that NDVI is negatively associated with temperature in the junction area of 

Shandong and Hebei, but an opposite correlation was observed in the same region.  

Furthermore, in our study, we found that the correlation coefficients between NDVI and 

precipitation in 40 out of 52 meteorological stations and the correlation coefficients 

between NDVI and temperature in 43 out of 52 meteorological stations are positive in 

Zhejiang, Fujian, and Guangdong in summer, while this result is not in line with the result 

generated by Cui (2010). Cui (2010) displayed that all of the correlation coefficients 

between NDVI and precipitation are negative in summer, except for three meteorological 

stations, and all of the correlation coefficients between NDVI and temperature are 

positive in summer in Zhejiang, Fujian, and Guangdong. On the one hand, the 

disagreement can be attributed to the data source, Cui (2010) adopted SPOT-4 

VEGETATION NDVI with a 1 km spatial resolution to analyze the relationships between 

NDVI and climate variables, while we employed MODIS NDVI with a 250 m spatial 

resolution to be the data source in our study, and MODIS NDVI is considered to be a 

more precise and robust data source to reflect the long-term vegetation cover.  On the 

other hand, the disagreement can be ascribed to the difference of the study period. Cui 

(2010) investigate the relationships between NDVI and climate variables from 1998 to 

2008, but from 2001 to 2016 in our study. 

Figure 3-5 shows that lands in Zhejiang, Fujian, and Guangdong are covered by 

evergreen broadleaf forest, while lands in Jiangsu, Shandong, Tianjin, the south of Hebei, 

and the west of Liaoning are dominated by farmlands and grasslands. As demonstrated 

by de Jong et al. (2013) and Shen et al. (2013) that the farmlands and grasslands 

showed a higher sensitivity to changes in temperature. Thus, the response of NDVI to 

temperature in the north of the study area is pronounced than that in the south of the 

study area, which is partly ascribed to the spatial distribution of the land use types. 

Previous studies have concentrated on analyzing the response of vegetation cover 

change to a single force or on a single scale (Kileshye Onema and Taigbenu, 2009, 

Kong et al., 2017, Krishnaswamy et al., 2014, Bennie et al., 2006, Luck et al., 2009). The 
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relationships between NDVI and precipitation as well as NDVI and temperature and the 

time lag effects of vegetation variability to climate variables are less considered, which 

tend to increase the uncertainty of the research results. For instance, Peng et al., (2015) 

computed the correlation coefficients between NDVI and precipitation as well as NDVI 

and temperature for each meteorological station in eastern China on annual scale, but 

relationships between NDVI and precipitation as well as NDVI and temperature on 

seasonal scale and the lag time for maximum NDVI response to climate variation is not 

taken into consideration. In our study, the relationships between NDVI and precipitation 

as well as NDVI and temperature are investigated for each administrative unit and 

meteorological station both on annual and seasonal scales, and the lag time for 

maximum NDVI response to climate variation is investigated. 

Regarding the maximum correlation coefficients between NDVI and temperature on 

seasonal scale, the response of NDVI to temperature is generally weaker in summer 

than in spring and autumn. Particularly, the maximum correlation coefficients between 

NDVI and temperature of some meteorological stations in the south of the study area are 

lower than 0, indicating a negative relationship between NDVI and temperature in these 

regions in summer. Figure A-6(c) shows that temperature in summer is higher in the 

south and lower in the north of the study area. Moreover, the overall precipitation and 

temperature are remarkably greater in summer than in spring and autumn across 

eastern China (Figure A-5 and Figure A-6). An optimum temperature can prolong the 

growing season and favor vegetation growth (Peng et al., 2011). However, along with 

the vegetation growth, the NDVI reaches its full potential in summer and the increasing 

temperature cannot continually promote the NDVI value (Kern et al., 2016). In addition, 

the high temperature can increase evapotranspiration and decrease soil moisture, 

thereby aggravating water stress and inhabiting the vegetation growth (Duan et al., 

2011). This would be a reason why NDVI is weakly or even negatively correlated with 

the temperature in summer in some meteorological stations. 
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Figure 5-19. The statistical results of the maximum correlation coefficient between 
NDVI and temperature and the significance level of the maximum correlation 

coefficient on annual and seasonal scales
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Figure 5-20. Spatial distribution of the maximum correlation coefficient between annual NDVI and temperature (a) as 
well as spring NDVI and temperature (b) 
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Figure 5-21. Spatial distribution of the maximum correlation coefficient between summer NDVI and temperature (a) 
as well as autumn NDVI and temperature (b) 
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5.2.3 The spatial pattern of lag time for maximum NDVI response to climate factors 

5.2.3.1 The spatial patterns of lag time for maximum NDVI response to precipitation 

Influenced by the spatial heterogeneity of Earth's ecosystems, the lag time for maximum 

NDVI response to precipitation and temperature is anticipated to show diverse spatial 

patterns (Wu et al., 2015, Braswell et al., 1997). In this chapter, the lag time between 

NDVI and precipitation as well as NDVI and temperature is investigated against the 

background of the maximum correlation coefficients for each meteorological station in 

eastern China both on annual and seasonal scales. The lag time for maximum NDVI 

response to precipitation and temperature is identified on the basis of the corresponding 

time period of the maximum correlation coefficient. 

In eastern China, the lag time for maximum annual NDVI response to precipitation 

reports clear spatial differences (Figure 5-23(a)). Annual NDVI distributed from the 

middle of Jiangsu to Liaoning and in the eastern coastal areas of Zhejiang and Fujian 

shows no lag time on changes in precipitation, which accounts for 59% of the total 

meteorological stations (Figure 5-22), implying that the annual NDVI in these regions is 

mostly associated with the concurrent precipitation. However, the lag time between the 

annual NDVI and precipitation in the north of Zhejiang and northeast of Guangdong is 

dominated by a 1-month lag time. The annual NDVI presents 2- to 3-month lag time to 

changes in precipitation in many parts of Fujian and Guangdong. The lag time for 

maximum annual NDVI response to precipitation shows great geographic differences 

and less spatial patterns in Shanghai, Zhejiang, Fujian, and Guangdong, indicating that 

the precipitation of previous 2 to 3 months has considerable impacts on vegetation 

growth in these regions. It is worth noticing that the proportion of the 1-month, 2-month, 

and 3-month lag time for maximum annual NDVI response to precipitation account for 

21%, 13%, and 7% of the total meteorological stations, respectively (Figure 5-22). 

The lag time for maximum NDVI response to precipitation display complex spatial 

patterns on seasonal scale. NDVI in 39% in spring, 27% in summer, and 28% in autumn 

of the total meteorological stations show no lag time to changes in precipitation. The 

proportion of the 2-month and 3-month lag time for maximum NDVI response to 
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precipitation account for 21% and 33% of the total meteorological stations in summer, 

individually (Figure 5-22), which is considerably higher than in spring and autumn.  

Figure 5-23(b) and Figure 5-24(b) shows that, in spring and autumn, the lag time for 

maximum NDVI response to precipitation in Liaoning, Beijing, Tianjin, Hebei, as well as 

in Shandong is generally dominated by 0- and 1-month lag time. Furthermore, in spring 

the vegetation growth is mostly associated with the precipitation of previous 2 to 3 

months in Jiangsu, Shanghai, and Zhejiang. However, 3-month lag time for maximum 

NDVI response to precipitation is detected in a relative number of meteorological 

stations of Fujian and Guangdong in autumn, implying that NDVI is maximally affected 

by the precipitation of previous 3 months in these regions. Figure 5-24(a) shows that in 

summer the lag time of 0 to 3 months for maximum NDVI response to precipitation 

coexist across the study area, and the NDVI in the south of the study area tends to 

report a longer time lag to changes in precipitation, especially in Zhejiang, Fujian, and 

Guangdong.   

The lag time for maximum NDVI response to precipitation has noticed by many scholars. 

The time lag effects of different vegetation types in response to the same climate factor 

and the same vegetation type in response to different climate factors are carried out 

(Braswell et al., 1997, Cui, 2010, Liang et al., 2015, Wu et al., 2015, Piao et al., 2006b, 

Potter and Brooks, 1998). In this study, we observe that the annual NDVI in the north of 

eastern China, including Liaoning, Beijing, Tianjin, Hebei, Shandong, as well as in most 

areas of Jiangsu, shows the greatest reaction with the concurrent precipitation, whereas 

the annual NDVI in Zhejiang, Fujian, and Guangdong shows 0- to 3-month lag time to 

changes in precipitation. These results are highly in line with the conclusions made by 

Liang et al. (2015) and Cui (2010) that the time lag period of the NDVI in response to 

precipitation in humid and semi-humid climate zones ranged from 1 to 3 months.  

The NDVI in the north of eastern China was greatly associated with the concurrent 

precipitation, and this spatial characteristic was potentially determined by the spatial 

distribution of the land use types. Wu et al. (2015) demonstrated that evergreen 

broadleaf forest was expected to show a longer time lag period to changes in 

precipitation in comparison with the time lag effects of deciduous needle leaf forest, 

mixed forest, shrubs land, grassland, and farmland to changes in precipitation. 
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Coincidentally, lands in the south of eastern China such as Zhejiang, Fujian, and 

Guangdong are dominated by evergreen broadleaf forest, and lands in the north of 

eastern China are covered by grassland, deciduous needle leaf forest, and farmland.  

NDVI shows finite lag time to changes in precipitation on seasonal scale. The NDVI 

tends to show a longer lag time to precipitation in summer than in spring and autumn 

across the study area, indicating that NDVI is not primarily correlated with the 

precipitation in the concurrent month, but the precipitation of previous 1 to 3 months in 

summer. Precipitation is more abundant in summer over the study area. The 

precipitation cannot be directly absorbed to promote the plant growth, a large amount of 

the precipitation flows off the surface of the land and a considerable part of that will be 

used to offset the soil moisture. The only part of the precipitation, which is retained in the 

soil, can be considered as “effective precipitation” to vegetation growth. It takes time 

from precipitation to shift into vegetation roots and then become available water 

resources for plant growth (Yang et al., 2014, Zeppel et al., 2014). The above 

explanation illustrates how precipitation affects the delay of the vegetation growth and 

why a longer lag time takes place between vegetation growth and precipitation in 

summer.  

 

Figure 5-22. The statistical results of the lag time for maximum NDVI response to 
precipitation on annual and seasonal scales
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Figure 5-23. Spatial distribution of the lag time for maximum annual NDVI (a) and spring NDVI (b) response to 
precipitation 
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Figure 5-24. Spatial distribution of the lag time for maximum summer NDVI (a) and autumn NDVI (b) response to 
precipitation 
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5.2.3.2 The spatial patterns of lag time for maximum NDVI response to temperature 

Spatially, comparing with the lag time between the annual NDVI and precipitation as well 

as the annual NDVI and temperature, the spatial differences for maximum annual NDVI 

response to temperature are less pronounced than that for maximum annual NDVI 

response to precipitation across eastern China. Figure 5-26(a) shows that annual NDVI 

is maximally related to the concurrent temperature over eastern China, except for the 

meteorological stations located in the middle of Liaoning, south of Fujian, as well as in 

the middle of Guangdong. The maximum correlation coefficients located in the above 

regions obtain when the temperature preceding NDVI by 1 month, suggesting a 1-month 

lag time for maximum annual NDVI response to changes in temperature in these regions. 

The proportion of the lag time between annual NDVI and temperature is statistically 

analyzed. It is detailed in Figure 5-25 that in eastern China the annual NDVI in 84% of 

the total meteorological stations shows no lag time to changes in temperature. The 

annual NDVI maximally responses to the temperature of previous 1 month accounting 

for 14% of the total meteorological stations. Only 2% of the total meteorological stations 

has a 2-month lag for maximum annual NDVI response to temperature. 

The lag time for maximum NDVI response to temperature in spring, summer, and 

autumn is geographically heterogeneity, as displayed in Figure 5-26(b) and Figure 

5-27(a) and (b). In spring and autumn, the maximum NDVI response to the temperature 

within the same month accounts for 58% and 66% of the total meteorological stations, 

respectively. These meteorological stations are basically evenly distributed across the 

study area. Figure 5-25 shows that 3-month lag time between NDVI and temperature 

accounts for 16% of the total meteorological stations in autumn, which is four times 

higher than in spring. These meteorological stations are mostly distributed in Fujian, the 

eastern coastal areas of Jiangsu, as well as in the south of Zhejiang, suggesting that the 

NDVI is markedly delayed to changes in temperature in autumn in these regions.  

The lag time for maximum NDVI response to temperature is more pronounced in 

summer than in spring and autumn. In summer, the NDVI in 28% of the total 

meteorological stations maximally responses to the concurrent temperature, which are 

mainly distributed in the eastern coastal areas of the study area. Moreover, the 

proportion of 2- and 3-month lag time for maximum NDVI response to temperature 
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accounts for 33% and 22% of the total meteorological stations, individually. The 

meteorological stations with a 2-month lag time stretch from Fujian to Liaoning and the 

meteorological stations with a 3-month lag time are distributed from Guangdong to the 

north of Fujian and the middle of Shandong (Figure 5-27(a)).  

Regarding the lag time for maximum annual NDVI response to temperature over the 

entire study area, the lag time of the annual NDVI to temperature can be negligible, 

which is in agreement with former studies. For example, Liang et al. (2015) investigated 

the time lag effects of NPP in response to temperature in China. The results of this study 

indicated that NPP was mostly influenced by concurrent temperature and the time lag 

period of NPP in response to changes in temperature can be ignored. Particularly in arid 

and semi-arid areas, temperature may not be a restricting factor for vegetation growth. 

Comparing with the response of vegetation growth to changes in precipitation and 

temperature, the response of vegetation growth to temperature is more rapid than that to 

precipitation (Cui, 2010, Liang et al., 2015), which is also confirmed in our study. Wang 

et al. (2003) detected the maximum response of NDVI to temperature and precipitation 

in Kansas, USA and pointed out that the temperature of previous 0 to 1 month had great 

impacts on vegetation growth and NDVI generally maximally responded to the 

precipitation of previous 1 to 2 months.   

With regard to the lag time for maximum NDVI response to temperature on seasonal 

scale, the lag time in most of the meteorological stations is longer in summer than in 

spring and autumn. This result indicates that the temperature of the previous month has 

considerable effects on plants grown in summer. The possible reason is the high 

temperature in summer. The high temperature in summer is no longer the ideal 

temperature conditions for vegetation growth (Wu et al., 2015). On the one hand, the 

high temperature cannot constantly promote the vegetation growth due to the stage 

of maturity of plants in summer. On the other hand, soil moisture, trace elements, soil 

organic matters, and nutrient availability in the root zone might potentially affect the 

vegetation growth because of the unique water and nutrient requirements at 

different plant growth stages (Olson et al., 2010, Qian et al., 2016).  

The explanations provided above answer why 2- and 3-month lag time show in summer 

in most of the meteorological stations in eastern China. Moreover, the lag time is closely 
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associated with the vegetation types, as demonstrated by Wu et al. (2015) that more 

than 60% of the deciduous broadleaf forest presents a 2-month lag time to changes in 

temperature throughout the world, which is longer than other vegetation types. 

Coincidentally, as mentioned previously, lands distributed in the southeast of China are 

mostly covered by deciduous broadleaf forest, which answers the question why the lag 

time for maximum NDVI response to changes in temperature in Zhejiang, Fujian, and 

Guangdong is more pronounced.  

Furthermore, in our study, we detected that NDVI in most of the meteorological stations 

shows 2- to 3-month lag time to changes in precipitation and temperature in summer in 

Zhejiang, Fujian, and Guangzhou, which are not in line with the results generated by Cui 

(2010). Cui (2010) demonstrated that NDVI in most of the meteorological station shows 

no lag time to changes in precipitation and temperature within the same area. The 

differences can be ascribed to the data source and study period.  

 

Figure 5-25. The statistical results of the lag time for maximum NDVI response to 
temperature on annual and seasonal scales 
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Figure 5-26. Spatial distribution of the lag time for maximum annual NDVI (a) and spring NDVI (b) response to 
temperature 
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Figure 5-27. Spatial distribution of the lag time for maximum summer NDVI (a) and autumn NDVI (b) response to 
temperature  
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5.3 The relationship between annual NDVI and topographic factors in eastern 

China 

5.3.1 The interaction between annual NDVI and elevation 

For a better understanding of the relationship between vegetation cover change and 

terrain attributes is of critical importance for environment protection, biodiversity 

conservation, and vegetation restoration. Interrelationships between the vegetation cover 

change and the three topographic factors were investigated for eastern China from 2001 

to 2016. In this study, three vegetation metrics such as the annual NDVI value, annual 

NDVI changing slope, and annual NDVI CV are used to quantitatively indicate the 

dynamic change of vegetation cover. To analyze the relationships between vegetation 

changing trend and the three topographic factors, the NDVI changing slopes were 

reclassified into three classes: decrease (significant and slight decreases), unchanged, 

and increase (significant and slight increases). The spatial coupling characteristics of 

elevation to the annual NDVI value, annual NDVI changing slope, and annual NDVI CV 

were carried out on the basis of Spatial Overlay Analysis using the platform of ArcGIS 

10.3.  

Elevation is a dominant element controlling the vertical distribution of vegetation cover. 

Figure 5-28(a) shows that the proportion of the NDVI values ranging from 0 to 0.2 

occupies 34% when the elevation ranges from -284 to 0 m, which can be explained by 

the distribution of water body within this elevation range. The proportion of the NDVI 

values ranging from 0.2 to 0.4 decreases with the elevation increase from 0 to 500 m in 

eastern China. However, an opposite changing trend is observed in the proportion of the 

NDVI values ranging from 0.8 to 1 at the same elevation range, which increases with the 

elevation increase. Furthermore, the proportion of the NDVI values ranging from 0.6 to 

0.8 increased by 32% and the proportion of NDVI values ranging from 0.4 to 0.6 

decreased by 26% from the elevation ranges of 0 to 100 m to 200 to 300 m，indicating 

that the vegetation cover increases with the elevation increase from 0 to 300 m. It is 

worth mentioning that the proportion of the NDVI values ranging from 0.4 to 0.6 and from 

0.6 to 0.8 occupy approximately 30% and 50% from the elevation ranges of 200 to 300 

m to 400 to 500 m. Above conclusions suggest that the vegetation cover dramatically 
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increased from the elevation ranges of 0 to 200 m and kept stable from the elevation 

ranges of 200 to 500 m. All conclusions provided above further prove that elevation is a 

dominant factor controlling the vertical distribution of vegetation growth in eastern China, 

but the vegetation cover tends to be stable when the elevation is above 200 m.  

Figure 5-28(b) shows that the proportion of the NDVI with a decreasing trend within the 

elevation ranges from 100 to 2849 m is roughly the same. The proportion of the NDVI 

with an increasing trend is relatively lower at the elevation range of 0 to 100 m than at 

other elevation ranges, suggesting that vegetation degradation is more serious at the 

elevation range of 0 to 100 m than at higher elevation ranges. The dynamic change of 

vegetation cover is dominated by an increasing trend when the elevation is higher than 

100 m, and the NDVI with an increasing trend reaches the highest proportion at 

the elevation range of 500 to 2849 m. Namely, NDVI had improved more noticeably at 

higher elevation ranges, but remained fairly stable or even declined at lower elevation 

ranges from 2001 to 2016.  

Figure 5-28(c) shows that vegetation cover is fairly stable within the elevation ranges 

from 100 to 500 m across the study area. It is obvious that the stability of the vegetation 

cover enhances with the elevation increase apparently and reaches its peak at the 

elevation range of 400 to 500m. All conclusions provided above is fairly in line with the 

results generated by Mokarram and Sathyamoorthy (2015), Jin (2015), and Li et al. 

(2015b). They demonstrated that vegetation activity and NDVI value increase with 

elevation increase and NDVI value reach its peak at the best elevation range for 

vegetation growth. Figure 5-28(a) and (c) show that the annual NDVI value and the 

stability of the annual NDVI are low at the elevation range of -282 to 0 m. Areas with the 

elevation of less than 0 m mostly consist of the eastern coastal areas, the estuary areas, 

and water body (Figure 3-4). These areas have no vegetation cover or rarely vegetation 

cover, and it is relatively vulnerable and sensitive to external disturbances. Above 

explanation explains the question of why the vegetation cover and vegetation stability 

are lower at the elevation range of -282 to 0 m than at higher elevation ranges.  

The synergism between topographic factors and vegetation growth is correlated with the 

interaction between elevation ranges and land use types (Gouveia et al., 2014). In our 

study, areas at the elevations from 0 to 100 m account for 45% of the study area, where 
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the land is dominated by built-up land and farmland. Due to the unique attributes of 

these two land use types, frequent human activities and disturbances play a negative 

role in vegetation growth and succession. The species richness and diversity and the 

vegetation growth statues are closely associated with elevation range and human 

activities because of the intimate connection between ecological ecosystems and human 

activities and elevational gradients (Nogues-Bravo et al., 2008, Moura et al., 2016).  

However, the frequency of human activity decreases and the species richness enhances 

with the elevation increase to a certain level (Li et al., 2015b). It has been demonstrated 

previously that the elevation and disturbance intensity (due to tourism and agriculture) 

play essential roles in affecting the spatial distribution of communities and diversity of 

plant species in the Baihua Mountain Reserve (Zhang et al., 2013a). Plant species 

richness presents a ‘‘humped’’ pattern with elevation and disturbance increases 

(Austrheim, 2002, Zhang and Ru, 2010, Rumpf et al., 2018). The maximum vegetation 

species diversity shows in the middle elevation, a place with lower disturbance intensity. 

Li et al. (2015a) also found that the vegetation cover has been most improved in the 

Yarlung Zangbo River Basin when the elevation is lower than 500 m. It is worth notifying 

that heat, moisture, soil fertility, and other factors may not favor the vegetation growth or 

even seem to be constraint factors limiting the vegetation activity at high elevational 

ranges (Li et al., 2015b). Above conclusions answer the questions why a more stable 

vegetation cover and a higher NDVI value presented at the elevation ranges from 100 to 

500 m, and why the improving trends of vegetation cover reversed when the elevation is 

above 500 m. 
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Figure 5-28. The statistical results of NDVI value, NDVI changing slope, and NDVI 
CV for different interval of elevation 
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5.3.2 The interaction between annual NDVI and aspect 

This study detected the changes in vegetation cover on the NFS and SFS in eastern 

China using MODIS NDVI dataset from 2001 to 2016. A comparative analysis of the 

three vegetation metrics on the NFS and SFS was carried out. The corresponding maps 

of the spatial interaction between aspects and the three vegetation metrics are obtained 

based on the overlay analysis. A zonal statistic was used to calculate the proportion of 

the annual NDVI value, annual NDVI changing slope, as well as the annual NDVI CV in 

the context of the two aspects. The statistical results are shown in Figure 5-29(a), (b) 

and (c), respectively.  

Directions of aspect contribute to the differences in solar radiation received by the 

vegetation in the middle and high latitudes (Toro Guerrero et al., 2016). The annual 

NDVI value shows a homogenous pattern on the NFS and SFS. The proportion of the 

NDVI value in each category on the NFS and SFS is quite similar. The proportion of the 

NDVI values ranging from 0.2 to 0.4, 0.4 to 0.6, and 0.6 to 0.8 accounts for 

approximately 21%, 44%, and 30%, respectively, both on the NFS and SFS.  

Areas with a vegetation greening trend on the NFS and SFS account for half of the total 

area on its corresponding aspect. Areas with a vegetation browning trend account for 

33% both on the NFS and SFS. With the above results, it can be inferred that the areas 

with a vegetation greening trend are larger than the areas with a vegetation browning 

trend both on the NFS and SFS. However, no statistical differences and magnitude 

differences of vegetation cover change are detected on the NFS and SFS.  

No statistical differences in vegetation stability are observed on the NFS and SFS. The 

vegetation cover in the Pearl River Delta, Yangtze River Delta, Bohai Economic RIM, as 

well as in the northwest of Hebei is more sensitive and vulnerable. The vegetation cover 

in the east of Liaoning and most areas of Zhejiang, Fujian, and Guangdong shows the 

greatest vegetation stability. The proportion of the NDVI CV values ranging from 0 to 

0.05 accounts for 46% both on the NFS and SFS, whereas the proportion of the NDVI 

CV values ranging from 0.05 to 0.1 accounts for 43% on these two aspects. Above 

results suggest that the majority of the vegetation cover remained stable or fluctuated at 
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a self-regulating range, and only a small part of the study area had undergone a strong 

vegetation oscillation from 2001 to 2016. 

Against the background of the above conclusions, aspect cannot be regarded as a 

primary topographic factor influencing the vegetation variation over eastern China. This 

conclusion is against our initial assumptions. In the northern hemisphere, vegetation on 

the NFS is projected to receive several times more solar radiation than on the SFS, 

thereby resulting in differences in vegetation vitality on the NFS and SFS (Auslander et 

al., 2003). Many scholars have demonstrated that the vegetation growth and succession 

are apparently better on the NFS than on the SFS during the drying season due to 

warmer and drier conditions on the SFS in the northern hemisphere (Toro Guerrero et al., 

2016, Deng et al., 2009, Dietz et al., 2007). Furthermore, Auslander et al. (2003) carried 

out that the plant traits were closely associated with the slope directions. The leaf 

size/plant height was greatly larger/taller on the NFS than on the SFS in Israel.  

However, the result generated in our study is against most of the former studies. In our 

study, the dynamic changes of vegetation cover show no differences on the NFS and 

SFS, which is highly in line with Li et al. (2015b). Li et al. (2015b) addressed a 

conclusion of vegetation growth on the NFS and SFS, and the conclusion pointed out 

that no significant differences of vegetation cover were detected on the NFS and SFS in 

Henan, China. Differ to former studies, in our study, areas located in the south of eastern 

China are controlled by humid climate, a place with abundant precipitation, sufficient light, 

and warm temperature across a year, and no apparent wet season and dry season are 

detected in this region. Areas located in the north of eastern China are dominated by flat 

landscape. Vegetation on the NFS and SFS is, therefore, less restricted by the 

differences of light, heat, and water conditions. The explanations provided above are the 

reasons why vegetation shows no differences on the NFS and SFS in eastern China. 
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Figure 5-29. The statistical results of NDVI value, NDVI changing slope, and NDVI 
CV for different aspects 
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5.3.3 The interaction between annual NDVI and slope  

The synergism between the presence of vegetation and the steepness of the slope is 

well known. On the one hand, vegetation affects the stability of the slope by changing 

the soil suction and soil-water content of the corresponding root zone of plants. On the 

other hand, the soil suction and soil-water content determine the matter and energy 

supply of vegetation growth. Spatial characteristics of the annual NDVI value, annual 

NDVI changing slope, and annual NDVI CV at each slope range were investigated on 

the basis of overlay analysis, respectively. The proportion of the annual NDVI value, 

annual NDVI changing slope, and annual NDVI CV in the background of each slope 

range were acquired on the basis of the zonal statistic. The results are shown in Figure 

5-30(a), (b) and (c), respectively. 

The landscape is mostly flat in eastern China, and areas with slope degree ranging from 

0° to 2° and from 2° to 6° account for 30% and 25% of the study area, respectively. 

Particularly, vast plain areas are extending from Jiangsu to the north of eastern China. 

NDVI values are relatively lower in the middle of Liaoning, southeast of Hebei and 

Beijing, Tianjin, and eastern coastal areas of Guangdong at the slope range of 0° to 2° 

and 2° to 6°. A roughly similar spatial distribution of the NDVI value is observed at the 

slope ranges of 6° to 15°, 15° to 25°, and 25° to 90°. The NDVI values are basically 

higher in Zhejiang, Fujian, and Guangdong than in the middle of Shandong, east and 

west of Liaoning, as well as in the northwest of Hebei and Beijing.  

As reported in Figure 5-30(a), the proportion of lower NDVI value (0.2 to 0.4 and 0.4 to 

0.6) and the proportion of higher NDVI value (0.6 to 0.8 and 0.8 to 1) present an inverse 

trend with the slope degree increase. Areas with the NDVI values more than 0.6 account 

for only 9% and 16% at the slope ranges of 0° to 2° and 2° to 6°, separately, whereas 

areas with the same NDVI value range occupy 62% and 72% at the slope ranges of 15° 

to 25° and 25° to 90°, respectively. Above conclusions indicate that the vegetation cover 

is basically higher in the steeper regions and lower in the flat regions of the study area.  

Regarding the spatial interplay between vegetation cover change and terrain slope 

variability, areas located in the junction areas of Shandong and Hebei, middle of 

Liaoning, and northwest of Hebei present a greening trend at the slope ranges of 0° to 2° 
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and 2° to 6°. Apart from these areas, the vegetation cover had gradually declined during 

the study period. Within the slope ranging from 6° to 90°, the vegetation cover is 

dominated by an increasing trend, which is mainly concentrated in the north and 

sparsely distributed in the south of the study area. Figure 5-30(b) shows that the 

proportion of the browning areas shows a “valley” pattern with the slope degree increase. 

The proportion of the browning areas declines to the valley-bottom when the slope 

degree ranges from 6° to 15°, whereas the proportion of the greening areas reports an 

opposite phenomenon and reaches the peak at the same slope range. 

Vegetation cover displays high stability over the study area when slope degree is more 

than 6°, except for small areas located in the northwest of Hebei and west of Liaoning. 

Vegetation cover is pretty fragile within the slope range of 0° to 6°. Figure 5-30(c) 

indicates that the proportion of the NDVI CV values ranging from 0.1 to 1 accounts for 

21% at the slope range of 0° to 2° and 16% at the slope range of 2° to 6°, which are 

remarkably higher than that at the slope range of 15° to 25° and 25° to 90°. In addition, 

the proportion of the NDVI CV values ranging from 0 to 0.05 increases with the slope 

degree increase, while the proportion of the NDVI CV values ranging from 0.15 to 1 

declines with the slope degree increase, implying that, generally, the vegetation cover is 

more stable at higher slope ranges and relatively vulnerable at lower slope ranges. 

The overall vegetation cover and vegetation stability at higher slope ranges are better 

than at lower slope ranges. China has been experiencing unparalleled socio-economic 

development, which leads to a huge amount of migration from rural areas to urban areas. 

In eastern China, in particular, a place has been highly developed in the last three 

decades and constantly develops at a fast speed. Moreover, the unprecedented 

development mostly took place in flat areas, which results in a sharp decline in farmland 

at the urban edge. Meanwhile, with rapid urbanization and industrialization, the 

construction of urban infrastructure is also exponentially growing, which further limits the 

vegetation growth. The negative influences gradually decline with the slope degree 

increase, which answers the question of why the vegetation cover and vegetation 

stability are relatively higher at high slope ranges. Klinge et al. (2015) further confirmed 

that no significant effects of the topographic pattern were detected in vegetation 

distribution when the slope degree is lower than 5◦. Namely, human activity and climate 
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variability are dominant elements controlling the vegetation activity in these regions. 

Topographically, with the rise in slope degree, terrain landscape turns progressively 

steeper. Areas with high slope degree, the human disturbances are being negligible. But 

most of the steep slopes accompany severe soil erosion, soil fertility loss. Consequently, 

high slope ranges may not favor the vegetation growth. 

 

Figure 5-30. The statistical results of NDVI value, NDVI changing slope, and NDVI 
CV for different interval of slope 
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5.4 The relationship between annual NDVI and socio-economic factors in 

eastern China 

5.4.1 The temporal characteristics of annual NDVI in response to socio-economic 

factors 

5.4.1.1 The negative effects of socio-economic factors on annual NDVI  

Vegetation cover has tremendously changed in the last century and this century at the 

global level, socio-economic factors along with the effects of climate factors and 

topographic factors are anticipated to contribute to the dynamic change of vegetation 

cover. In this study, the response of the annual NDVI to changes in socio-economic 

factors was quantitatively computed using Pearson’s correlation analysis for each 

administrative unit. The correlation coefficients between the annual NDVI and the 13 

socio-economic factors for each administrative unit are shown in Table 5-5. It has to be 

clarified that the correlation coefficient between the annual NDVI and the total 

employment in Hebei is absent due to lack of relevant data. To distinguish the relative 

roles of socio-economic development and population growth in vegetation change, the 

13 socio-economic factors were divided into three classes: general economic vitality, 

consumption, and human population (Table 3-2).  

All of the correlation coefficients between the annual NDVI and the 13 socio-economic 

factors are negative in Tianjin, Shanghai, Jiangsu, Zhejiang, Fujian, and Guangdong, 

suggesting that vegetation cover negatively responses to human activities in these 

administrative units, and human activities play an essential role in vegetation 

degradation. Especially, in Shanghai and Jiangsu, the negative effects of human 

activities on vegetation growth are more serious. Table 5-5 shows that most of the 

correlation coefficients in Shanghai and Jiangsu are significant at the p<0.01 level, 

implying a stronger negative relationship between the annual NDVI and the 13 socio-

economic factors in Shanghai and Jiangsu than in Zhejiang, Tianjin, Fujian, and 

Guangdong. 

Socio-economic development dominates the vegetation variability in Shanghai, Jiangsu, 

Zhejiang, and Guangdong because the correlation coefficients in these administrative 
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units between socio-economic development and vegetation variability are basically 

higher than that of between population growth and vegetation variability. Except for in 

Shanghai, the negative impact of primary industry product on vegetation growth is 

weaker than that other socio-economic factors. China is on the processes of 

transformation to a more productive, service-based economy body. Shanghai is a 

megacity of China and plays an irreplaceable role in China’s socio-economic 

development. In 2016 the proportion of the primary industry product accounts for 0.38% 

of the total GDP in Shanghai. This proportion is significantly lower than that of other 

administrative units. For instance, the proportion of the primary industry product in Hebei, 

Liaoning, Fujian, and Shandong constitutes more than 7% of the total GDP in 2016. The 

primary industry is a land-based industry. Due to the scarcity of land resources in 

Shanghai, the local government prioritizes tertiary industries, which cause less damage 

to the local ecological system. In Shanghai, this initiative has achieved enormous 

positive results in socio-economic development and environmental protection.  

In addition, in 2001 the urbanization rate reached 75.3% in Shanghai, which preceded 

only by Beijing. With the rapid socio-economic development and population growth, in 

2016 the urbanization rate reached 87.9% in Shanghai, taking the first position and 

surpassing Beijing by a rate of 1.4% (Table 5-6 and Table B-10), which accounts for the 

conversion of farmland to urban areas. Above all, the above-mentioned changes answer 

the question of why the effects of primary industry product on changes of NDVI are 

smaller in Shanghai than the effects of other socio-economic factors on changes of NDVI. 

The proportion of the areas with a vegetation browning trend distributed in Fujian, 

Zhejiang, Shanghai, and Jiangsu exceeds the proportion of these areas in other 

administrative units of the study area (Figure 5-8(a)). This browning trend is attributed to 

the combination of such effects as rapid economic development, urban expansion, and 

population growth. For example, in 2016 China’s permanent urbanization rate is 57.4%, 

while the urbanization rate in Jiangsu, Zhejiang, and Fujian had increased respectively 

by 25.1%, 16.1%, and 20.8% from 2001 to 2016 and reached 67.7%, 67%, and 63.6% in 

2016 (Table 5-6 and Table B-10). The extensive urbanization in Jiangsu, Zhejiang, and 

Fujian is at the cost of the transformation of a huge number of farmlands to urban areas 

and a large amount of farmland abandonment. Moreover, the proportion of the 
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secondary industry product had increased by 4.2% of the total GDP in Fujian from 2001 

to 2016, and it accounts for 48.9% of the total GDP in 2016. Meanwhile, the proportion of 

the secondary industry product in the other nine administrative units had dropped during 

the same period, indicating that the secondary industry takes an irreplaceable role in 

socio-economic development in Fujian. The World Bank 2007 reported that population 

pressure may aggravate the vulnerable ecosystem degradation. Shanghai is considered 

the most densely populated region in mainland China. In 2016 the population density 

grows up to 3816 people/sq. km in Shanghai, which is almost three times higher than in 

Beijing (1324 people/sq. km) and Tianjin (1328 people/sq. km) and 13 times higher than 

in Liaoning (285 people/sq. km) (Table B-11), implying that heavy human population 

pressure could be a critical socio-economic factor for vegetation degradation in 

Shanghai. 

Previous studies have demonstrated that human activities contribute to vegetation 

degradation in many parts of the world, the results generated in our study is highly in line 

with the above conclusions. For example, Dewan and Yamaguchi (2009) proposed that 

with the rapid socio-economic development and population growth, urban areas 

increased sharply, thereby causing to a manifest decline in the area of water bodies, 

cultivated lands, vegetation, and wetlands in Greater Dhaka, Bangladesh.  De Freitas et 

al. (2013) evidenced that vegetation degradation and deterioration were closely 

associated with population pressure in the Upper Uruguay Basin, Brazil. Zhou et al. 

(2014) investigated the relationship between terrestrial vegetation cover and urban 

development intensity in 32 major cities of China and found that the vegetation cover 

declined dramatically with the urban land expansion for 28 of the 32 cities, including 

Beijing, Tianjin, Shijiazhuang, Jinan, Nanjing, Hangzhou, Fuzhou, and Guangzhou, 

which are located in our study area. Moreover, Zhao et al. (2017) evaluated the GDP 

spatialization and economic differences in the south of China on the basis of NPP-Visible 

Infrared Imaging Radiometer Suite (VIIRS) nighttime light imagery and showed that 

socio-economic development in the eastern coastal areas and low elevation plains of 

Guangdong were greater than in other regions of the study area (Zhao et al., 2017). The 

results of the study by Zhao et al. (2017) answered the questions why the NDVI value is 
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lower in the coastal areas of Guangdong than in inland areas and why the NDVI value 

had decreased in many parts of Guangdong.  

The effects of human activities such as socio-economic development, urban expansion, 

and population growth on changes of vegetation cover cannot be quantitatively isolated 

and, for this reason, can be regarded as a combining effect. With sharp socio-economic 

development and frequent human activities after launching the program of reform and 

opening-up termed "Socialism with Chinese Characteristics" in China in 1978, urban 

expansion has encroached a huge amount of farmland and forest land in the Yangtze 

River Delta, Pearl River Delta, and Bohai Economic RIM in particular, thereby resulting 

in significant vegetation degradation and deterioration in these regions. 

5.4.1.2 The positive effects of socio-economic factors on annual NDVI 

The annual NDVI in Beijing, Hebei, Liaoning, and Shandong is positively related to the 

13 socio-economic factors, and the relevant correlation coefficients are basically higher 

in Beijing, Hebei, and Liaoning than in Shandong. Moreover, in Beijing, Hebei, and 

Liaoning the correlation coefficients between the annual NDVI and the 13 socio-

economic factors are significant at p<0.01 level, with the exception of the correlation 

coefficient between the annual NDVI and the total investment in fixed assets in Liaoning. 

Beijing is the capital city of the People’s Republic of China and is political, economic, and 

cultural centers. From 2001 to 2016 the urbanization rate had increased by 8.44% in 

Beijing and reached 86.5% in 2016 (Table 5-6). The increasing magnitude of the 

urbanization rate in Beijing is particularly lower than in other administrative units during 

the study period. Meanwhile, the tertiary industry product had increased by 19.7% and 

reached 80.2% of the total GDP in 2016, which is significantly higher than in other 

administrative units. In comparison with the secondary industry, the development of the 

tertiary industry causes fewer adverse consequences to the local environment and 

ecological system. In addition, the primary industry plays a significant role in socio-

economic development in Liaoning, Hebei, and Shandong. These are places where the 

primary industry product accounted for 9.8%, 10.9%, and 7.3% of their corresponding 

total GDP in 2016, respectively. As mentioned previously, the primary industry is a land-

based industry, which in principle may contribute to the improvement of vegetation cover. 
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Economic development and population pressure are the principal controlling factors of 

vegetation degradation, characteristic of the developing countries. Due to the 

implementation of efficient agricultural activities and migration of labor forces from rural 

to urban areas, the regional economic and agricultural vitality, economic welfare, and 

quality of life have considerably improved in rural areas in particular, which could 

potentially result in the enhancement of local vegetation activity. Previous studies also 

demonstrated that, in rural areas, integrated ecosystem management could restore the 

deteriorated local social-ecological systems in a sustainable way. The improvement of 

socio-ecological systems could consequently minimize population pressure and promote 

social welfare, ultimately resulting in vegetation restoration and ecological rehabilitation 

(Xu et al., 2014, Wang et al., 2010). The explanations provided above explore the 

underlying cause of the vegetation cover improvement in many parts of eastern China 

from 2001 to 2016, particularly in rural areas.  

Figure 5-8(a) shows that vegetation distributed in the north of the study area displays a 

comprehensive greening trend, particularly in Liaoning, Hebei, Beijing, and Shandong. 

These regions have benefited significantly from the implementation of large-scale 

reforestation and afforestation programs such as the NFCP, TNSFP, BTSSCP, and GGP. 

These programs have been evidenced to be the controlling element facilitating 

vegetation growth in many parts of China (Zhang et al., 2016, Viña et al., 2016, Piao et 

al., 2015, Zhou et al., 2009). These reforestation and afforestation programs not only 

promoted regional vegetation vitality but also offset the negative effects derived from 

socio-economic development, urban expansion, population growth, and natural 

resources over-exploitation. The vegetation cover change in Shaanxi was detected by 

Zhou et al. (2009) after launching the GGP in 1999. The results of this study indicated 

that the vegetation cover in the north of Shaanxi presented a considerable increasing 

trend from 1998 to 2005, which was mostly ascribed to the implementation of GGP. Viña 

et al. (2016) evaluated the vegetation cover in China from 2000 to 2010 in the context of 

the NFCP implementation and found that the vegetation cover had significantly improved 

over a huge number of China’s territories and the NFCP exerted a great impact on 

regional vegetation restoration and rehabilitation. 
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Combining the effects of the large-scale forest reforestation on the basis of the 

implementation of TNSFP, NFCP, GGP, and BTSSCP, which not only contributed to 

significant improvement for vegetation cover in project’s corresponding areas, but also 

alleviated the problem of poverty reduction, livelihood improvement, and rural economic 

recovery by supplying farmers, whose cropland on steep slopes was transformed to 

forest land and grassland, with grain and cash subsidies directly. However, inappropriate 

reforestation in some parts of northern China generated an enduring reduction in soil 

moisture. Due to the positive effects of implementation of the BTSSCP, the vegetation 

cover has improved for nearly half of the Beijing–Tianjin dust and sandstorm source 

region (BTSSR) from 2000 to 2010, and the increasing trend tends to expand in the 

future (Wu et al., 2013, Li et al., 2015c). Furthermore, winning the right to host the 2008 

Olympic Games contributed the vegetation improvement in Beijing (Duan et al., 2011). 
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Table 5-5. The correlation coefficient between annual NDVI and the 13 socio-economic factors for the ten 
administrative units 
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Table 5-6. Differences of the socio-economic factors for the ten administrative units from 2001 to 2016 
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5.4.2 The spatial characteristics of annual NDVI in response to socio-economic factors 

The ever-increasing extent and intensity of human activities have imposed vast 

ecological deterioration and vegetation degradation throughout the world. China is the 

biggest developing country and occupies one-fifth of the world’s population. China is 

undergoing unprecedented economic growth in the world's history at the moment (Lu et 

al., 2015). Specifically, socio-economic development, urban expansion, and population 

growth are dramatically greater in eastern China than in other regions of China, thereby 

aggravating resource depletion, environmental pollution, ecological deterioration, 

vegetation degradation, and land-use transformation in eastern China (Lu et al., 2011, 

Shi et al., 2011). In this study, the raster data of GDP, urban areas (rural residential 

areas, industrial areas, and mining areas are not considered in this sector), and 

population density with a spatial resolution of 1 km in 2000 and 2015 were utilized to 

investigate the spatial characteristics of the annual NDVI in response to socio-economic 

development, urban expansion, and population growth in eastern China from 2001 to 

2016. 

GDP is regarded as the representative of the economic vitality of a country or a region. 

Figure 4-11(a) displays the spatial differences in GDP from 2000 to 2015 in eastern 

China. A positive value indicates an increase in GDP from 2000 to 2015 and vice versa. 

Statistically, areas with positive values account for 99% of the study area. The 

differences in the GDP in 11% of these areas are more than 10,000 RMB/sq. km, and 

these areas are mostly located in the Pearl River Delta, Yangtze River Delta, as well as 

in the Bohai Economic Rim. Figure 4-11(b) illustrates the spatial pattern of urban 

expansion from 2000 to 2015 and the urban marginal areas with distance ranges of 0 to 

5 km, 5 to 10 km, and 10 to 15 km to urban areas. The urban areas had increased by 

10,624 km2 from 2000 to 2015, which is mainly ascribed to the usage of agricultural land, 

grassland, and forest land as urban areas. Figure 4-11(c) indicates that the population 

density had increased over 60% of the study area. The population density mostly and 

concentratedly increases in the three economic zones and city centers. It is worth noting 

that the differences of the population density gradually decrease from the city center 

toward its surrounding areas.  
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Areas with a GDP decrease and areas with a population density decline of more than 

500 people/sq.km are highly and spatially coupled, which are basically distributed within 

the old urban areas. The unique spatial characteristic is caused by China's regional 

industrial transfer behavior on the basis of the conversion of industry upgrade and urban 

expansion under the pressure of population growth and aging infrastructure (Su, 2016, 

Schneider and Mertes, 2014). For instance, China started relocating Shougang Group, 

the biggest steelmaker in Beijing, from the western suburban district of Beijing to a rural 

part of Qian'an city in Hebei province in 2003 and shifted its business focusing on tertiary 

industry. This action not only reduced regional population density and GDP dramatically 

but also alleviated the sulfur-containing compound emission (Wu and Zeng, 2013).  

Figure 5-31 quantitatively reveals the spatial coupling between the dynamic change of 

vegetation cover and socio-economic development, urban expansion, and population 

growth for eastern China. Figure 5-31(a) shows that the proportion of the NDVI values 

ranging from 0 to 0.4 shows no differences at the GDP difference ranges of 0 to 10,000 

and 10,000 to 20,000 RMB/sq.km, whereas this proportion increases with the GDP 

difference increase steadily when the GDP difference is higher than 20,000 RMB/sq.km., 

indicating that the vegetation cover declines gradually when the GDP difference is higher 

than 20,000 RMB/sq.km. From Figure 5-31(b) and (c), we observed that the vegetation 

cover change is dominated by a decreasing trend and shows no differences at the GDP 

difference ranges from 10,000 to 40,000 RMB/sq.km, while the vegetation stability is 

negatively associated with the socio-economic development for the same GDP 

difference ranges in eastern China.  

In general, the vegetation cover is slightly higher in the new urban areas than in the old 

urban areas. Figure 5-32(a) shows that the proportion of the NDVI values ranging from 

0.6 to 0.8 and 0.8 to 1 is higher in the non-urban areas than in the urban areas (old 

urban areas and new urban areas). Especially, these proportions at the distance of 10 to 

15 km to urban areas are higher than at the distance of 5 to 10 km to urban areas, 

followed by the distance of 0 to 5 km to urban areas, indicating a monotonic increase of 

the vegetation density from the new urban areas toward rural areas. Figure 5-32(b) 

indicates that the urban expansion had devastated the vegetation cover, particularly in 

the newly developed urban areas. The negative impacts derived from urban expansion 

http://english.peopledaily.com.cn/data/province/hebei.html
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gradually decline at the distances of 0 to 5 km toward the distances of 10 to 15 km to 

urban areas. Areas with an increasing trend of vegetation cover reach 37% in old urban 

areas. This proportion is double larger than that in the newly developed urban areas. 

The vegetation stability decreased from old urban areas to new urban areas, and the 

decreasing trend reversed with the distance range increase afterward. The vegetation 

cover is more stable at the distance of 10 to 15 km to urban areas (Figure 5-32(c)). 

As mentioned previously, areas with a population density reduction of more than 500 

people/sq.km are mostly distributed in old urban areas. Consequently, the vegetation 

cover and vegetation stability in these areas are relatively lower. Figure 5-33(a) and (c) 

report that the vegetation cover and vegetation stability are negatively associated with 

population growth. The vegetation cover is relatively lower and most fragile for the 

population density difference from 500 to 50,218 people/sq.km. The overall vegetation 

cover had improved at the population density difference from -500 to 500 people/sq.km 

due to less population pressure and human activities in these areas for the study period. 

It is worth noticing that the vegetation degradation had alleviated at the GDP difference 

range of 40,000 to 2,042,300 RMB/sq. km and the population density difference range of 

1,500 to 50,218 people/sq.km. These areas are located in old urban areas with a low 

vegetation density. Therefore, the continuous increase of GDP and population density 

cannot constantly decrease the vegetation activity, but vegetation cover has improved 

due to practical vegetation management and natural vegetation succession. 

Geographically, the vegetation cover change is closely associated with socio-economic 

development. In this study, vegetation degradation can be primarily ascribed to the 

combing effects of socio-economic development, urban expansion, and population 

growth, which is in good agreement with previous studies (Esau et al., 2016, Wang et al., 

2012). On the basis of MOD13Q1 NDVI data from 2000 to 2014, Esau et al. (2016) 

detected the spatial interaction between urban development and vegetation cover 

change in northern West Siberia. The results of this study indicated that urban expansion 

negatively affected the vegetation cover in the newly developed urban areas and the 

surrounding areas at approximately 5 to 10 km due to large-scale human disturbances 

such as new infrastructure development and rapid urbanization. Furthermore, the NDVI 

value within the urban areas is fairly lower than the surrounding areas. This result is line 
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with the results generated by Wang et al. (2012) that the negative effects of human 

disturbances on vegetation cover gradually decrease with distance increase from urban 

areas to rural areas. 

China has been experiencing countrywide urbanization, which is at the cost of farmland, 

grassland, and forest land loss. For example, 33,080 km2 of agricultural land had 

converted to built-up land due to rapid urban expansion from 2000 to 2013, and more 

than half of these areas are located in eastern China (Shi et al., 2016). Moreover, such 

as in Sichuan, Yunnan, Chongqing, Guizhou, and Shaanxi, forest land or grassland on 

the hillsides were cultivated to cropland to satisfy the food demand because of 

population growth in these regions (Lu et al., 2005, Lu et al., 2015), which accordingly 

accelerated the processes of vegetation browning and soil erosion.  

The Yangtze River Delta and Pearl River Delta economic zones, two largest economic 

zones located in eastern China, have experienced rapid socio-economic development, 

large-scale urban expansion, as well as dramatical population growth for the last three 

decades. All these unparalleled changes have paid the price in massive farmland loss 

(with a decline of 6.12% and 6.05% of their total farmland in Yangtze River Delta and 

Pearl River Delta from 2000 to 2013, respectively) and environment contamination, 

thereby resulting in ecological deterioration and vegetation degradation (Qu et al., 2015, 

Shi et al., 2016, Shi et al., 2011). Piao et al. (2003) demonstrated that vegetation cover 

in the Pearl River Delta and Yangtze River Delta has experienced a significant browning 

trend because of rapid urbanization. Peng et al. (2015) quantitatively analyzed the 

differences in vegetation cover in urban areas and rural areas in eastern China in 

general and the three economic zones in particular from 1999 to 2008. The results of this 

study demonstrated that the vegetation cover was basically lower in the urban areas 

than in the rural areas, particularly the vegetation cover is lowest in the three economic 

zones. Regarding the vegetation cover changing trend, the vegetation cover enhanced in 

rural areas but declined in urban areas due to socio-economic development, rural-urban 

migration, and its cumulative effects.  
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Previous studies have focused on discussing the overall effects of human activities on 

vegetation variation. For Instance, Qu et al. (2015) discussed the effects of human 

activities on vegetation cover change in China from 1982 to 2011 and pointed out that 

the vegetation deterioration was mainly induced by land use change, urban expansion, 

and agricultural activities. Peng et al. (2015) demonstrated that the large-scale 

urbanization processes in eastern China were the negative factor accumulatively 

affecting the vegetation density from 1998 to 2011. Only a few studies quantitatively 

detected the relationships between vegetation cover change and socio-economic factors. 

For example, Lu et al. (2015) computed the correlation coefficients between vegetation 

cover and ten socio-economic factors (e.g., total population, working-age population, 

total employment, urban employment, GDP, first industry product, total investments in 

fixed assets, household consumption expenditures, and per capita consumption 

expenditures of rural households) for China from 2000 to 2010. The result of this study 

demonstrated that the vegetation degradation is positively associated with the total 

population, working-age population, total employment, urban employment, and 

negatively related to primary industry product, total investments in fixed assets, and the 

per capita consumption expenditures of rural households.  

However, in our study, the quantified relationships between the annual NDVI and the 13 

socio-economic factors for each administrative unit were primarily taken into 

consideration. Then the spatial interaction of the vegetation variables in response to 

socio-economic development, urban expansion, and population growth was displayed. 

Furthermore, we quantitatively illustrated the quantified relationship of the three 

vegetation metrics along with socio-economic development, urban expansion, and 

population growth. In our study, we generated a whole picture of the dynamic changes of 

vegetation cover in related to socio-economic factors both on spatial and temporal 

scales in eastern China, which enhances the understanding of how vegetation cover 

reacts to human activities.  
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Figure 5-31. The statistical results of NDVI value, NDVI changing slope, and NDVI 
CV to difference range of GDP 
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Figure 5-32. The statistical results of NDVI value, NDVI changing slope, and NDVI 
CV to urban expansion 
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Figure 5-33. The statistical results of NDVI value, NDVI changing slope, and NDVI 
CV to difference range of population density
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6 Summary and conclusion 

Chapter 1 establishes the general background information of this study, incorporating 

research problem statement and motivation, research objectives, and key questions. The 

theoretical background and mathematical methods for monitoring of vegetation cover 

change and analyzing of vegetation cover in response to its driving forces such as 

climate forces, topographic forces, and socio-economic forces are outlined in chapter 2. 

Furthermore, the geographical location, socio-economic status, climate characteristics, 

population composition, and the land use status of the study area and the related data 

are introduced in chapter 3. Chapter 4 provides the methodological framework of this 

study by combining RS and GIS technologies, intending to carry out the objectives of this 

study. On the basis of multi-source data using multi-mathematical methods and 

platforms, the main findings and its relative discussions are distributed in chapter 5. In 

the following chapter, a summary of the research objectives is presented. Against the 

background of the results, the strengths and limitations of this study, and future research 

are proposed. 

6.1 Summary 

Vegetation cover change is a sensitive indicator of climate change, human activities, as 

well as natural disturbances. This study aims to quantitatively monitor the dynamic 

change of vegetation cover, investigate the relationships between NDVI and its driving 

forces such as climate forces, topographic forces, as well as socio-economic forces, and 

investigate the lag time for maximum NDVI response to climate variables in eastern 

China using multiple mathematical methods. MODIS NDVI time series, monthly 

meteorological data, DEM data, socio-economic statistical data, the vector map of 

eastern China, the map of land use types, the map of GDP, and the map of population 

density provided reliable data support for this study. Knowledge of the vegetation cover 

change and the relationships between NDVI and its driving factors can further improve 

the understanding of the basic biogeochemical processes, and their possible feedbacks 

to the surface vegetation evolution. The objectives of this study are fulfilled, and the 

research questions of this study are answered in the context. Moreover, the main 

findings of this study are summarized in the following four sections. 

app:ds:data
app:ds:DEM%20data
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6.1.1 The spatiotemporal variation of vegetation cover in eastern China 

Temporally, the annual NDVI shows an upward trend with a magnitude of 0.0003 year-1 

in eastern China, suggesting a slightly increasing trend during the study period. NDVI 

presents an increasing trend in spring and autumn but a decreasing trend in summer. 

Former research demonstrated that NDVI established an upward trend in all seasons in 

China (Piao et al., 2003). This difference might be caused by the differences in data 

source, study period, and the study area. 

Spatially, the spatial distribution of the vegetation cover in spring, summer, and autumn 

follows the same pattern that the NDVI values are higher in the south and lower in the 

north of the study area. The overall NDVI value is higher in summer than in autumn, 

followed by spring. With an exception of the NDVI values in Jiangsu and the west part of 

Shandong is noticeably higher in spring than in autumn, which is ascribed to regional 

agricultural activities in the context of the winter wheat/paddy rice and rapeseed/paddy 

rice double cropping rotation system.    

On annual scale, areas with a greening trend account for 49% of the study area. These 

greening areas are mostly distributed in the north of the study area. Areas with a 

browning trend account for 33% of the study area. Above results indicate that the areas 

showing vegetation improvement are larger than the areas showing vegetation 

degradation in eastern China. In terms of the vegetation variation on seasonal scale, the 

vegetation degradation is more critical in summer than in spring and autumn.  

In term of the consistency of the vegetation cover on annual scale, areas expected to 

maintain the current changing trends and switch the current changing trends in the future 

accounting for 57% and 43% of the study area, respectively. Inconsistent with former 

research (Tong et al., 2018), in our study, we found that the degradation area will be 

larger than the improvement area for eastern China both on annual and seasonal scales 

in the future. 

The vegetation cover is relatively stable during a year, particularly in Guangdong, 

Zhejiang, Fujian, and the east part of Liaoning. However, the vegetation cover had 

significantly fluctuated in the three economic zones due to the influences of socio-

economic development, urban expansion, and population growth and the northwest part 
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of Hebei due to the implementation of large-scale reforestation programs, and practical 

forest management. 

6.1.2 The relationship between NDVI and climate factors in eastern China 

The relationship is more pronounced between NDVI and temperature than that of 

between NDVI and precipitation in eastern China both on annual and seasonal scales. In 

addition, the response of NDVI to changes in precipitation is strongest in autumn. The 

relationship between NDVI and temperature is higher in spring than in autumn, followed 

by in summer, which is not in line with previous research. Previous research evidenced 

that the correlation coefficient between NDVI and temperature is greatest in autumn in 

eastern China (Cui, 2010).  

Considering the lag time for maximum NDVI response to changes in precipitation and 

temperature for eastern China on seasonal scale, NDVI maximally responses to the 

current temperature in spring and autumn but to the temperature of previous 1 month in 

summer. The maximum correlation coefficient between NDVI and precipitation is 

acquired when precipitation is preceding NDVI by 1 month in spring and autumn and 2 

months in summer. Above results generated two statements that (1) the lag time for 

maximum NDVI response to precipitation is longer than that to temperature, and (2) both 

the lag time for maximum NDVI response to changes in temperature and precipitation is 

longer in summer than in spring and autumn. 

Spatially, the maximum correlation coefficients between NDVI and precipitation as well 

as NDVI and temperature are generally higher in the north and lower in the south of the 

study area both on annual and seasonal scales, except for summer, suggesting that both 

precipitation and temperature play a higher-level control on vegetation growth in the 

north of the study area. Previous research evidenced that NDVI in most of the 

meteorological stations of Zhejiang, Fujian, and Guangdong is negatively associated 

with temperature in summer (Cui, 2010, Peng et al., 2015). But, in our study, we found 

that NDVI is positively related to temperature in 43 out of 52 meteorological stations in 

summer within the same region.  

Generally, the annual NDVI is maximally associated with the concurrent temperature 

across eastern China. The annual NDVI shows distinctive geographical characteristics to 
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changes in precipitation: namely, the annual NDVI maximally responses to the 

concurrent precipitation in the north of the study area, but the annual NDVI presents 

complex lag time to precipitation in the south of the study area (e.g., Zhejiang, Fujian, 

and Guangdong). Furthermore, in our study, we detected that NDVI in most of the 

meteorological stations show 2- to 3-month lag time to changes in precipitation and 

temperature in summer in Zhejiang, Fujian, and Guangzhou, but Cui (2010) evidenced 

that NDVI in most of the meteorological station shows no lag time to changes in 

precipitation and temperature in summer within the same region. The differences 

between Cui (2010) and our study can be ascribed to the differences of the data sources 

and study period. 

6.1.3 The relationship between NDVI and topographic factors in eastern China 

The vegetation cover and vegetation stability increase with an elevation increase 

constantly when elevation ranges from 0 to 500 m, but the upward trend of the 

vegetation cover and vegetation stability reversed afterward. Areas with a decreasing 

trend at the elevation range of -282 to 0 m and 0 to 100 m are relatively higher than at 

higher elevation ranges. Areas with vegetation improvement are larger than the areas 

with vegetation degradation when elevation ranges from 100 to 2849 m.  

It is worth mentioning that the proportion of the annual NDVI value, annual NDVI 

changing trend, and annual NDVI CV in each category shows no statistical differences 

on the SFS and NFS. This result is against our initial hypothesis and former research 

results. In the northern hemisphere, plants on the SFS are expected to accept several 

times more solar radiation than on the NFS, and vice versa in the southern hemisphere. 

Differ to former studies, in our study, areas extending the south of Jiangsu to 

Guangdong are controlled by humid climate, a place with abundant precipitation, 

sufficient light, and warm temperature across a year, and no apparent wet season and 

dry season are detected in this region. Areas extending from the north of Jiangsu to 

Liaoning are predominated by flat landscape. Vegetation on the NFS and SFS is, 

therefore, less restricted by the differences of light, heat, and water conditions and 

shows no differences of vegetation growth on the NFS and SFS.  
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Similar to the relationships between the elevation-vegetation cover and elevation-

vegetation stability, the vegetation cover and vegetation stability increase with slope 

range increase. The proportion of the areas with a greening trend shows a “humped” 

pattern with the slope degree increase. Meanwhile, the proportion of the browning areas 

shows a “valley” pattern. The “peak” and the “valley bottom” reach 58% and 25% of the 

corresponding area, respectively, when the slope degree ranges from 6° to 15°. 

6.1.4 The relationship between NDVI and socio-economic factors in eastern China 

Results derived from this study demonstrated that, temporally, vegetation cover is 

negatively associated with the 13 socio-economic factors in Tianjin, Shanghai, Jiangsu, 

Zhejiang, Fujian, and Guangdong but positively related to the 13 socio-economic factors 

in Beijing, Hebei, Liaoning, and Shandong. The vegetation degradation is primarily 

ascribed to socio-economic development, urban expansion, and population growth. 

However, the vegetation improvement in Beijing, Hebei, Liaoning, and Shandong is 

attributed to the implementation of large-scale reforestation and afforestation programs 

such as the NFCP, TNSDP, BTSSCP, and GGP at a certain level. Another reason for 

vegetation improvement in Beijing is winning the right to host the 2008 Olympic Games. 

Spatially, the dynamic change of vegetation cover is negatively coupled with socio-

economic development, urban expansion, and population growth in eastern China. The 

proportion of the browning areas increases with GDP difference increase, and the 

proportion reaches the peak with a magnitude of 64% of the corresponding area at the 

GDP difference range of 30,000 to 40,000 RMB/sq. km. Urban expansion is negatively 

correlated to vegetation growth, particularly in the new urban areas. we found that the 

negative influences of urban expansion on vegetation growth are strongest in the new 

urban areas but weaken with the distance from 0 to 15 km to urban areas gradually. 

Migration from rural to urban areas leads to a greening trend of vegetation cover in the 

rural areas and a browning trend of vegetation cover in the urban areas.  

6.2 The answers to the research questions 

Multiple data sources and approaches were utilized and integrated to monitor the 

dynamic change of vegetation cover from 2001 to 2016 and to investigate the 
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relationships between vegetation variation and its driving forces (e.g., climate forces, 

topographic forces, and socio-economic forces) to answer five main scientific research 

questions of this study. The five research questions are produced with regarding metrics 

and approach selection, driving factors determination, and dominant factor detection. In 

the following sections, answers of the five research questions are distributed. 

1) Which metrics can be used to reflect the long-term vegetation cover variation, and 

how to quantify the vegetation changing trend and vegetation cover stability? 

MODIS NDVI (NDVI value) is used to monitor the dynamic change of vegetation cover; 

linear regression analysis is applied to assess the vegetation changing trend; and NDVI 

CV is considered as an efficient indicator for identifying the amplitude of the vegetation 

cover oscillation.  

NDVI value is used to monitor the spatial distribution of vegetation cover on annual and 

seasonal scales. As mentioned in Chapter 1 that NDVI is a normalized ratio reflecting 

the different reaction of vegetation to the red and near-infrared reflectance, and it is 

applied to give a quantitative description of the earth's surface vegetation cover and 

vegetation growth status under certain conditions (Chen et al., 2014). It has been widely 

used to monitor the vegetation growth status, vegetation phenology variability, crop yield 

estimation, agricultural cropping pattern, and vegetation dynamic variation (Butt et al., 

2011, Miao et al., 2015, Ren et al., 2008, Lunetta et al., 2010).  

Linear regression analysis is utilized to reveal and estimate the vegetation changing 

trend of each grid over the study period against the background of NDVI time-series 

images. As intimated in chapter 2.1, linear regression analysis is more frequently and 

effectively implemented for monitoring the spatial pattern of long-term vegetation cover 

change. Although the non-linear regression analysis was proved to be more precise for 

inspecting the turning point of the vegetation cover change, linear regression analysis 

and their estimation turned out to be rough on temporal scale but much practical on 

spatial scale (Fensholt and Proud, 2012).  

The coefficient of variation (CV) is diffusely used to evaluate the stability of the terrestrial 

vegetation cover under the combined effects of climate change, human activities, as well 

as natural forces for a certain region during a corresponding period (Peng et al., 2015). 
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As demonstrated in chapter 2.1, the stability of the terrestrial vegetation cover over a 

specified region during different time periods can be revealed by NDVI CV on pixel scale. 

NDVI CV is commonly applied to monitor the stability of vegetation cover and achieved 

good results (Fang et al., 2001, Peng et al., 2015, Barbosa et al., 2006). Therefore, in 

this study, the NDVI CV is regarded to be an indicator of NDVI stability related to the 

mean NDVI value on annual and seasonal scales. 

2) How to quantitatively determine the relationships between NDVI and climate 

factors, and how to investigate the lag time for maximum NDVI response to 

changes in climate factors? Which climate factor is the dominant factor controlling 

the vegetation growth in eastern China? 

The methodology of how to quantify the correlation coefficient between NDVI and 

climate variables and investigate the lag time for maximum NDVI response to changes in 

climate variables is introduced in chapter 4.2. Pearson’s correlation analysis is applied to 

quantify the strength of the linear relationship between NDVI and climate variables. 

Regarding the lag time for maximum NDVI response to changes in precipitation and 

temperature, the correlation coefficients between NDVI and precipitation and 

temperature of previous 0 to 3 months are examined and reported for each 

administrative units and each meteorological station both on annual and seasonal scales. 

The maximum correlation coefficients of four (0 to 3 months) correlation coefficients of 

each corresponding administrative unit and meteorological station are selected, which 

suggests the maximum response of NDVI to precipitation and temperature variation. The 

corresponding month of the maximum correlation coefficient determines the lag time for 

maximum NDVI response to changes in precipitation and temperature. 

At provincial level, temperature is regarded as the dominant factor controlling the 

vegetation cover variation throughout eastern China. In terms of the dominant factor in 

each meteorological station, 183 out of 184 meteorological stations are primarily 

controlled by temperature on annual scale. Furthermore, the vegetation cover variation is 

decisively influenced by temperature at 160 meteorological stations in spring, 124 

meteorological stations in summer, and 170 meteorological stations in autumn, 

suggesting that the decisive influence of temperature on vegetation cover variation is 

weaker in summer than in spring and autumn.      



194  Yong Xu 

3) How to map the spatial interaction and how to determine the quantitative 

relationships between vegetation variation and topographic factors and socio-

economic factors? 

Topographic factors (e.g., elevation, aspect, and slope) are decisive for long-term 

vegetation evolution and succession, while, in the short term, the dynamic changes of 

vegetation cover are most directly and indirectly affected by socio-economic factors (e.g., 

socio-economic development, urban expansion, and population growth). In this study, as 

mentioned in chapter 4.3 and chapter 4.4, overlay analysis is utilized to map the spatial 

characteristics between vegetation variation and topographic factors as well as 

vegetation variation and socio-economic factors, and zonal analysis is applied to obtain 

the regional statistical results.   

To map the spatial pattern of the dynamic changes of vegetation cover in different 

categories of the elevation ranges, the dataset of elevation is employed to be overlapped 

on the three vegetation metrics (e.g., annual NDVI, annual NDVI changing slope, and 

annual NDVI CV), respectively. For example, the annual NDVI was extracted on the 

basis of the reclassified elevation not only to map the spatial pattern of the annual NDVI 

along with the elevation gradient but also to statistically analyze the changing 

characteristics of the annual NDVI in terms of in different categories of elevation ranges. 

Theoretically, against the background of the above methods, the spatial interaction 

between the three vegetation metrics and the three topographic factors (e.g., elevation, 

aspect, and slope) was illustrated, and then their quantitative relationships of the three 

vegetation metrics at each elevation, aspect, and slope ranges were determined, 

respectively. Based on the same methodology, the spatial interaction between the three 

vegetation metrics and the three socio-economic factors is displayed, and the 

quantitative relationships between the three vegetation metrics and the three socio-

economic factors are computed.   

4) Do all the socio-economic factors negatively affect the vegetation growth over 

eastern China from 2001 to 2016? 

Human activities are anticipated to exert a stronger impact on the processes of 

vegetation evolution and succession than climate forces and topographic forces both in 
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speed and extent. In this study, the correlation coefficients between annual NDVI and 

the 13 socio-economic factors for each administrative unit are calculated.  

The 13 socio-economic factors are negatively associated with the annual NDVI in Tianjin, 

Shanghai, Jiangsu, Zhejiang, Fujian, and Guangdong, particularly in Shanghai, Jiangsu, 

and Zhejiang, the negative effects of human activities on vegetation growth are more 

serious. However, the correlation coefficients between the annual NDVI and the 13 

socio-economic factors are positive in Beijing, Hebei, Liaoning, and Shandong. 

Especially in Beijing, Hebei, and Liaoning, all of the correlation coefficients between the 

annual NDVI and the 13 socio-economic factors are significant at the p<0.01 level, which 

can be chiefly ascribed to the initiation of large-scale reforestation and afforestation 

programs such as the NFCP, TNSDP, BTSSCP, and GGP. These large-scale 

reforestation and afforestation programs not only exert the processes of the vegetation 

restoration but also offset the negative effects derived from human activities in its 

corresponding regions. 

5) What is the underlying cause of the spatial heterogeneity of vegetation cover over 

eastern China? 

The vegetation cover shows apparent spatial heterogeneity over eastern China both on 

annual and seasonal scales, which is not only produced by a single force but also 

attributed to the combined effects of local climate variation, local land use change, 

topographic forces, and human intervention. For instance, the spatial heterogeneity of 

vegetation cover is generally determined by the changes in precipitation and 

temperature and land use types. As displayed in Figure A-5 and Figure A-6, the 

precipitation and temperature show a gradient increase from the south of the study to the 

north of the study. Precipitation and temperature are recognized as primary factors 

controlling the rate of respiration and photosynthesis in plants, thereby affecting the 

vegetation vitality. Due to the uneven precipitation and temperature over eastern China, 

the vegetation cover presents a distinctive spatial heterogeneity. Furthermore, against 

the background of local land use types, the vegetation cover is generally higher in 

Zhejiang, Fujian, Guangdong, and the east of Liaoning but lower each city center, in the 

west of Liaoning, southeast of Beijing and Tianjin, and the northwest of Hebei.  
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Elevation is considered to be a dominant factor controlling the vertical distribution of 

vegetation cover. This study demonstrated that vegetation cover increases with the 

elevation and slope increase and reaches its peak at the elevation range of 400 to 500 m 

and 25° to 90°, respectively. However, the gradient changes of vegetation cover are not 

only dependent on the elevation and slope variations but also closely associated with the 

frequency of human activities. Due to the human intervention gradually weakening with 

the increase of elevation and slope ranges, the spatial heterogeneity of vegetation cover 

is considerably ascribed to the combined effects of topographic forces and human 

activities. It is worth noticing that the vegetation cover in each category shows no 

statistical differences on the SFS and NFS. 

Human activities exert both positive and negative impacts on vegetation cover change, 

which contribute to the spatial heterogeneity of vegetation cover. For example, along 

with the socio-economic development, urban expansion, and population growth for the 

study period, the annual vegetation cover in Shanghai decreased with a changing rate of 

-0. 0036 year-1, while the annual vegetation cover in Beijing increased with a changing 

rate of 0.0033 year-1 during the same period. It has been evidenced that the vegetation 

cover improvement in Beijing is attributed to the implementation of large-scale 

reforestation and afforestation programs and winning the right to host the 2008 Olympic 

Games at a certain level. 

6.3 Strengths and limitations 

This study investigated the spatiotemporal characteristics of vegetation variation and 

explored the responding mechanisms of vegetation cover to the variability of its driving 

factors such as climate change, human activities, and natural forces in eastern China 

from 2001 to 2016. The results of this study contribute to a better understanding of the 

dynamic change of vegetation cover, the interplay between vegetation cover change and 

its driving forces, and the time lag effects of vegetation cover to climate variation in the 

context of global climate change, terrain evolution, socio-economic development, urban 

expansion, as well as population growth. This study further provides a theoretical 

framework for decision-making for future environmental protection, biodiversity 

conservation, as well as vegetation management. 
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6.3.1 Strengths 

The emergence of NDVI time series from multiple satellite sensors such as NOAA 

AVHRR, MODIS, as well as SPOT VGT provides the foundation for studying on the 

dynamic change of vegetation cover from pixel scale, regional scale, and national scale 

to global scale. In this study, MODIS NDVI C6 is utilized to monitor the spatiotemporal 

variation of vegetation cover because the production of MODIS NDVI is on the basis of 

spectral bands, which include state-of-the-art navigation, atmospheric correction, 

reduced geometric distortions, and improved radiometric sensitivity. In addition, these 

spectral bands are especially projected for vegetation monitoring. In addition, as 

demonstrated by Zhang et al. (2017) that the accuracy and precision of the MODIS NDVI 

C6 are better than the MODIS NDVI C5 due to sensor upgrade. Consequently, the 

MODIS NDVI C6 is regarded to be an enhancement over the NDVI products derived 

from other sensors. 

Previous studies have focused on investigating the response of vegetation cover change 

to a single force or on a single scale (Kileshye Onema and Taigbenu, 2009, Kong et al., 

2017, Krishnaswamy et al., 2014, Bennie et al., 2006, Luck et al., 2009). The 

relationships between vegetation cover change and multi-forces and the time lag effects 

of vegetation cover change to climate factors such as precipitation and temperature are 

less considered, which tend to increase the uncertainty of the research results. In this 

study, (1) three NDVI metrics such as the NDVI value, NDVI changing slope, as well as 

NDVI CV are employed to detect the spatiotemporal variation of vegetation cover; (2) the 

underlying relationships between vegetation cover change and its driving factors and the 

responding mechanisms of vegetation cover to variability of driving factors in eastern 

China are analyzed; (3) the lag time for maximum NDVI response to climate factors is 

investigated for each administrative unit and each meteorological station, and the spatial 

patterns of the lag time for maximum NDVI response to precipitation and temperature 

are displayed both on annual and seasonal scales ; (4) the spatial interaction between 

the three vegetation metrics and the three topographic factors are illustrated; (5) 

furthermore, the relationships between the annual NDVI and the 13 socio-economic 

factors and the spatial interplay between the three vegetation metrics and socio-



198  Yong Xu 

economic development, urban expansion, and population growth are demonstrated in 

this study.  

Taking multi-driving forces into consideration and including multiple factors in each force 

can promote an enhanced understanding of spatiotemporal interaction between 

vegetation cover change and its driving forces in eastern China. Our study can not only 

promote a way for evaluating the effectiveness of the reforestation program, but also can 

provide basic knowledge to urban planner, lawmaker, and authorities for environmental 

protection, ecological restoration, and vegetation reforestation during the processes of 

large-scale urbanization, reforestation program implementation and management.   

6.3.2 Limitations 

The overall relationships between vegetation cover and climate factors such as 

precipitation and temperature are obtained in this study, but the differences of different 

land use types in response to climate variability do not take into consideration. As 

mentioned in chapter 3 that the major land use types in eastern China are farmland, 

forest land, grassland, built-up land, and water body. Particularly, the three former land 

use types occupy a large proportion in eastern China. Wu et al. (2015) demonstrated 

that different vegetation types show clearly different lag time to changes in the same 

climate factors, and the same vegetation type presents significantly different lag time to 

different climate factors. For instance, the deciduous broadleaf forest shows the longest 

lag time to changes in temperature, while most of the grassland and cropland response 

to the concurrent month of temperature. However, the time lag effects of different 

vegetation types to precipitation show huge geographic differences and less distinct 

patterns. Regarding the grassland types, the relationships between NDVI and 

precipitation as well as NDVI and temperature are obviously varied (Piao et al., 2006b). 

After applying the linear regression analysis, areas had experienced greening trends and 

browning trends are detected in eastern China from 2001 to 2016. Figure 5-8(a) shows 

that areas located in the three economic zones and its surrounding areas are undergoing 

a serious vegetation degradation, while areas distributed in Beijing, the north of Hebei, 

and many parts of Liaoning and Shandong are experiencing significant vegetation 

rehabilitation. Although these results are highly in line with previous studies (Cao et al., 
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2017, Li et al., 2015c, Lu et al., 2015, Peng et al., 2015), verification of the main findings 

of this study is restricted by the availability of in situ observations. Fieldworks are 

therefore urgently needed to validate the main findings of this study and to improve the 

accuracy of the main findings of this study. For instance, the statistical vegetation cover 

change shows no differences on the NFS and SFS, which is not in line with some 

previous studies (Albaba, 2014, Maren et al., 2015, Toro Guerrero et al., 2016). Thus, 

field works can verify the differences and provide a better understanding of the 

underlying causes of the dynamic change of vegetation cover in eastern China. 

It is well known that vegetation plays an important role in regulating climate systems in 

the long-term process. The MDO13Q1 NDVI data is available from February 2000 to the 

present. The use of MODIS satellite imageries and monthly meteorological data may 

propose a challenge to investigate the relationship between vegetation cover change 

and climate variation accurately. The 16-year study period is only available to generalize 

a whole picture of vegetation cover change responses to climate variation in this century, 

but cannot demonstrate the interaction mechanism between vegetation cover change 

and climate variation in the last century. The study period needs to be extended forward. 

Furthermore, the relationships between the annual NDVI and the 13 socio-economic 

factors are investigated at the administrative unit level, which cannot report the spatial 

characteristic of each socio-economic factor contributing to vegetation cover change. 

6.4 Future research 

The methodology framework, which proposed in chapter 4, has demonstrated to be 

practical in monitoring the dynamic change of vegetation cover and investigating the 

spatiotemporal characteristics of vegetation cover change in response to its driving 

factors. The main findings of this study contribute to a better understanding of the 

relationship between vegetation cover change and its driving forces and provide 

decision-making support for future project implementation. However, it is just a beginning 

to improve our insight into global vegetation variation, additional research issues need to 

be addressed in future study. 

1) The relationship between different land use types and climate factors 
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This study generally accounts for the effects of climate factors on vegetation. It is well 

acknowledged that land use and land cover changes have performed a significant 

influence on vegetation variation. In addition, different land use types are expected to 

show different correlation and lag time to changes in climate factors. Eastern China 

possesses abundant ecosystems. Future work is needed to investigate the underlying 

mechanism of different land use types response to climate variation and the specific lag 

time of different land use types to changes in climate factors. 

2) The interaction between groundwater storage dynamic and long-term vegetation 

variation  

Satellite gravimetry is a unique RS technique capable to detect total water storage 

anomaly. The current Gravity Recovery and Climate Experiment (GRACE) satellite 

mission, launched in 2002, has provided valuable scientific data for hydrological 

applications particularly for large-scale total water storage resources monitoring and 

assessment. Vegetation growth is highly controlled by water availability, particularly in 

water-limited ecosystems (Yang et al., 2014, Xie et al., 2016). Drought events frequently 

occur in the north of the study area (Zhu et al., 2016). It is therefore of great practical 

value to examine the relationship between vegetation variation and total water storage 

variability in eastern China.  

3) Spatial characteristic of NDVI in response to precipitation 

Monthly precipitation and temperature data are applied to investigate the relationship 

between NDVI and climate variability based on 184 meteorological base stations in this 

study. The 184 meteorological stations are unevenly distributed in the study area, which 

may lead to a systematical error of spatial interplay between NDVI and climate variability. 

The Tropical Rainfall Measuring Mission (TRMM) satellite, launched in November 1997, 

provides a possibility to investigate the spatial pattern of the relationship and lag time for 

maximum NDVI response to precipitation evenly. Hence, the spatial pattern of the 

relationship between NDVI and precipitation and the lag time for maximum NDVI 

response to changes in precipitation is able to be detected evenly in the background of 

the TRMM satellite images. 
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Appendix A 

 

Figure A-1. The temporal variation of annual and seasonal precipitation in eastern 
China from 2001 to 2016 

 

Figure A-2. The temporal variation of annual and seasonal temperature in eastern 
China from 2001 to 2016 
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Figure A-3. The temporal variation of annual and seasonal precipitation in ten 
administrative units from 2001 to 2016 
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Figure A-4. The temporal variation of annual and seasonal temperature in ten 
administrative units from 2001 to 2016
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Table A-1. The equation and R-squared value of annual and seasonal precipitation of eastern China and the ten 

administrative units (Unit: mm year-1) 

Administrative unit 
The equation and R-squared value of annual and seasonal precipitation  

Annual Spring Summer Autumn 

Beijing y = 7.5668x + 473.7 
R2 = 0.215 

y = -0.4628x + 72.915 
R2 = 0.006 

y = 4.6275x + 305.91 
R2 = 0.0938 

y = 3.6109x + 83.87 
R2 = 0.0955 

Tianjin y = 5.3837x + 449.48 
R2 = 0.0649 

y = 0.7076x + 53.61 
R2 = 0.02 

y = 1.8465x + 313.23 
R2 = 0.0117 

y = 2.5668x + 74.208 
R2 = 0.0491 

Hebei y = 6.2476x + 451.13 
R2 = 0.1709 

y = -0.0462x + 71.755 
R2 = 0.0001 

y = 4.2362x + 283.08 
R2 = 0.126 

y = 1.8424x + 86.628 
R2 = 0.0524 

Liaoning y = 6.9581x + 616.35 
R2 = 0.0574 

y = 3.0274x + 87.843 
R2 = 0.118 

y = 2.1474x + 408.14 
R2 = 0.0128 

y = 1.3721x + 101.34 
R2 = 0.0278 

Shanghai y = 21.195x + 1038.3 
R2 = 0.2143 

y = 4.0234x + 217.85 
R2 = 0.0453 

y = 4.3475x + 489 
R2 = 0.016 

y = 17.068x + 106.72 
R2 = 0.3787 

Jiangsu y = 13.543x + 943.78 
R2 = 0.1691 

y = 1.8597x + 183.28 
R2 = 0.0214 

y = 2.8925x + 519.28 
R2 = 0.0142 

y = 13.038x + 88.63 
R2 = 0.4355 

Zhejiang y = 23.45x + 1281 
R2 = 0.2058 

y = 5.8562x + 346.89 
R2 = 0.0662 

y = 8.609x + 476.17 
R2 = 0.1035 

y = 9.9354x + 222.02 
R2 = 0.2739 

Fujian y = 32.302x + 1404.2 
R2 = 0.2029 

y = 11.828x + 469.81 
R2 = 0.1595 

y = 3.8515x + 608.26 
R2 = 0.0212 

y = 11.206x + 169.41 
R2 = 0.188 

Shandong y = -2.911x + 720.56 
R2 = 0.0135 

y = -0.4076x + 113.49 
R2 = 0.0036 

y = -3.4387x + 457.51 
R2 = 0.0357 

y = 1.1415x + 115.2 
R2 = 0.0078 

Guangdong y = 14.379x + 1674.4 
R2 = 0.0478 

y = 17.765x + 402.54 
R2 = 0.3466 

y = -15.64x + 944.05 
R2 = 0.1531 

y = 3.8932x + 257.27 
R2 = 0.0316 

Eastern China y = 20.397x + 970.11 
R2 = 0.4387 

y = 8.6357x + 224.97 
R2 = 0.4407 

y = 1.9525x + 522.37 
R2 = 0.0367 

y = 7.041x + 140.33 
R2 = 0.3882 
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Table A-2. The equation and R-squared value of annual and seasonal temperature of eastern China and the ten 

administrative units (Unit: ℃ year-1)  

Administrative unit 
The equation and R-squared value of annual and seasonal temperature  

Annual Spring Summer Autumn 

Beijing y = -0.0734x + 12.618 
R2 = 0.2597 

y = -0.0643x + 14.19 
R2 = 0.0866 

y = -0.0547x + 25.69 
R2 = 0.3037 

y = -0.0825x + 12.783 
R2 = 0.1657 

Tianjin y = -0.0116x + 13.18 
R2 = 0.0123 

y = -0.0075x + 13.645 
R2 = 0.001 

y = -0.0034x + 25.635 
R2 = 0.0013 

y = -0.0219x + 14.43 
R2 = 0.0103 

Hebei y = -0.0104x + 11.058 
R2 = 0.0117 

y = -0.0037x + 12.425 
R2 = 0.0004 

y = 0.0018x + 24.21 
R2 = 0.0003 

y = -0.0132x + 11.35 
R2 = 0.0071 

Liaoning y = 0.0019x + 9.015 
R2 = 0.0002 

y = -0.0226x + 9.9925 
R2 = 0.0095 

y = 0.0132x + 22.888 
R2 = 0.0264 

y = -0.0276x + 10.498 
R2 = 0.0263 

Shanghai y = -0.0172x + 17.503 
R2 = 0.0449 

y = 0.0007x + 15.913 
R2 = 3E-05 

y = -0.0207x + 27.733 
R2 = 0.0148 

y = -0.0174x + 19.835 
R2 = 0.0328 

Jiangsu y = -0.0187x + 15.89 
R2 = 0.0508 

y = 0.0054x + 15.048 
R2 = 0.0014 

y = -0.0125x + 26.688 
R2 = 0.0081 

y = -0.0274x + 17.608 
R2 = 0.0661 

Zhejiang y = -0.0134x + 17.92 
R2 = 0.0268 

y = 0.0007x + 16.463 
R2 = 4E-05 

y = -0.0019x + 27.335 
R2 = 0.0003 

y = 0.0026x + 19.89 
R2 = 0.0004 

Fujian y = 0.0012x + 19.34 
R2 = 0.0004 

y = -0.0194x + 18.665 
R2 = 0.0273 

y = 0.0138x + 26.845 
R2 = 0.0561 

y = 0.0547x + 20.623 
R2 = 0.1714 

Shandong y = 0.0282x + 12.898 
R2 = 0.0875 

y = 0.0451x + 12.71 
R2 = 0.0606 

y = 0.0528x + 24.208 
R2 = 0.2507 

y = 0.026x + 14.373 
R2 = 0.0434 

Guangdong y = -0.0226x + 22.38 
R2 = 0.0981 

y = -0.0563x + 22.535 
R2 = 0.1654 

y = 0.0054x + 28.21 
R2 = 0.0075 

y = 0.0304x + 23.523 
R2 = 0.082 

Eastern China y = 0.0551x + 15.15 
R2 = 0.4411 

y = 0.0418x + 15.245 
R2 = 0.1002 

y = 0.0381x + 25.608 
R2 = 0.3537 

y = 0.0738x + 16.385 
R2 = 0.3538 
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Figure A-5. The spatial pattern of mean annual and seasonal precipitation in 
eastern China from 2001 to 2016 
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Figure A-6. The spatial pattern of mean annual and seasonal temperature in 
eastern China from 2001 to 2016 
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Appendix B 

Table B-1. GDP for ten administrative units from 2001 to 2016 (Unit: 100 million RMB) 
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Table B-2. Primary industry product for ten administrative units from 2001 to 2016 (Unit: 100 million RMB) 
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Table B-3. Secondary industry product for ten administrative units from 2001 to 2016 (Unit: 100 million RMB) 
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Table B-4. Tertiary industry product for ten administrative units from 2001 to 2016 (Unit: 100 million RMB) 
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Table B-5. GDP per capita for ten administrative units from 2001 to 2016 (Unit: RMB) 
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Table B-6. Household consumption ten administrative units from 2001 to 2016 (Unit: RMB) 
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Table B-7. Rural household consumption for ten administrative units from 2001 to 2016 (Unit: RMB) 
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Table B-8. Urban household consumption for ten administrative units from 2001 to 2016 (Unit: RMB) 
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Table B-9. Total investment in fixed assets for ten administrative units from 2001 to 2016 (Unit: 100 million RMB) 
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Table B-10. Urbanization rate for ten administrative units from 2001 to 2016 (Unit: %) 
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Table B-11. Population density for ten administrative units from 2001 to 2016 (Unit: Person/sq.km.) 
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Table B-12. Population for ten administrative units from 2001 to 2016 (Unit: Ten thousand) 

 

 



Appendix B                  237 

Table B-13. Total employment for ten administrative units from 2001 to 2016 (Unit: Ten thousand) 
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