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Abstract

We investigate the mortar finite element method for second order elliptic boundary value problems
on domains which are decomposed into patchesΩk with tensor-product NURBS parameterizations.
We follow the methodology of IsoGeometric Analysis (IGA) and choose discrete spaces Xh,k on
each patch Ωk as tensor-product NURBS spaces of the same or higher degree as given by the
parameterization. Our work is an extension of [12] and highlights several aspects which did
not receive full attention before. In particular, by choosing appropriate spaces of polynomial
splines as Lagrange multipliers, we obtain a uniform infsup-inequality. Moreover, we provide
a new additional condition on the discrete spaces Xh,k which is required for obtaining optimal
convergence rates of the mortar method. Our numerical examples demonstrate that the optimal
rate is lost if this condition is neglected.
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1. Introduction

Our main focus is on the theoretical foundation of an IsoGeometric Analysis (IGA) approach to
mixed finite element methods using non-uniform rational B-splines (NURBS) for the finite element
discretization. We investigate the mortar finite element method on domains

Ω =

K⋃
k=1
Ωk ⊂ R

2

which are decomposed into patches Ωk with tensor-product NURBS parameterizations

Fk : [0,1]2 → Ωk .

For the original mortar method we refer to [6, 7, 24]. A comprehensive description of the
finite-element discretization using the methodology of IsoGeometric Analysis (IGA) is given in
[12]. Prior uses of the mortar method in IGA have also been documented in [2, 15, 16, 17]. Its
centerpieces are discrete spaces Xh,k ⊂ H1(Ωk), which are pushforward of tensor-product NURBS
spaces on the parameter domain [0,1]2 and which have the same or higher degree given by the
parameterization Fk . Furthermore, discrete spaces Mh,l of Lagrange multipliers are defined for the
representation of weak continuity conditions across the interfaces γl . In [12] the pushforward of
polynomial spline spaces of the same or lower degree are proposed.

Our work is an extension of [12] and highlights several aspects which did not receive full
attention before.

1. In our numerical experiments based on the method in [12], using parameterizations by
quartic NURBS with multiple interior knots and quartic splines as Lagrange multipliers,
we observed that the optimal approximation rate claimed in Theorem 5.5 of [12] is not
obtained. In Section 7 we show that a simple additional condition on the discrete spaces
Xh,k is sufficient in order to obtain the optimal approximation rate, see Assumption 4 and
Proposition 7.11. We give a short explanation here. Let the interface γl be a boundary line
of the patch Ωk and u|Ωk

∈ Hpk+1(Ωk) for some integer pk . In the non-parametric setting of
[6, 7, 24], several arguments in the proof for the optimal approximation order employ trace
theorems of the form

u|γl ∈ Hpk+1/2(γl),
∂u
∂νl

����
γl

∈ Hpk−1/2(γl).

Here, νl denotes the outer normal of Ωk on γl . The trace theorem is valid in this form, if
γl is supposed to be smooth (in fact, it is a straight line in [6, 7, 24]). However, in the IGA
setting γl is a NURBS curve of degree pk with interior knots, and its smoothness at these
knots can degrade as much as continuity being the only remaining assumption. The method
of “bent Sobolev spaces” was introduced in [3, 4] in order to remedy this defect. We add
some missing pieces which are essential for an application of these results to the IGA mortar
method. First, a careful analysis of the traces u|γl and ∇u|γl with respect to non-smooth
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curves γl is performed using results from [19]. Secondly, a result of super-approximation is
given in Theorem 7.6 in order to obtain non-integer approximation orders

inf
v∈Wh,l

‖u − v‖L2(γl) ≤ Chpk+1/2
k ‖u‖Hpk+1(Ωk )

,

where Wh,l is the trace space on γl of the discretization subspace Xh,k . Finally, and most
importantly, in spite of the fact that the pullback of M1

h,l on the parameter domain contains
all polynomials of degree pk − 1, the optimal rate

inf
µ∈M1

h,l

 ∂u
∂νl
− µ


L2(γl)

≤ Chpk−1/2
k ‖u‖Hpk+1(Ωk )

is not always obtained. This leads to a defect of the overall approximation order of the
discrete solution which is induced by a defect of the consistency error. We provide a simple
extra condition on the discretization (see Assumption 4) and prove in Proposition 7.11, that
the optimal rate is obtained under this assumption.

2. The formulation of the mortar method as a saddle point problem involves Lagrangemultiplier
spaces Mh,l for the representation of weak continuity conditions across the interfaces γl of the
domain decomposition. In order to achieve the optimal approximation order of the mortar
method, a good choice for Mh,l is the pushforward of the polynomial spline space of the
same degree as Xh,k , if γl is an edge of the patch Ωk , and with suitable modifications at both
endpoints of γl , see [12, Section 4.3]. It is only a conjecture in [12] that this choice justifies
a uniform infsup-condition. In Section 4.2 we define a spline space M1

h,l of the same degree
with another type of endpoint modifications, for which we provide the analytical proof of the
infsup-inequality in Section 6. As a side-effect of the new definition of the space of Lagrange
multipliers, we show in Section 8 that the sparsity of the mass matrix is increased slightly.

3. In the geometrically conforming case, γkl = ∂Ωk ∩ ∂Ωl is either empty, a vertex or a
full edge of both patches. In engineering applications of CAD-tools, the decomposition
of Ω can often be geometrically non-conforming and includes T-intersections of the patch
boundaries. The setting in [2, 12, 15, 17, 16] allows certain types of T-intersections, but
excludes configurations of staircase type, where γkl is neither an edge of Ωk nor of Ωl . We
provide an adaptation of the discrete spaces Xh,k and allow full flexibility of designing the
multi-patch layout of the geometry.

In order to keep the overhead of notations small, we present our analytical results about
the infsup-condition and the a-priori error estimates for a simple class of second order elliptic
problems. We proceed to more elaborate models in elasticity in our numerical experiments in
Section 9. The scope of applications of the IGA mortar method has recently been extended to a
class of contact problems in [1, 20, 22], and the infsup-condition and the a-priori error estimates
by [12] provided the theoretical foundation. We believe that our results in Sections 6 and 7 will be
valuable ingredients for further developments in this direction.
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We begin with the elliptic problem

−div(α∇u) + βu = f in Ω

on a Lipschitz domain Ω ⊂ R2 with boundary conditions

u|ΓD = 0, α
∂u
∂ν

����
ΓN

= g,

where ΓD has positive measure and ΓN = ∂Ω \ ΓD. For its weak formulation we define H1
0,D(Ω) =

{v ∈ H1(Ω) : v |ΓD = 0} and the bilinear form

a(u, v) =
∫
Ω

(α∇u · ∇v + βuv) dx, u, v ∈ H1
0,D(Ω). (1)

We assume that α is a uniformly positive definite matrix with entries αi,j ∈ L∞(Ω) and β ∈ L∞(Ω)
is nonnegative. Then the bilinear form a is coercive. In the weak formulation, we look for
u ∈ H1

0,D(Ω) such that

a(u, v) =
∫
Ω

f v dx +
∫
ΓN

gv ds for all v ∈ H1
0,D(Ω). (2)

We often use Sobolev spaces Hs(Ω) with smoothness order s ≥ 0 which is not always an integer.
The norm and semi-norm are denoted as usual by ‖v‖s,Ω and |v |s,Ω.

We end the introduction by a short outline of our work. We repeat from [12] the geometric
description and the general setting of the weak formulation as a saddle point problem in Sections
2 and 3. Section 4 gives the definitions of the discrete spaces Xh,k and the new spaces M1

h of
Lagrange multipliers. Sections 5 and 6 deal with the L2-stability of the mortar projection and the
uniform infsup-inequality. Section 7 provides a detailed analysis of the approximation order of the
discrete solution. In Section 8 we give some information about the implementation, with special
emphasis on the mass matrix, and Section 9 provides several numerical results for the Poisson
problem and for elasticity problems.

2. NURBS description of the geometry

The geometrical setting is formulated as in [12]. In order to fix the notations, we repeat some
of the material in the referenced article.

Let Ω1, . . . ,ΩK ⊂ R
2 define a nonoverlapping decomposition of the domain Ω by curvilinear

quadrilaterals (patches), i.e.

Ω =

K⋃
k=1
Ωk, Ωk ∩Ωl = ∅ for k , l .

The decomposition may be geometrically non-conforming, as we allow T-intersections at the
boundaries of the patches. A sketch of such decomposition is given in Fig. 1.
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Figure 1: Decomposition of domains

Each patch Ωk is parameterized by a homeomorphism Fk : Ω̂ = [0,1]2 → Ωk which is
bi-Lipschitz. Throughout this article, Fk is a bivariate NURBS parameterization

Fk(ξ1, ξ2) =
∑
i∈Ik

Ck,iN̂k,i(ξ1, ξ2), (ξ1, ξ2) ∈ Ω̂ = [0,1]2, (3)

where (N̂k,i)i∈Ik is the family of NURBS basis functions of degree pk with respect to the bivariate
knot sequence

Ξk = Ξ
(1)
k × Ξ

(2)
k ⊂ Ω̂

and with positive weights {ωk,i, i ∈ Ik}. More specifically, N̂k,i is defined by

N̂k,i(ξ1, ξ2) =
ωk,iB̂

pk
k,i(ξ1, ξ2)

ŵk(ξ1, ξ2)
, ŵk(ξ1, ξ2) =

∑
i∈Ik

ωk,iB̂
pk
k,i(ξ1, ξ2), (4)

where (B̂pk
k,i)i∈Ik is the basis of tensor-product B-splines of polynomial degree pk in both coordinate

directions. We assume throughout this article that all knot sequences are open; i.e., the first and
last knot have multiplicity pk + 1.

For 1 ≤ j, k ≤ K , k , j, we define the interface γ j k as the interior of the intersection
γ j k = ∂Ω j ∩ ∂Ωk . We consider only those pairs ( j, k) with non-empty γ j k and renumber the
interfaces as γl , l = 1, . . . , L. For each interface γl , we choose one of the adjacent patches as
master cellΩm(l) and the other one as slave cellΩs(l), so that γl = ∂Ωm(l)∩ ∂Ωs(l). This assignment
allows an arbitrary choice for each interface, i.e. Ωk can be a master cell for one of its boundary
lines and a slave cell for another boundary line. We define γ̂l = F−1

s(l)(γl) and use the notation
Fl := Fs(l) |γ̂l for the parameterization of the interface.
Remark 2.1. In a geometrically conforming case, every interface γl is a full edge ofΩs(l) andΩm(l).
Its pre-image under Fs(l) is a boundary line

γ̂l = (0,1) × {0}, (0,1) × {1}, {0} × (0,1), or {1} × (0,1), (5)
5



of Ω̂. Without causing confusion, we drop the irrelevant dimension and use γ̂l = (0,1).
For a geometrically non-conforming decomposition we allow T-intersections of the interfaces

and consider the following two scenarios in parallel.

NC1 The interface γl is a full edge of the slave patch Ωs(l). As before, γ̂l is as in (5) and we
use the abbreviated form γ̂l = (0,1). This restriction on the choice of the master/slave
correspondence was used in [12]. It limits the applicability of the mortar method since
staircase patch topologies cannot be treated.

NC2 There is no geometrical restriction on the choice of the master/slave correspondence. Then
we introduce a C0-line as an extension of the ending interface of a T-intersection into the
adjacent patch Ωk . This is done by inserting a knot ζ of multiplicity pk (or increasing the
multiplicity of an existent knot to pk) into the relevant knot sequence Ξ(1)k or Ξ(2)k . It does not
change the patch geometry, but affects the initial parameterization Fk by using a larger set
of NURBS basis functions. The immediate effect on the discrete space Xh,k is equivalent to
splitting the patchΩk along the lineFk(ζ, t) (orFk(t, ζ)), t ∈ [0,1], and connecting the control
points by shared degrees of freedom. By doing so, we get a setting where only geometrical
conforming cases are present. Full flexibility in the choice of themaster/slave correspondence
is obtained and all forms of multi-patch layouts can be computed. This extension leads to the
additional element lines visible in Figures 10 and 25. It is important to note that the required
refinement does not propagate to further patches. After this initial modification has been
done for all T-intersections, each interface γl = Fl(γ̂l) is a parameterized NURBS curve with
an open knot sequence Θl ⊂ γ̂l = [ξl,1, ξl,2] ⊂ [0,1], and ξl,1, ξl,2 are the parameter values of
the endpoints of γl .

To unify our notations, we let ξl,1 = 0 and ξl,2 = 1 in the geometrically conforming case and NC1;
then γ̂l = (ξl,1, ξl,2) is valid for all cases.

The trace on γl of the NURBS basis functions of the slave cell Ωs(l) are univariate NURBS
basis functions of degree ql := ps(l) on the interval [ξl,1, ξl,2]. In the geometrically conforming case
or for NC1, the correspoinding knot sequence Θl is one of the four sets

Ξ
(1)
s(l) × {0}, Ξ

(1)
s(l) × {1}, {0} × Ξ

(2)
s(l), {1} × Ξ

(2)
s(l).

Again, we suppress the obsolete dimension and use Θl as an open knot sequence on [0,1],

Θl = {0 = θl,1 = · · · = θl,ql+1 < θl,ql+2 ≤ · · · ≤ θl,nl < θl,nl+1 = · · · = θl,nl+ql+1 = 1}.

The parameter nl denotes the dimension of the initial NURBS space for the parameterization
Fl : (0,1) → γl . With the corresponding subset of weigths wl,i = ωs(l),i, 1 ≤ i ≤ nl , along this
interface, the univariate NURBS basis functions on γ̂l are

N̂l,i(ξ) =
wl,i B̂

ql
l,i (ξ)

ŵl(ξ)
, ŵl(ξ) =

nl∑
j=1

wl,j B̂
ql
l,j(ξ), ξ ∈ [0,1]. (6)
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Here we denote by B̂ql
l,i the univariate B-splines of degree ql with knot sequence Θl . For the

nonconforming geometry NC2, the open knot sequence Θl has endpoints θl,1 = ξl,1 and θl,nl+ql+1 =
ξl,2 of multiplicity ql + 1. Only a subset of the NURBS basis functions of the patch Ωs(l) have
nonzero trace on γl in this case.

The same consideration leads to the univariate NURBS basis functions N̂m
l,j of degree pm(l) with

respect to the master cell Ωm(l). The extra superscript m is used here in order to point out the role
of the master cell.

The standard inner product on γl is given by∫
γl

uv ds =
∫
γ̂l

(u ◦ Fl)(ξ) (v ◦ Fl)(ξ) τl(ξ) dξ, u, v ∈ L2(γl),

where τl = |F′l | is the length of the tangent vector of γl . For later use, we also define the weighted
inner product

〈u, v〉ρl :=
∫
γl

ρluv ds

with a positive weight function ρl with 0 < c ≤ ρl ≤ C. We will often choose ρl =
ŵ2
l

τl
◦ F−1

l , and
then obtain

〈u, v〉ρl =
∫
γ̂l

ŵ2
l (ξ) (u ◦ Fl)(ξ) (v ◦ Fl)(ξ) dξ. (7)

The inner products are defined for pairs u, v ∈ L2(γl), or for u ∈ H1/2(γl) and v ∈ (H1/2(γl))
′. The

induced norm is equivalent to the standard L2-norm on γl .

We make the following assumption on the parameterization which is essential for our method.

Assumption 1. The geometry is waterproof; i.e. the mapping F−1
m(l) ◦ Fs(l) : γ̂l → (0,1) for

"switching the sides" at an interface γl is well-defined.
Remark 2.2. The methods proposed in this paper can also be used for non-waterproof geometries,
whereby from the mathematical point of view a variational crime is committed. This results in an
additional error which does not vanish in the fine limit. However, as shown in [12], the mortar
method is robust with respect to these kinds of non-matching interfaces and sufficient accuracy for
engineering applications is obtained.

3. Weak formulation of the saddle point problem

The natural function space used in mixed finite element methods for the Dirichlet problem is
the direct product

X = {v ∈ L2(Ω) : vk = v |Ωk
∈ H1(Ωk), vk |ΓD∩∂Ωk

= 0}

endowed with the norm

‖v‖X =

(
K∑

k=1
‖vk ‖

2
1,Ωk

)1/2

.
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The bilinear form a in (1) is canonically extended to X × X by

a(u, v) =
K∑

k=1

∫
Ωk

(α∇u · ∇v + βuv) dx.

The continuity and coercivity of this extension of a are obvious.
Clearly, X is not a subspace of H1

0,D(Ω). For the formulation of weak continuity conditions on
every interface γl , we define the space of Lagrange multipliers

M =

{
ψ = (ψl) ∈

L∏
l=1
(H1/2(γl))

′ : ∃q ∈ H0(div,Ω) such that ψl = q · νl

}
,

where νl denotes the outer normal of Ωs(l) along γl . With the notation [v]l = (vs(l) − vm(l))|γl for
the jump of v ∈ X across γl , and with the weighted inner product (7), we define the bilinear form

bρ : X × M → R, bρ(v,ψ) =
L∑

l=1
〈[v]l,ψl〉ρl, (8)

with weight functions ρl =
ŵ2
l

τl
◦ F−1

l . Based on the fact that

V = {v ∈ X : bρ(v,ψ) = 0 for all ψ ∈ M} = H1
0,D(Ω),

the weak solution of (2) is obtained from the solution of the following saddle point problem: Find
(u, λ) ∈ X × M such that

a(u, v) + bρ(v, λ) =
∫
Ω

f v dx +
∫
ΓN

gv ds, v ∈ X,
bρ(u, µ) = 0, µ ∈ M .

(9)

This problem has a unique solution (u, λ) ∈ X × M , whose first component u ∈ V satisfies (2).
The second component λ ∈ M represents the (weighted) normal flux. Due to the presence of the
weight ρl in (9), its component λl ∈ (H1/2(γl))

′ is

λl =
α

ρl

∂u
∂νl

. (10)

The usual stability analysis provides the upper bound

‖u‖1,Ω + ‖λ‖M ≤ C(‖ f ‖L2(Ω) + ‖g‖L2(ΓN )).

The reason why we use a weighted inner product instead of the standard inner product of L2(γl)

will become clear when we consider the numerical computation of the mass matrix in 8.
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4. Discretization of the saddle point problem using NURBS and B-splines

The discretization of the saddle point problem is obtained by choosing a suitable pair of finite-
dimensional spaces Xh ⊂ X and Mh ⊂ M , where the subscript h represents a vector h = (hk)k=1,...,K
for the spatial resolutions on the patchesΩk . The mixedmethod for the solution of (9) is formulated
as follows: Find (uh, λh) ∈ Xh × Mh such that

a(uh, v) + bρ(v, λh) =
∫
Ω

f v dx +
∫
ΓN

gv ds for all v ∈ Xh,

bρ(uh, µ) = 0 for all µ ∈ Mh.
(11)

The solution space for uh will be denoted by

Vh = {v ∈ Xh : bρ(v, µ) = 0 for all µ ∈ Mh}. (12)

If the weak solution u of (2) is locally smooth, i.e. u ∈ H1
0,D(Ω) ∩

∏K
k=1 Hpk+1(Ωk), we look for

error estimates of the form

‖u − uh‖
2
X + ‖λ − λh‖

2
−1/2,h ≤ C

K∑
k=1

h2pk
k |u|

2
Hpk+1(Ωk )

. (13)

Here we use the mesh-dependent norm on Mh as in [11, 24]

‖µ‖σ,h =

(
L∑

l=1
h−2σ

s(l) ‖µ‖
2
L2(γl)

)1/2

(14)

with σ = −1/2. In this article, we follow [12] for the definition of the space Xh, but we propose an
alternative space Mh of Lagrange multipliers.

4.1. The space Xh defined by NURBS
The initial knot sequences Ξk ⊂ [0,1]2 were used for the parameterizations Fk : [0,1]2 → Ωk

of the patches Ωk . (In a geometrically non-conforming case NC2 of Remark 2.1, we assume that
the knots ξl,1, ξl,2 are already existent with multiplicity pk in Ξ(1)k or Ξ(2)k , respectively.) The finite
element discretization uses refined knot sequences on each patch independently. Every refined
knot sequence Ξh,k = Ξ

(1)
h,k × Ξ

(2)
h,k ⊂ [0,1]

2 defines a grid of two open knot sequences with knots
ξ
(r)
h,k,j , 1 ≤ j ≤ n(r)h,k + pk + 1 and r = 1,2. The numbers n(r)h,k , r = 1,2, denote the dimension of
the space of univariate NURBS with knots Ξ(r)h,k . To ensure that all NURBS basis functions are
continuous in the patch Ωk , we require that all knots in (0,1) have at most multiplicity pk , i.e.

h(r)k,i = ξ
(r)
h,k,i+pk

− ξ
(r)
h,k,i > 0, r = 1,2, 2 ≤ i ≤ n(r)h,k .

The representative mesh-size hk for Ωk is defined as

hk := max
r=1,2

max
2≤i≤n(r)

h,k

h(r)k,i . (15)

The following terminology for knot sequences will be useful.
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Definition 4.1. Let Θh be a family of open knot sequences with first and last knot of multiplicity
p + 1. This family is called locally quasi-uniform of order p, if there exist 0 < c1 ≤ c2 such that
for all h

c1 ≤
θh,i+p − θh,i

θh,i+p+1 − θh,i+1
≤ c2, 2 ≤ i ≤ nh − 1. (16)

It is called quasi-uniform of order p, if there exist 0 < c1 ≤ c2 such that for all h

c1 ≤
θh,i+p − θh,i

θh,j+p − θh,j
≤ c2, 2 ≤ i, j ≤ nh. (17)

A family of bivariate knot sequences Ξh = Ξ
(1)
h × Xi(2)h is called shape-regular, if the ratio of

the diameter and the smallest edge of every rectangle defined by the distinct knots is uniformly
bounded.

The bivariate NURBS function N̂h,k,i with knots Ξh,k ⊂ [0,1]2 are defined as in (4), where
tensor-product B-splines B̂pk

h,k,i with respect to the refined knot sequence Ξh,k are inserted and
the weight vector (ωh,k,i) is obtained from the initial weights (ωk,i) by “knot insertion”; i.e., the
denominator

ŵk =
∑
i∈Ik

ωk,iB̂
pk
k,i =

∑
i∈Ih,k

ωh,k,iB̂
pk
h,k,i

remains the same before and after the refinement. The span of all N̂h,k,i is denoted by X̂h,k , its
counterpart on Ωk = Fk([0,1]2) is

Xh,k = {v̂h ◦ F−1
k : v̂h ∈ X̂h,k}.

Finally, we let

Xh =

K∏
k=1

Xh,k ∩ H1
0,D(Ω).

Our assumptions about the knots guarantee that Xh,k ⊂ C(Ωk), so that Xh ⊂ X .
Remark 4.2. The parameters h(r)k,j are also useful for inverse inequalities of functions v̂ ∈ X̂h,k . They
replace the single stepsizes which are often used for piecewise linear finite elements.

For each interface γl , we let Θh,l be the refined knot sequence on the parameter interval
γ̂l = [ξl,1, ξl,2]; i.e., Θh,l = Ξ

(1)
h,s(l) or Ξ

(2)
h,s(l) in the geometrically conforming case and in case NC1 of

Remark 2.1, whereasΘh,l is only the part Ξ(r)h,s(l)∩[ξl,1, ξl,2] and the multiplicity of both endpoints is
raised to ps(l) + 1. We also let ql := ps(l) and denote by nh,l the number of NURBS basis functions
with knots Θh,l . Following Brivadis et al. [12], we define the trace spaces

Wh,l = Xh,s(l) |γl, Wh,l,0 = Wh,l ∩ H1
0 (γl)

and their counterparts on γ̂l given by

Ŵh,l = span(N̂h,l,j ; 1 ≤ j ≤ nh,l), Ŵh,l,0 = span(N̂h,l,j ; 2 ≤ j ≤ nh,l − 1).

Note that all linear combinations y =
∑nh,l

j=1 c j N̂h,l,j satisfy the endpoint interpolation conditions
y(ξl,1) = c1 and y(ξl,2) = cnh,l .
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4.2. The space Mh defined by B-splines
The definition of the space Mh of Lagrange multipliers is based on the space of polynomial

splines of degree ql ,
Ŝql (Θh,l) = span(B̂ql

h,l,j : 1 ≤ j ≤ nh,l).

We provide some information about B-splines which is essential in the sequel. Let us drop the
indices h, l for a moment. The fundamental stability result for B-splines [13] states that there is a
constant κq > 0 such that for arbitrary coefficients c j ∈ R the following inequality holds:

κ−1
q

∑
j

|c j |
2 ≤

∑j

c j h
−1/2
j B̂q

j


2

L2(R)

≤
∑

j

|c j |
2, h j =

θ j+q+1 − θ j

q + 1
. (18)

The constant κq does not depend on Θ and is called the condition number of B-splines of degree
q. Another well-known result for B-splines is the recurrence relation for derivatives

(B̂q
j )
′ =

q
θ j+q − θ j

B̂q−1
j −

q
θ j+q+1 − θ j+1

B̂q−1
j+1 . (19)

Combined with (18), the inverse estimate

‖ v̂′‖L2(R) ≤ 2
√

q(q + 1)κqh−1
min‖ v̂‖L2(R) (20)

follows easily for all v̂ ∈ Ŝq(Θ), where hmin = mini(θi+q − θi) > 0 is assumed.
We now return to our notations for Ŝql (Θh,l). The spline space with homogeneous boundary

conditions is
Ŝql

0 (Θh,l) = Ŝql (Θh,l) ∩ H1
0 (γ̂l).

The orthogonal projection onto Ŝql (Θh,l) is denoted by

P̂h,l : L2(γ̂l) → Ŝql (Θh,l),

∫
γ̂l

( f − P̂h,l f ) v̂l dξ = 0 for all v̂l ∈ Ŝql (Θh,l). (21)

Another important operator is the local spline projector from [21, Section 4.6]

Π̂h,l : L2(γ̂l) → Ŝql (Θh,l), Π̂h,l( f ) =
nh,l∑
j=1

λ j( f )B̂
ql
h,l,j, (22)

where the linear functionals λ j = λh,l,j only take values of f in the interval [θh,l,j, θh,l,j+ql+1] which
is the support of B̂ql

h,l,j . The corresponding operator on the physical domain is defined by

Πh,l : L2(γl) → Wh,l, Πh,l f =
(

1
ŵl
Π̂h,l(ŵl ( f ◦ Fl))

)
◦ F−1

l . (23)

The following approximation properties of Π̂h,l are known from [21, Section 6.5] and summarized
in [4, Lemma 4.3].
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Proposition 4.3. Let Θh,l ⊂ γ̂l be an open knot sequence, Ih,i = (θh,l,i, θh,l,i+1) a non-empty interval
and

Ĩh,i = (θh,l,i−ql, θh,l,i+ql+1) (24)

the associated “support extension”. There exists C > 0 depending only on ql , such that

‖ f − Π̂h,l( f )‖L2(Ih,i) ≤ C | Ĩh,i |
s | f |Hs(Ĩh,i)

for every f ∈ Hs(γ̂l), 0 ≤ s ≤ ql + 1. (25)

If Θh,l is locally quasi-uniform of order ql , there is C > 0 depending only on ql and the constants
c1, c2 in Definition 4.1, such that

| f − Π̂h,l( f )|H1(Ih,i) ≤ C | Ĩh,i |
s−1 | f |Hs(Ĩh,i)

for every f ∈ Hs(γ̂l), 1 ≤ s ≤ ql + 1. (26)

Remark 4.4. The second result in [4, Lemma 4.3] is for semi-norms of order 1 ≤ r ≤ s and for
locally quasi-uniform knot sequences, which means that adjacent non-empty knot intervals have
comparable lengths. The proof in [4] uses an inverse inequality for splines. The weaker assumption
of local quasi-uniformity of order ql is sufficient for the error estimate in the H1-semi-norm.

We describe in more detail the choice of two suitable subspaces M̂ t
h,l ⊂ Ŝql (Θh,l) of Lagrange

multipliers of dimension nh,l − 2, with upper index t = 0 or t = 1 denoting the chosen alternative.
The subspaces on the physical domain are then obtained as

M t
h,l =

{
(ŵ−1

l µ̂l) ◦ F−1
l : µ̂l ∈ M̂ t

h,l

}
⊂ Wh,l . (27)

The definition for t = 0 follows Brivadis et al. [12, page 305] and describes the “p/p setting
with boundary modification.” The space

M̂0
h,l = { µ̂ ∈ Ŝql (Θh,l) :

dql

dξql
µ̂(ξ) = 0 for ξ = 0 and ξ = 1} ⊂ Ŝql (Θh,l) (28)

contains all splines in Ŝql (Θh,l) whose polynomial pieces in the first and last knot intervals
(ξl,1, θh,l,ql+2), (θh,l,nh,l, ξl,2) have degree at most ql − 1 . (This is also a common choice for Lagrange
multipliers in FEM discretizations.) We summarize the results in [12].

Proposition 4.5. Let q = ql and n = nh,l ≥ ql + 2.

(a) The space M̂0
h,l has dimension n − 2 and a basis with local support

µ̂0
j = B̂q

h,l,j − ρ j B̂
q
h,l,1 − σj B̂

q
h,l,n, 2 ≤ j ≤ n − 1,

where

ρ j =

dq

dξq B̂q
h,l,j(ξl,1)

dq

dξq B̂q
h,l,1(ξl,1)

, σj =

dq

dξq B̂q
h,l,j(ξl,2)

dq

dξq B̂q
h,l,n(ξl,2)

.

In particular, ρ j = 0 for j ≥ q + 2 and σj = 0 for j ≤ n − q − 1.

(b) M̂0
h,l contains all polynomials of degree q − 1.

12



The authors in [12] explain that the discrete infsup-condition

inf
µ̂∈M̂0

h,l

sup
v̂∈Ŝql (Θh,l)

∫
γ̂l
µ̂v̂ dξ

‖ v̂‖L2(γ̂l) ‖ µ̂‖L2(γ̂l)
≥ c > 0, (29)

has not been proved yet. They provide numerical evidence for its validity.
Next we define the space M̂1

h,l ⊂ Ŝql (Θh,l), which is very similar to M̂0
h,l and for which we

can prove the infsup-condition analytically. Roughly speaking, we choose a space with the same
dimension nh,l − 2 containing all polynomials of degree ql − 1, but with different modifications
near the endpoints of γ̂l . For this purpose, we use the B-spline B̂2ql

h,l,1 of double degree 2ql , which
is defined with respect to the knot sequence Θ = Θh,l whose first and last knot have multiplicity
ql + 1. Note that B̂2ql

h,l,1 has vanishing function values and derivatives up to order ql − 1 at both
endpoints. The same is true for B̂2ql

h,l,nh,l−ql
. We employ the recurrence relation for derivatives of

B-splines in (19) and define

êh,l,1 =
dql

dξql
B̂2ql

h,l,1 =

ql+1∑
j=1

α j B̂
ql
h,l,j, (30)

where the coefficients α j , 0, 1 ≤ j ≤ ql + 1, can be easily computed via (19). (In fact, α j’s
alternate in sign.) Likewise, near the other endpoint ξ = 1 and with n = nh,l , we define

êh,l,2 =
dql

dξql
B̂2ql

h,l,n−ql
=

n∑
j=n−ql

β j B̂
ql
h,l,j (31)

with nonzero coefficients β j , n − ql ≤ j ≤ n. We assume, as in Proposition 4.5, that there is at
least one interior knot, so n = nh,l ≥ ql + 2 and the functions êh,l,1 and êh,l,2 satisfy the boundary
conditions

êh,l,1(ξl,1)

α1
=

êh,l,2(ξl,2)

βn
= 1, êh,l,1(ξl,2) = êh,l,2(ξl,1) = 0. (32)

In particular, both functions are linearly independent. Their supports are

supp êh,l,1 = [ξl,1, θh,l,2ql+2], supp êh,l,2 = [θh,l,n−ql, ξl,2]. (33)

The space
Ê1

h,l := span(êh,l,1, êh,l,2) (34)
of dimension 2 plays a prominent role in our construction. We define the orthogonal projection
PÊ1

h,l
: L2(γ̂l) → Ê1

h,l . An orthogonal basis of Ê1
h,l is given by the two splines êh,l,1 and

ẽh,l,2 = êh,l,2 −
〈êh,l,2, êh,l,1〉L2(γ̂l)

〈êh,l,1, êh,l,1〉L2(γ̂l)
êh,l,1,

by the Gram-Schmidt orthogonalization procedure. Note that for n = nh,l ≥ 3ql + 2, the supports
of êh,l,1 and êh,l,2 do not overlap, so ẽh,l,2 = êh,l,2.

We are now ready to define the spaces M̂1
h,l as an alternative choice for the Lagrange multipliers.
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Proposition 4.6. Let q = ql , n = nh,l and assume n ≥ q + 2. Then M̂1
h,l is the orthogonal

complement of Ê1
h,l in Ŝq(Θh,l); i.e.

M̂1
h,l = (id − PÊ1

h,l
)(Ŝq(Θh,l)).

(a) M̂1
h,l has dimension n − 2 and a basis with local support

µ̂1
h,l,j = (id − PÊ1

h,l
)(B̂q

h,l,j) = B̂q
h,l,j − ρ j êh,l,1 − σj ẽh,l,2, , 2 ≤ j ≤ n − 1, (35)

where

ρ j =
〈B̂q

h,l,j, êh,l,1〉L2(γ̂l)

〈êh,l,1, êh,l,1〉L2(γ̂l)
, σj =

〈B̂q
h,l,j, ẽh,l,2〉L2(γ̂l)

〈ẽh,l,2, ẽh,l,2〉L2(γ̂l)
.

In particular, ρ j = 0 for j ≥ 2q + 2 and σj = 0 for j ≤ n − 2q − 1.

(b) M̂1
h,l contains all polynomials of degree q − 1.

Proof. We can drop the indices h and l without causing confusion. We already observed that Ê1

has dimension 2, and consequently M̂1 has dimension n − 2. Moreover, by their definition, all
splines µ̂1

j in (35) are orthogonal to Ê1, so they are elements of M̂1. Their linear independence is
shown as follows. The identity

0 =
n−1∑
j=2

c j µ̂
1
j = (id − PÊ1)

©«
n−1∑
j=2

c j B̂
q
j
ª®¬

for some (c2, . . . , cn−1) ∈ R
n−2 implies that

y :=
n−1∑
j=2

c j B̂
q
j ∈ Ê1 = span(ê1, ê2).

This spline y has boundary values y(ξl,1) = y(ξl,2) = 0, because all B-splines B̂q
j in the sum vanish

at both endpoints of γ̂l . By (32) it follows that y ≡ 0, and by the linear independence of the
B-splines, it follows further that all coefficients c j , 2 ≤ j ≤ n − 2, must vanish. Therefore, the
splines µ̂ j , 2 ≤ j ≤ n− 1, in (35) are a basis of M̂1. Their local support and the zero-values for the
coefficients ρ j, σj are simple consequences of the support properties in (33).

For part (b), it is sufficient to prove that every polynomial ĝ of degree q − 1 is orthogonal to
both basis elements ê1

j , j = 1,2. Since the B-spline B̂2q
1 of double degree has vanishing function

values and derivatives up to order q − 1 at both endpoints of γ̂l , integration by parts gives∫
γ̂l

ĝ(ξ)ê1(ξ) dξ = (−1)q
∫
γ̂l

dq

dξq ĝ(ξ)B̂
2q
1 (ξ) dξ = 0.

Analogously, the orthogonality of ĝ and ê2 follows. �
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Remark 4.7. The effect of choosing Ê1
h,l as the orthogonal complement of the Lagrange multiplier

space M̂1
h,l can be further explained as follows. Consider a function vh ∈ Vh in the discrete solution

space. By the definition of Vh in (12), the jump

[vh]l = vh,s(l) |γl − vh,m(l) |γl

satisfies
〈[vh]l, µl〉ρl =

∫
γ̂l

ŵl ([vh]l ◦ Fl) µ̂l dξ = 0

for all µ̂l ∈ M̂1
h,l . In other words, with the orthogonal projection P̂h,l onto Ŝql (Θh,l) and with

ŵl(vh,s(l) |γl ◦ Fl) ∈ Ŝql (Θh,l), we have

P̂h,l (ŵl ([vh]l ◦ Fl)) = ŵl (vh,s(l) ◦ Fl) − P̂h,l
(
ŵl (vh,m(l) ◦ Fl)

)
∈ Ê1

h,l . (36)

Note that all functions in Ê1
h,l have support in [ξl,1, θh,l,2ql+2] ∪ [θh,l,nh,l−ql, ξl,2]. Therefore, we have

vh,s(l) ◦ Fl(ξ) =
1

ŵl(ξ)
P̂h,l

(
ŵl (vh,m(l) ◦ Fl)

)
(ξ) for all ξ ∈ [θh,l,2ql+2, θh,l,nh,l−ql ].

In particular, if the two discretizations of γl as a boundary line ofΩs(l) andΩm(l) coincide (the fully
conforming case), then the orthogonal projection has no effect at all and we obtain

vh,s(l) ◦ Fl(ξ) = vh,m(l) ◦ Fl(ξ) for all ξ ∈ [θh,l,2ql+2, θh,l,nh,l−ql ]. (37)

Hence, in the fully conforming case, the jump across γl of every function vh ∈ Vh is nonzero only in
a small neighbourhood of the endpoints of γl . This property is not valid, if the Lagrange multiplier
space M̂1

h,l is replaced by M̂0
h,l as proposed in [12], because the orthogonal complement Ê0

h,l of M̂0
h,l

in the spline space has no local basis.
We next prove the following stability result for êh,l,1 and êh,l,2. We drop the indices h and l

without causing confusion.

Lemma 4.8. Let Θ = {θ1, . . . , θn+q+1} ⊂ γ̂l be an open knot sequence for splines of degree q ∈ N
and h j := θ j+q+1−θ j

q+1 > 0 for every 1 ≤ j ≤ n. Furthermore, let

ê1 =
dq

dξq B̂2q
1 =

q+1∑
j=1

α j B̂
q
j , ê2 =

dq

dξq B̂2q
n−q =

n∑
j=n−q

β j B̂
q
j . (38)

For every
v =

c1

α1
√

h1
ê1 +

c2

βn
√

hn
ê2 (39)

we have
κ−1

q (c
2
1 + c2

2) ≤ ‖v‖
2
L2(γ̂l)

≤ 2
(
2q
q

)
(c2

1 + c2
2),

where κq is the condition number of B-splines of degree q in (18).
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Proof. We have h1 =
θq+2−θ1

q+1 and θ1 = . . . = θq+1 = 0. In order to find the precise coefficients α j ,
the recurrence relation (19)

d
dξ

B̂m
j =

m
θ j+m − θ j

B̂m−1
j −

m
θ j+m+1 − θ j+1

B̂m−1
j+1

is applied for B-splines of degree m, where q + 1 ≤ m ≤ 2q and 1 ≤ j ≤ 2q + 1 − m. Within this
range of indices, we have θ j = θ j+1 = 0, and therefore

min{θ j+m − θ j, θ j+m+1 − θ j+1} ≥ θ1+m ≥ θq+2 = (q + 1)h1.

From here, we obtain that the coefficients α j in (38) satisfy

0 < (−1) j−1h jα j ≤

(
q

j − 1

) 2q∏
m=q+2

m
θ1+m

=

(
q

j − 1

)
h1α1

for all 1 ≤ j ≤ 2q + 1. Since h j ≥ h1, this also implies

q+1∑
j=1

|α j |
2h j

|α1 |2h1
≤

q+1∑
j=1

(
q

j − 1

)2
=

(
2q
q

)
,

where the last identity is well-known in combinatorics. The stability result in (18) is applied to

ê1

α1
√

h1
= h−1/2

1 B̂q
1 +

n∑
j=2

α j
√

h j

α1
√

h1
h−1/2

j B̂q
j

and gives

κ−1
q ≤

 ê1

α1
√

h1

2

L2(γ̂l)

≤ 1 +
q+1∑
j=2

|α j |
2h j

|α1 |2h1
≤

(
2q
q

)
.

The same upper bound is obtained for the norm of ê2
βn
√

hn
. Therefore, by Minkowski’s inequality

for v in (39), we obtain

‖v‖2L2(γ̂l)
≤ (|c1 | + |c2 |)

2
(
2q
q

)
≤ 2

(
|c1 |

2 + |c2 |
2
) (

2q
q

)
,

and this provides the upper bound in the lemma. Furthermore, our assumption n ≥ q + 2 and
Theorem 4.6(b) imply αn = β1 = 0. Therefore, the first and last coefficients of the B-spline
representation of v are c1h−1/2

1 and c2h−1/2
n , respectively. Another application of (18) provides the

lower bound in the lemma. �
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5. Mortar projection

In this section, we consider the space M1
h,l of Lagrange multipliers for the interface γl . An

important operator for the error analysis of the discretization is the mortar projection. Its L2-
boundedness will be essential for the proof of the infsup-condition in the next section.

We define the mortar projection as in [5] with small modifications. For the interface γl , let
Qh,l : L2(γl) → Wh,l,0 be given by

〈( f −Qh,l f ), µl〉ρl = 0 for all µl ∈ M1
h,l . (40)

The associated operator on the parameter domain is defined by

Q̂h,l : L2(γ̂l) → Ŝql
0 (Θh,l),

∫
γ̂l

( f̂ − Q̂h,l f̂ ) µ̂l dξ = 0 for all µ̂l ∈ M̂1
h,l . (41)

More precisely, we have by (7) and (27)

Qh,l f =
(

1
ŵl

Q̂h,l(ŵl ( f ◦ Fl))

)
◦ F−1

l . (42)

An important observation about M1
h,l was the decoupling of the endpoints of γl in (32). By using this

fact, the following simple connection between Q̂h,l and the orthogonal projection P̂h,l : L2(γ̂l) →

Ŝql (Θh,l) can be established. We use the basis functions êh,l,1, êh,l,2 of Ê1
h,l and their coefficients α j

in (30) and β j in (31).

Lemma 5.1. Let n = nh,l . For f̂ ∈ L2(γ̂l) we let ĝ f = P̂h,l f̂ ∈ Ŝql (Θh,l). Then we have

Q̂h,l f̂ = ĝ f −
ĝ f (ξl,1)êh,l,1

α1
−
ĝ f (ξl,2)êh,l,2

βn
. (43)

Proof. Since M̂1
h,l ⊂ Ŝql (Θh,l), the spline function ĝ f = P̂h,l f̂ satisfies∫

γ̂l

(
f̂ − ĝ f

)
µ̂l dξ = 0 for all µ̂l ∈ M̂1

h,l .

The orthogonality remains valid if any combination of êh,l,1 and êh,l,2 is added to ĝ f . By (32) the
function g̃ f on the right-hand side of (43) satisfies homogeneous boundary conditions and∫

γ̂l

(
f̂ − g̃ f

)
µ̂l dξ = 0 for all µ̂l ∈ M̂1

h,l .

Clearly, it is the unique element of Ŝql (Θh,l) which combines both properties. �

We can now show the L2-boundedness of the mortar projection Qh,l .

Theorem 5.2. There is C > 0, which depends on ql , τl , and ŵl , but not on the knot sequence Θh,l ,
such that

‖Qh,l f ‖L2(γl) ≤ C‖ f ‖L2(γl) for all f ∈ L2(γl). (44)
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Proof. Let q = ql and n = nh,l . By the equivalence of the standard and the weighted L2-norms on
L2(γl), it is sufficient to prove the boundedness of Q̂h,l on L2(γ̂l). Let f̂ ∈ L2(γ̂l) and

ĝ f = P̂h,l f̂ =
n∑

j=1
c j h
−1/2
j B̂q

h,l,j .

By Lemma 5.1 and the endpoint conditions of the B-splines, we have

Q̂h,l f̂ = ĝ f −
ĝ f (ξl,1)êh,l,1

α1
−
ĝ f (ξl,2)êh,l,2

βn
= ĝ f −

c1êh,l,1

h1/2
1 α1

−
cnêh,l,2

h1/2
n βn

.

The orthogonal projection gives
‖ĝ f ‖L2(γ̂l) ≤ ‖ f̂ ‖L2(γ̂l),

and Lemma 4.8 shows thatc1êh,l,1

h1/2
1 α1

+
cnêh,l,2

h1/2
n βn


L2(γ̂l)

≤

(
2
(
2q
q

))1/2 √
c2

1 + c2
n .

The stability result of (18) gives√
c2

1 + c2
n ≤ κ

1/2
q ‖ĝ f ‖L2(γ̂l) ≤ κ

1/2
q ‖ f̂ ‖L2(γ̂l).

By combining these estimates, we obtain

‖Q̂h,l f̂ ‖L2(γ̂l) ≤ Cq‖ f̂ ‖L2(γ̂l), Cq := 1 +
(
2κq

(
2q
q

))1/2
, (45)

so the constant C in (44) only depends on q = ql and, by the norm equivalence, on ŵl and τl . �

Remark 5.3. The estimate of Theorem 5.2 immediately extends to the mesh-dependent norm (14)
L∑

l=1
h−2σ

s(l) ‖Qh,l f ‖L2(γl) ≤ C
L∑

l=1
h−2σ

s(l) ‖ f ‖2L2(γl)
= C | f |2σ,h for all f ∈ L2(S).

Moreover, if the knot sequence Θh,l is quasi-uniform of order ps(l), we also obtain the H1
0 -stability

of Qh,l by a similar argument as given in Lemma 1.3 in [24]. Indeed, for a function f̂ ∈ H1
0 (γ̂l) we

can find an approximant v̂ ∈ Ŝql
0 (Θh,l) with homogeneous boundary conditions such that

‖ f̂ − v̂‖L2(γ̂l) ≤ Chs(l) | f̂ |H1(γ̂l), |v̂ |H1(γ̂l) ≤ C | f̂ |H1(γ̂l),

where the last expression denotes the Sobolev semi-norm of f̂ and C does not depend on f̂ . (This
is property (Sc) in [24, p.12].) By the projection property Q̂h,l v̂ = v̂ and an inverse inequality (here
quasi-uniformity of order ps(l) of the knots is needed), we obtain

|Q̂h,l f̂ |H1(γ̂l) ≤ |Q̂h,l( f̂ − v̂)|H1(γ̂l) + |v̂ |H1(γ̂l) ≤ Ch−1
s(l)‖Q̂h,l( f̂ − v̂)‖L2(γ̂l) + |v̂ |H1(γ̂l) ≤ C | f̂ |H1(γ̂l).

Furthermore, by a typical interpolation argument, we obtain that

‖Q̂h,l f̂ ‖H1/2
00 (γ̂l)

≤ C‖ f̂ ‖H1/2
00 (γ̂l)

, f̂ ∈ H1/2
00 (γ̂l).

A further generalization of this result to locally quasi-uniform knot sequences is not known to us.
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6. Discrete infsup-condition

In this section, we prove the uniform infsup-inequality for the discrete spaces Xh and M1
h . The

method of proof is well known, see e.g. [9], and mainly based on Theorem 5.2. We include some
details as far as explicit constants are concerned. Let us first consider the corresponding spaces on
the parameter domain.

Theorem 6.1. Let 1 ≤ l ≤ L, q = ql and Cq =

(
1 +

(
2κq

(2q
q

) )1/2
)
as in (45). Then

inf
µ̂∈M̂1

h,l

sup
v̂∈Ŝq

0 (Θh,l)

∫
γ̂l
µ̂v̂ dξ

‖ µ̂‖L2(γ̂l)‖ v̂‖L2(γ̂l)
≥ C−1

q . (46)

Proof. A duality argument, the definition of Q̂h,l and (45) allow us to write

‖ µ̂‖L2(γ̂l) = sup
f ∈L2(γ̂l)

∫
γ̂l

f µ̂ dξ

‖ f ‖L2(γ̂l)
= Cq sup

f ∈L2(γ̂l)

∫
γ̂l

Q̂h,l f µ̂ dξ

Cq‖ f ‖L2(γ̂l)
≤ Cq sup

f ∈L2(γ̂l)

∫
γ̂l

Q̂h,l f µ̂ dξ

‖Q̂h,l f ‖L2(γ̂l)

for all µ̂ ∈ M̂1
h,l . By letting v̂ = Q̂h,l f we obtain (46). �

Remark 6.2. (i) The result of Theorem 6.1 holds for arbitrary open knot sequences Θh,l . As
mentioned before, an analogous result for the Lagrange multiplier space M̂0

h,l in [12] is not
known.

(ii) Since the dimensions of M̂1
h,l and Ŝql

0 (Θh,l) agree, the order of the spaces in the infsup-estimate
can be switched, i.e.

inf
v̂∈Ŝ

ql
0 (Θh,l)

sup
µ̂∈M̂1

h,l

∫
γ̂l
µ̂v̂ dξ

‖ µ̂‖L2(γ̂l)‖ v̂‖L2(γ̂l)
≥ C−1

ql . (47)

In fact, the best possible lower bound on the right-hand side of (46) and (47) is the smallest
singular value of the “mixed Gramian” (〈φ j,ψk〉) j,k=1,...,n−2 with respect to L2-orthonormal
bases of both spaces. For more details see [14].

The observation in (47) is also useful in order to prove the following stability result for the local
basis

µ̂1
h,l,j = (I − PÊ1

h,l
)B̂q

h,l,j, 2 ≤ j ≤ nh,l − 1,

in (35).

Theorem 6.3. Let q = ql and n = nh,l . Let κq,Cq be the constants in (18) and (45). For an arbitrary
open knot sequenceΘh,l ⊂ γ̂l , with h j =

θ j+q+1−θ j
q+1 > 0 for all j, and for arbitrary coefficients c j ∈ R

the following inequality holds:

κ−1
q C−2

q

n−1∑
j=2
|c j |

2 ≤

n−1∑
j=2

c j h
−1/2
j µ̂1

h,l,j


2

L2(γ̂l)

≤

n−1∑
j=2
|c j |

2.
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Proof. First note that for every v̂ ∈ Ŝq(Θh,l), the function (I − PÊ1
h,l
)v̂ is the orthogonal projection

of v̂ onto M̂1
h,l . By (47) and a duality argument, it follows that for all v̂ ∈ Ŝq

0 (Θh,l)

C−1
q ‖ v̂‖ ≤ sup

µ̂∈M̂1
h,l

∫
γ̂l
µ̂v̂ dξ

‖ µ̂‖
= sup

µ̂∈M̂1
h,l

∫
γ̂l
µ̂ (I − PÊ1

h,l
)v̂ dξ

‖ µ̂‖
= ‖(I − PÊ1

h,l
)v̂‖,

where norms are taken in L2(γ̂l). We let v̂ =
∑n−1

j=2 c j h
−1/2
j B̂q

h,l,j with arbitrary coefficients c j ∈ R
and obtain

C−1
q ‖ v̂‖ ≤

(I − PÊ1
h,l
)v̂

 = n−1∑
j=2

c j h
−1/2
j µ̂1

h,l,j

 ≤ ‖ v̂‖ .
Combined with (18), this gives the claim. �

The last result, in combination with the infsup-condition, shows that the blockMh,l of the mass
matrix with entries

mi,j = 〈µ
1
h,l,i,N

ql
h,l,j〉ρl =

∫
γ̂l

µ̂1
h,l,i B̂ql

h,l,j dξ, 2 ≤ i, j ≤ nh,l − 1,

has a uniformly bounded condition number for arbitrary knot sequences. This property is the same
as the “spectral equivalence” in [24, p.13]. Note that this block is banded due to the local support
of the basis. In Section 8 we will present an even sparser block by choosing a different basis of
M̂1

h,l . Although the new basis will have global support γ̂l , the mass matrix has more zeros due to
biorthogonality.

Next we consider the infsup-condition on the physical interfaces. It is obtained from the
boundedness of the mortar projections Qh,l exactly in the same way as in [24, Lemma 1.9]. The
use of the weight function ρl on the interface γl affects the lower bound only slightly. From this
point on, the following assumption on the knot sequences of the discretization is required.

Assumption 2. All refinement knot sequencesΞh,k are quasi-uniform of order pk and shape-regular
with constants independent of h.

Theorem 6.4. Assume that Assumption 2 is satisfied. Then there is c > 0 depending only on all
pk and Fk , such that

inf
µ∈M1

h

sup
v∈Xh

bρ(v, µ)
‖v‖X ‖µ‖−1/2,h

≥ c. (48)

Proof. We follow the proof in [24, Lemma 1.9] withminor changes caused by the parameterization.
Let µ = (µl : 1 ≤ l ≤ L) ∈ M1

h . By duality and by writing the weighted inner product 〈φ, µl〉ρl as
a standard product 〈ρlφ, µl〉 in L2(γl), we have

h1/2
l ‖µl ‖L2(γl) = sup

φ∈L2(γl)

〈φ, µl〉ρl

h−1/2
l ‖ρlφ‖L2(γl)

≤ C1 sup
φ∈L2(γl)

〈φ, µl〉ρl

h−1/2
l ‖φ‖L2(γl)
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where C1 = max1≤l≤L ‖1/ρl ‖∞ depends only on the parameterizations Fk . The definition of the
mortar projection in (40) and Theorem 5.2 give

|〈φ, µl〉ρl |

‖φ‖L2(γl)
=
|〈Qh,lφ, µl〉ρl |

‖φ‖L2(γl)
≤ C
|〈Qh,lφ, µl〉ρl |

‖Qh,lφ‖L2(γl)

with the constant C in (44). Hence, we have

h1/2
l ‖µl ‖L2(γl) ≤ C1C max

φ∈Wh,l,0

〈φ, µl〉ρl

h−1/2
l ‖φ‖L2(γl)

.

With the maximizing element φl ∈ Wh,l,0, which is normalized by h−1/2
l ‖φl ‖L2(γl) = 1, we obtain

‖µ‖2
−1/2,h =

L∑
l=1

hl ‖µl ‖
2
L2(γl)

≤ (C1C)2
L∑

l=1
〈φl, µl〉

2
ρl
. (49)

Next we let φ̃l be the extension by zero to all of ∂Ωs(l). Lemma 5.1 in [8] provides us with a
function vl ∈ Xh, which is zero on all patches Ωk with k , s(l) and which is an extension of φ̃l to
Ωs(l), such that

‖vl ‖
2
1,Ωs(l)

≤ C2‖φ̃l ‖
2
H1/2(∂Ωs(l))

= C2‖φl ‖
2
H1/2

00 (γl)
. (50)

The constant C2 depends only on the geometry of the patches Ωk , not on their discretization. By
Assumption 2 and an inverse inequality for φl , there is a constant C3 > 0 depending only on ps(l)
such that

‖vl ‖
2
1,Ωs(l)

≤ C2C3h−1
l ‖φl ‖

2
L2(γl)

= C2C3. (51)
Since vl satisfies

vl |Ωk
= 0 for k , s(l), vl |γm = 0 for l , m, (52)

the linear combination
vµ =

∑
l

〈φl, µl〉ρl vl ∈ Xh

has jumps [vµ]l = 〈φl, µl〉ρlφl for 1 ≤ l ≤ L. Therefore, we obtain

bρ(vµ, µ) =
∑

l

〈φl, µl〉
2
ρl
. (53)

Let rl denote the number of times the patch Ωs(l) is counted as a slave domain. Then the Cauchy-
Schwarz inequality and (51) and (52) imply

‖vµ‖
2
X =

K∑
k=1
‖vµ‖

2
1,Ωk
=

L∑
l=1

1
rl
‖vµ‖

2
1,Ωs(l)

≤

L∑
l=1
〈φl, µl〉

2
ρl
‖vl ‖

2
1,Ωs(l)

≤ C2C3

L∑
l=1
〈φl, µl〉

2
ρl
.

Combined with (49) and (53), this gives

‖vµ‖X ‖µ‖−1/2,h ≤ (C2C3)
1/2C1C bρ(vµ, µ).

This allows us to choose c = (C2C3)
−1/2(C1C)−1 in (48). �
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7. A priori error estimate

We let (u, λ) ∈ X × M be the solution of (9) and (uh, λh) ∈ Xh × M1
h be the solution of (11).

Recall from (10) that
λ |γl =

α

ρl

∂u
∂νl

.

The restrictions to Ωk and γl will be denoted by uk , uh,k , and λl , λh,l , respectively. The standard
approach to estimates of the a-priori error uses the coercivity of a(v, v) on Xh and the identities (9),
(11), in order to arrive at

c1‖u − uh‖
2
X ≤ a(u − uh,u − uh)

= inf
vh∈Vh

(
a(u − uh,u − vh) + a(u − uh, vh − uh)

)
= inf

vh∈Vh

(
a(u − uh,u − vh) + bρ(uh − vh, λ)

)
.

Note that bρ(uh − vh, λh) = 0 was used here, which follows from the definition of Vh in (12). Then
the approximation error

Ea := inf
vh∈Vh
‖u − vh‖X

and the consistency error

Eb := sup
vh∈Vh

bρ(vh, λ)

‖vh‖X
(54)

lead to the estimate (cf. [10])
‖u − uh‖X ≤ C(Ea + Eb). (55)

Because our setting differs from [24, Section 1.2], we include a step-by-step description, although
some of the arguments are similar. We believe that the results presented in [12] are incomplete
in the sense that additional requirements on the discretization are needed in order to obtain the
optimal approximation rate.

7.1. Spline approximation on interfaces
The main cause of the defect is the lack of a “standard” trace theorem for Sobolev spaces on

domains with non-smooth boundary. Note that non-smooth interfaces γl are typical for the IGA
mortar method, as soon as splines with interior knots in γ̂l are used for the parameterizations Fl .
More precisely, γl ⊂ ∂Ωk is aCκ,1-curve, with κ ≤ pk−1 depending on the maximal mulitplicity of
the interior knots of Θl . Suppose that the component uk = u|Ωk

of the solution (u, λ) is an element
of Hpk+1(Ωk), where pk denotes the degree of the B-splines in the definition (3) of Fk . Then uk |γl
is an element of Hκ+1(γl) by [19, Remark 4.3, p. 85]. However, a Sobolev space Hpk+1/2(γl), as
in a standard trace theorem for smooth boundaries, is not even defined.

One step towards the resolution of this defect was already described by Bazilevs et al. [3], and
used in [12]. They introduce the notion of bent Sobolev spaces on the parameter domain γ̂l ⊂ R.
In short, by the result in [4, Lemma 4.1], the bent Sobolev space

H s(γ̂l ;Θl) = Hs(γ̂l) + Ŝpk (Θl) (56)
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of integer order 0 ≤ s ≤ pk + 1 is defined. The norm is the broken Sobolev norm with respect to
the knot intervals of Θl . One part of our additional work is an extension of [4, Propositions 4.3
and 4.25] to non-integer s = pk + 1/2 in Theorem 7.6. This will provide the optimal order for the
approximation error Ea in Subsection 7.2.

The resolution of the defect in the upper bound for the consistency error Eb is more subtle,
as it requires an additional condition of the knot sequence Θh,l which was not mentioned in [12].
Interestingly, this extra condition is only needed, if the original parameterization Fk of Ωk uses
knot sequences with multiple knots. The defect could not be observed in the numerical examples of
[12], where knot sequences with simple knots were used throughout. Nevertheless, knot sequences
with multiple knots occur in practical examples as the output of standard CAD surface models. In
Section 9 we provide numerical examples to demonstrate this defect. We show in Theorem 7.6
that the following assumptions will be sufficient in order to resolve this defect. Both Assumptions
3 and 4 are very easy to realize in numerical implementations.
Assumption 3. All interfaces γl are C1,1-curves. In more detail, let 1 ≤ l ≤ L and k = s(l). The
interface γl = Fl(γ̂l) is parameterized as a NURBS curve of degree pk and with open knot sequence
Θl ⊂ γ̂l . The distinct knots of Θl are denoted by ζi, with ζ1 = ξl,1 and ζNl

= ξl,2 at the endpoints of
γ̂l . We assume that the multiplicities of the interior knots ζi, 2 ≤ i ≤ Nl − 1, are 1 ≤ κi ≤ pk − 1;
i.e., γl is pk − κi-times continuously differentiable in a neighbourhood of ζi. Consequently, γl is
differentiable on (0,1), its tangent τl and its unit normal νl are Lipschitz-continuous.

Remark 7.1. Note that Assumption 3 does not allow to consider interfaces γl which are only
C0-continuous, but not smooth at some knot ζi. This complies with the practical experience, that
vertices on an interface γl should be treated by splitting the adjacent domains accordingly, thus
introducing an additional interface. In fact, this is incorporated in all standard CAD programs.
However, modifications by hand could possibly result in a non-smooth interface or such points may
already exist in industrial CAD files. Therefore, they should be properly treated by a patch coupling
method. If no additional interface is desired, we can keep the patch geometry, but split γl at the
relevant location into two parts γl,1, γl,2 and then follow the same method described in Remark 2.1
for T-intersections of type NC2. Thus our results in this section can be extended to geometries with
interfaces containing C0-points. A numerical example with this feature is presented in Section
9.1.3.

We next discuss the case whenΘl contains multiple knots except for both endpoints. We define
the “augmented” knot sequence

Θ
+
l = Θl Û∪{ζ j : κ j ≥ 2 with 2 ≤ j ≤ Nl − 1}. (57)

(By definition, Θ+l = Θl if all ζi, 2 ≤ i ≤ Nl − 1, are simple knots.) Here, taking the union is
understood in the sense of ordered sets; i.e., the multiplicity of every interior knot ζ j is increased
by one, if ζ j is a multiple knot of Θl . By Assumption 3, every spline in Ŝpk (Θ+l ) is continuous.
Assumption 4. With the same notations as in Assumption 3, we assume that Θh,l is a refinement
of Θ+l .

The following observations provide more insight concerning Assumption 3 and the definition
of Θ+l .
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Proposition 7.2. let 1 ≤ l ≤ L, k = s(l) and ŵl be the denominator of Fl in (6). Assume that
uk ∈ Hpk+1(Ωk). Then

ŵl (uk ◦ Fl) ∈ H1(γ̂l) ∩ H
pk (γ̂l,Θl) = Hpk (γ̂l) + Ŝpk (Θl). (58)

If Θl satisfies Assumption 3 and the factor α in (1) is in Cpk−1,1(Ωk), then

ŵl (λl ◦ Fl) =
τl

ŵl
(α ◦ Fl) ((∇u · νl) ◦ Fl) ∈ H

pk−1(γ̂l ;Θ+l ) = Hpk−1(γ̂l) + Ŝpk (Θ+l ). (59)

Proof. Let t = ŵl (uk ◦ Fl) and y = ŵl (λl ◦ Fl). The standard trace theorem gives t ∈ Hpk+1/2(Ii)

for all Ii = (ζi, ζi+1), because ŵl and Fl are smooth (and even analytic) functions on Ii. At each
interior knot ζi of Θl , the left-sided and right-sided derivatives D j

−t(ζi) and D j
+t(ζi) agree for all

0 ≤ j ≤ pk − κi, where κi ≥ 1 is the multiplicity of ζi in Θl . (This is the precise smoothness
property of the parameterization Fl at ζi.) Hence, the condition t ∈ H pk (γ̂l,Θl), written in terms
of the definition of bent Sobolev spaces in [4, Eq. (4.1)] as

D j
−t(ζi) = D j

+t(ζi) for all 0 ≤ j ≤ min{pk − κi, pk − 1},

is satisfied.
In a similar way, because ∇u ∈ (Hpk (Ωk))

2 and all other constituents of λl are in Cpk−1,1(Ii), we
have y ∈ Hpk−1/2(Ii) for all i. Moreover, since the tangent and normal vectors of γl are included in
the definition of y, the smoothness across ζi is reduced by 1 and satisfies

D j
−y(ζi) = D j

+y(ζi) for all 0 ≤ j ≤ pk − κi − 1. (60)

If κi ≥ 2, then the multiplicity of ζi in Θ+l is κ+i = κi + 1, otherwise κ+i = κi = 1. The smoothness
condition for f ∈ H pk−1(γ̂l,Θ

+
l ) in [4, Eq. (4.1)] reads as

D j
− f (ζi) = D j

+ f (ζi) for all 0 ≤ j ≤ min{pk − κ
+
i , pk − 2}.

Hence, by (60) we have y ∈ H pk−1(γ̂l,Θ
+
l ). �

Remark 7.3. The result of [4, Lemma 4.1] provides linear projectors

Γ1 : H pk (γ̂l ;Θl) → Ŝpk (Θl), Γ2 : H pk−1(γ̂l ;Θ+l ) → Ŝpk (Θ+l ), (61)

such that
f − Γ1 f ∈ Hpk (γ̂l), Dpk (Γ1 f |Ii ) = 0 for all 1 ≤ i ≤ Nl − 1,

and
f − Γ2 f ∈ Hpk−1(γ̂l), Dpk−1(Γ2 f |Ii ) = 0 for all 1 ≤ i ≤ Nl − 1.

The splines Γ1 f and Γ2 f are defined in order to “swallow up” all jumps of derivatives of f at the
knots ζi.
Remark 7.4. For further clarification of Assumption 4, we mention that λl ◦ Fl falls short of the
smoothness requirements for the bent Sobolev space H pk−1(γ̂l,Θl), if Θl contains multiple knots
ζi, 2 ≤ i ≤ Nl − 1. Therefore, the order of approximation by splines in Ŝpk (Θh,l) may be deficient
if Θh,l does not satisfy Assumption 4. This defect will carry over to the consistency error Eb.

24



The method in [3, 4] provides the following error estimates. We use the notations Ih,i =

(θh,l,i, θh,l,i+1) for non-empty knot intervals associated with Θh,l , and Ĩh,i = (θh,l,i−pk , θh,l,i+pk+1)
for the support extensions. Here we use the convention that i − pk ≤ 0 is substituted by 1 and
i + pk + 1 ≥ nh,l + pk + 2 is substituted by nh,l + pk + 1. The following result combines Proposition
7.2 with [4, Propositions 4.3 and 4.25].

Proposition 7.5. Let 1 ≤ l ≤ L, k = s(l) and ŵl be the denominator of Fl . Assume that
u|Ωk
∈ Hpk+1(Ωk), α ∈ Cpk−1,1(Ωk), Θl satisfies Assumption 3 and Θh,l satisfies Assumption 2.

(a) There exists a constant C > 0 depending only on pk and Fk such that the local spline
projector Π̂h,l : L2(0,1) → Ŝpk (Θh,l) satisfies

‖D j(id − Π̂h,l)(ŵl uk ◦ Fl)‖L2(Ih,i) ≤ C | Ĩh,i |
pk− j |ŵl uk ◦ Fl |H pk (Ĩh,i)

, j = 0,1. (62)

(b) If, in addition, Θh,l satisfies Assumption 4, there exists a constant C > 0 depending only on
pk , α and Fk such that

‖(id − Π̂h,l)(ŵl λl ◦ Fl)‖L2(Ih,i) ≤ C | Ĩh,i |
pk−1 |ŵl λl ◦ Fl |H pk−1(Ĩh,i)

. (63)

Here we use the semi-norm defined by

| f |
H s(Ĩh,i)

=

( i+pk∑
j=i−pk

‖ f (s)‖2L2(θh,l, j,θh,l, j+1)

)1/2

.

Without change, we can replace the local spline projector in (62) by the projector Π̃h,l in [4, Eq.
(2.29)] to match the boundary values of ŵl uk ◦ Fl at ξ = ξl,1 and ξ = ξl,2.

The results in Proposition 7.5 are valid under milder conditions than Assumption 2. Instead
of quasi-uniform knot sequences Θh,l , we can also allow locally quasi-uniform sequences, see [4,
Assumption 2.1] for more details.

Based on Assumption 2, we can replace | Ĩh,i | in (62) and (63) by Chk with C depending
on pk . Optimal estimates of the approximation error and the consistency error require an extra
factor h1/2

k in both relations (62) and (63). This will be obtained by performing an analysis of
super-convergence similar to the techniques in [23].

Theorem 7.6. Let the assumptions of Proposition 7.5 be satisfied.

(a) There exists a constant C > 0 depending only on pk and Fk , such that the local spline
projector Π̂h,l : L2(γ̂l) → Ŝpk (Θh,l) satisfies

‖D j(id − Π̂h,l)(ŵl uk ◦ Fl)‖L2(γ̂l) ≤ Chpk+1/2− j
k ‖u‖Hpk+1(Ωk )

, j = 0,1. (64)

(b) If, in addition, Θh,l satisfies Assumption 4, there exists a constant C > 0 depending only on
pk , α and Fk such that

‖(id − Π̂h,l)(ŵl λl ◦ Fl)‖L2(γ̂l) ≤ Chpk−1/2
k ‖u‖Hpk+1(Ωk )

. (65)
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The same estimates are valid for the projector Π̃h,l matching the boundary values at ξ = ξl,1 and
ξ = ξl,2.

Proof. (a) Let t = ŵl(uk ◦ Fl). We explained in the proof of Proposition 7.2 that t ∈ Hpk+1/2(Ii),
where Ii = (ζi, ζi+1) is a knot-interval of the initial knot sequenceΘl . Let Γ1t ∈ Ŝpk (Θl) ⊂ Ŝpk (Θh,l)

be the spline in Remark 7.3 such that

t − Γ1t ∈ Hpk (γ̂l) and Dpk (Γ1t |Ii ) = 0. (66)

In the main part of the proof, we split

t − Γ1t = t1 + t2

into two parts, where

• t1 ∈ Hpk+1/2(γ̂l),

• t2 ∈ Ŝpk (Θl) is a spline of degree pk with simple knots ζi, so

t2(ξ) =
Nl−1∑
i=2

di
(ξ − ζi)

pk
+

pk!
. (67)

Let Fl = (Fl,1,Fl,2) : γ̂l → R
2 be the parameterization of γl inherited from Fk . In order to

define t1 and t2, we start from t − Γ1t ∈ Hpk (γ̂l) and consider the expansion of Dpk (t − Γ1t) by
means of Leibniz’ and Faa di Bruno’s formulas. By collecting all terms with partial derivatives of
uk of order pk , we obtain

t3 := ŵl

∑
r1+r2=pk

(F′l,1)
r1(F′l,2)

r2 (D(r1,r2)uk) ◦ Fl . (68)

By Assumption 3, all factors ŵl(F′l,1)
r1(F′l,2)

r2 are in C0,1(γ̂l). Combined with D(r1,r2)uk ∈ H1(Ωk),
the trace theorem in [19, Theorem 5.5, p. 95] gives

t3 ∈ H1/2(γ̂l), |t3 |H1/2(γ̂l)
≤ C

∑
r1+r2=pk

|(D(r1,r2)uk) ◦ Fl |H1/2(γ̂l)
≤ C‖u‖Hpk+1(Ωk )

. (69)

The constant C depends only on pk , ŵl , Fl and Ωk , so on Fk after all.
All other terms of Dpk (t − Γ1t) contain partial derivatives of uk of order less than or equal to

pk − 1 and derivatives of ŵl,Fl,1,Fl,2 up to order pk . Therefore, by uk ∈ Hpk+1(Ωk) and the trace
theorem on smooth parts of γl , we have

Dpk (t − Γ1t) − t3 ∈ H1(Ii) for every Ii = (ζi, ζi+1), (70)

with
‖Dpk (t − Γ1t) − t3‖H1(Ii) ≤ C‖u‖Hpk+1(Ωk )

. (71)
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The constant C depends only on pk , ŵl , Fl and Ωk , as before. Since H1(Ii) is imbedded in C(Ii),
the difference of one-sided limits

di = (Dpk (t − Γ1t) − t3)(ζi+) − (Dpk (t − Γ1t) − t3)(ζi−) (72)

is bounded by

|di | ≤ C(‖Dpk (t − Γ1t) − t3‖H1(Ii) + ‖D
pk (t − Γ1t) − t3‖H1(Ii−1)) ≤ C‖u‖Hpk+1(Ωk )

. (73)

The new constant C depends further on |Ii−1 | and |Ii |, caused by the imbedding H1 → C, but not
on hk . The numbers di define the spline t2 in (67), which is an element of Hpk (γ̂l). Therefore, we
have

t1 = t − Γ1t − t2 ∈ Hpk (γ̂l).

In order to show that t1 ∈ Hpk+1/2(γ̂l) holds, we write Dpk t1 as

Dpk t1 = t3 + Dpk (t − Γ1t) − t3 − Dpk t2.

The first term t3 is in H1/2(γ̂l) by (69). By (70), the second part t4 := Dpk (t − Γ1t) − t3 − Dpk t2 has
pieces in H1(Ii) and satisfies

t4(ζi+) − t4(ζi−) = di − di = 0.

The continuity across all intervals implies t4 ∈ H1/2(γ̂l) (even t4 ∈ H1(γ̂l) is true), and

|t4 |H1/2(γ̂l)
≤ C

Nl−1∑
i=1
|t4 |H1/2(Ii) ≤ C

Nl−1∑
i=1

(
|Dpk (t − Γ1t) − t3 |H1/2(Ii) + |D

pk t2 |H1/2(Ii)

)
.

Because Dpk (t2 |Ii ) is constant, the last semi-norm vanishes. By (71) and the imbedding H1(Ii) →

H1/2(Ii) we obtain

|t4 |H1/2(γ̂l)
≤ C

Nl−1∑
i=1
‖Dpk (t − Γ1t) − t3‖H1(Ii) ≤ C‖u‖Hpk+1(Ωk )

.

(The constant C from (71) has grown by a factor Nl which is independent of hk .) Therefore, we
have shown that Dpk t1 = t3 + t4 ∈ H1/2(γ̂l), and consequently t1 ∈ Hpk+1/2(γ̂l) with

|t1 |Hpk+1/2(γ̂l)
≤ |t3 |H1/2(γ̂l)

+ |t4 |H1/2(γ̂l)
≤ C‖u‖Hpk+1(Ωk )

.

Now we can prove (64). Since Γ1t, t2 ∈ Ŝpk (Θl) ⊂ Ŝpk (Θh,l), the local spline projector in
Proposition 4.3 provides the approximation

‖D j(t − Π̂h,lt)‖L2(γ̂l) = ‖D
j(t1 − Π̂h,lt1)‖L2(γ̂l) ≤ Chpk+1/2− j

k |t1 |Hpk+1/2(γ̂l)
≤ Chpk+1/2− j

k ‖u‖Hpk+1(Ωk )

for j = 0 and j = 1.
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(b) A similar proof is given for

y := ŵl λl ◦ Fl =
τl

ŵl
(α ◦ Fl) ((∇u · νl) ◦ Fl)

in (65). We include the proof although many arguments are adaptations of the first part. Assump-
tion 4 guarantees that the spline Γ2y ∈ Ŝpk (Θ+l ) in Remark 7.3 is an element of Ŝpk (Θh,l). The
splitting of

y − Γ2y = y1 + y2

will be constructed in a similar way as before, but the spline y2 is not in Ŝpk (Θh,l). Therefore,
the last step of the proof is extended and includes the consideration of the approximation of y2 by
splines in Ŝpk (Θh,l).

We explained in the proof of Proposition 7.2 that y is a piecewise Hpk−1/2-function on the
parameter interval γ̂l . For the splitting, we construct y1 ∈ Hpk−1/2(γ̂l) and a spline y2 of degree
pk − 1 with simple knots ζi,

y2(ξ) =

Nl−1∑
i=2

d̃i
(ξ − ζi)

pk−1
+

(pk − 1)!
. (74)

For the construction of y2, and in analogy to the first part, we collect all terms of Dpk−1(y − Γ2y)
with highest order partial derivatives of uk into

y3 =
τl

ŵl
(α ◦ Fl)

∑
r1+r2=pk−1

(F′l,1)
r1(F′l,2)

r2
(
(D(r1,r2)∇uk) ◦ Fl

)
· (νl ◦ Fl). (75)

By Assumption 3, all factors τl, ŵl, νl ◦ Fl and (F′l,1)
r1(F′l,2)

r2 are in C0,1(γ̂l). Combined with the
smoothness of α and D(r1,r2)∇uk ∈ H1(Ωk), the trace theorem gives

y3 ∈ H1/2(γ̂l), |y3 |H1/2(γ̂l)
≤ C

∑
r1+r2=pk−1

|(D(r1,r2)∇uk) ◦ Fl |H1/2(γ̂l)
≤ C‖u‖Hpk+1(Ωk )

. (76)

All other terms of Dpk−1(y − Γ2y) contain partial derivatives of uk of order less than or equal to
pk −1 and derivatives of α, τl, ŵl, νl and Fl up to order pk −1 as well. Therefore, by uk ∈ Hpk+1(Ωk)

we obtain the local properties

Dpk−1(y − Γ2y) − y3 ∈ H1(Ii) for every Ii = (ζi, ζi+1), (77)

with
‖Dpk−1(y − Γ2y) − y3‖H1(Ii) ≤ C‖u‖Hpk+1(Ωk )

. (78)

The constant C depends on α |γl ∈ Cpk−1,1, Fl and Ωk . With

d̃i = (Dpk−1(y − Γ2y) − y3)(ζi+) − (Dpk−1(y − Γ2y) − y3)(ζi−) (79)

we define y2 in (74). The imbedding H1 → C gives

|d̃i | ≤ C(‖Dpk−1(y − Γ2y) − y3‖H1(Ii−1) + ‖D
pk−1(y − Γ2y) − y3‖H1(Ii)) ≤ C‖u‖Hpk+1(Ωk )

. (80)
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As a spline of degree pk − 1 with simple knots, y2 is an element of W pk−1,∞(γ̂l) ⊂ Hpk−1(γ̂l). In
exactly the same way as in the first part, we can show that y1 = y − Γ2y − y2 ∈ Hpk−1/2(γ̂l) with

|y1 |Hpk−1/2(γ̂l)
≤ C‖u‖Hpk+1(Ωk )

.

Hence, the local spline projector provides the approximation

‖y1 − Π̂h,l y1‖L2(γ̂l) ≤ Chpk−1/2 |y1 |Hpk−1/2()γ̂l ≤ Chpk−1/2‖u‖Hpk+1(Ωk )
. (81)

Finally, we consider the approximation order of y2, a spline of degree pk − 1 with simple knots ζi,
2 ≤ i ≤ Nl − 1. The local spline projector Π̂h,l reproduces the polynomial pieces of y2 everywhere
in (0,1), except for small intervals

Jh,i ⊂ (ζi − chk, ζi + chk), 2 ≤ i ≤ Nl − 1.

The constant c only depends on pk and the constants c1, c2 of quasi-uniformity in Definition 4.1.
We assume that hk is small enough such that these intervals are disjoint. By y2 ∈ W pk−1,∞(γ̂l) and
(80) we have

‖Dpk−1y2‖∞ ≤

Nl−1∑
i=2
|d̃i | ≤ CNl ‖u‖Hpk+1(Ωk )

.

Combined with Assumption 2, the standard error estimate for the local spline projector gives

‖y2 − Π̂h,l y2‖L2(Jh,i) ≤ Chpk−1
k |Dpk−1y2 |L2(ζi−chk,ζi+chk ) ≤ Chpk−1/2

k ‖Dpk−1y2‖∞.

Note that the additional factor h1/2
k is obtained from the length of the interval (ζi − chk, ζi + chk).

By taking the union of all intervals Jh,i we arrive at

‖y2 − Π̂h,l y2‖L2(γ̂l) ≤ CN2
l hpk−1/2

k ‖u‖Hpk+1(Ωk )
. (82)

By combining (81) and (82) we obtain the result in (65). �

Remark 7.7. (i) The result of Theorem 7.6(a) is also valid if k = s(l) is replaced by m(l), Fl is
replaced by the restriction of Fm(l) to the parameter interval γ̃l := F−1

m(l)(γl), and the spline
space Ŝpk (Θl) is replaced by Ŝpm(l)(Θh,m(l)), where Θh,m(l) is the part of the knot sequence of
the NURBS parameterization Fm(l) which is relevant for γl .

(ii) For smoother functions uk := u|Ωk
∈ Hpk+3(Ωk) and α ∈ Cpk,1(Ωk) we obtain better error

bounds
‖(id − Π̂h,l)(ŵl uk ◦ Fl)‖L2(γ̂l) ≤ Chpk+1

k ‖u‖Hpk+2(Ωk )
(83)

and
‖(id − Π̂h,l)(ŵl λl ◦ Fl)‖L2(γ̂l) ≤ Chpk+1

k ‖u‖Hpk+3(Ωk )
. (84)

The proof is much simpler than the proof of Theorem 7.6. The additional smoothness yields
that t := ŵl uk ◦ Fl is in Hpk+5/2(Ii) and y := ŵl λl ◦ Fl is in Hpk+3/2(Ii). Then we obtain the
projectors Γ1 into Spk (Θl) and Γ2 into Spk (Θ+l ) from [4, Lemma 4.1] such that

t − Γ1t ∈ Hpk+1(γ̂l), Dpk+1(Γ1t |Ii ) = 0 for all 1 ≤ i ≤ Nl − 1,
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x 0.5 0.6 0.4 0.5
y 0 0.3 0.7 1
w 1 1 1 1

Table 1: Control points for the initial interface curve with an interior knot with C1-smoothness
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(a) L2-error when the multiplicity p − 1 of 0.5 is retained
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(b) L2-error when the multiplicity of 0.5 is raised to p.

Figure 2: L2-error for spline approximation of degree 2 ≤ p ≤ 5 of the normal derivative y = ∂u/∂ν of u(x, y) =
sin 3x sin 2y on a spline curve γ with C1-smoothness at knot ζ = 0.5.

and
y − Γ2y ∈ Hpk+1(γ̂l), Dpk+1(Γ2y |Ii ) = 0 for all 1 ≤ i ≤ Nl − 1.

The results in (83) and (84) follow from the standard results on spline approximation. The
complications by the split t = t1 + t2 in the proof of Theorem 7.6 are needed, because the
term Dpk t(ζi+) −Dpk t(ζi−) for the definition of Γ1t is not always defined for t ∈ Hpk+1/2(Ii).
The same difficulty occurs for derivatives of y of order pk −1 and pk . The milder smoothness
assumptions in Theorem 7.6 are used in accordance with the results for optimal error bounds
in the non-IGA setting with Lagrange finite elements.

Example 7.8. We demonstrate the importance of Assumption 4, if an interface γ has limited
smoothness. The function u(x, y) = sin(3x) sin(2y) is analytic on the unit square 0 ≤ x, y ≤ 1.
We define a curved interface with initial degree pini = 2, knot sequence Ξ = {0,0,0,0.5,1,1,1}
and control points as listed in Table 1. The point (x, y) = (0.5,0.5) corresponds to the parameter
ξ = 0.5 on the interface, where the curve has only C1-smoothness. We let y = ∇u · ν be the
normal derivative along γ and compute the error of the L2-projector onto Spk (Θh), where Θh is
a knot sequence of uniform stepsize h on both intervals [0,0.5] and [0.5,1]. Note that y is only
C0-continuous at ξ = 0.5, as a consequence of the same property of the unit normal on γ. After
reparameterization of γ using degree p ≥ 2, the knot ζ = 1/2 has multiplicity p − 1 in accordance
with the C1-smoothness of γ. The left part of Figure 2 depicts the L2-error ‖y − P̂h,l y‖0,γ, if
Assumption 4 is not satisfied, i.e. the multiplicity p − 1 of the knot ζ = 1/2 in Θh is retained.
The approximation rate O(h3/2) is obtained for all degrees 2 ≤ p ≤ 5. No improvement occurs
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for higher degrees, because O(h3/2) is the optimal approximation order of functions with isolated
points of C0-continuity by C1-splines. After raising the multiplicity of the knot ζ = 1/2 to p, we
see in the right part of Figure 2 that the optimal approximation order O(hp+1) is achieved for all
2 ≤ p ≤ 5.

7.2. Approximation error
The method in [24, Section 1.2] shows how to find an optimal bound for the approximation

error Ea. We consider the geometrically conforming case in Theorem 7.9 and provide the extension
to the non-conforming case without proof in Remark 7.10.

Theorem 7.9. Assume that every interface γl is a full edge of Ωs(l) and Ωm(l). Further assume that
the weak solution u of (2) satisfies u ∈ H1(Ω) and uk = u|Ωk

∈ Hpk+1(Ωk) for all 1 ≤ k ≤ K where
pk is the degree of the NURBS parameterization of Ωk . If Assumptions 1–3 are satisfied, there is a
constant C depending only on the parameterizations Fk and the degrees pk such that

inf
vh∈Vh
‖u − vh‖

2
X ≤ C

K∑
k=1

h2pk
k ‖u‖

2
Hpk+1(Ωk )

. (85)

Proof. We follow the method described in [24, Lemma 1.4]. Instead of writing inequalities with
explicit constants, we use the symbol . and note that the implicit constants do not depend on
h. First, we choose wh = (wh,k)1≤k≤K ∈ Xh such that the functions ŵh,k = wh,k ◦ Fk ∈ X̂h,k are
tensorized local NURBS approximants of uk ◦Fk with boundary conditions, see e.g. [4, Proposition
4.26]. By Assumption 3 the parameterization satisfies Fk ∈ C1,1([0,1]2), and by continuity and
local smoothness of the NURBS function ŵh,k we have ŵh,k ∈ C0,1([0,1]2). The error analysis in
[4, Corollary 4.21] can be adapted to the spline projector with boundary conditions, see [4, Remark
4.22]. It provides the estimate

‖uk − wh,k ‖0,Ωk
+ hk |uk − wh,k |1,Ωk

. hpk+1
k ‖uk ‖Hpk+1(Ωk )

.

Moreover, for each interface γl , 1 ≤ l ≤ L, and k = s(l), the tensor-product approach implies that
wh,k |γl is a local approximant of uk |γl and interpolates uk at both endpoints of γl , so (uk −wh,k)|γl ∈

H1
0 (γl). We can omit the factor ŵl ∈ C1,1([0,1]) in Theorem 7.6(a), replace the derivative in the

parameter domain by a tangential derivative on γl , and obtain

‖uk − wh,k ‖0,γl + hk |uk − wh,k |1,γl . hpk+1/2
k ‖uk ‖Hpk+1(Ωk )

.

Standard interpolation theory of Banach spaces provides the error estimate in the H1/2
00 -norm

‖uk − wh,k ‖H1/2
00 (γl)

. hpk
k ‖uk ‖Hpk+1(Ωk )

.

In the same way, since we restrict ourselves to the geometrically conforming case, we obtain

‖um(l) − wh,m(l)‖H1/2
00 (γl)

. hpm(l)
m(l) ‖um(l)‖Hpm(l)+1

(Ωm(l))
.
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Note that uk ∈ Hpk+1(Ωk) ⊂ C(Ωk), so we can identify uk |γl = u|γl = um(l) |γl . The jump

[wh]l = wh,k |γl − wh,m(l) |γl = (u − wh,m(l))|γl − (u − wh,k)|γl (86)

can be non-zero, due to different refinements of the initial NURBS parameterizations Fk and Fm(l).
By the interpolation conditions at the endpoints of γl , we have [wh]l ∈ H1

0 (γl) in the geometrically
conforming case and

‖[wh]l ‖H1/2
00 (γl)

≤ ‖u − wh,k ‖H1/2
00 (γl)

+ ‖u − wh,m(l)‖H1/2
00 (γl)

. hpk
k ‖u‖Hpk+1(Ωk )

+ hpm(l)
m(l) ‖u‖Hpm(l)+1

(Ωm(l))
.

(87)

Next we describe the construction of the approximant vh ∈ Vh. We use the mortar projection
Qh,l and define φl = Qh,l([wh]l) ∈ Wh,l,0. Let φ̃l be the extension of φl to ∂Ωk by zero. Then we
choose vl ∈ Xh, which is zero in all patches Ω j , Ωk and satisfies

vl |∂Ωk
= φ̃l, ‖vl ‖1,Ωk

. ‖φl ‖H1/2
00 (γl)

. (88)

We obtain from the quasi-uniformity, the H1/2
00 -stability of Qh,l in Remark 5.3 and (87) that

‖vl ‖1,Ωk
. ‖[wh]l ‖H1/2

00 (γl)
. hpk

k ‖u‖Hpk+1(Ωk )
+ hpm(l)

m(l) ‖u‖Hpm(l)+1
(Ωm(l))

.

Finally, we define the function

vh = wh −

L∑
l=1

vl ∈ Xh.

It is an element of Vh, because

[vh]l = [wh]l −

L∑
j=1
[v j]l = [wh]l − φl = (I −Qh,l)[wh]l

for every 1 ≤ l ≤ L, so that the definitions (8) and (40) give bρ(vh, µ) = 0 for every µ ∈ M1
h . For

each k let Lk be the set of indices 1 ≤ l ≤ L with Ωs(l) = Ωk . Then we obtain the error bound

‖u − vh‖1,Ωk
≤ ‖u − wh‖1,Ωk

+
∑
l∈Lk

‖vl ‖1,Ωk

. hpk
k ‖u‖Hpk+1(Ωk )

+
∑
l∈Lk

(
hpk

k ‖u‖Hpk+1(Ωk )
+ hpm(l)

m(l) ‖u‖Hpm(l)+1
(Ωm(l))

)
.

Note that the cardinality of Lk is bounded by a constant which depends only on the global geometry;
in our case of 2-D tensor-product patches we have Lk ≤ 4. Therefore, summing the squared norms
leads to the result. �
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Remark 7.10. The geometrically non-conforming scenario NC1 of Remark 2.1 is treated as follows.
Let L0 ⊂ {1, . . . , L} be the subset of indices such that γl is a proper subset of an edge of Ωm(l).
Then we cannot assume, as done in the proof of Theorem 7.9, that wh,m(l) interpolates u at both
endpoints of γl . Hence, the jump [wh]l in (86) is not in H1

0 (γl). However, the method in [24, p.18]
describes a way how we obtain the upper bound

inf
vh∈Vh
‖u − vh‖

2
X ≤ C ©«

K∑
k=1

h2pk
k ‖u‖

2
Hpk+1(Ωk )

+
∑
l∈L0

h2pm(l)+1
m(l)

hs(l)
‖u‖2Hpm(l)+1 (Ωm(l))

ª®¬ . (89)

The norm of the last term can be reduced by considering the restriction of u to a strip Ω̃l ⊂ Ωm(l)
adjacent to γl and of width hm(l). For more details we refer to [24].

Things are much easier in the geometrically non-conforming scenario NC2. Recall from
Remark 2.1 that the elements of Xh,k need only be continuous across the prolongations of T-
intersections from adjacent patches. Therefore, in the first step of the proof of Theorem 7.9, both
components wh,s(l) and wh,m(l) can be chosen to interpolate u at both endpoints of γl . Then we
obtain the same result as for the geometrically conforming case.

7.3. Consistency error
We follow the method in [24, Section 1.2] to find an upper bound for the consistency error Eb.

Recall the definition of M̂1
h,l ⊂ Ŝpk (Θh,l) in Proposition 4.6 as the orthogonal complement of Ê1

h,l
in (34). The basis functions êh,l,1 and êh,l,2 of Ê1

h,l have supports

Jh,l,1 = [ξl,1, θh,l,2pk+2], Jh,l,2 = [θh,l,nh,l−pk , ξl,2]. (90)

If hk is sufficiently small, these intervals are disjoint and, more importantly, contained in the
first/last knot interval of the initial knot sequence Θl . Therefore, γl is a C∞-curve in both intervals.

Proposition 7.11. Let 1 ≤ l ≤ L and k = s(l). Assume that u|Ωk
∈ Hpk+1(Ωk), α ∈ Cpk−1,1(Ωk),

Θl satisfies Assumption 3, and Θh,l satisfies Assumptions 2 and 4. Let h0 > 0 be given, such that
for all h ≤ h0 the intervals J1 := Jh,l,1, J2 := Jh,l,2 in (90) are contained in the first/last knot interval
of the initial knot sequence Θl . There exists a constant C > 0 depending only on pk , Fk , and α |Ωk

such that
inf

µ̂∈M̂1
h,l

‖ŵlλl ◦ Fl − µ̂‖L2(γ̂l) ≤ Chpk−1/2
k ‖u‖Hpk+1(Ωk )

. (91)

Proof. By Theorem 7.6(b), the orthogonal projection into the spline space

v̂ = P̂h,l(ŵl λl ◦ Fl)

has the desired approximation order. Because the supports of both basis functions êh,l,1 and êh,l,2
are disjoint, the orthogonal projection

PÊ1
h,l
v̂ = PÊ1

h,l
(ŵl λl ◦ Fl) = d1

êh,l,1

‖êh,l,1‖L2(J1)
+ d2

êh,l,2

‖êh,l,2‖L2(J2)
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has the coefficients

di =
1

‖êh,l,i‖L2(Ji)

∫
Ji
ŵl λl ◦ Fl êh,l,i dξ, i = 1,2.

Orthogonality of êh,l,i to all polynomials of degree pk − 1 and the Cauchy-Schwarz inequality give

|di | ≤ inf
r
‖ŵl λl ◦ Fl − r ‖L2(Ji),

where the infimum is taken over all polynomials r of degree pk −1. Moreover, the parameterization
Fl is smooth in both intervals Ji, i = 1,2, so λl ◦ Fl ∈ Hpk−1/2(Ji) by the trace theorem. This gives

|di | ≤ C |Ji |
pk−1/2 |ŵl λl ◦ Fl |Hpk−1/2(Ji) ≤ C |Ji |

pk−1/2‖u‖Hpk+1(Ωk )
.

By Assumption 2, we have |Jk | ≤ c2(pk + 1)hk , and Minkowski’s inequality gives

‖PÊ1
h,l
v̂‖L2(γ̂l) ≤ |d1 | + |d2 | ≤ Chpk−1/2

k ‖u‖Hpk+1(Ωk )
.

The result follows with the definition of µ̂ = v̂ − PÊ1
h,l
v̂ ∈ M̂1

h,l . �

Remark 7.12. It seems that the property ∂u
∂νl
◦ Fl ∈ H

pk−1/2(γ̂l ;Θh,l) was assumed, without further
notice, in the proof of [12, Theorem 5.5]. Our discussion at the beginning of this section makes
clear that this property is not justified by u ∈ Hpk+1(Ωk) and Assumption 4 should be added. We
demonstrate this effect in the examples given in Secs. 9.1.2 and 9.1.3.

The upper bound for the consistency error Eb is now obtained as in [24, Lemma 1.8].

Theorem 7.13. Let the assumptions of Proposition 7.11 be satisfied for all 1 ≤ l ≤ L; in particular,
Assumptions 1–4 are satisfied and the weak solution u ∈ H1(Ω) of (2) satisfies u|Ωk

∈ Hpk+1(Ωk)

for all k = s(l), 1 ≤ l ≤ L. Let h0 > 0 be given, such that for every h ≤ h0 and every interface
γl the intervals Jh,l,1, Jh,l,2 in (90) are contained in the first/last knot interval of the initial knot
sequence Θl . Then there is a constant C > 0 which only depends on all pk and Fk , such that

Eb = sup
vh∈Vh

bρ(vh, λ)

‖vh‖X
≤ C

(
L∑

l=1
h2ps(l)

s(l) ‖u‖
2
Hps(l)+1

(Ωs(l))

)1/2

. (92)

Proof. For each interface γl , we use the same notations as before and let

yl = ŵl λl ◦ Fl =
τl

ŵl

(
α
∂u
∂νl

)
◦ Fl . (93)

Let vh = (vh,k)1≤k≤K ∈ Vh. The standard computations as in (7) and the definition (12) of Vh give

bρ(vh, λ) =

L∑
l=1

∫
γ̂l

(yl − µ̂l)(ξ)ŵl(ξ) [vh]l ◦ Fl(ξ) dξ
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with arbitrary elements µ̂l ∈ M̂1
h,l . The Cauchy-Schwarz inequality gives

|bρ(vh, λ)|
2 ≤

L∑
l=1

inf
µ̂l∈M̂1

h,l

hs(l)‖yl − µ̂l ‖
2
L2(γ̂l)

L∑
l=1

h−1
s(l)‖ŵl [vh]l ◦ Fl ‖

2
L2(γ̂l)

. (94)

For the first sum in (94), we apply the result of Proposition 7.11 and obtain
L∑

l=1
inf

µ̂l∈M̂1
h,l

hs(l)‖yl − µ̂l ‖
2
L2(γ̂l)

≤ C
L∑

l=1
h2ps(l)

s(l) ‖u‖
2
Hps(l)+1

(Ωs(l))
.

A bound for the second sum in (94) is obtained in analogy to [11, Lemma 3.5] as
L∑

l=1
h−1

s(l)‖ŵl [vh]l ◦ Fl ‖
2
L2(γ̂l)

≤ C
L∑

l=1

(
‖vh,s(l)‖

2
H1(Ωs(l))

+ ‖vh,m(l)‖
2
H1(Ωm(l))

)
≤ C‖vh‖

2
X .

So we have obtained the upper bound in (92). �

By combining the approximation error (85) and the consistency error (92), the inequality (55)
becomes

‖u − uh‖
2
X ≤ C

K∑
k=1

h2pk
k ‖u‖

2
Hpk+1(Ωk )

(95)

in the geometrically conforming case. If the decomposition is geometrically non-conforming (i.e.,
with T-intersections), the same result is valid for the type NC2 in Remark 2.1. For the type NC1,
instead, the bounds (89) and (92) give

‖u − uh‖
2
X ≤ C1

K∑
k=1

h2pk
k ‖u‖

2
Hpk+1(Ωk )

+ C2
∑
l∈L0

h2pm(l)+1
m(l)

hs(l)
‖u‖2

Hpm(l)+1
(Ωm(l))

. (96)

7.4. Error bound for the Lagrange multiplier
The error bound for the Lagrange multiplier in (10) is given for the mesh-dependent norm

‖λ − λh‖−1/2,h. It is derived from the infsup-condition and the approximation error in the standard
way as shown in [24, p. 26]. We only describe the geometrically conforming case. For the
non-conforming situation, the same adaptation as in (89) is needed.
Theorem 7.14. With the assumptions of Theorem 7.9 we have

‖λ − λh‖
2
−1/2,h ≤ C

K∑
k=1

h2pk
k ‖u‖

2
Hpk+1(Ωk )

, (97)

where C only depends on α and all pk and Fk .
Proof. The same method as in [24, p.25] leads to

‖λ − λh‖−1/2,h ≤ inf
µh∈M1

h

(‖λ − µh‖−1/2,h + ‖λh − µh‖−1/2,h)

≤ C
(
‖u − uh‖X + inf

µh∈M1
h

‖λ − µh‖−1/2,h

)
.

The result follows from (55), Theorems 7.9 and 7.13 and Proposition 7.11. �
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8. Implementation

In our implementation of the mortar finite element method, we use the mass matrixMh for the
substitution of all nodal coefficients ofΩs(l) associated with the interior of γl by a linear transform,
as described in [5, p. 194]. We show how to choose a basis for M1

h , different from the one in
Proposition 4.6, in order to obtain simple relations for this substitution.

Let 1 ≤ l ≤ L and k = s(l). First, we develop the expressions for the entries of the mass matrix
which are associated with the interface γl and with the basis elements of M̂1

h,l in Proposition 4.6.
The rows of the mass matrix are indexed by 2 ≤ i ≤ nh,l − 1 according to the enumeration of the
basis elements of M̂1

h,l .
There are two blocks of columns for each row. The first block is associated with finite elements

on Ωk which are non-zero on γl ,

ml,i,j = 〈Nh,l,j, µ
1
h,l,i〉ρl = wh,l,j

∫
γ̂l

µ̂1
h,l,i B̂pk

h,l,j dξ, 2 ≤ i ≤ nh,l − 1, 1 ≤ j ≤ nh,l . (98)

Here, wh,l,j is the weight factor in the numerator of the NURBS function N̂h,l,j . Both functions
µ̂1

h,l,i, B̂pk
h,l,j are splines in Ŝpk (Θh,l), so there are fast methods for the computation of these integrals.

The analysis in Section 6 shows that the square submatrix

Mh,l = (ml,i,j)2≤i,j≤nh,l−1 (99)

has a uniformly bounded condition number for arbitrary knot sequences. This property is the same
as the “spectral equivalence” in [24, p.13]. Note that this block is banded due to the local support
of the basis.

The second block is associated with finite elements on Ωm(l) which are non-zero on γl . We
denote the corresponding NURBS basis functions on F−1

m(l)(γl) by N̂m
h,l,j , 1 ≤ j ≤ ñh,l . Note

that a sign factor is introduced by the jump operation. In both geometrically conforming and
non-conforming cases, we have

m̃l,i,j = −

∫
γ̂l

µ̂1
h,l,i ŵl N̂m

h,l,j ◦ F−1
m(l) ◦ Fl dξ, 2 ≤ i ≤ nh,l − 1, 1 ≤ j ≤ ñh,l . (100)

In a conforming geometry, we often have F−1
m(l) ◦ Fl = id, so this term can be omitted. It must be

included in the integral for a non-conforming geometry, because γl is only a portion of the edge
parameterized by Fm(l).

Next we define another basis (η̂1
h,l,i : 2 ≤ i ≤ nh,l −1) of M̂1

h,l such that the corresponding entries
are

mη
l,i,j = wh,l,j

∫
γ̂l

η̂1
h,l,i B̂pk

h,l,j dξ, 2 ≤ i ≤ nh,l − 1, 1 ≤ j ≤ nh,l (101)

and

m̃η
l,i,j = −

∫
γ̂l

η̂1
h,l,i ŵl N̂m

h,l,j ◦ F−1
m(l) ◦ Fl dξ, 2 ≤ i ≤ nh,l − 1, 1 ≤ j ≤ ñh,l . (102)
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The basis will be chosen such that the square submatrix

M
η
h,l = (m

η
l,i,j)2≤i,j≤nh,l−1 (103)

is a diagonal matrix. For this definition, we use the dual B-splines

B̃ql
h,l,j ∈ Ŝql (Θh,l), 1 ≤ j ≤ nh,l,

which satisfy the biorthogonality relation∫
γ̂l

B̃ql
h,l,j B̂

ql
h,l,k dξ = δ j,k for all 1 ≤ j, k ≤ nh,l .

Here δ j,k denotes the Kronecker delta. The support of the dual B-splines is the whole interval
γ̂l . Although the new basis will have global support γl , the mass matrix is sparse due to the
biorthogonality.

We recall the definition of the two functions

êh,l,1 =
dql

dξql
B̂2ql

h,l,1 =

nh,l∑
j=1

α j B̂
ql
h,l,j

in (30) and

êh,l,2 =
dql

dξql
B̂2ql

h,l,n−ql
=

nh,l∑
j=1

β j B̂
ql
h,l,j

in (31), which span the orthogonal complement Ê1
h,l of M̂1

h,l . Note that all coefficients α j with
j > ql + 1 and β j with j < n − ql are zero.

Proposition 8.1. Let q = ql , n = nh,l and assume n ≥ q + 2.

(a) The functions
η̂1

h,l,i = B̃q
h,l,i −

αi

α1
B̃q

h,l,1 −
βi

βn
B̃q

h,l,n, i = 2, . . . ,n − 1, (104)

are a basis of M̂1
h,l . In particular, if n ≥ 2q + 3, then η̂1

h,l,i = B̃q
h,l,i for j = q + 2, . . . ,n− q − 1.

(b) The entries of the mass matrix in (103) are

mη
l,i,j = wh,l,j

∫
γ̂l

B̂q
h,l,j η̂

1
h,l,i dξ = wh,l,j

(
δi,j −

αi

α1
δ j,1 −

βi

βn
δ j,n

)
, 1 ≤ j ≤ n, 2 ≤ i ≤ n − 1.

(105)
In particular, the blockMη

h,l in (103) is diagonal.

Proof. Part (a) follows from two simple observations. First, the specified splines η̂1
h,l,i, 2 ≤ i ≤ n−1,

are linearly independent, because B̃q
h,l,i only appears in the representation of η̂1

h,l,i. Secondly, their
orthogonality to êh,l,1 and êh,l,2 is easily verified. Part (b) follows directly from the biorthogonality
of B-splines and dual B-splines. �
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Based on this result, the substitution method can be easily implemented as follows. We let
uh = (uh,k)1≤k≤K be an element of Xh.

• Let n = nh,l and ñ = ñh,l . The restriction of uh,s(l) to γl has the NURBS representation

uh,s(l) |γl =

n∑
j=1

Uh,l,j N̂h,l,j ◦ F−1
s(l) (106)

and the restriction of uh,m(l) to γl has the representation

uh,m(l) | γl =

ñ∑
j=1

Um
h,l,j N̂

m
h,l,j ◦ F−1

m(l). (107)

The superscript m is used in order to denote coefficients Um
h,l,j and basis functions N̂m

h,l,j on
the master side of γl .

• SinceMη
h,l is a diagonal matrix, we have mη

l,i,j = 0 for all 2 ≤ j ≤ n − 1, j , i. The weak
continuity condition bρ(uh, µ) = 0 is used, where µ = (µl)1≤l≤L is chosen with a fixed basis
element µl = ηh,l,i ∈ M1

h,l , 2 ≤ i ≤ n − 1, and µr = 0 for r , l. This gives

0 = bρ(uh, µ) = 〈[uh]l, ηh,l,i〉ρl = wh,l,iUh,l,i −
wh,l,1αi

α1
Uh,l,1 −

wh,l,nβi

βn
Uh,l,n −

ñ∑
j=1

m̃η
l,i,jU

m
h,l,j .

Hence, the substitution

Uh,l,i =
1

wh,l,i

©«wh,l,1αi

α1
Uh,l,1 +

wh,l,nβi

βn
Uh,l,n +

ñ∑
j=1

m̃η
l,i,jU

m
h,l,j

ª®¬ (108)

can be used for all coefficients Uh,l,i, 2 ≤ i ≤ n − 1, on the slave side of γl .

Remark 8.2. (i) Note that the nodal coefficients Uh,l,1 and Uh,l,nh,l associated with the two end-
points of γl in the slave-cell are treated as free parameters. Indeed, as in [5] and for the
geometrically conforming case, we define separate control points for each cell Ωk meeting
at a vertex of the decomposition. Hence, different interfaces are completely decoupled and
there is no interference of the control points on γl with other cells than Ωs(l) and Ωm(l). The
same decoupling remains valid for the geometrically non-conforming types NC1 and NC2
in Remark 2.1. This is clear for NC1, because both endpoints of γl are vertices of Ωs(l) and
can be treated in the same way as in the geometrically conforming case. For the type NC2,
the control points Uh,l,1 and Uh,l,n in (106) can be non-vertex points of Ωs(l). This occurs
if one (or both) of them are endpoints of the prolongation of a T-intersection at a vertex of
the master patch Ωm(l). If this is the case, the same control point is used as an endpoint of
another interface γm, m , l, and can either belong to the slave patch or the master patch of
γm. Since it is treated as a free parameter in both cases (slave or master control point for γm),
there is no complication as compared to the geometrically conforming case.
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(ii) The computation of m̃η
l,i,j in (102) requires explicit expressions for the dual B-splines B̃q

h,l,j ,
1 ≤ j ≤ n, with knot sequence Θh,l . In our implementation, these are computed via the
inversion of the Gram matrix (〈B̂q

h,l,i, B̂
q
h,l,j〉)1≤i,j≤n of the B-spline basis on γ̂l . In [16] we

described a modification of the mortar method which avoids matrix inversion by the use of
approximate dual B-splines. It introduces another consistency error for the error analysis in
Section 7. The error analysis will be presented in our forthcoming work.

9. Numerical Examples

We present our numerical results for two examples. In Section 9.1 we consider the Poisson
equation on the unit square, and Section 9.2 considers a benchmark problem of linear elasticity,
namely an elastic plate with hole. In both cases, the numerical results can be compared to an
analytical solution. Thus, the convergence behavior of the proposed mortar formulation can be
assessed properly. Several discretizations are tested for each example. All computations are
performed using an in-house isogeometric analysis code within Matlab.

9.1. Poisson equation solved on the unit square
In this example the Poisson equation −∆u = f is solved on the unit square Ω = (0,1)2.

The manufactured analytical solution for the body load f (x, y) = 13 sin(3x) sin(2y) is u(x, y) =
sin(3x) sin(2y). The associated boundary conditions are g = ∇u · ν on Neumann boundaries ΓN
with the outer normal vector ν, and u = 0 on the Dirichlet boundary ΓD. Within this work the lower
edge (x ∈ (0,1), y = 0) is chosen as Dirichlet boundary, whereas all other edges are Neumann
boundaries. Other choices are possible, but do not yield significantly different results, see the
work of Zou et al. [25] where different combinations of boundary conditions are compared. In the
following, we study several different possibilities to discretize the domain with NURBS patches.
The accuracy of the computations is assessed with the help of the L2-error ‖u − uh‖0,Ω which is
plotted over the maximal element diagonal h. Since f is infinitely smooth, optimal error bounds
for discretizations of degree p have the order O(hp+1) according to the general theory of finite
elements [10].

9.1.1. Two conforming patches with straight interface
The first discretization scheme serves as a reference and uses a decomposition into two rect-

angular patches which intersect at x = 0.5. The discrete spaces Xh,k , k = 1,2, are tensor-product
splines relative to conforming, equally spaced knot sequences and equal degrees 2 ≤ p ≤ 5 in both
patches. The canonical parameterizations F1(ξ1, ξ2) = (ξ1/2, ξ2) and F2(ξ1, ξ2) = ((1 + ξ1)/2, ξ2)
and the constant NURBS denominator ŵk = 1, k = 1,2, lead to a constant weight function ρ = 1/2
for the bilinear form bρ. Figure 3a shows the resulting error, if strong continuitiy conditions across
the interface γ are used; here the two patches are coupled by shared degrees of freedom along γ
and no consistency error occurs. Equivalently, the space Vh consists of all tensor-product splines
of coordinate degree p on the full unit square with Dirichlet boundary conditions for y = 0, whose
knot vector Ξ(1) ⊂ [0,1] has a knot ξ = 0.5 of multiplicity p and simple knots with uniform stepsize
h in both intervals [0,0.5], [0.5,1]. The results for degrees 2 ≤ p ≤ 5 are shown as the solid lines
in the double logarithmic diagram of Figure 3a and labeled by ’conf’. The expected rates O(hp+1)
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(a) Coupling by shared degrees of freedom
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(b) Mortar coupling using t = 0 approach
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(c) Mortar coupling using t = 1 approach

Figure 3: Poisson Equation: Comparison of error level and convergence rates for the discretization scheme with
straight interface and conforming knot sequences.

are obtained, as can be seen by direct comparison with the dashed lines of slope p + 1. We use the
same ordinates in all figures in order to facilitate the comparison of the mortar method with this
reference case. The results for the mortar coupling using Lagrange multiplier spaces M t

h, t = 0,1,
for weak continuity conditions across the interface are given in Figures 3b and 3c. Both proposed
methods yield the same accuracy level and the same expected convergence rates as the conforming
reference computations (Figure 3a). Thus, the global error of uh is not affected by using the mortar
method instead of a direct connection by shared degrees of freedom.

9.1.2. Two non-conforming patches with curved interface with internal C1-continuity
Our next example demonstrates the importance of Assumption 4, if an interface has limited

smoothness. We choose two NURBS patches with a curved interface with initial degree pini = 2,
knot sequence Ξ = {0,0,0,0.5,1,1,1} and control points as listed in Table 1, see Example 7.8. The
point (x, y) = (0.5,0.5) corresponds to the parameter ξ = 0.5 on the interface, where the curve
has only C1-smoothness. A non-conforming discretization with an element ratio of 2 : 3 along
the interface is obtained by choosing this ratio for the coarsest mesh and then performing uniform
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Control points

Dirichlet boundary condition

Neumann boundary condition
W2

Interface condition

W1

Figure 4: Poisson equation: Discretization scheme with curved interface and an interior knot with C1-continuity (left).
Coarsest non-conforming mesh for this scheme with control points for the parameterization of degree 2 (right).

subdivision in both patches. The same degrees are chosen in both patches. The maximal element
diameter h is alike in both patches; see Fig. 4.

In order to demonstrate the effect of the limited smoothness of γ on the a priori error in Sec. 7,
we first perform computations for degrees 2 ≤ p ≤ 5 without reduced smoothness. The initial
parameterization of γ is rewritten with B-splines of degree p by raising the multiplicity of the
endpoints to p + 1 and of ζ = 0.5 to p − 1. The uniform refinement uses an open knot sequence
Θh with endpoints of multiplicity p + 1, knot ζ = 0.5 of multiplicity p − 1, and additional simple
knots of stepsize h in both intervals (0,0.5) and (0.5,1). We already observed in Example 7.8
that the orthogonal projection of ∇u · ν onto the spline space of degree p has an L2-error of size
O(h3/2), regardless of the degree 2 ≤ p ≤ 5. Therefore, the order of approximation in Proposition
7.11 is not achieved for 3 ≤ p ≤ 5. This results in a defect of the consistency error Eb and, finally,
in a degraded a-priori error as can be seen in Figure 5. On the other hand, when we increase the
multiplicty of ζ = 0.5 to p as described in Assumption 4 (at least for p ≥ 3), then the optimal
convergence rate p + 1 for the a-priori error is recovered for all considered degrees and both cases
t = 0 and 1, see Figure 6. This clearly shows that the reduction of smoothness at interior knots is
needed in order to recover the optimal convergence rates.
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(a) Mortar coupling using t = 0 approach
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(b) Mortar coupling using t = 1 approach

Figure 5: Poisson Equation: Comparison of error level and convergence rates for the discretization scheme with curved
interface and an interior knot with C1-continuity. No reduction of continuity at internal knots.
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(a) Mortar coupling using t = 0 approach
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(b) Mortar coupling using t = 1 approach

Figure 6: Poisson Equation: Comparison of error level and convergence rates for the discretization scheme with curved
interface and an interior knot with C1-continuity. Reduction of continuity at internal knots according to Assumption
4.
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x 0.5 0.55 0.52 0.5 0.4 0.42 0.56 0.55 0.5 0.5
y 0 0.1 0.2 0.32 0.45 0.55 0.69 0.8 0.95 1
w 1 1.2 1.4 0.8 1 1.3 1.1 1.5 0.9 1

Table 2: Poisson equation: Control points for the initial interface curve with p = 3 and different internal continuities

9.1.3. Two non-conforming patches with higher order curved interface with different continuities
Our next discretization scheme defines two NURBS patches with a curved interface γ with

initial degree p = 3, knot sequence Ξ = {0,0,0,0,0.3,0.3,0.5,0.5,0.5,0.7,1,1,1,1} and control
points as listed in Tab. 2. At the points ξ = 0.3 and ξ = 0.7, the interface curve is only C1 and
C2-continuous, respectively. At the point ξ = 0.5, the curve is C0-continuous, and has a kink as
can be seen in Figure 7. The points on the interface with reduced internal continuity are marked on
the right side of Figure 7. With this example we demonstrate the importance of Assumption 4 for
different orders of smoothness and also include the treatment of points with C0-continuity, which
was explained in Remark 7.1.

1C

0C

2C
Dirichlet boundary condition

Neumann boundary condition
W2

Interface condition

W1

Control points

Figure 7: Poisson equation: Discretization scheme with curved interface with initial order p = 3 and different internal
continuities (left). Coarsest non-conforming mesh for this scheme with (right). The points at the interface with limited
internal continuity are labeled by C2, C1 and C0.

Anon-conforming discretization with an element ratio of 2 : 3 along the interface is obtained by
choosing a coarse decomposition with this ratio and subsequent uniform subdivision, see Figure 7.
The same degree 3 ≤ p ≤ 5 is chosen for both patches. The error of ‖u − uh‖0,Ω is shown in
Figures 8(a) and 8(b)for both spaces of Lagrange multipliers (t = 0 or 1) and for different choices
of the reduction of smoothness at interior knots of Ξ. The mortar method which employs reduced
smoothness in the definition of the discrete spaces Xh,k according to Remark 7.1 and Assumption 4
shows optimal convergence (solid lines in 8(a) and (b)). For comparison, in computations labeled
by NR we perform no reduction of smoothness; i.e. the knot vectors Θh related to the interface
have knots 0.3,0.5,0.7 with multiplicities p − 1, p, p − 2, respectively. The convergence rate is not
optimal for all considered degrees 3 ≤ p ≤ 5. It seems to be limited to O(h1.5), which follows the
mathematical reasoning in Example 7.8. Furthermore, the label N1 indicates that the C0-point at
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(b) Mortar coupling using t = 1 approach

Figure 8: Poisson Equation: Comparison of error level and convergence rates for the discretization scheme with
curved interface with initial order p = 3 and different internal continuities. Different cases of reduction of continuity
at internal knots are shown. In computations labeled by N2, no reduction is performed at C2-points. In computations
labeled by N1, no reduction is performed at C2 and C1-points. In computations labeled by NR, no reduction at all is
performed.

ξ = 0.5 is treated by the method which was sketched in Remark 7.1, but no reduction of smoothness
is performed at 0.3,0.7. The convergence rate is optimal only for p = 3, but deficient for higher
degrees. Finally, the computations with reduced smoothness only at ξ = 0.3 and proper treatment
of the C0-point ξ = 0.5 are labeled by N2. The optimal convergence rate is obtained and the results
cannot be distinguished by the eye from the solid lines. It seems that the defect of the consistency
error shown in Figure 9 is damped, but we have no analytical explanation yet. These results give
further numerical evidence for the a priori error estimate in Sec. 7 and at the same time indicate
that it might be sufficient to reduce the continuity in C0 and C1-points. However, a reduction at all
initial internal knots is not counterproductive.

For a better understanding of the size of the consistency error Eb in (54), Figure 9 shows the
L2-error of the orthogonal projection of ∇u · ν onto the full spline space Ŝp(Θh) for 3 ≤ p ≤ 5. The
labels NR, N1, and N2 inidcate the partial reduction of smoothness as explained before. No label
is used for the solid line in Fig. 9(b), which shows the results where the reduction of smoothness
at both knots 0.3 and 0.7 is performed according to Assumption 4 and the point ξ = 0.5 is treated
as in Remark 7.1.
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(b) Full reduction of smoothness and N2

Figure 9: L2-error for spline approximation of degree 3 ≤ p ≤ 5 of the normal derivative y = ∂u/∂ν of u(x, y) =
sin 3x sin 2y on a spline curve γ with a C0-point ζ = 0.5, a C1-point ζ = 0.3 and a C2-point ζ = 0.7.

9.1.4. Discretization with ten patches and different kinds of intersections

Dirichlet boundary condition

Neumann boundary condition

Interface condition

Control points

W3W1 W2 W4

W5
W6

W7

W10
W9

W8

Figure 10: Poisson equation: Discretization scheme with ten non-conforming patches and different kinds of intersec-
tions (left). Coarsest non-conforming mesh for this scheme (right).

Our final discretization scheme is with ten non-conforming patches, where seven T-intersections
and two star-intersections are present. A sketch of the patch layout is given on the left side in Fig. 10.
The interfaces are straight lines and the geometry is waterproof, i.e., the parametrizations match
along the interfaces. In the convergence studies, every patch is uniformly subdivided by the same
refinement factor and equal degrees are used. The presence of T-intersections, where one patch
boundary borders two other patches, together with the additional knots in the patches with T-
intersections yields non-conforming meshes at most interfaces. In the initial mesh given on the
right of Figure 10, no interior knots are present besides the additional knots at T-intersections,
which are resolved by the method described as NC2 in Remark 2.1. Three sample meshes are
given in Figure 11 for a better depiction of the obtained non-conformity.

From a mathematical point of view there is no criterion for an optimal choice of patches to
be master or slave. However, experience in numerical simulations in [12, 16] suggests to use the
patch with more elements as slave patch. The numerical results for this case are given in Fig. 12.
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(a) Refinement factor of 4 (b) Refinement factor of 7 (c) Refinement factor of 10

Figure 11: Poisson Equation: Sample meshes for the discretization scheme with with ten non-conforming patches and
different kinds of intersections.
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(a) Mortar coupling using t = 0 approach
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(b) Mortar coupling using t = 1 approach

Figure 12: Poisson Equation: Comparison of error level and convergence rates for the discretization scheme with ten
patches and different kinds of intersections.

We obtain optimal convergence rates for all degrees 2 ≤ p ≤ 5 and for both choices of Lagrange
multipliers M t

h,l , t = 0 or 1, see Figures 12a and 12b. This shows that the proposed formulation is
able to handle multiple interfaces with different kinds of intersections properly. We also performed
the same computation for an inverted master/slave classification with essentially no changes.

9.2. Linear elasticity solved on an elastic plate with hole
In this example the differential equations for linear elasticity are solved for an infinite plate

with hole, where uniaxial tension is applied in x → ±∞. The mechanical equilibrium on a domain
Ω ⊂ R2 is given by

divσ + f = 0

with the boundary conditions u |ΓD = 0 and σ · n |ΓN = g, where n is the outer normal vector
with respect to ΓN . In the chosen planar linear elastic context with isotropic constitutive law, the
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Figure 13: Elastic plate with hole: Sketch of geometry and boundary conditions.

relations between stresses σ, strains ε and displacements u are given by

σ = λ tr (ε) I + 2µε and ε = 1
2

(
∇u + ∇Tu

)
,

where λ and µ are the Lamé parameters, I is the identity matrix and ∇ is the gradient operator.
Accordingly, the saddle point problem (9) changes to: Find (u,λ) ∈ X × M such that

a(u, v) + bρ(v,λ) =
∫
Ω
vT f dx +

∫
ΓN
vTg ds, v ∈ X,

bρ(u, µ) = 0, µ ∈ M ,
(109)

where X and M are bivariate extensions of the spaces used in Eq.(9). The bilinear forms a(u, v)
and bρ(u, µ) are given by

a(u, v) =
K∑

k=1

∫
Ωk

(∇v)Tσ dx and bρ(u, µ) =
L∑

l=1
〈[u]l, µl〉ρl ,

respectively.
For our computations, we limit the domain to finite size and apply the tractions of the exact

solution, which can be found e.g. in [2], as Neumann boundary conditions on the relevant edges.
Furthermore, we consider only one quarter due to symmetry and apply the associated symmetry
boundary conditions. Thus, we consider a domain Ω =

{
(x, y) ∈ (−4,0) × (0,4) : x2 + y2 ≥ 1

}
,

see Fig. 13. The known analytical solution of this problem allows performing convergence studies
for a complex stress distribution and is thus commonly used for numerical studies, especially in
the framework of isogeometric analysis.

In the following, we study three different possibilities to discretize the domain with NURBS
patches. In all cases the geometry is modeled exactly. The accuracy of the computations is assessed
with the help of the L2-error norm ‖σ−σh‖0,Ω which is plotted over the maximal element diagonal
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h. According to the theory of finite elements [10], the slope in the double logarithmic diagram
should be p, which is indicated by the dashed lines in the same diagram. In order to allow a
straightforward comparison of the mortar results to the reference case, we use the same axes in all
figures for this example. The reference example for a conforming method of degrees 2 ≤ p ≤ 5 is
provided in Fig. 15a.

9.2.1. Two patches with curved interface with internal C1-continuity with conforming meshes

Dirichlet boundary condition

Neumann boundary condition

W1

x

y

R = 1

Control points

Interface condition

W2

Figure 14: Elastic plate with hole: Discretization scheme with curved interface (left). Coarsest mesh with conforming
discretization for this scheme (right)

The first decomposition is with two NURBS patches with a curved interface with initial order
pini = 2, knot sequence Ξ = {0,0,0,0.5,1,1,1} and control points as listed in Table 3. At the
point ξ = 0.5, the interface γ is only C1-continuous. The mesh is chosen conforming in both
patches. A sketch of this discretization scheme along with the coarsest computed mesh is given in
Figure 14. Finer meshes for the convergence analysis are obtained by uniform subdivision. This
discretization is used to assess the ability of the mortar method to capture the same approximation
rate as conforming finite element methods. A computation where the two patches are coupled by
shared degrees of freedom along the interface, is used as reference. These results are labeled by
conf. in Figure 15a. The numerical results for the mortar method with Lagrange multiplier space
M t

h,l , t = 0 or 1, are given in Figures 15b and 15c. While both methods yield a lower accuracy
level for coarse discretizations than the conforming method, they seem to catch up in terms of
accuracy for fine meshes as almost the same error level as in the reference computations is obtained
for small stepsizes h. Thus, the expected convergence rates are obtained, even though the error
level is higher for coarse meshes. The mortar method does not improve the error as compared to

x −
√

2/2 −1.5 −2.5 −4
y

√
2/2 1.5 3 4

w 1 0.5 2 1

Table 3: Elastic plate with hole: Control points for the initial interface curve with an interior knot with C1-continuity
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(c) Mortar coupling using t = 1 approach

Figure 15: Elastic plate with hole: Comparison of error level and convergence rates for the discretization scheme with
curved interface and conforming discretization.

conforming FEM, but it is clearly competitive. We mention that the use of the mortar method does
not primarily lie in computations with conforming meshes, after all.

Another way of comparing the conforming FEM and the proposed mortar methods is obtained
by plotting the logarithmic error log(‖σvM − σ

h
vM ‖/‖σvM ‖) of the von Mises stresses σvM =√

σ2
11 + σ

2
22 − σ11σ22 + 3σ2

12 for a fixed discretization. We use a subdivision factor of 20 and
degree p = 5 in Figure 16. In the stress error plot of the reference computations (Figure 16(a)) the
largest error is inside the domain, while for both proposed methods (Figures 16(b) and 16(c)) the
largest errors are at the end points of the interface. This peculiarity can be explained as follows: In
the conforming case, the number of control points along the interface is equal on both sides of the
interface, i.e. nh,l = ñh,l . By using the endpoint modification for M t

h,l , the control points at both
endpoints of the slave patch become free parameters. This leads to a situation, where the number
nh,l −2 of slave control points is smaller than the number of master control points, which can result
in a substantial increase of the consistency error near both endpoints. As a simple work-around,
we subdivide the first and last two rows of elements in patch Ω2. By doing so, the mesh turns
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(a) Coupling by shared degrees of freedom (b) Mortar coupling using t = 0 approach (c) Mortar coupling using t = 1 approach

Figure 16: Elastic plate with hole: Logarithmic error of the von Mises stress for a subdivision factor of 20 and order
p = 5.

(a) Mesh for one-sided interface end refine-
ment (b) Mortar coupling using t = 0 approach (c) Mortar coupling using t = 1 approach

Figure 17: Elastic plate with hole: Mesh for one-sided interface end refinement and logarithmic error of the von Mises
stress for a subdivision factor of 20 and order p = 5.

into a non-conforming mesh, where the number of interface slave control points is larger than the
number of interface master control points. This reduces the concentrated error at the endpoints of
the interface significantly. A sample mesh is given in Fig. 17(a). The corresponding stress error
plots are given in Figs. 17(b) and 17(c).

9.2.2. Two patches with curved interface with internal C1-continuity and non-conforming mesh
The second discretization scheme uses the same initial discretization as in Sec. 9.2.1, but now

non-conforming meshes are chosen. This is obtained by using a subdivision factor of 2 j + 1 along
the interface in patch Ω2 and j in patch Ω1. This yields a ratio of 2 j + 1 : j elements along the
interface. In the second parametric direction, the subdivision factor is chosen in a complementary
way in order to obtain a similar number of elements in both patches. The patchΩ2 with the smaller
stepsize along the interface is chosen as the slave patch. The obtained meshes for a subdivision
factor of j = 5 and j = 10 of this discretization scheme are given in Fig. 18.

This discretization is used to assess the ability of the proposed methods to use discretizations
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(a) Refinement factor of j = 5 (b) Refinement factor of j = 10

Figure 18: Elastic plate with hole: Sample meshes for the discretization with curved interface with internal C1-
continuity and non-conforming mesh.
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(b) Mortar coupling using t = 1 approach

Figure 19: Elastic plate with hole: Comparison of error level and convergence rates for the discretization scheme with
curved interface and non-conforming discretization.

with curved NURBS interfaces with limited internal smoothness and strongly non-conforming
knot sequences. The error norms of the global stress distribution computed using the Lagrange
multiplier spaces M t

h,l , t = 0,1, are given in Figures 19a and 19b). Both methods yield optimal
convergence rates and the error levels are comparable to the conforming case using shared degrees
of freedom given in Fig. 15a.

Besides accuracy, also efficiency of the methods is studied. This is done by comparing
computational costs for the individual stages of the computations. Furthermore, the stability of the
methods is assessed by means of the condition number of the global stiffness matrix. The results
of Sec. 9.2.1 for the coupling by shared degrees of freedom are used as reference. These results
are labeled by conf.

The computational cost for the formation of the global stiffness matrix is compared in Figure 20,
where the results are shown in CPU seconds on a contemporary dual core notebook with 8 GB
of RAM. The peaks in the diagrams are due to background activity of the operating system. The
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(a) Conforming mesh, coupling by shared de-
grees of freedom
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(b) Non-conforming mesh, mortar coupling us-
ing t = 0 approach
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(c) Non-conforming mesh, mortar coupling us-
ing t = 1 approach

Figure 20: Elastic plate with hole discretized by two patches: Comparison of the CPU time in seconds for the formation
of the global stiffness matrix.
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(a) Non-conforming mesh, mortar coupling us-
ing t = 0 approach
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(b) Non-conforming mesh, mortar coupling us-
ing t = 1 approach

Figure 21: Elastic plate with hole discretized by two patches: Comparison of the CPU time in seconds for the formation
of the coupling matrices.

entries are computed by optimal integration as proposed in [18] and directly assembled into the
sparse matrix format of Matlab, whereby vectorized assembly is used. The computational cost for
conforming meshes given in Fig. 20a is lower than for the mortar methods (Figures 20b and 20c),
but they range in the same order of magnitude. The difference occurs in the assembly process,
when the entries of the slave interface control points are assembled to master interface degrees of
freedom according to Eq. 108. The excessive growth of computational costs in the fine limit is
attributed to limitations of RAM, which was restricted to 8 GB for this study.

The computational cost for the formation of the mass matrices as explained in Sec. 8 are given
in Figure 21 for both proposed mortar methods with M t

h,l , t = 0,1. There is no significant difference
between both methods. In the conforming case, this cost is saved since a direct connection by
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(c) Non-conforming mesh, mortar coupling us-
ing t = 1 approach

Figure 22: Elastic plate with hole discretized by two patches: Comparison of the CPU time in seconds for the solution
of the global system of equations.

(a) Conforming mesh, coupling by shared de-
grees of freedom

(b) Non-conforming mesh, mortar coupling us-
ing t = 0 approach

(c) Non-conforming mesh, mortar coupling us-
ing t = 1 approach

Figure 23: Elastic plate with hole discretized by two patches: Sparsity pattern of the global stiffness matrix. For
the conforming mesh a subdivision factor of 28 and p = 4 is used (total number of elements is 3136). For the
non-conforming meshes a subdivision factor of 20 and order p = 4 is used (total number of elements is 3280).

shared degrees of freedom is used. Note that the cost is in the same order of magnitude as the cost
for the formation of the global stiffness matrix, besides the fact that the coupling matrices require
the computation of a line integral only, whereas the global stiffness matrix requires computations
of a global surface integral. However, there is some potential for a speed-up of the computation of
the entries m̃η

l,i,j of the mass matrices in (102). First, the computation of the line integrals in (102)
uses the time-consuming iterative point inversion algorithm for the mapping from the slave to the
master patch, which is required in every integration point. This routine could be written as an
external routine in C or Fortran. Secondly, we did not yet implement a fast method for the inversion
of the Gram matrix of the B-splines on the slave patch in order to compute the dual B-splines in
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(c) Non-conforming mesh, mortar coupling us-
ing t = 1 approach

Figure 24: Elastic plate with hole discretized by two patches: Comparison of the inverse condition number of the
global system of equations.

(104), see also Remark 8.2.
The computational cost for the solution of the global system of equations is given in Figure 22.

There are no significant differences between the computations using shared degrees of freedom
(Figure 22a) and both proposed mortar methods (Figures 22b and 22c). The computational cost
for the solution grows almost linearly, as can be expected for the used sparse matrix format. It is
roughly two orders of magnitude smaller than the cost for the formation of the stiffness matrix.

The influence of the proposed mortar methods on the sparsity of the global stiffness matrix
is depicted in Figure 23, whereby the number of non-zero entries (nz) of the stiffness matrix is
given below the diagrams. The sparsity pattern of computations using about 3200 elements are
compared between coupling by shared degrees of freedom and the mortar method. The upper
left block represents the stiffness matrix for the master patch Ω1, the lower right block is for the
slave patch Ω2. The sparsest pattern is clearly generated by using shared degrees of freedom, see
Figure 23a. The global support along the interface of the dual B-splines used in the proposed
implementation in Section 8 generates a coupling between all interface degrees in the master patch.
This explains the quadratic structure of the upper left block, whereas the lower right block of the
slave patch has a banded structure. The nonzero entries in the upper right and lower left corners
appear by the substitution (108). The difference between both choices of Lagrange multiplier
spaces M t

h,l is quite small in this case: The number of non-zero entries for t = 1 in Figure 23c
is about 0.5 % smaller than for t = 0 in Figure 23b). It can be observed in the very last rows
and columns of the stiffness matrix. The nonzero entries for t = 0 result from the interrelation
between all interface control points Uh,l,i in the slave patch with both control points Uh,l,1 and Uh,l,n
at the endpoints of the interface, see (108). This interrelation is reduced to only few interface
control points near the endpoints for t = 1, because most coefficients αi and βi in (108) are zero.
This advantage is only small for 2D-problems, but will be more pronounced for 3D-problems.
Moreover, in our planned extension of the mortar method by the use of an h-dependent bilinear
form bh,rho in our future work, we reduce all blocks of the stiffness matrix to banded form by the
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application of locally supported “approximate duals” instead of the dual B-splines.
The condition number of the global stiffness matrix is compared in Fig. 24 between computa-

tions using shared degrees of freedom and the proposed mortar methods. The results show that
the condition number is not perceivably affected by using the proposed mortar methods, which is
an important requirement for robust and accurate computations.

9.2.3. Discretization with ten patches and different kinds of intersections

Dirichlet boundary condition

Neumann boundary condition

x

y

R = 1

Control points

Interface condition

W1W2

W3

W4

W5

W6

W8

W9

W10

W7

Figure 25: Elastic plate with hole: Discretization scheme with ten non-conforming patches and different kinds of
intersections (left). Coarsest initial mesh with order p = 2 for this scheme, whereby the patches are not refined except
for the prolongation of ending interfaces at T-intersections (right).
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(a) Initial non-conforming mesh (b) Refinement factor j = 5 (c) Refinement factor j = 20

Figure 26: Elastic plate with hole: Sample meshes for the discretization scheme with ten non-conforming patches and
different kinds of intersections. The applied refinement rule is given in a). All finer meshes are obtained by choosing
a factor j ∈ N.

In order to assess the ability of our method to deal with different types of geometry, we use
a discretization scheme with ten non-conforming patches with four T-intersections and three star-
intersections. A sketch of the patch layout is given on the left side in Figure 25. The interfaces
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(a) Mortar coupling using t = 0 approach
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(b) Mortar coupling using t = 1 approach

Figure 27: Elastic plate with hole: Comparison of error level and convergence rates for the discretization scheme with
ten non-conforming patches and different kinds of intersections.

are straight and have infinite internal continuity, so Assumptions 3 and 4 can be neglected. The
geometry is waterproof, as the parametrizations along the interfaces are matching. On the right
side in Figure 25 the coarsest initial mesh is drawn, where the prolongation of all T-intersections
as C0-continuous lines is already included (type NC2 in Remark 2.1). In the convergence studies,
every patch is refined using a number of a · j + b elements, where the values of a and b are given in
Fig. 26a for each parametric direction within each patch. The refinement is performed in a way that
the lengths of the element spans are as similar as possible in the knot vector under consideration
of the prescribed element boundaries which arise due to the prolongation of ending interfaces at
T-intersections. The order of the basis functions is chosen uniformly within the whole domain.
Three sample meshes are given in Fig. 26 for a better depiction of the obtained non-conformity.

The error norm of the global stress distributions are given in Figure 27. Both proposed methods
(Figures 27a and 27b) yield optimal convergence rates. The error levels are slightly higher than in
the conforming case (Figure 15a), where shared degrees of freedom are used. It is to be noted that
in the conforming case the difference between the individual element diameters h is smaller than
in the case with ten patches, and thus naturally a lower error level is produced.

The computational costs for the formation of the global stiffness matrix ranges in the same order
of magnitude as for the conforming case. The difference occurs in the assembly process and grows
with the ratio of interface degrees of freedom to domain degrees of freedom, see Section 9.2.2. The
same statements as in Section 9.2.2 can be made about the computational cost for the formation of
the mass matrix and for the global solution.

The influence of the proposed mortar methods on the sparsity of the global stiffness matrix
is studied in Figure 28. The sparsity pattern of computations using 3141 elements are compared
between both proposed mortar methods. The number of non-zero entries for t = 1 is about 0.8 %
smaller than for t = 0. It can be observed that the proposed approach for t = 1 creates less
interrelations between patches than for t = 0. Furthermore, the interrelation within patches is less
pronounced, see the banded structure of the block in the center of the diagrams: For t = 0, there is
an interrelation between the control points at both ends of the interface (visualized by the square
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(a) Non-conforming mesh, mortar coupling using t = 0 approach (b) Non-conforming mesh, mortar coupling using t = 1 approach

Figure 28: Elastic plate with hole discretized by ten non-conforming patches: Sparsity pattern of the global stiffness
matrix. A subdivision factor j = 5 and order p = 5 is used (total number of elements is 3141).

around the banded structure). For t = 1, there is no such interrelation.
The condition number of the global stiffness matrix is compared in Fig. 29 between computa-

tions using shared degrees of freedom and the proposed mortar methods. Apart from very coarse
meshes, the behavior of the condition number is very similar, both in magnitude and in slope. No
negative impact of the proposed coupling method on the condition number can be detected. This
shows that robust and accurate computations are possible with the proposed mortar method.
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