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Abstract

This dissertation is concerned with the subject of modelling human steering control of ground
vehicles. Special care has been taken with respect to designing a model that is biofidelic, i.e.,
a model that operates according to the principles of human control.

With this aim, first classical human control theory has been revisited, both from a
literature review and an experimental perspective; data have been recorded from test subjects
in compensatory and pursuit tracking tasks. The tracking experiments are the first ever to be
performed with fractional order plants, which are plants suitable to represent system memory.
From the data, an extension of the Crossover model by McRuer’s is designed, to include
the control of such category of plants. The proposed model is referred to as the Fractional
Crossover Model. This is followed by a study on modelling memory in human-machine
systems from a classical control theory viewpoint. These results broaden the existing array of
manual control modelling techniques and can be employed in a modular manner, combined
with current models.

More significantly — and still with respect to the domain of generic human control and
human-machine systems — a new approach for modelling the human-operator is proposed.
This approach consists in treating the problem from a statistical viewpoint. With this
methodology a novel human control model based on multiplicative dynamics is presented.
The model, which was inspired on actual results in neuroscience, is validated with the
tracking data obtained from test subjects and by comparing it to classical models in the
literature. Hence the model is useful to analyse human performance or to reproduce human
control in simulation, field tests or in the video game industry.

With respect to steering control modelling, which is the main topic of this dissertation,
additional experiments with test subjects were conducted in a simple vehicle simulator — with
hardware and software specifically developed during this research program to test multiple
hypotheses. The data were analysed with the intent of identifying which optical variables
drivers employ while controlling a vehicle on public roads; it is seen that the splay angles
— which are the projections of the road lines on the retina — are likely candidates for lane
keeping at low speeds. This brings on a novel human-centred driver model first proposed



here. This model includes multiplicative human control over the splay angles, and far-point
error perception for lane keeping at higher speeds.

The human-centred model has its domain of applicability in the intelligent transportation
industry, in particular for the development of shared control systems and advanced driver-
assistance systems for semi-autonomous ground vehicles. Additionally, the model can be
employed in field testing of ground vehicles — for example, in vehicle durability tests.

Furthermore, the topic of alternative steering devices for driving autonomous and semi-
autonomous vehicles is investigated. This leads to another of the contributions in this
dissertation. Here it is proposed that for such vehicles, and for the control of systems with a
shared control perspective, an isometric steering wheel can be advantageous under certain
schemes — tight rein or loose rein modes according to the H-metaphor. This is supported
by additional data collected in the driving simulation experiments. Resulting from this,
fractional order transfer functions are employed to increment steering stability and control
accuracy with the isometric device. This prototypical steering system is applicable for the
control of ground vehicles with the so-called by-wire controls, which are already incorporated

in some commercially available vehicles.
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Chapter 1

Introduction

1.1 Outlook and Scope

During the last years, news broadcasting of science and technology trends has placed a
special interest in the possibility of driverless cars pervading the public roads. In spite of
the eager news coverage, fully autonomous vehicles may not be materialised in the short
term — or not materialised at all. There are a number of technical challenges towards full
vehicle automation which presently do not have a clear solution. Conceivably, the most
hindering obstacles are amidst the domain of Artificial Intelligence (AI). With the current
state of the art in machine learning procedures, it is unthinkable that an intelligent system,
able to respond appropriately to every potential situation one may encounter while driving a
car, may be developed.

Al design towards full vehicle automation is closer to the realm of Artificial General
Intelligence (AGI) than to machine learning. In reality, developing AGI systems is out
of reach at this time, and this may be so for a very long time. If AGI systems were to
be developed, driverless cars would not necessarily be a specially noticeable technology,
among an immense exhibition of stunning technological advances; industrial science in
pharmaceutics or lethal autonomous weapons could have a larger impact in society. A recent
survey of experts in machine learning and technology yielded an estimate of 30 — 50 years
for AGI systems to take place [Teg17], although some questioned the feasibility of the idea
itself.

In view of this, what is the relevance of intelligent systems research applied to vehicle
control? Although conventional cars will not attain full automation anytime soon, multiple
offshoots of associated developments will potentially result. An obvious one is the occurrence
of autonomous transportation systems within restricted environments; since the problem of

AGI is not tractable, driverless cars in simplified environments can be implemented. This



2 Introduction

may be accomplished through changes in infrastructure, for instance by building up eLanes
in which only vehicles in autonomous control mode can circulate [TWM™09]. Vehicles in
eLanes would behave in a similar way as vehicles running on rails. Hence eLanes could
provide a restricted scenario, in which pedestrians and human driven cars do not exist; and
upon the vehicle exiting the eLane, the human would take back vehicle control. Another
interesting prospect is that of shared control systems, where the control of the machine is
shared between the human and the intelligent system simultaneously.

The concept of shared control has been in the literature for quite some time, yet nowadays
it is earning momentum. Within the classical literature, the paper by Birmingham and Taylor
on human-machine systems [BT54] is an illustrative case; it is affirmed that because of
the high adaptability that humans exhibit, they should never be removed from the control
loop. Instead, the paper suggests, system design needs to be aimed towards unburdening
the human-operator. Thus it is introduced the idea of using transfer functions between the
control device and the machine, with the intent of facilitating the control of a plant.

The notion of shared control was highlighted through an alternative strategy in a later
publication. In [Lic60], it was proposed that the human can be temporarily removed from the
control loop, but needs to be ready to ‘handle the very-low-probability situations’, for which
the autonomous system was not designed for. Hence, this shared control scheme is equivalent
to what is known today as conditional automation, and defined as level 3 automation by the
Society of Automotive Engineers (SAE).

A considerable part of the endeavour in this dissertation is directed towards developing
tools for achieving both shared-control schemes: simultaneous control facilitation and condi-
tional automation. Inasmuch as these ideas have been hovering in the literature for decades,
why is the research related to these concepts relevant nowadays? Several technological
advances aid to answer this question.

One of them is the so-called by-wire control, which substitutes the mechanical connection
from the steering system to the vehicle wheels with an electronic system; in 2014 the first
commercially available car with a steer-by-wire (SBW) system was released — the Nissan
Infinity Q50. Thus designing transfer functions, between the human and the car, to unburden
the human-operator has attained practicability. Furthermore, SBW systems allow for the
integral replacement of conventional steering systems with new synthetic mappings — this
matter will be explored in Chapter 5.

Additionally, modern machine learning techniques — such as deep learning — have made
practical the embodiment of efficient computer vision systems for vehicle guidance. This
huge development of potential, from the algorithmic perspective, has progressed hand in hand

with the available computational capacity of low-power devices, such as field programmable
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gate arrays (FPGA), and vision processing units (VPU); all this hardware is particularly
appropriate for executing complex algorithms in real time on battery powered systems — to
date, these algorithms were run on power-hungry CPUs and GPUs.

Furthermore, although in many regards some principles of operation of humans, while
controlling machines or otherwise, can still be considered a black box, increasing understand-
ing in neuroscience is opening up new possibilities in biofidelic human modelling. This is
a continuing trend; for example, it is only recently that prototypes of portable Functional
Near-Infrared (fNIR) Spectroscopy devices have been made available; these devices will

allow for on-line functional neuroimaging on test subjects while driving vehicles.

1.2 Research Objectives

In order to implement shared control and conditionally autonomous systems in ground
vehicles, a better understanding of the characteristics of human control is needed. Semi-
autonomous systems should be uncomplicated to use and intuitive to the driver. Accordingly,
one of our fundamental aims is to construct a driver model for controlling the lateral dynamics
of ground vehicles, that reproduces faithfully the principles of human control — a biofidelic
human steering control model. Conditionally automated systems entail transitions in control
between the human and the machine [MJ09], and these should occur in a seamless manner.
Thus the control behaviour of the autonomous system must be consistent with that of the
human. The same comportment is expected of steering control models that act as an aid in
shared control systems.

To achieve this, the possibility of introducing operators with memory, for human control
modelling, was set as a research target. Traditional control models do not explicitly include
memory effects in their design, but we know that complex systems behaviour is usually
characterised by hysteresis and viscoelastic properties.

Another relevant question tackled in this dissertation is the role of the steering wheel in
semi-autonomous vehicles. The lateral dynamics of cars have been commonly controlled
with a steering wheel since their inception. Since the control of ground vehicles may possibly
be shared between the human and the machine in the future, is a conventional steering
wheel the best solution for this kind of driving scheme? An elucidating analogy is that of
horse-drawn vehicles such as horsecars or stagecoaches, which essentially are shared control
systems, where the control is shared between the human and the horse [FCA117]; although
the human is in charge of the decisions at the tactical and strategic levels [GL15], the horse
has a certain autonomy at the control level. Would it make sense to control a horsecar with a
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conventional steering wheel? Or, for all one knows, would it make more sense to control a
semi-autonomous vehicle with some sort of reins?

Autonomous and semi-autonomous cars cannot be regarded as regular cars. And as the
transportation industry has transformed itself into an enterprise with new rules and goals,

some classical solutions need to be revisited with an open mind.

1.3 Dissertation Structure and Contribution

This dissertation is organised as follows:

* Chapter 2 includes literature review on underlying neuroscience aspects of visual ac-
quisition (Sec. 2.1), human performance laws (Sec. 2.2), and human-machine systems
(Sec. 2.3). The purpose of this chapter is not to provide an exhaustive survey of these
fields, as their associated literature is increasingly vast, but to give an overview of some
of the qualities found in humans that are relevant towards human control modelling.
Each of the subsequent chapters includes additional literature review specific to their
content. Accordingly, in Chapter 2, only generic methodologies are reviewed, such as
quasi-linear models, Fitts’ law and a summary of human constraints relative to control

tasks (Sec. 2.4) — response time and bandwidth limitations to name a few.

* Chapter 3 serves a double purpose. On the one hand, classical human control method-
ologies are explored, in particular McRuer’s Crossover (CO) model and finite impulse
response (FIR) filters. On the other hand, the chapter includes the first ever analysis of
humans controlling fractional order plants, i.e., plants with memory properties — which
can be represented in the framework of fractional calculus and fractional differential
equations. From this analysis, an extended version of the CO model to include such
plants is proposed here: the Fractional Crossover (FCO) model. Additionally, the
topic of modelling memory in the human operator is further investigated with the FIR
approach; and through this methodology, intrinsic procedural memory patterns in the
human-operator are characterised.

Some of the research in this chapter has already become published material:

— The FCO model was first presented at the 2016 IEEE Systems, Man, and Cyber-
netics (SMC) conference in Budapest, Hungary [MGG16].

— Memory in human-machine systems was further studied in a publication in the
IEEE Access journal [MGGS17], which expanded the results of the conference

paper.
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— Another journal paper, related to FIR human control modelling, is currently under

review.

Chapter 3 has two related appendixes:

— Appendix A comprises an introduction to fractional calculus theory, and the corre-
lated computational methodologies used to integrate fractional order plants. The
main body of the chapter also includes an abbreviated introduction to fractional
calculus, that although does not cover all the used theoretical knowledge, should
suffice to follow the contents of the chapter. Therefore, reading the appendix is

optional.

— In Appendix B.1 a detailed account of the human-in-the-loop tracking experi-
ments (HTE), in which data from test subjects controlling fractional order plants

were collected, is offered.

* Chapter 4 is specifically dedicated to steering control modelling. Through signal
processing of naturalistic driving data (NDD), characteristic steering pulses — in which
driver’s steering signals can be decomposed — are identified. From this, a hybrid
open-closed loop control law is designed (Sec. 4.2). This work is an extension of the
study by Professor Timothy Gordon in [GS14].

Further, in Section 4.3 a novel form of human control modelling is developed, that con-
sists in identifying the properties of the human-operator from a statistical perspective.
This leads to the formulation of a new human control model based on multiplicative
dynamics. It is termed the Multiplicative Human Control (MHC) model.

In Section 4.4, data from experiments with test subjects interacting with an OpenGL
3D simulation is studied. These experiments were designed to contrast different
hypotheses regarding visual acquisition in driving tasks. From the knowledge extracted
from Sec. 4.2-4.4, in Sec. 4.5 a new human-centred driver model is proposed. The
model employs a hybrid control strategy (from Sec. 4.2), biofidelic multiplicative
dynamics (Sec. 4.3) and bio-inspired visual acquisition (from Sec. 4.4); and it is one
of the main contributions to this research item.

For this chapter also, some of the research has already been published:

— The analysis of the NDD and the pulse control model was published in the IEEE
Transactions on Industrial Informatics journal [MGZG16].

— The MHC model was first presented at the 2017 IEEE SMC conference in Banff,
Canada [MGG17].
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— The extension of the MHC model to a human-centred steering control model has
been accepted for the 2018 IEEE SMC conference (Miyazaki, Japan), where it
will be presented shortly with the title A New Model of Human Steering using
Far-point Error Perception and Multiplicative Control [MGG18].

Chapter 4 has five related appendixes:

— In Appendix B.2 information about the NDD — utilised in Sec. 4.2 — is provided,
while in Appendix B.3 the specifics of the Driving Simulation Experiments (DSE)
are explained; the DSE involved the implementation of a simulation platform
with C code and OpenGL graphics. The data employed in Chapter 5 are also
from the DSE.

— In Appendix C, a bootstrap method to establish the goodness of fit to a probability
distribution is depicted. This method was used to construct the MHC model.

— Appendix D covers the stability analysis of the MHC model for the control of

second order plants.

— In Appendix E the relation between optical variables related to lane keeping —
the splay error — and the lateral offset of the vehicle is computed. This result is
part of the justification of the visual variables used in the Human-centred Driver
model.

— The modelling approach in Chapter 4 is validated by comparing the model output
with a standard driving performance measure, the steering entropy. Appendix F

illustrates the algorithm to compute this measure.

* Chapter 5 deals with the topic of alternative control devices for steering control in
semi-autonomous ground vehicles. Here, a new design of steering control device is
proposed; it consists of controlling a vehicle by torque instead of through the steering
wheel angle. The prototype was evaluated with ten test subjects, as part of the DSE.
It is shown that such control devices can be advantageous for the control of shared

controlled plants and for regain of control situations in SBW vehicles.

* In Chapter 6 conclusions are drawn and future work is suggested.



Chapter 2
Characteristics of the Human Operator

Human control is the study of the human operator in control tasks. The aims of human
control include the design of models that reproduce human behaviour and the characterisation
of their performance [JFO3]. Because to study driving is to study human control, several
results, theories and approaches regarding human control of dynamical systems are reviewed
in this chapter. In the general case, humans may be controlling any machine — physical or
numerically simulated in silico — or in the most simple case they may be controlling their
own limbs. Through the years, multiple techniques from control theory have been applied
and incorporated to the human performance and human-machine systems literature. In the
same manner, many of these techniques have been assimilated by human driver modellers, as
it will be seen in the next chapters.

The intent of this chapter is to summarise some background theories employed during the
research presented in this dissertation, and not to perform a complete survey of neuroscience
and human-performance modelling applied to human control. The introductory section on
each subsequent chapter will add specific background knowledge regarding the contents
included in the chapter.

2.1 Physiological Aspects of Human Control

2.1.1 Anatomy of the Visual Pathway

Generally, the most important stimuli in a control task — including driving a vehicle — are
visually acquired. Commonly it is proposed that 90% of the driving manoeuvres are a
response to visual perception only [Mac03]. Hence, here follows a description of some
aspects of neuroscience research, regarding visual acquisition, that are relevant to human

motor control.
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Vision starts with photoreceptor cells, which are a class of neurons located in the retina
— the layer in the back of the eye responsible for perceiving light. There are mainly two
types of photoreceptors: rods and cones. Rods are concentrated at the outer edges of the
retina and convey peripheral vision. Cones are concentrated in a region at the centre of the
retina, the fovea centralis, and sense colour perception, high resolution vision and motion
detection [CIO2]. The fovea only covers about 2° of the visual field, which in the human
spans approximately over 160° for each eye.

Because of the relatively small size of the fovea, human eyes constantly sample the
surroundings by aiming the fovea at different locations, resulting in a different visual field at
each stop. Each transition between two eye orientations is called a saccade, and each saccade
is sustained during a fixation period. Typically there are approximately three saccades and
fixations per second, although this number is highly variable — it ranges from 70 ms to 660 ms
per saccade [CMN83]. Saccades are very brief, thus most of the time the eye is fixating —
on average 200 — 300 ms. As the retina is a two-dimensional surface, vision is a projection
process from a three-dimensional space to a two-dimensional space. From the retina, the
visual information departs through retinal ganglion cells into the optic nerve towards the
brain!.

The axons that integrate the optic nerve, cross each other in the optic chiasma, an X-
shaped nerve junction. After the optic chiasma, the nerve fibres of each optic nerve integrate
a different pair of nerve fibres known as the optic tracts. In the optic chiasma, only about
half of the fibres belonging to the optic nerves are crossed over. This occurs in such a way
that, the visual information acquired in the right half of each retina is relayed to the right
hemisphere of the brain through the right optic tract. Similarly, the input at the left half of
each retina gets relayed to the brain’s left hemisphere [HW77]. So about half of the nerve
fibres of the optic nerves are crossed to the opposite hemisphere?. Subsequently, the optic
tracts connect to the brain through the thalamus.

The thalamus is a brain structure located near the centre of the brain’s hemispheres
which relays sensory acquired information to the brain. It is conformed by multiple nuclei
specialised in different modes of sensory input. Studies in the macaque monkey brain show
that about one million retinal ganglion cell axons reach the lateral geniculate nucleus (LGN),
the part of the thalamus that relays the visual pathway [HW77]. The auditory counterpart of
the LGN in the thalamus is the medial geniculate nucleus (MGN), while the ventral posterior

'Some retinal ganglion cells also exhibit photoreceptive properties, but often are not explicitly categorised
as photoreceptors. In addition, photoreceptors are linked to retinal ganglion cells through another class of
neurons, the bipolar cells [CI02].

ZBecause of the right and left visual fields are projected in the left and right side of the retina respectively,
the right hemisphere of the brain receives information from the left visual field and vice versa.
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nucleus (VPN) relays somato-sensory perceptual information. From the LGN, the visual
information is relayed through another group of axons to the Visual Area 1 (V1), also known
as primary visual cortex or striate cortex. Essentially, the visual field is ‘mapped’ onto the
primary visual cortex where it is linked to other cortical areas, some also responsible for
visual perception, through feed-forward and feedback connections. V1 is located in the most

posterior part of the brain, and it is organised with a columnar structure.

2.1.2 Columnar Structure of the Cortex

The principle of cortical organisation was discovered by Vernon Mountcastle in 1955
[Mou57] while studying the cat’s cortex, and it was later confirmed by Hubel and Wiesel in
the primate brain [HW68]. This principle states that cells in the neocortex are arranged in the
vertical direction, due to the radial development in the fetus brain. The neocortex develops
from its fetal stage to the outside, as neuron cells migrate radially over a scaffold made of
glial cells. Thus neurons that share the same receptive properties are packed together in neural
groups that have received the name of cortical columns. These columns are perpendicular
to the surface of the cortex — the pial surface — and what characterises them is that their
properties seem to be relatively constant by perpendicular penetration [Mou97]. For the
primary visual cortex, these receptive properties are mainly of one of two types [HW68]:

1. Neurons in the visual cortex are organised in alternating ocular dominance columns.
In each of these columns, the cells seem to respond predominantly to one eye only.

Each of these columns has a cross section of about 400 um (0.4 mm).

2. More interestingly, neurons are also organised in columns that show different orien-
tation specificity. That is, neurons in a column respond to movement occurring in a
certain orientation (light segments oriented or moving at a given fixed angle). The
orientation columns have an approximate cross section of 50 ym (0.05 mm), roughly
two times the width of a cortical neuron. However, the columns are not perfectly
defined discrete units as they do not posses clear boundaries; orientation specificity
seems to vary gradually [HAOS]. Each orientation column represents an angle range

of approximately 10°.

These two systems of columns are independent of each other. Normally, there is alternation of
columns regarding the eye specificity. So two contiguous ocular dominance columns receive
input from both eyes and span a cortical cross section of about 0.8 mm. Two contiguous
ocular columns with different eye specificity conform what is called a hypercolumn. In

general, this term is used for a group of columns that cover all the range of a receptive mode.
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Thus in the same way, a cross section of 0.9 mm will span a range of 180° over the visual
field, and constitutes an orientation hypercolumn. Thus either type of hypercolumn extends
across a cortical surface of around 1 mm?. In this area there are about 10° cells from a total
of over 10'° cells in the human’s neocortex, and approximately 10'! in the human brain. The
same cortical organisation structure has been found in the motor and auditory cortex for its
corresponding receptive field [Mou97]; different sound frequencies are mapped to different
columns in the primary auditory cortex (A1l).

Although columnar organisation seems to be an essential structure in the neocortex
architecture, to date no particular brain function has been pinned to columns or hypercolumns
[HAOS]; there is not a known visual capacity that requires such alternating organisation.
Even more curious is the fact that not all the animal species appear to have ocular dominance
columns, for example the mouse, the rabbit and the sheep don’t have them. Regarding the
human brain, a recent study has shown that the cortical organisation of the brain also applies
to humans [ YHUOS].

The most relevant conclusion of the cortical structure of the cortex, thinking in biofidelic
modelling of the human operator, is that the human brain seems to be specially well coordi-
nated to accommodate angular orientation information. Nevertheless, other areas belonging
to the visual cortex are responsible for direction and motion perception; The Medial Temporal
(MT) visual area — or V5 — has direction sensitive neurons and feeds information to the
Medial Superior Temporal (MST) visual area, which processes optical flow information
[WSO00]. Additionally, recent literature shows that direction and motion can be detected
at the retina itself. Although photoreceptors are not sensitive to direction or motion, some
retinal ganglion cells respond to visual stimuli relative to motion in specific directions. This
is achieved by the particular wiring of retinal cells delaying some connections with respect
to others to achieve temporal filtering properties [KGZ114].

The concept of cortical organisation connects to the single algorithm hypothesis, which
is next discussed.

2.1.3 Single Algorithm Hypothesis

Related to the principle of cortical organisation is the hypothesis that all the neocortex
processes information by a single algorithm. According to Mountcastle, the cortical columns
are the units of computation through which the neocortex processes sensory information —
via a common computational scheme [Mou78]. As the neocortex is built up by replicating
the same type of structure, some researchers hypothesise that the different parts of the cortex
handle perceptual information in a similar way [Haw(07], and that the difference from one
area to another is in adaptation to a particular type of input.
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Several cross-modal experiments conducted by neuroscience investigators support this
view. In one experiment, three-eyed frogs were created by implanting a third eye into
the forebrain of embryonic frogs [CPL78]. After development, the frogs presented ocular
dominance columns for the implanted eye too. Similarly, in a later experiment [MF89], the
retinal axons of neonatal hamsters were wired to their VPN. Neural recordings of the same
hamsters in adulthood showed that somato-sensory cortical columns were able to process
visual information in a similar way as in the visual cortex, including orientation preference.
Thus the neocortex seems to work as an unsupervised learning algorithm, and the different
areas of the cortex transform their inputs in at least a very similar manner. In an analogous
experiment [VMPSO00], the auditory cortex of neonatal ferrets was rewired through the MGN
to receive retinal axons. When the ferrets reached a mature age, their MGN and auditory
cortex were responsive to visual input — again, including orientation specificity.

There is also literature available where the specific workings of the presumed cortical
algorithm are hypothesised, although there is no consensus about it. The different hypotheses
range from biologically inspired machine learning techniques to probabilistic inference
algorithms [Haw07, DCS12].

2.2 Human Performance Laws

In the human performance modelling and man-machine systems literature, generally it is
regarded that ‘Men are noisy, narrow-band devices’ [Lic60], and as such it is often difficult to
determine laws about their principles of operation. Nevertheless, there are a number of human
performance laws which are accurate on average; that is, they faithfully reproduce average
human behaviour when aggregating response recordings from different human subjects or
across many trials, and are only approximate for a particular instance of human operator

response. Some of these are summarised in this section.

2.2.1 Fitts’ Law

One prominent example in the human performance repertory is Fitts’ law [Fit54]. This law
gives an estimate of the time needed to complete a reaching task according to the distance to
a target and the target size.

The mathematical relation that describes the law was first assessed with several reaching
behaviour experiments. One of them consisted in transferring disks with a hole of varying
size at their centre. The hole was intended to let the disk slide onto a pole situated at a chosen

distance — in a similar fashion as in the Tower of Hanoi game.
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Fitts” law translates concepts belonging to information theory to characterise human
reaching behaviour. To define the law, first an index of difficulty (/D) is specified. This index
reflects the difficulty in reaching a target of size S (and radius R = 5/2) located at a distance
D from the hand of the human operator:

ID =log, (Z?D) = log, (%) . (2.1)

Next, an index of performance is introduced (/P), which depends on how much time
(T) the human operator needs to complete a reaching task of a given difficulty: IP = ID/T.
Additionally, a fixed quantity N; induced by the human neuromuscular response is added to

the final equation:

1 D

As the law was first proposed through an analogy to information theory [Fit54], ID
was expressed in bits and /P in bits per second. Thus the quantity /P serves as a human
throughput, and was in the range 7.76 — 11.82bits/s for the reported experiments>.

Although Fitts” law gives a very robust result, because it has been tested in multiple
experiments, it only applies to reaching behaviour — target acquisition and pointing tasks.
For instance, saccadic eye movements do not follow this logarithmic relationship [AMKS89],
as the duration and the speed of a saccade does not seem to depend on the size of the fixated

object.

2.2.2 Hick’s Law

A close relative to Fitts’ law is Hick’s law [CMN83], which determines the approximated
time to select among N, possible choices — for example, the number of keys that can be

pressed on a keyboard:

T =Iclog, (N.+1). (2.3)

Here I I also represents the human throughput in bits per second, typically around
6.60its/s in this context. Conversely to Fitts’ law, eye target acquisition is well described by
Hick’s law, as it has been shown recently [KTIM17].

3 Another version of Fitts’ law, introduced in [Mac89], relates more closely to the notion of information
transfer. This version includes a unity constant inside the logarithm to mimic Shannon-Hartley theorem:
T =N;+ ﬁ log, (% + 1). In Shannon-Hartley theorem, D represents the power of a signal and R the power of
the noise in a channel.
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2.2.3 Power Law of Practice

The power law of practice represents how the time to complete a task decreases with
experience. This law was first observed in [Sno26], where experiments were conducted in
which test subjects had to trace a predetermined path of complicated geometry — a star-shaped
path including several indentations — with a stylus. The law can be written as:

Ty =ToN~“ (2.4)

where Ty is the time needed to complete a task that has been repeated previously N times,
and o is an empirical constant depending on the type of task being performed.

Peculiarly, the power law of practice has been observed to occur during very long periods,
such as cigar rolling during a time span of seven years [Cro59], in which a total of 10,000,000
cigars were rolled by several individuals using the same rolling machine — but with significant

variation on the raw materials.

2.2.4 Weber’s and Fechner’s Laws

Weber’s and Fechner’s laws are relevant to visual perception [Gre97] as well as to steering
Jeel [INGDO7] — that is, the haptic feel of a steering wheel in a driving task. These laws
are originated within the framework of psychophysics to describe how subjects perceive
differences in the intensity of stimuli.

Weber’s law is used to characterise the difference threshold of a stimulus, i.e. the smallest
difference in stimulus magnitude that humans can perceive. The law states that the difference

threshold (85S) is proportional to the stimulus magnitude (S):

55 _

5 Cw (2.5)

with a proportionality constant Cy, which is dependent on the stimulus type. For steering
wheel control, values have been reported of Cy ~ 0.14 for steering wheel angle sensing and
Cw ~ 0.15 for steering wheel force sensing [NGDO7].

Regarding visual perception, it has been recognised that the retinal cells of cats, even
when in total darkness, transmit a small amount of neural signals through the optic nerve. The
magnitude of this residual firing increases with age, and it is believed to happen to humans
too [Gre97]. Although photoreceptors become excited by the input of a single photon, they
only transmit a signal through the optic nerve when they receive several photons over a
certain integration period; if around five photons are received over a period of 0.1 s, a neural

signal is transmitted down the optic nerve. This trait is partly responsible for the increased
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reaction time while driving in low light conditions. It also means that a constant must be
added to (2.5) to account for the residual firing (K ) — noise produced in the retina — which

results in another version of Weber’s law:

oS
? + Kw = Cy. (2.6)

Another very relevant conclusion is derived from this description: retinal neurons are so
sensitive to light that virtually there are no thresholds in visual perception, which Craik
suggested as one of the possible causes of the discrete corrections of the human operator
(Section 2.3.3). Even so, the CNS sets up a varying threshold to ensure that the retinal activity
is commenced by a visual signal and not by neural noise. This threshold varies according
to the level of attention — the lower the threshold, the more attentive is the human, but at
the same time there is a higher chance of regarding neural noise as a visually perceived
phenomenon.

Weber’s law can be also expressed by stating that the minimum difference in perception
(8P) is proportional to 85/s:

SP = KF?. 2.7)

And this equation can be rewritten as an ordinary differential equation (ODE),

dP(S) Kr
2 2.8
7S R (2.8)
which upon integration yields
P(S) = KrlogS+Cr, (2.9)

with empirical constants Kr and Cr. Expression (2.9) is known as Fechner’s law, and it
relates change in stimulus with change in perception. This relation has also been confirmed
experimentally — for example in the Limulus, a logarithm relationship between light intensity

and firing rate has been observed.

2.2.5 Stevens’ Power Law

There is an alternative law that relates stimulus intensity with perceptual feel; in Steven’ law,
this relation is expressed as a power law:

P(S) = KgS° (2.10)



2.3 Human-machine Systems 15

with empirical constants Kg and o. Regarding the use of this law for isometric muscle
contraction, in [SC70] it is reported an exponent of 6 = 1.7. A comparable value is reported
in [NGDO7] with respect to the perceived force applied to a steering wheel (¢ = 1.39). And
in this same paper, 0 = 0.93 was obtained in experiments with real subjects relating steering

angle perception — by visually observing the steering wheel.

2.3 Human-machine Systems

'f"ﬂ.-
g
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Control Devices
CPU

HUMAN INTERACTION MACHINE

Fig. 2.1 Conceptual diagram of a human-machine system experimental setup. The human
operator interacts with a simulated plant by means of a control device — a joystick or a
steering wheel for example — and reacts to the present and past observations of a visually
perceived input. Parts of this image are available under a creative commons license CC BY
2.5.

The human operator can be regarded as an information processing system which responds
to perceptual information to achieve an aim [CMNG83]. The field of human-machine systems
engineering is a special case of human control, where the human operator is assumed to
act as a servomechanism using sensory feedback. This research trend can be said to have
been started since the 1940s, with the classical experiments conducted by Tustin [Tus47].
Nevertheless, the main aim of human-machine systems engineering, which is achieving
effective human-machine integration, was appreciated much before that [MK74].

A part of human-machine systems research is advanced by experiments in which humans
have to track a target through a control device (Fig 2.1). The target itself obeys preset
dynamical behaviour driven by a forcing function, which conventionally is a sum of sinusoids
of different frequencies and randomised phases; i.e. a pseudo-random forcing function. The
target position is typically presented to the subject through a display. The display shows one
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or two moving elements, according to the control mode utilised — compensatory or pursuit
mode.

2.3.1 Compensatory and Pursuit Modes

Within the experimental conditions in human-machine systems research, traditionally two
different control modes are studied: compensatory mode and pursuit mode [PDF67]. The
main difference between both modes is in the number of moving elements presented in the
display. In compensatory mode, there is only one moving element in addition to one fixed
reference point. The error e(7) is represented in the display as the Euclidean distance between
the moving and the fixed elements. The task of the human operator is to minimise e(z) by
manipulating a control device, which allows them to generate an input to the plant. The
error is the difference between a quasi-random forcing function r(¢) and the plant output
m(t) (Fig. 2.2a). Hence, in compensatory mode only the relative error is seen by the human,
who does not have direct access to the plant output. The position of the moving object
results as the joint effect of the forcing function, the human response and the plant acting in
closed-loop.

In pursuit mode two moving elements are presented in the display — there is a moving
reference marker instead of a fixed one. The reference point now moves according to the
forcing function r(¢), and does not depend on the human manipulative control actions. The
other moving element, controlled by the human, displays the plant output m(¢). In this case
neither one of the moving elements directly represents e(t), but the error is perceived also in
this mode as the Euclidean distance between the two moving elements (Fig. 2.2b).

Although in real applications the distinction between both modes may not be so clear, a
parallelism with ground vehicle driving can be considered. Vehicle driving on a straight path,
in the presence of a lateral perturbation, can be interpreted as a compensatory task — while
following a curved road path as a pursuit task. Nevertheless, both modes are very different
to vehicle driving on curved roads; in a tracking task, unlike in vehicle driving, there is not
preview information involved; humans in a compensatory or pursuit tracking task are mostly
responding to a pseudo-random perturbation. Thus it seems more correct to assume that both
modes are more similar to lane keeping — where random wind and pavement effects modify

the trajectory of the vehicle — than to curved road tracking.

2.3.2 Quasi-linear Models

Tustin experiments consisted of humans tracking moving targets with a tank turret, electrically

controlled through a spring-centred handle [Tus47]. By observing the test subject’s responses,
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Fig. 2.2 Human-machine control loop for the typical experimental setup in both control
modes: compensatory and pursuit.

Tustin concluded that the main part of the human operator dynamics can be described as
a linear actuator. He was also the first researcher to use the word remnant — here denoted
as R(s) — to refer to the difference between the frequency response of the human operator
(H(s)) and its corresponding linear model dynamics — the linear equivalent system Hp(s).
The superposition of the linear equivalent system with the noisy remnant conforms the theory
of quasi-linear models:

H(s) =Hr(s) +R(s). (2.11)

To assume that a veridical model of the human can be described only by means of Hy(s)
is clearly an over-simplification, since the CNS is a complex network of paths, some wired
in a feed-forward manner while others in a feedback manner, resulting in a highly non-linear
system. Nevertheless, tracking experiments performed with real subjects [Roi62], suggest
that H (s) can account for around 90% of the power of the signal H(s) when low frequency
forcing functions are employed.

The most instrumental quasi-linear model, and perhaps also the most noticeable human
control model, is the Crossover (CO) model [MJ67]. Since it was introduced by McRuer,
the CO model has been continuously used in human performance and control research, one
example being its application to vehicle steering control [MWIJ*75, Gor09, Mac03]. The
CO model describes the combined action of a human operator and a controlled plant within a
restricted range of frequencies. The model was deduced by recording responses of human

subjects to visually presented stimuli in single-loop tracking tasks [MJ67]. In McRuer’s
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experiments, human test subjects had to control a moving element in a display by means
of a control stick held between thumb and forefinger. The position of the moving element
represented an error e(t), which was induced by a pseudo-random forcing function as in
the description above (Fig. 2.2). The test subjects were requested to minimise the error by
moving the controlled element towards a reference point in the centre of the display. The
control actions that the human performs over the moving element — with known dynamics
given by a chosen transfer function — place the human as a serial element inside the control
loop (Fig. 2.2).

It was observed that the manipulative control actions of the human operator are different
for different controlled plants, but the combined human-machine behaviour is approximately
regular. Thus the CO model exhibits a behavioural invariant of the human in its effort to adapt
to the plant, offering a consistent human-machine behaviour depiction. What characterises
the human controller is its dexterity in differing contexts. The model is expressed as a
product of transfer functions for the combined human-machine system and is characterised
by just two parameters: the crossover frequency @, and a time constant 7, which represent
the combined control gain and the effective time delay respectively. The effective time delay
aggregates the neuromuscular lag and the accumulated transport delays in the response — it
is the total human delay needed for responding (see Section 2.4.1). The open-loop transfer
function for the forward path in the CO model is

_ . P

Y, (5)Y,(s) = o (2.12)

where the transfer function Y;,(s) represents the human operator and Y, (s) the plant. As
already mentioned, @, is both the crossover frequency and the system gain. The amplitude

and phase responses for the model are (Figure 2.3):

A(wf) =20(logw. —logws) dB. (2.13)

d(wy) = —n2—twr rad. (2.14)

Typically, the frequency spectrum of e(¢) presents a peak in @,.

One important aspect of the model is that it accurately represents human behaviour
only in the vicinity of @.. But this is sufficient to ensure closed-loop stability and transient
performance, via the gain and phase margins, i.e., via the open-loop responses in the vicinity

of the crossover frequency.
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Fig. 2.3 Frequency response of the CO model for @, = 0.1Hz and 7 = 0.2.

2.3.3 The Human Operator as a Discrete Servomechanism

Another aspect that has been studied, when considering the human operator as a controller,
is the discrete nature of the human response in tracking tasks. In [Cra47] it was first
hypothesised that humans behave as ballistic servomechanisms, performing intermittent
corrections when trying to regulate or control a system. In the same publication it is
also mentioned that counteracting processes make the human response resemble that of a
continuous actuator, suggesting that the operator introduces a smoothing effect into its own
response. This is specially true for trained operators.

Craik also stated that the intermittence in human’s response is not caused by the jerky
saccadic movements of the human eye [Cra48]. In a tracking task, the human eye can fixate
a moving target maintaining the gaze continuously over it. Further, it is known that sensory
information continuously flows through the optic nerve. Craik suggested as potential reasons,
for human control to be discrete in nature, the existence of a refractory period in the response
and perceptual thresholds.

More recent research supporting Craik’s hypothesis can be found in [MWS93]. In
this paper, classical compensatory and pursuit tracking experiments (Section 2.3.1), with
a joystick as a control device, were conducted. Intriguingly, it was observed that when

the subjects were deprived of visual feedback temporarily, they produced responses much
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smoother than when the visual feedback was available. Thus intermittence in the response
seems to be an indicatory sign of human control employing feedback perception.

An alternative explanation for the discrete quality of the human response was given in
[HBDS97]; it was suggested that the intermittence is a consequence of humans responding
only after an error variable surpasses a certain threshold. In this case the error variable was
considered to be a sliding variable — a linear combination of the instantaneous tracking error
and its first derivative. In this reference it is denied that a refractory period may be the cause
of the intermittence, as the human manipulative corrections don’t occur with a constant
frequency at all times. Thus, according to this publication, the intermittence is a consequence
of neurological dead-zones. Nevertheless, it is known that human eye can discriminate
between lines separated only by 1 min of arc in the visual field. So these dead-zones are not
produced by a limitation in visual acuity.

Although there is not a clear consensus about what causes the apparent intermittence in
human’s control responses, it seems reasonable to accept that the human operator can be

regarded as a discrete servomechanism.

2.3.4 The Internal Model Hypothesis and the Dynamical Systems Per-

spective

Contrarily to the idea suggested by Wiener [W 48] that motor control, and essentially any
other biological process, can be executed as a pure feedback guidance, the internal model
hypothesis asserts that the human CNS contains internal models of the controlled plant
[Hol82]. This includes the particular case where the models represent our own joints and
muscles, so that adequate torques can be computed in advance to perform feed-forward
control — or to assist in making the feedback control more effective by increasing its stability.
Internal models are supposed to be learned and refined by experience.

The proponents of this hypothesis usually argue that quick arm movements can’t be
explained through feedback control. Thus the brain must learn inverse dynamics, at least for
our own anatomy, to execute such rapid motions. Indirect evidence is provided by the fact
that, specific patterns of neural activity have been found in the cerebellum while the hand is
gripping an object [Kaw99]. Thus it has been proposed that internal models are contained in
the cerebellum.

Still, the evidence supporting the internal model hypothesis is not clear. An opposing
framework, known as the dynamical systems perspective, is held by other researchers. The
dynamical systems perspective considers that motor actions are self-organised non-linear

outcomes of the human neuromuscular system. This framework borrows ideas belonging to
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complex systems and dynamical systems theory such as self-organisation and trajectories
around stable fixed points. According to this concept, skill is the result of dynamic exploratory
activity and not the reproduction of static representations [New91]. Supporting the theory is
the evidence that the internal model approach cannot explain how models are learned from
scratch, or why motor learning can last for extremely long periods (see Section 2.2 for some
comments on the power law of practice). Other proposed reasons that make internal model

principle unlikely are the following [OFO03]:

1. Small differences between an internal model and the actual controlled dynamics can
give rise to instability in the system. However, a combination of feed-forward and

feedback control could in principle compensate for these differences.

2. The forces produced by the neuromuscular system are very dependent on its position;
it is not clear how an internal model will account for every possible position of the
human body — or every state of a controlled plant — in order to calculate the needed

torques for every motor action.

3. A predetermined arm trajectory can be generated with different combinations of torques
in the arm muscles. Humans are able to adjust these torques to increase the stability
of the human-machine system [BOF"01]. Thus an internal model is not enough to

calculate an arm trajectory among several redundant combinations of muscle activity.

4. Very simple nonlinear models can present a rich dynamical behaviour. Nonlinear
systems can control a wide range of dynamics by parameter adaptation without the

need of an internal model.

A variant of the dynamical systems perspective is the equilibrium-point control theory
[Fel86], which states that during motor control the arm is commanded to follow a series of
points to reach its intended final position. These points are stable equilibria and, by adjusting
the viscoelasticity of the arm through co-contraction of antagonist muscles, the arm is able to
follow a path without the need of an internal model.

In [Kaw99] it is also mentioned the interesting possibility that humans do have a few
generic and competing internal models. By neural weight adaptation, these different models
would superpose their predictions to produce an outcome. This notion brings the idea of
internal models closer to the dynamical systems approach.

If the existence of internal models for humans motor dynamics is not clear, even less
clear is their existence for external plants, such as ground vehicles. Manual control studies
show that subjects adapt to changes in plant dynamics — such as plant gain variation — very

quickly (1 —2s) [Mac03]. One interesting question is: assuming that humans have internal
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models, could they adapt and control uncommon dynamics not found in everyday life with
brief transient periods too?

Still, some theories of human control assume the existence of internal models. One
can somewhat interpret the CO model as an internal model representation. From (2.12),
assuming the knowledge of a model for the plant is given (¥, (s)), the response of the human
is characterised by:

—Ts
Y (s) = % 2.15)
Thus the plant model determines the human response. Nonetheless, this is only true in a
vicinity of .. A more clear scheme that assumes the existence of internal models is the

optimal control approach for modelling the human.

2.3.5 Optimal Control Models

As the human CNS, and that of all animals, is the result of evolution and adaptation, it can be
argued that optimality is a general principle in human control. In addition, from the point of
view of engineering, optimal control provides an effective design methodology. In [Roi62]
human performance in closed-loop tracking tasks was contrasted with the performance of
a linear optimal controller. By comparing the human quadratic error to that of the optimal
controller, it was concluded that the human operator displays a near optimal performance.
However, only very simple plants were tested in these experiments.

A more well known application of the optimality principle is the model designed by Baron
and Kleinman [BK69]. This model adds a Kalman filter to the optimal controller to emulate
the predictive capabilities of humans. The predictor component from the filter contains a
model of the internal dynamics of the plant too, thus the whole approach is assembled from
engineering concepts that may not have any real affinity to the CNS comportment. Baron
and Kleinman also concluded that human behaviour is close to that of an optimal controller.
In the literature there can also be found applications of the optimality principle to steering
control; for example, in [Mac81] it is proposed an optimal controller that minimises the
accumulated predicted lateral deviation.

Even so, the presupposition that humans have an internal representation of the controlled
dynamics contradicts the fact that humans adapt very quickly to changes in the given dynamics
in a very natural manner. In addition, the dynamical systems perspective (Section 2.3.4)
underlines that control is an emergent property, resulting from the complex interaction

between the CNS and the musculo-skeletal system.
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Another disadvantage of the optimal control method is that it only reproduces skilled per-
formance [Tod04]. In reality there is not a clear quantitative definition of what performance
means. Humans may be optimising different things at different instants. For example, drivers
may be maximising information acquisition at times — by reducing the speed in order to
observe the driving scenario more carefully — or they may be minimising time, steering effort,
risk or discomfort — and potentially, any combination of these. Further, as the cost function
must include physiological constraints, usually the approach becomes over-complicated with

a large number of parameters.

2.4 Physiological Constraints of the Human Operator

The human operator has a number of limitations concerning reaction time, range of frequen-
cies they can respond to and visual acuity among others. These must be considered when
modelling the human, and are summarised in this section, which concludes the chapter. At
the end of the section, these values are organised in Table. 2.2, along with other relevant

physiological constants, some were already discussed in this chapter.

2.4.1 Human Response Delay

The most critical human constraint is their response delay or effective time delay T (Sec-
tion 2.3.2). Usually it is reported that the human response delay is approximately 200 ms,
but this is only true for simple tasks such as pressing a key after a triggering stimulus
[Cra48]. More precise estimates are 113-328 ms for single choice response and 133-528 ms
for multiple choice — 2 to 4 choices — response [War67].

Part of the human delay is produced by their neuromuscular lag 7y. The neuromuscular
lag includes neural transmission delays to the limbs — 10-20 ms — and the time to produce a
motor response or muscle latency — 30-70 ms. Besides the neuromuscular lag we have to add
photochemical transduction delays in the retina Tp — lasting approximately 38-120 ms — and
central processing delays 7, which typically last for 50-100 ms depending on the complexity
of the decision making task needed before responding [War67, CMNS83, SG04] (Table 2.1).

Thus, the effective time delay can be approximated by the relation:

T=17Tp+McTc+ N, (2.16)

where the parameter M reflects the fact that the time to decide a response depends on the
complexity of the task, number of possible choices, and if the CNS processing needs to
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access memories [CMN83]. M can be approximated from the logarithmic relation in Hick’s
law (Eq. 2.3):

Mc =1log, (Nc+1) (2.17)

for a given number of choices N¢. So for example, when considering a real steering task
where one can only steer to the right or to the left (N¢ = 2) then T ~ 157 —270ms. But in a
steering task, besides the steering direction its magnitude has to be decided, and short-term
memories are also involved. This means that probably it is more correct to choose N¢ > 2. On
the other hand, depending on the modelling approach, a human control model may already
reflect muscle latency 7y. In that case it is more convenient to consider the human response

delay without adding up Ty:

Ty = Tp+McTc. (2.18)

2.4.2 Other Physiological Constraints

Other relevant parameters with respect to human control and performance modelling are the

following:

Frequency of Response

The maximum frequency that humans are able to track and control depends on several factors.
One of them is the predictability in the forcing function acting on the controlled plant. An
approximate estimate for the frequency limit is 1 Hz for pseudo-random forcing functions.
When the forcing function is a simple sinusoidal input — or a signal with a very narrow band —
the controllable frequency range extends to 5 Hz [Pew(7]. In [War67] it is reported a limit
in the range 0.75-1.5 Hz for compensatory and pursuit tasks without preview information.
Although in most cases humans rarely surpass the 0.5 Hz threshold [BT54].

With reference to the CO model (Equation 2.12), the typical crossover frequency is
reported to be in the range 3-5 rads (0.5-0.8 Hz) [MJ67, Mac03]. But this value depends on

’ 25 ‘ c ‘ ™N
Perception delays | CNS processing delays | Neuromuscular lag
38-120 ms 50 ms — single choice — 40-90 ms

Table 2.1 Constraints on response time caused by different physiological aspects: neural
transmission rate, information processing delays and muscle contraction.
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several factors too, such as the level of skill of the operator — @, increases with practice
[McR8O0].

Human Induced Noise

An approximated figure for the level of observational noise (Section 2.2) in tracking tasks is
~ 3% of the power of the signal [KBL71]. Nevertheless, we have seen that humans adapt
their detection threshold to reduce the effect of the noise (Sec. 2.2.4). In the same reference

it is also reported that motor noise accounts for ~ 1% of the power of the response signal.

Visual Acuity

The human eye possesses a surprisingly high acuity. The eye is able to differentiate between
lines 1 minute of an arc apart [Cra48]. Even so, these high levels of precision are not used
commonly when performing a task such as driving. This value refers to fixed stationary

objects, a highly attentive state of mind, and during short periods of time.

Causal Connection and Visual Retention

As the time between a visual stimulus reaches the retina and humans actually see it — neural
transmission delays — is Tp ~100 ms, dots changing position in a display are perceived as a
moving dot at around 10 frameys [CMN83]. Comparable magnitudes for 7, have been reported
in other sources: from 38 ms in [War67] to 120 ms in [Bur80]. Thus the estimates for Tp are
relevant in establishing appropriate frame rates for displays in control tasks. Although highly
trained operators can perform control using a display with a frame rate of 2 frameys, less than
10 frames’s may produce stress in humans [CT07]. Additionally, the performance level starts
to decrease in some cases with rates less than 30 frameys. In any case control displays with a
refresh rate of less than 15 frameys are not recommended.

The estimated values for 7p are consistent with another physical constraint constant,
the decay time of a visually acquired image, which is in the range 90-1000 ms (typically
200 ms). This has been measured in experiments where human subjects are shown an array
of characters during 50 ms, and after that are asked to retrieve from their short term memory

the character in a particular position of the array [AC61].
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Physiological Value References
Symbol Constant
Empirical laws parameters
IP Throughput — Fitts’ law 7.76-11.82 bityls [Fit54] [CMN83]
I ! Throughput — Hick’s law 6.6 bitss [CMNR&3]
Cw Weber’s law constant 0.14 — steering wheel angle [NGDO07]
0.15 — steering wheel force
(o] Steven’s power law exponent | 1.7 —isometric muscle contraction | [SC70] [NGDO07]
0.93 — steering wheel angle
1.39 — steering wheel force
Physiological parameters
Saccade + fixation period 70-660 ms, typically 230 ms [Cra48] [CMN83]
[JFO3]
Saccade period 30-50ms [Cra48]
a Crossover frequency 0.3-1.2 Hz — typically 0.64 Hz for | [Cra47][MJ67]
driving [Mac03] [MGG16]
Tp Perception delay 38-120ms [War67] [CMNS83]
[Bur80] [Gre97]
Tc CNS processing delay 50-100ms — depending on task | [War67] [CMNS§3]
complexity [SG04]
™ Neuromuscular lag 40-90 ms [War67] [MJ67]
T Human overall delay 107-528 ms [Crad7] [War67]
(effective time delay) — 180 ms in ideal conditions [MJ67] [CMN83]
[MGG16] [Mac03]
Delay in identification 150 ms [TFM96]
of an image
Decay time of acquired 90-1000 ms — typically 200 ms [AC61] [CMNS3]
image
Human observational noise ~ 3% [KBL71]
Human motor noise ~ 1% [KBL71]
Maximum trackable 5 Hz - predictable input [War67] [BT54]
frequencies by humans 0.75-1.25 Hz — unpredictable input | [Pew07]
Recommended frame rate 15-30Hz [CTO7]
Threshold in detection of 1 sec of arc — lab [Cra48]
angular misalignments
THe Threshold in detection of 1deg [WHT88]
misalignments in splay lines

Table 2.2 Summary table of physiological constraints in human control




Chapter 3

Modelling Memory in Human-machine
Systems

3.1 Effects of Memory in Human Control

The execution of learned motor skills involves a series of coordinated actions by the muscular
system. These actions are generally a response to perceived stimuli and are carried out
automatically. Traditionally in the literature on human-machine systems, humans are assumed
to respond to objective variables resulting from the controlled machine, which might be
translational or angular displacements, ratios of such variables and their future predictions
[JFO3, Lap14], or visual field information derived from the focus of expansion generated by
the motion of a vehicle [GM76]. Until now, little attention has been given to the question of
how these variables are processed by the visual system and the brain prior to the generation of
a response action. Further, there has been little research into the manner in which memories
of these inputs are used in human control.

It is widely known that the response of a system modelled by ordinary differential
equations (ODE) — or equivalently, in the linear case, modelled by transfer functions — to any
given input is determined by a single initial condition vector. For instance, in a mechanical
system, these are usually the generalised position and velocity variables that describe the
available degrees of freedom. On the contrary, it seems natural that human tracking behaviour,
and biological systems in general, elicit a response based on a series of past observations
[Mag06].

Thus a mathematical approach that explicitly includes memory processes is motivated.
In this chapter two different approaches to model the memory aspects of human-control are
considered: fractional differential operators and finite impulse response filters.
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3.2 Classification of Human Memory

Human memory can be classified according to the following scheme [Will5]:

* Short term memory: Short term memory (STM), also referred to as working memory,
retains information for up to 30s. One example is the perceptual information used
during the completion of a manual task — such as typing on a keyboard. The hippocam-
pus, which is the area of the brain usually associated to memory, is not involved in
the acquisition or retrieval of STMs. When the perception mode corresponds to visual

acquisition, STM is termed visual short term memory (VSTM).

One particular case of VSTM is visual retention with respect to the saccadic motions
of the eye. The human eyes move actively and selectively to sample the surroundings,
performing on average three saccades per second, so that the fovea can sample high
resolution inputs from the most relevant parts of the visual scene (Sec. 2.1.1). However,
even if vision consists of a chain of discrete actions, we perceive the environment
as a unified continuous image. It has been verified that VSTMs are retained during
saccadic periods resulting in what is known as transaccadic memory. During each
saccadic period visual perception is temporarily halted and humans are basically blind
[Mat74], but changes in natural scenes during saccadic periods are detected after
the saccade [HRLOS]; humans are able to maintain object correspondence between
saccades. Additionally, in [CI02] it is suggested that visual motion detection would be

impossible without some sort of prefiltering of the perceived optical variables.

* Long term memory: Long term memory (LTM) is held for more than 30s and can be

further categorised into implicit memories and explicit memories.

1. Implicit memories: These are unconscious memories. The hippocampus does
not participate in the neural processes corresponding to implicit memories. One
particular case of implicit memory is that of procedural memories, which are
the memories that hold learned motor skills [Squ04]. Procedural memories are
learned by repetition of a particular task, hence this is the type of memory repre-
sented by the power law of practice (Sec. 2.2.3). Examples of actions performed
through procedural memories are: writing a character and language articulation,
which can be executed in a feed-forward (open-loop) manner [Kaw99] — the time
needed to write a character is independent on the size of the character [Frel4] —
or driving a vehicle and executing a compensatory or pursuit control task, which
require of feedback control, although may also include open-loop components
[Don78, GS14].
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2. Explicit memories: These are coordinated by the hippocampus and correspond to
what is generally understood as remembering. The main characteristic of explicit
memories is that they are declarative, that is, they can be verbally expressed. They
are further subdivided into two types: autobiographical memories — which record
experiences — and semantic memories — which record facts. Explicit memories
are not involved in motor control, but they are relevant at a strategic level in
driving — for example while deciding the destination or the chosen route [GL15].

Learned patterns of motor control, which are stored in the cerebellum, are in the form
of implicit memories. And visual memories are processed through an implicit procedural
memory pattern in order to elicit a control response to visually acquired inputs'.

Another provenance of memory effects in human control includes the effects produced
by the human understood as a dynamical system. For example, the musculoskeletal system
is composed of viscoelastic polymers with memory properties [TVPM13]. Additionally,
oculomotor neurons have memory attributes too [Ana94]. This type of memory, which
is produced by the dynamical properties of a system, and not by the explicit storage of

information, in the following will be referred to as system memory.

3.3 The Fractional Calculus Approach

With the purpose of modelling memory in the human-operator, the method of fractional
calculus is considered in this section, based on the property that fractional derivatives add
memory processes to a dynamical system.

The following exposition is a brief introduction to fractional calculus. The subsequent
comments are sufficient to understand how fractional calculus has been used in this research
for modelling memory in human-machine systems, albeit omitting several technicalities. A
more formal exposition to fractional calculus — consisting of further mathematical details — is
enclosed in Appendix A, which includes the methods utilised in this dissertation to integrate

fractional differential equations and to analyse the stability of fractional order systems.

3.3.1 Introduction to Fractional Calculus in the Frequency Domain

In the fractional calculus approach, the traditional notions of integral and derivative are
extended to define non-integer powers of the integral and differential operators — which are

IThe literature sometimes employs the term visual memories to refer to short and long term visually acquired
memories. Here by visual memories we refer to VSTM only.
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jointly referred to as the differintegral operator. For an integer number n of nested integrals,

the classical integral operator over a function f is defined as:

1 15 h—1

WD) = [ diy [ dis [ dis.. T f(E) dE. G3.1)
h h h h

For simplicity, in the following the lower limit of integration /4 will be considered to be zero —
oD " f (1)
Similarly, for consecutive derivatives the differential operator is defined as:

dd

"l - d . \_4d"
D'f(t) = EE"'Ef(t>_dt”f(t)' (3.2)

We want to construct an operator in which we can replace n € N by an arbitrary real number
v € R. Usually this is done by defining first a fractional integral operator — ,D; f(¢) for v < 0.
And then, for fractional differentiation one needs only to combine fractional integration with
classical differentiation?. That is, for v > 0

oDy £(t) = DV1{DY M £(1)}, (3.3)

where [-| denotes the ceiling function. As fractional differentiation is defined through
fractional integration, the integration limits must be specified for differentiation too. Still, we
have not defined fractional integration yet.

The difficulty in trying to explain fractional calculus in an intuitive manner is the lack of
a suitable geometrical interpretation. Unlike classical derivatives, which have a very intuitive
explanation, geometrical arguments in the time domain for fractional operators yield only
abstract concepts. Thus for example, in [PDSMO07] fractional integrals are explained as a
projection on the y — z plane of a classical integral in a higher dimensional space. Although
this is an interesting result from a mathematical perspective, it does not make the concept
more interpretable for modelling system memory. However, here a simple interpretation in
the frequency domain is offered. This interpretation leads in an alternative manner to one of
the standard definitions of fractional operator.

It is well known that the Laplace transform of the nested integrals functional (3.1) is
L{D7"f(t)} = F(s)/s» when L{f(t)} = F(s). Further, whenever the initial conditions of f
are zero, then L{D" f(t)} = s"F (s). Hence for v € Z, and assuming the initial conditions to
be zero, we have

L{DYf(t)} = s"F(s) for v € Z. (3.4)

There is an alternative way to define fractional operators in which the derivative is applied first followed by
a fractional integral [Diel0].
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In the frequency domain this means that, when varying v € Z, discrete transitions in the slope
of the corresponding transfer function occur; the slope of the magnitude in the frequency
response is always a multiple of 20 dB/decade, while the phase response is a multiple of 72 rad
(Figure 3.1). Thus a generalisation of (3.4) can be produced by letting v € R.

Bearing this in mind another property of the Laplace transform is considered. It is known
that [Pod98],

L{V7r-n} =sY (3.5)

for v € R™, where I" represents the Gamma function, a generalisation of the factorial operator
for non-integer values >. Now, by using the Convolution Theorem of the Laplace transform
on Equation (3.5), it can be readily shown

oD/ (1) = L7Hs"F(s)} = L7Hs"} = L7HF(s)

/ (8)dE. 3:6)
O

Equation 3.6 coincides with the Riemann-Liouville definition of the fractional integral
operator (Appendix A). One important comment is that the Gamma function is not defined
for negative integers — neither for zero. Nevertheless, by combining (3.3) and (3.6), the

differintegral fractional operator can be defined Vv € R as follows:

DIF0) = gy [ (1= &) F () d§ forv <0
DY) = T{f(1)} for v=0
DY () =DV DYV reny for v > 0

where 7 is the identity operator.

Hence the geometrical interpretation is that, as v is decreased lower frequencies have
more effect on the response, while higher frequencies are less important. So by decreasing v
the memory in the system is gradually increased, as the system responds more to long term
information than to instant variations (Figure 3.2). For integer order differintegration this
was already known, as more integration means more memory. The difference now is that
this effect can be controlled in small increments, and that in the fractional calculus approach
differentiation has memory too; it is no longer a local operator.

Mt satisfies T'(z) = (z— )['(z— 1) Vz€ C\{Z U{0}} (See Appendix A).
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Fig. 3.1 Frequency response of (3.4) by varying v within Z. The slope of the magnitude
response is V-20 dB/decade while the phase response is v-#2rad with v € Z.

20 : e
o 10+ :
2
) O b T e T o
°
2
E _10 L -
g
s -20 - .
o ( .
N =175 | |
> O . |ev=125 [
3 ——1=-0.75 | |
> Of ——1=-0.25 |1
g R S R T T S —v=025 | |
= -90 _ _ _ —+—p=0.75 |1
& = V=125
-180 ¢ —— —=—v=1.75 | ]
107 10° 10"

Freauency (Hz.)

Fig. 3.2 Frequency response of (3.4) by varying v within R. The slope of the magnitude
response is V-20 dB/decade while the phase response is v-72rad with v € R.
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3.4 Extended Crossover Model for Human-control of Frac-

tional Order Plants

Besides fractional operators, there are other ways in which a dynamical system can represent
memory processes. The states of a system are memory variables themselves, as well as
transport delays. Memory can also be held in a dynamical system in a cumulative manner,
such as a mean of previous states, an integrator, a Bayesian model or a Kalman filter. This
last approach has been considered in human control to design optimal control models [BK69].
Additionally, cognition models such as the ACT-R framework (Section 4.1) integrate memory
as a list of symbols*. However, fractional operators model memory in a more natural form:
they consider a memory history of every past state which decays through time’. Hence,
fractional calculus presents a temporal footprint suitable to characterise system memory.
Besides, as fractional calculus is included within the framework of differential equations, it
is a very practical way to incorporate memory into already existing dynamical models. In
addition, a fractional operator characterises its memory properties with only one parameter.

Further motivation for considering this method is that fractional operators introduce
wider power law behaviour into the frequency spectrum of a system (Fig. 3.2); for example
it is known that pink noise occurs naturally in biological systems [SVSO1]. In Section 3.5
the human-operator memory will also be studied through classical control, and this other
approach will be compared to the one of fractional calculus.

To test out the relevance of the memory effects of fractional-order dynamics in human-
machine systems, experiments were conducted on human tracking behaviour for plants which
have the dynamic characteristics of fractional-order systems. The experiments in which the
data were collected involved using a steering wheel and a joystick to control such plants,
which had additional challenge; thus they generalise the classical experiments found in the
literature. Additionally, these tests were performed in compensatory and pursuit control
modes (Sec. 2.3.1) and are referred to as human-in-the-loop tracking experiments (HTE).
Further details are found in Appendix B.1. Briefly, the naive test subjects had to control

plants of the form:

Qo 1
Yp (S)_Sa(TS+1)7 (37)

with parameters o = 0.5,0.75, 1, 1.25, 1.5 (and T = 0.1) by means of a control device — a
joystick or a steering wheel — and a display. Figure 3.3 shows the impulse response of (3.7)

4The ACT-R model has been applied to model the human driver [CG07].
>The weights in Definition (A.3.1) satisfy the property that recent states of the system are more relevant
than older events (Fig. A.2).
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Fig. 3.3 Impulse response of the plants (3.7) for their particular fractional order .

for different values of «, while in Figure 3.4 an example of the recorded signals in the HTE

is presented.

3.4.1 HTE dataset fitting to the classical CO model

Firstly, the question of whether the human operator is able to interact and control skillfully
fractional-order plants is examined. To study this possibility, The CO model (2.12) is fitted to
the recorded control movements in the HTE dataset corresponding to non-fractional (¢ = 1)
and fractional-order plants (o # 1).

In order to fit the CO model to the frequency response estimates of the human control
actions, the delay parameter T was approximated first. For this purpose, the error signal e(t)
is shifted by consecutive time units, and the cross-correlation between e(¢) and the human
response signal ¢(¢) is calculated. The number of shifting units that yields a maximum
cross-correlation approximates the average time delay 7 of a recorded signal (See Table 3.1
and Fig. 3.5). To compute the crossover frequency @, the estimated frequency response is
fitted through linear regression. The intersection with 0 dB yields @, (Fig. 3.6). In addition,
the slope of the regression line is compared to that of the CO model.
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Fig. 3.4 Recorded signals from Subject 3 corresponding to the test with steering wheel,
display in pursuit mode and o = 1.5. (a) The output of the plant follows the forcing function
after a delay determined by the subject’s effective time delay and the plant response. (b)
Human response to the visually perceived error after an average effective time delay of 0.31's

for this test.
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Delay (s.) | MSE Delay (s.) | MSE
Subject || Joystick Joystick | S. wheel | S. wheel
S1 || 0.342 0.168 0.438 0.183
S2 || 0.314 0.094 0.537 0.295
S3 || 0.202 0.072 0.284 0.088
S4 || 0.308 0.133 0.472 0.353
S5 || 0.266 0.138 0.347 0.161
S6 || 0.443 0.291 0.644 0.291
S7 || 0.461 0.220 0.504 0.255
S8 || 0.281 0.106 0.366 0.143
S9 || 0.179 0.155 0.335 0.125
S10 || 0.353 0.177 0.404 0.155
] Mean H 0.315 \ 0.155 ] 0.433 \ 0.205 \

Table 3.1 Effective time delay and mean squared error (MSE) between the error signal and
the human response signal for each subject. The results are tabulated for each control device.

The invariance property of the classical CO implies that a slope of -20 dB per decade

occurs in the magnitude of the response. From the slopes of the fitted regression lines it is

observed that the invariance property does not hold when using fractional order plants. The

slope varies according to the fractional order of the plant (Fig 3.7). Furthermore, the phase

response does not match that of the classical CO model.

An initial examination (Fig. 3.7) of a representative set of test data exhibits that the slope

and phase conditions (2.13), (2.14) are no longer satisfied. Indeed, by analysing the particular

cases the following pattern is observed:

- For v =1 the classical CO model is consistently verified as described in the literature

[MJ67] (Fig. 3.7b).

- For a0 < 1 the slope of the frequency response magnitude is greater than the

—204dB/decade predicted by the CO model. Besides, there is an additional positive

constant shift in phase (Fig. 3.7a).

- For o > 1 the slope of the frequency response magnitude is less than the predicted

—204dB/decade. In this case there is an additional negative constant shift in phase

(Fig. 3.7¢).
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Fig. 3.7 Frequency response fitted to the classical CO model and the FCO model for three

experimental tests (using the steering wheel and in pursuit mode). Plant transfer functions:
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3.4 Extended Crossover Model for Human-control of Fractional Order Plants 39

3.4.2 Fractional Crossover (FCO) Model

In light of the above, a generalisation of the CO model is proposed — the Fractional Crossover

(FCO) model: X

Y, ()Y, (s) = %. (3.8)
The FCO model includes an additional parameter A that reproduces the pattern described.
Y, (s) is the human transfer function and Y (s) = K/s*(Ts+1) is the plant. When fitting the
FCO Model, A corresponds to the slope of the fitted regression line.

By using the FCO model (3.8), it is clear that the additional parameter A can correct the
slope in the magnitude of the frequency response to match the data (Table 3.2). What is
more significant, and justifies the fractional model, is that the correction brought up by the
parameter A also improves significantly the fit in phase response. Hence, the FCO model
presents a more effective fit for fractional order plants — a reduction of 38% for the mean
squared error (MSE) in magnitude response and of 62% for phase response (Table 3.2).

The amplitude and phase response for the FCO model are:

A (wf) =20A(logw. —logws) dB. (3.9)
T
q)/l(wf> = —El — Ty rad. (3.10)

3.4.3 Relationship between Plant Order and FCO model parameter

The new parameter A exhibits an approximate linear relationship with respect to . In
Fig. 3.8 the distributions of A — for each test subject run — are shown for different a. The

relationship is estimated by fitting a linear trend through the median values for each fractional

Crossover Model FCO Model

o || MSE amp. | MSE ph. || MSE amp. | MSE ph.
0.5 || 0.063 0.162 0.021 0.033
0.75 || 0.025 0.034 0.018 0.019
11 0.119 0.099 0.090 0.067
1.25 || 0.010 0.163 0.009 0.045
1.5 || 0.018 0.252 0.009 0.106

| Mean || 0.047 [ 0.142 [ 0.029 0.054 |

Table 3.2 Average of the MSE for the recorded tests between the frequency response in the
data and each fitted model.
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plant:
A=mo+c~my+1 (3.11)

and values m = 0.31, ¢ = 0.72 are obtained. It is convenient to define 7 := o — 1 as a measure
of how far the plant is from a non-fractional model — we may call this the fractionality of the
plant. Accordingly, the FCO model can be rewritten as:

K (wc)mj”rlef‘rs

Y (s) Ypa (s) =Y (s) sHY(Ts+1) - smr+l (3.12)

and hence, the response of the human operator is given by
Y (s) = K~ Y (a@,)™ "0 (Ts+ 1)e™ ™. (3.13)

The result m ~ 0.3 can be interpreted as follows: on average the human operator is able
to compensate for about 70% the fractionality of the combined human-machine system.
The compensation is represented in the model of the human (3.13) by an additional factor
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Fig. 3.8 Distribution of the parameter A, fitted from the experimental data, for all the tests
and for each plant with their corresponding box plot. The limits of the boxes denote the 25%
(g1) and 75% (g3) percentiles. The whiskers have a maximum length of 1.5 the interquartile
difference (g3 — g1). Outside of this range the values are regarded as outliers. The median
values are fitted with a dashed line.
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Y 7/sy(l_m), not present in the CO model. Hence, the FCO model offers a suitable generali-
sation of the classical CO model, describing human control of a wider category of plants.
These may include complex and nonlinear plants or plants with hysteresis effects, and where
a fractional order approximation can be determined.

With the given data it is only possible to speculate about what may happen by further
increasing the fractionality towards o = 2 — or towards & = 0. It seems natural that only the
difference from o to the nearest integer order is relevant.

An explicit frequency range of validity for the CO model is not reported in the classical
literature [MJ67], as it is dependent of the forcing function, the human response characteris-
tics, the control device and the controlled plant. For the presented setup, it is observed that
the CO and the FCO models are generally valid on the frequency range of 0.05-0.5 Hz.

It is known that the crossover frequency is larger for more skilled operators [McR80].
Indeed the same result is observed in the HTE dataset (Fig. 3.9). Higher values of @, signify
that stable tracking occurs across a higher frequency range. For example, lower control gains
have been reported for inebriated drivers [AJMD75]. Examining the fitted values of @, for
every o (Fig. 3.6), smaller values are observed in fractional-order plants. In particular @,
seems smaller for larger |y|, especially for higher order plants. Additionally, for o > 1, the
variability between the different tests is seen to be smaller. This suggests that fractional-order
plants are more difficult to control, and while for some tests subjects were able to achieve
relatively larger values of @, when o < 1, for o > 1 the crossover frequency is consistently
smaller; the degree of difficulty in a tracking task also increases with the order of the plant.
Indeed it has been reported that as the order of the plant increases, time delays increase
and performance decreases [Mac03]; control of higher order plants is only adequate when a
preview of the states of the plant is available [1I75].

Interestingly, while for o < 1 the crossover frequency is smaller than that of the non-
fractional plant (o = 1), the neuromuscular lag is very similar (Fig. 3.5). This indicates
that, even when the subjects operate at lower bandwidth when controlling fractional-order
plants, for o¢ < 1 the values of 7 are similar to those in the non-fractional case. It may be
that subjects are able to use the memory in the system to predict its behaviour in the lower
fractional order cases. This is further supported by the fact that almost identical performance
is found for o < 1 and for o = 1 (Fig. 3.10). On the other hand, the higher order plants
(a > 1) result in a higher error e(¢) = r(t) —m(t). For o = 1.5 the variability in the data is
significantly higher, which suggests that not all the subjects were able to fully adapt to the
plant during the course of the tests.

The simplicity of the CO model relies on the fact that it depends on just two parameters

(@, and 7), which have an intuitive interpretation. The FCO model adds just one additional
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is lower for the higher order plants and equivalent for lower order plants.
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parameter: the fractional exponent of the combined human-machine system (1). A is
therefore related to the system memory for the human-machine system. Besides, A also has
an intuitive meaning: it determines the slope of the frequency spectrum (Eq. 3.9) and the
added phase offset (Eq. 3.10). Because A depends on the plant, which in most cases it will
be known, the FCO model can still be utilised as a two parameter model.

Since fractional derivatives lie between two integer order derivatives, the results for
a < 1 suggest that humans can effectively combine information with different levels of
differentiation. This is equivalent to combining input variables such as position and velocity
or velocity and acceleration, and suggests that it is possible for humans to respond to such
composite variables, rather than directly to ordinary engineering variables. This motivates

the further analysis that will be conducted in Section 3.4.5.

3.4.4 Further Results on the HTE Dataset Related to the CO model

Differences in Control Device

Although neural delays should be equivalent for any control device used, the data shows
that muscle activation times differ, producing a different time delay for each device. For
the steering wheel the delay is larger than that with the joystick (Fig. 3.11). The obvious
explanation is that to achieve the maximum gain with the employed steering wheel requires a
rotation of 450°. In the case of the joystick the same gain is achieved with only a few degrees
of forearm displacement. Larger time delay bring about larger MSE between tracked and
tracking signals. On the other hand, for driving a vehicle this larger gain also tends to amplify
the effect of whole-body vibration of the vehicle body, and greater directional precision
is offered by a steering wheel with (say) a 16:1 steering ratio. In reference [ARBO3] it is
reported that the tracking capability is higher with a steering wheel in a regular road, but for
crash avoidance manoeuvring, both control devices offer similar performance.

From the experimental Ford FX Atmos (1954) and General Motors Firebird III (1958)
to more recent attempts by Nissan and Toyota, the industry has sporadically attempted to
implement joysticks in passenger concept vehicles. Probably the high ratio between joystick
gain and arm motion limits the feasibility of the concept. While joystick control can yield
a faster response, it is too sensitive to allow an intermittently-active driving attendance; it
demands constant and quick readjustments. Nevertheless, the median of the MSE for the
recorded test subject signals are very similar for the joystick and the steering wheel (Tab. 3.1).

New steering control devices should be developed to achieve good directional precision

and low vibration amplification, while at the same time supplying quick response characteris-
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Fig. 3.11 Comparison of the effective time delay in the experimental data for the two tested
control devices: joystick and steering wheel. The human operator is able to produce a quicker
response with the joystick. The median values are 0.275s and 0.34 s for the joystick and the
steering wheel respectively.

tics in crash avoidance scenarios. This theme will be investigated in Chapter 5 with a unique
mechanism for steering control.

Differences in Control Mode

In earlier experiments performed in compensatory and pursuit modes [PDF67], it was
observed that after the subjects have gained enough skill there is not significant difference
in performance between control modes. In our tests, the subjects were inexperienced in the
use of a joystick (Table B.1), and three of them inexperienced with the steering wheel. Thus
the data recorded shows differences between display modes. In particular there is significant
disparity in the employed gains @, (Fig 3.12). In a pursuit tracking task, the subjects applied
on average higher gains. We also observed lower MSE in pursuit mode between the tracking
and the tracked signals but equivalent average lags.

Prediction Moving Element

Some of the experiments included a prediction dot that signalled to the subjects about the

future effect of the forcing function on the plant (Appendix B.1). Regarding the difference
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between tracking with or without prediction, some differences are observed among subjects.
While some subjects make active use of the future prediction to reduce lag (for one the tests
the lag is even negative), to increase the applied gain or to reduce the error, other subjects
do not seem to have used the future prediction at all (Fig. 3.13). We believe that more
training was needed before all the subjects could use the future prediction to improve their
performance.

3.4.5 Sources of Fractionality in Human-machine Systems

While in some cases modelling a system with fractional differential equations represents
more accurately its response, real-world plants should be uncomplicated to control, so levels
of fractionality are likely to be low for most systems [CPX09]. Nevertheless, the possible
sources of fractionality in real-world human-machine systems are analysed in this section
by considering the various subsystems. In particular, as the motivation behind this research
is its potential application to characterising driver behaviour, the case in which the plant
is a ground vehicle is principally considered. Further, the possibility that human operators
themselves introduce fractionality in the man-machine control loop is also studied. The
following analysis indicates that, although real-world plants can be generally regarded as
non-fractional, there is evidence that humans respond to fractionally integrated visual inputs.
Furthermore, humans appear able to reduce the fractionality in the visual system to elicit

non-fractional responses.

Plant Dynamics

To test the extent to which vehicle response can be considered fractional, the parameters
of a fractional linear bicycle model were fitted with data obtained by running a simulation
with CarMaker®[IPG15], a high fidelity simulation tool used extensively in the industry. The
simulation represented a Toyota Camry 2006 vehicle (Fig. 3.14) with a band limited random
steering angle, on a straight road of non-limiting width. The recorded signals were the body
slip angle B(¢) and the yaw rate 7(¢). The data were sampled at 50 Hz® and the signal had a
duration of 100 min.

The parameters of a linear bicycle model — and of a fractional version of this model —
were fitted with the data. The model consisted of two dynamical equations: one equation
for the body slip angle and the other for the yaw rate of the vehicle. The considered bicycle
model (from [Abel5]) is:

Typically, vehicle dynamics occur within much lower frequencies than 50 Hz. The same is true for human
steering response 2.4.2.
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Fig. 3.14 Ground vehicle simulation representing a Toyota Camry 2006 with a band limited
random steering angle, on a straight road.

[B]:_[LO/MU 1+L1/MU2][B]+[Caf/MU]5f (3.14)

n L/ Ly/1u n 1Cay/1
with
L= lfCaf-l—erar (3.15)

Ly = [3Cq +17Coy

and where C¢ s and Cy, are the axle cornering stiffness for the front and rear axle respectively,
M is the mass of the vehicle, U the speed — which was chosen to be constant at 1004m/n, f
and /, are the distances from the centre of gravity of the vehicle to the front and rear axle
respectively, / the yaw moment of inertia and J; the front steering angle. A fractional version
of the model can be rewritten as a transfer function with an additional parameter u:

Co(IUsH—MIU+Lr—Lyly)
B | | IMUZEF(ILoU+LMU)sF+ LoLy— L2 — L MU? A
H Can(MUlfSu-i-L()lf—Ll) f
IMU2s2H 4+ (ILgU+LoyMU )sH+LoLy — L3 —LiMU?

(3.16)
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where L{B(t)} = B(s), L{n(t)} = H(s) and L{0¢(t)} = As(s). For p =1 (3.16) is identical
to the Laplace transform of (3.14).

A multi-objective optimisation — minimisation — process through a genetic algorithm’ is
used with a grey-box modelling approach: It is pre-assumed some knowledge about the data —
it follows approximately (3.16) with known M, U, Iy, [, and I — but as C s and C¢, are more
difficult to approximate experimentally and u is unknown, the genetic algorithm will fit Ly,
Ly, Ly, Cqr and . Two objective functions, ep and ey, represent the relative error between
the simulated data and each of the equations of the model:

1 {¥ |B(jo) - B(jo)?
ep N wgl i) ‘ (3.17a)
|1 3 A(je)-H(jo) 2
en=\|% w:ZO'l H{jo) ‘ (3.17b)

where B and H are the estimates of the frequency response of (3.16) and N the number

of samples in the range 0.1-2 Hz. Thus the objective function is dimensionless. The step
responses for each system are very similar, although the fractional model offers a better fit
during the transient phase (Fig. 3.15). Both models present a less precise fit of the steady
state response, possibly due to effects introduced by the steering compliance, which the
bicycle model does not replicate.

The optimised values of the Pareto frontier are displayed in Fig. 3.16. The fitted parame-
ters show that the fractional bicycle model is very near to the non-fractional case (1 = 1) with
u = 0.987, although the fractional model fits better the transient phase in the step response.
The value of u was selected as a trade-off (Fig. 3.16); increasing or decreasing t from 0.987
will result in an increase of ep or eg respectively (Eq. 3.17). According to this analysis,
ground vehicles may introduce a certain degree of fractionality in the human-machine system,
but not to the same degree as in the HTE. This fractionality is likely to derive from the
viscoelasticity of the tyre, the elasto-kinematics of the steering system or the suspension
systems, and may be more significant for heavy vehicles or for vehicles driven off-road.

7 The initial population of the algorithm was selected through a uniform probability distribution, while
the parents in each generation were selected by the stochastic universal sampling technique [Bak87]. The
mutations were produced by adding Gaussian noise to the sample and the crossover fraction in each generation
was 0.8. The ratio in the Pareto frontier was set to 0.5. The algorithm ran for a fixed number of generations and
was executed multiple times with different randomisation.
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Fig. 3.15 Step response for the optimised solution for (3.16) with 4 = 1 (non-fractional),
i = 0.987 and for the CarMaker® simulation setup. While the transient is slightly different
for u # 1 — more overshoot is present in fractional case — the steady state response is very
similar for both models. The step input is of 6 = 0.05rad.
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Fig. 3.16 Relative errors ep and eg from (3.17a) and (3.17b) vs. the fractional parameter
u. Each point corresponds to a member of the Pareto frontier, which contains the potential
optimal solution alternatives yielded by the optimisation algorithm. The two curves intersect
at U ~ 0.987 with ep = ey ~ 0.154.

Human-operator Dynamics

Section 3.2 suggested two mechanisms involved in visual perception that can imply fraction-
ality within the human operator: trans-saccadic memory and vestibulo-oculomotor neurons.

There is another way in which the visual system may introduce fractionality: perceived
visual inputs are processed in different parts of the brain via a complex network of feed-
forward and feedback connections. The neural visual pathway displays a peak in activation
before any motor output is performed [TFM96]; neural processing of a perceived image until
identification can take around 150 ms. Thus visual processing has a memory integration time
comparable to that of the duration of a saccade.

Here the possibility that visual processing of the tracking error can be modelled with a
fractional operator is considered. For the 200 recorded tests, a genetic algorithm was run that

maximises the correlation between (D} e(t), the fractional derivative or integral of e(r), and
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c(t), the human operator manipulative control actions, by varying v (Fig. 3.17). Through
this method, it is inferred that the human operator response displays greater correlation to a
delayed fractional error variable, rather than to an integer power of the differential operator.
In the analysis, the median correlation was shown to increase from 0.758 to 0.816, when the
fractional operator was added.

Further, the fractional error variable relates to the fractionality of the plant through an
approximate linear relationship:

v=na+d =ny+d (3.18)

with n = 0.56, d; = —0.40 and d, = 0.16.
This result provides indirect evidence for fractionality in the human controller. Our

interpretation is that the human operator responds to visually interpreted information with

or ¥ x :
0.2 }- ' " -
——
0 |
05 075 1 125 15

a plant

Fig. 3.17 Relationship between the order of the plant (A.12) and the fractional-order v that
brings maximal correlation between (D} e(t) and c(t) for the experimental recorded tests.
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some level of fractionality, and that visual inputs for the tracking task can be modelled as a

linear filter that takes into account sampled past observations — Definition A.3.1 — (Fig. 3.18).

Discussion

Taking as benchmarks the CO model, the FCO model and the classical literature, it can
be concluded that the overall human control response for non-fractional order plants is
itself non-fractional. But human responses appear more highly correlated to fractionally
integrated visual information. Further, in Section 3.4.3 it was shown that humans are able to
reduce the fractionality of the whole human-machine system in about 70%. Considering that
most real-world plants are non-fractional, this raises the question of why humans possess
some skill to control and compensate fractional order plants. One explanation is that visual
perception, muscular dynamics and the CNS contain memory aspects that can be described
as a fractional process, and human neuromuscular responses can be characterised as a process
that compensates this fractionality, yielding a non-fractional response. In order to interact
with a non-fractional plant, the most convenient approach for the operator is to produce a
non-fractional manipulative action. A mechanism of fractional compensation has previously
been proposed for vestibulo-oculomotor neurons; in [Ana94] it is contemplated that the
fractional dynamics of motor neurons compensate the fractional dynamics of the eye. From
the analysis presented here, a mechanism of fractional compensation is the most plausible
explanation.

The mechanism of fractional compensation can occur in a number of different ways.
One possibility is that it occurs in the muscular system. Fractional-order dynamics seem
to be general in the muscular system [TVPM13, Mag06]. The musculoskeletal system is
composed of viscoelastic polymers, which are known to be well modelled by fractional
dynamics. In Section 2.3.3 the plausibility human-control to be characterised by intermittent

e(t) Vi,

Display |-
Q- Display ..

Human

c(t) Plant _m)(t)

Fig. 3.18 Suggested scheme by the analysis in the recorded data: The human-operator
responds to an error variable that can be modelled with a fractional operator. The human
operator compensates to produce a non-fractional response ¢(f) — when interacting with
non-fractional plants — according to the FCO model.
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pulses was mentioned, and this will be further discussed in Section 4.2. However, human
control output recordings appear to be smooth. The fractional aspects of the motor system
can explain the transition between discrete pulses and smooth steering response. Regarding
the fractional compensation, another possibility is that it occurs during the visual processing
stage. However, without a complementary analysis of neural recordings the exact process of
compensation cannot be fully characterised.

The FCO has been published already in a conference paper [MGG16] which was later
extended to a journal paper [MGGS17].

3.5 Finite Impulse Response Method

Motor response involves a series of self-regulated and coordinated actions, which in many
cases are produced unconsciously. Thus there is some type of non-declarative memory
involved in a manual control task. The memory encodings of different motor skills have been
referred to as procedural memories (Sec. 3.2).

In this section, finite impulse response (FIR) filters are employed to identify procedural
memory patterns, i.e., unconscious implicit memories that execute motor control actions
during manual tasks with visual feedback. For this, the data collected from human subjects
in the HTE are utilised (Sec. B.1).

The effect of visual memories in manual control was already investigated through frac-
tional calculus in Sec. 3.4. The fractional calculus approach offers the advantages of adding
very few parameters to a model, and integrating relatively well with general differential
equations theory. However, because a fractional operator is specified with only one additional
parameter — which represents the fractional order of differintegration — this method, although
effective for modelling, has a more limited capacity to characterise procedural memory
patterns.

On the other hand, the approach presented in this section — FIR modelling — requires a
larger parameter set, but it is more appropriate to study the attributes of procedural memories
in human control. Thus, the interest is focused more on analysing how VSTMs are integrated
by the CNS, by means of long term procedural memories, the latter here represented by a
proposed control law, than on obtaining an effective model of human control for automation
purposes. Hence the investigated FIR model is used as an analysis tool. FIR modelling
applied to human control can be found in the literature [Shi74], but not the study of the
resulting memory patterns, under the assumption that visual memories at different instants

are weighted through an intrinsic procedural memory pattern.
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The classical FIR filter approach was selected as an alternative to the more novel fractional
calculus method in Sec. 3.4. One of the advantages of this classical control technique is that
the fitted gains of the FIR filter (Eq. 3.19) directly yield the impulse response characteristics
of the controller — which in this case can be interpreted as the decay through time of the
visually acquired memories during a control task. Additionally, as it is also a linear method,

it integrates well with the quasi-linear modelling approach (Sec. 2.3.2).

3.5.1 FIR model

The hypothesis tested is that humans employ a history of past observations — visual memories
— to control a plant. These past observations are integrated over a specific time pattern
(procedural memory pattern), which reflects the use of visual memories during a manual
control task. Additionally, signal analysis is performed to study the intrinsic time scale of the
procedural memory pattern. Hence, the linearly equivalent system of the human response is
modelled by a FIR model, which can be expressed as:

N
hi(t) = Gy Y KiLP T {e,}, (3.19)
i=0

where /;(t) is the modelled human response, Gy the control gain, K; are the normalised visual
cue weights (which manifest the relative importance of a visual cue observed at different
instants), e; is the error at time ¢ and L is the back-shift or lag operator. The lag operator
delays the error according to a constant term p by pAT seconds, and a variable term i which
delays by iAT seconds, where AT is the selected discretisation step specified next. The
constant term p reflects the effective time delay (7 ~ pAT).

The FIR modelling approach assumes that the human operator can be represented as
a discrete controller acting with a time step AT = 50ms. This assumption is justified by
several research studies (see Sec 2.3.3). On the other hand, discrete controllers can better
represent interruptions in human perception, such as the ones produced by driver distraction
or multitasking [GS14].

The effective time delay (7) value was already determined in Section 3.4.1. Accordingly,
T averagely is 315 ms for joystick control and 433 ms for steering wheel control (Table. 3.1).
From 7 the parameter p is estimated for the FIR model.

The FIR model is also consistent with the concept that the human brain uses composite
variables, which are linear combinations of derivatives of different orders of the observed
cues, to predict the states of the tracked system [HBDS97]. By considering that derivatives

can be approximated as finite-differences it can be interpreted that, modelling the human
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operator with a FIR transfer function is qualitatively equivalent to considering the prediction
effects of higher order derivatives; a linear combination of finite-difference operations is a

particular case of a FIR filter.

3.5.2 Pattern Analysis

A genetic optimisation algorithm was used to fit the weights K; with i = 1,...,20 to the
HTE dataset. The objective function was the cross-correlation between #;(7) (Eq. 3.19)
and the recorded human response — both controlling a plant acted by the same forcing
function input. In the optimisation process, the weights K; are constrained to be a normalised
vector, in order to prevent the generation of spurious patterns by the genetic algorithm?®.
Genetic algorithms are less prone to be captured at local minima, compared to other convex
optimisation methods®. Thus they have been consistently employed to fit parameters in
generic data [WCL15] — or when the objective function has unknown characteristics — such
as data recorded from human subjects [KRB*17]. The human gain Gy was fitted by linear
least squares. The parameters K;, with respect to the number of delayed steps, are shown in
Fig. 3.19 for the 200 experiments.

Although there is large variability in the data (Fig. 3.19), a clear pattern is exhibited by
the median values. Considering all the variants in the experiments — control device, type
of plant, display mode and different subjects — and that the human-operator response is in
general very noisy, the variability was anticipated. Additionally, with the exception of K3 4,
the variability seems to increase with the number of delayed units. For i = 2,3 the high
variability may be produced by the large slope in the trend. Thus the fact that the variability
increases from i = 5, while the magnitude of the weights decreases, suggests that humans
rely on a more consistent manner on recent information than on older observations.

The observed pattern in the human-operator response results from their adaptation to the
plant Ypo‘ (s). We already saw that the human response characteristics depend on those of the
plant, in such a way that the whole human-machine system presents invariant dynamical
properties. This is reflected by the evidence that the joint interaction of the human and the
machine can be represented by a particular transfer function near the crossover frequency
(Sec. 2.3.2).

8 Similarly to Sec. 3.4.5, the initial population of the genetic algorithm was selected through a uniform
probability distribution, while the parents in each generation were selected by the stochastic universal sampling
technique. The crossover fraction in each generation was 0.8. The ratio in the Pareto frontier was set to 0.5.
The hyperparameters were tuned empirically by running the algorithm multiple times, until the results were
consistent through different randomisation.

9 Such as gradient descent, the Gauss-Newton algorithm or the Levenberg—Marquardt algorithm, which can
be considered an interpolation between gradient descent and Gauss-Newton.
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Fig. 3.19 Fitted K; parameters for all the recorded experiments in the HTE dataset. For each

number of delayed steps of duration AT, the corresponding box plot is displayed summarising
the 200 recorded experiments.

In Fig. 3.19 it is observed that, for the studied plants (3.7), the weights are positive for the
first 2 — 3 delayed steps (100-150 ms) and remain negative during the continuing 8 delayed
steps (= 400ms). Finally, they can be considered essentially zero after approximately 13
delayed steps (650 ms). This value is in agreement with [CMN83], where it is reported
that the decay time of a visually perceived image in memory is in the range 90-1000 ms
(Sec. 2.4.2). For the chosen plant dynamics, control device and forcing function, it seems
that humans use visual memory approximately up to 650 ms. The sign change in the memory
pattern between K, and K3 manifests that, visual inputs perceived at different time are
weighted in such a way that the rate of change of the error — and higher order rates — can be
approximated by the human, allowing the CNS to estimate the future states of the controlled
plant.

The same pattern is consistent across different subjects (Fig. 3.20a), qualitatively con-
sistent across different control devices (Fig. 3.20b) and for the different control modes
(Fig. 3.21a). Hence, the selected model — for characterising the procedural memory pattern —

and the optimisation methodology are adequate, and the data have not been overfitted.
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Nevertheless, in relation to the two types of control device tested, the pattern displayed
by the weights K; has quantitative differences between joystick and steering wheel control.
In Fig. 3.20b it is shown that for the case of joystick control, there is a higher negative gain
and a faster decaying pattern, while for steering wheel control humans tend to use lower cue
weights in magnitude but sustain the response longer. This effect is likely to be produced
by the fact that controlling a steering wheel involves longer delays resulting from muscle
latency (Sec. 3.4.4).

Contrary, the pattern is virtually identical for compensatory and pursuit modes (see
Fig. 3.21a). In Section 3.4.4, it was shown that humans display a larger crossover frequency
and greater performance in pursuit tasks than in compensatory tasks. Thus not all the aspects
of the human response can be represented by the proposed methodology, but the approach is
particularly useful to display memory profile patterns.

In Fig. 3.21b the results are compared for the studied plants (3.7). It is observed that as
the order of the plant increases, the magnitude of the gains decreases for recent observations,
while the decay of the weights over the perceived error is lower. This is possibly caused by
the fact that the response of higher order plants is more difficult to predict [I175, Mac03],
thus humans rely more on recent observations when the order of the plant is higher.

Further, the gains, Gy in (3.19), are shown in Fig. 3.22 tabulated per subject. The
gains are larger for joystick control than for steering wheel control, which is natural since
the joystick has a higher output/hand-displacement ratio. Another reason is that untrained
humans are not so skilled in joystick control and their output is closer to a bang-bang
controller as compared to steering control; in steering wheel control both hands can act in
anti-phase, increasing the impedance of the steering action, which is known to reduce the
instability [BOF01].

Furthermore, it is observed that the gains increase with the order of the plant. As already
stated, higher order plants are more difficult to control and usually require longer preview
time. In [II75] the effects of different preview time intervals were thoroughly examined. For
the presented analysis, and in order to simplify the discussion, a preview of the error was not

considered.

3.5.3 Reduced Order Infinite Impulse Response Model

With the aim of studying the fitted FIR controller from the perspective of classical control,
it is practical to approximate it with the simpler transfer functions of an Infinite Impulse
Response (IIR) model. Henceforth, the discrete FIR model is fitted to a lower order model
with two zeroes and two poles, after discarding the noisy cue weights — only K to K3 are
considered in (3.19):
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Fig. 3.20 Parameters K; fitted from the experimental data and averaged (a) for each subject
and (b) for different control devices — joystick and steering wheel.
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Fig. 3.21 Weights K; fitted from the experimental data and averaged (a) for different control
modes — compensatory and pursuit — and (b) for each controlled plant Y, p“ (s).
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H(z) = Gp{Koz P +Kiz P 4+ + Kz P13 (3.20)

The optimal fitted models are shown in Table 3.3 and their corresponding frequency
response in Fig. 3.23. The frequency response for the approximated model is accurate
within the frequency range where the human-operator can perform a fair level of control; the
maximum frequency limit is reported to be in the range 1-5 Hz, depending on the predictive
capacity of a given manual control task [Pew(07]. Another study [War67] stipulates a limit of
0.7-1.5 Hz for compensatory and pursuit tasks with irregular forcing functions, which do not
allow for adequate prediction (Sec. 2.4.2).

For the FIR model (3.20), the pulse and step responses are shown in Fig. 3.24. These
can also be compared to the pulse and step response for their approximated lower order
counterparts (Fig. 3.25). The lower order model,

_ ao(a) +01(OC)Z71 +a2(a)z’2
fol(z) N bo(a) —|—b1(OC)Z_1 +b2((X)Z_2

is a smoother variant of the FIR model. In both models the step response has a bounded

(3.21)

steady state. However, for a > 1 the step response stabilises at a negative value. This
suggests that the controller may be unstable for those plants.

z 1SCI. ) s i
Plant o | HY Discr Cont. H¢, Cont
0.5 0.37—0.15z71-0.1172 0.13s2+12.325+57.15
: 1—1.47z7140.637-2 5219.54651-83.86
0.75 0.39-0.19771-0.1772 0.1352+14.965+14.51
: 1—1.477140.5672 52411.725+68.07
1.0 0.42—0.25771-0.1672 0.1852+16.095+-8.08
’ 1—1.37z7140.53z—2 §2412.925+91.47
195 0.45—0.317"1-0.1472 0.22524+17.145—2.96
’ 1—1.2977140.487—2 §24+14.97s+111.2
15 0.42—-0.277"1-0.1772 0.1952+17.20s—16.27
: 1—-1.25z-140.4872 s24+15.315+132

Table 3.3 Lower order discrete transfer functions H(z) fitted from the FIR model (3.20) for
each of the studied controlled plants Y;*(s), and their continuous correlate Hg(s) obtained
through the Tustin’s bilinear transform.
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3.5.4 Stability Analysis of Fractional Order Differential Equations

With the purpose of obtaining a clear stability analysis for the virtual human model acting in
closed loop, the discrete IIR controller HZ(z) is converted to a continuous controller HY(s)

(Table 3.3):
co(@)s? +c1(a)s +ca(a)
do(o)s? +dy(a)s+dr(@)

Although, as mentioned, the human operator can be regarded as a discrete controller, the

Hg(s) =

(3.22)

filtering capabilities of the muscular system make the human motor response resemble a
continuous signal [Cra47] (Section 2.3.3).

To perform the stability analysis there is one difficulty: the classical stability theorems do
not apply to fractional order transfer functions. The reason is that fractional order systems
may present branch points instead of poles. However, in this situation Matignon’s stability
theorem can be applied (Theorem A.3.2 in Appendix A.3.3). This theorem translates the
bounded-input, bounded-output (BIBO) stability region of a fractional transfer function to
the stability region of a non-fractional one.

By choosing { = 1/4 — in Theorem A.3.2 — as a common factor for all the studied plants

Y;*(s), these are transformed into non-fractional order plants for each o considered:

- 1
“(5) = . 3.23
» ) sY(Ts*+1) (3:23)
And by applying the same transformation (s — s*) to a Padé approximation of e~ %, and to

the human control model H, (Table 3.3), allows for the computation of the root locus plot of
the combined human-machine system (Fig. 3.26). Figs. 3.26a, 3.26b and 3.26¢ show that the
system is stable for & < 1, as for these plants there exist a gain that keeps all the poles within
the stability region (white background region).

On the other hand, Figs. 3.26d and 3.26e show that the system cannot attain stability
for any gain when o > 1. For o > 1 there is always a pole inside the unstable region (grey
coloured region).

The evidence that the human subjects could still control the higher order fractional plants,
while the linear controller cannot, suggests that a non-linear component or remnant is missing
in this type of model. For classical linear transfer functions, the remnant or non-linear
characteristics of a human-machine system are commonly regarded as negligible [MJ67].
Thus a possible explanation, for the instability of this model when o > 1, is that the remnant
may be more significant for higher order fractional plants. Indeed some subjects manifested
this opinion during the course of the experiments. Besides, human-control most likely relies

on other perceptual cues besides visual memories.
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Fig. 3.26 Root locus plots for the continuous analogue of the discrete approximations for
controlling plants H§(s) with (a) a = 0.5, (b) & = 0.75, (¢) a@ = 1.0, (d) &« = 1.25 and (e)
a = 1.5. A Padé approximant of the human effective delay was included in the TF. The x
symbol denotes the poles of the open-loop TF while o marks the open-loop zeroes.
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While adding an additional term to the controller could stabilise the system, this would
not tell much about the characteristics of human control, which is the main topic of this
research. In general, modelling the remnant has not proven to be useful, due to the variability
in human response [JiirQ7].






Chapter 4
Biofidelic Steering Control Modelling

In this Chapter, signal processing and statistical analysis techniques are utilised over natu-
ralistic driving data (NDD) (Appendix. B.2) and data from the HTE (Appendix. B.1). The
obtained results lead to the formulation of a new human control model based on multiplicative
dynamics. This model reproduces similar statistical properties to those found in the control
actions of humans — in compensatory and pursuit tracking tasks. Further, from the proposed
human-control model, an original human-centred driver model — for steering control in
ground vehicles — is designed. The input variables of this model are justified with NDD, and
additional data recorded from specific experiments in a vehicle simulation (Appendix. B.3).

The chapter is organised as follows. Section 4.1 presents background knowledge related
to steering control modelling. Signal analysis of the NDD signals is performed in Sec. 4.2;
this analysis has been published in a journal paper [MGZG16]. The multiplicative human-
control model is in Sec. 4.3, and was first given in a published conference paper [MGG17].
In Sec. 4.4 several aspects of visual acquisition related to driving will be studied, through
experiments recorded with test subjects in an OpenGL 3D simulation. The chapter ends with

the proposal of a human-centred driver model (Sec. 4.5).

4.1 Background on Steering Control Models

The problem of formulating steering control laws that autonomously steer a car has been
studied for more than 60 years. Researchers have often borrowed concepts from the human-
machine systems literature (Sec. 2.2) and adapted them to this particular application. In
the same way, human-machine system modellers have made use of a number of techniques
corresponding to control systems theory. Thus for example, from linear control laws the first

steering control models are inspired [JiirO7].
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Although there has been success in designing models that are able to steer a car in an
efficient way from a performance viewpoint, often it is not clear if these models represent
driving in a biofidelic manner, or if they merely act as steering automaton, lacking many of
the human driving characteristics such as anticipation, memory, workload balance, response
and perceptual thresholds, switching attention, driver distraction, adaptation and stochastic
components.

One of the first linear models which make use of preview is that produced by Kondo in
1953 [PEO7]. Kondo’s model works by applying proportional control over a prediction of the
lateral offset of the vehicle (y,) with respect to the centre of the road, which is expressed by

the following relation:
yp(t) = y(t) + TU Y1), (4.1)

where y(7) is the lateral offset at time ¢, U the vehicle velocity, 7}, the preview time and y,.(¢)
the heading-relative bearing with respect to the tangent of the road path — on a straight path it
coincides with the heading of the vehicle with respect to a global reference frame (Y, = y).
Equation (4.1) can be interpreted as a linearisation of y,(t) = y(t) + 7,U sin{y.(¢) }

Kondo’s model is one of the first models introducing the notion of preview of the forward
scene. Different modifications of this model exist in the literature [PEO7].

Another class of linear steering control models includes those based on the quasi-linear
modelling approach (Sec. 2.3.2). For example, in [WM70, MK74] it is proposed the control

law
Tps+1 —(tp+1c)s Tis+1 —(tp+1c+v)
— ~ K P CTIN)S 4.2
Al = K e s £ 1) Ts+1° ’ “4.2)

where K is the control gain. 77 and 77 are constants adjusted according to the controlled plant,

while tp, T¢ and 1Ty are described in Section 2.4.1. Thus the term 1/7ys+1 represents muscle
latency lags and e~ (%)S the pure delay of the human driver. The control law in (4.2) has
been tested under different types of input error, but only with simple transfer functions — such
as K, K/s and K/s> — representing the controlled vehicle [WM70]. Likewise, several different
variations of (4.2) exist in the literature', for example its extension including multi-loop
feedback [MWIJT75].

Another variant of quasi-linear models is the CO model itself (Sec. 2.3.2), possessing
the advantage that it reproduces human-adaptation to a plant accurately, but with the disad-
vantage that this is only true near the crossover frequency. The CO model fails specially for

frequencies lower than @, where actually most of the human driving occurs [Mac03].

'In truth, the model in (4.2) is a simplification of the precision model, in which the dynamics of the
neuromuscular lag are represented with higher order dynamics [MK74].
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A breakthrough in driver modelling was materialised in the seminal paper by Donges
[Don78], for this is the first paper which considers that the human driver utilises a combination
of feed-forward and feedback while controlling a ground vehicle?. It has already been
mentioned that human control displays open-loop and closed-loop characteristics (Sec. 3.2),
and this concept will be more lengthily discussed in Sec. 4.2.3. In Donges paper, the feed-
forward component of the model — which is referred to as guidance level control — is a
steering angle response resulting from applying difference equations to the curvature of
the road. The feedback or compensatory control of the model is a law based on curvature,
vehicle heading and lateral offset deviation. Both components of the model — open-loop and
closed-loop — act as a linear combination that controls the lateral dynamics of the vehicle.
The parameters of Donges model were fitted from data collected in a driving simulator, and
were showed to vary according to vehicle speed in the same paper [Don78].

In Section 2.3.5, optimal control models for human-control modelling were discussed.
The optimal control approach has also been applied to the particular case of steering control.
An example is found in [Mac81], where the human driver is assumed to act as a linear optimal
controller after a certain response delay. This model is designed to minimise the integral of
the predicted lateral offset:

I= 2 [ Abatm)—>@1Wm -0} an, @3)

according to a desired lateral offset y; and a weighting function W. More recent approaches of
the optimal control method include [ProO1], where a path optimisation problem is proposed,
[SBM™16] where attention switching is included to the controller and [KdWA17], where risk
assessment of the corresponding manoeuvre is implemented into the optimisation process
through a risk parameter.

As stated (Sec. 2.3.5), the main disadvantages of optimal control models are that they
require an internal model of the controlled plant, and that a cost function that represents
human behaviour may be near impossible to determine; any chosen cost function may not
be an invariant of the problem at hand. Additionally, optimal control models result in
convoluted mathematical formulations. This viewpoint was raised in [Bes12], where a very
simple model was proposed based on modifying the steering angle according to the predicted
lateral deviation at a preview point. Nevertheless, some simulation software packages rely on
optimal control methods in their incorporated driver models [PEO7]. On the other hand, while

classical control models — like the CO model — can achieve similar control characteristics to

2 Although feed-forward paths had already been considered for the case of human-machine systems [MJ67].
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those of the human-operator, it is not clear how this is achieved; many control models do not
incorporate any behavioural assumptions [JFO3].

Another approach that has led to a different class of models is that of human cognition
modelling. Although there is not a widely accepted framework of how human cognition
works, different theories have been proposed. One of them is the ACT-R (Adaptive Control
of Thought — Rational) framework, which operates through different specified behavioural
rules. The ACT-R model contains a stack with goals and sub-goals to be achieved, and
it may generate new goals autonomously, whenever these are required to complete the
pre-determined goals. ACT-R models have been adapted to driving in [CGO7]. In this
publication, some of the designed goals are: steering angle update, road scene monitoring
and lane changing. One of the advantages of the ACT-R framework is that it can represent
attention switching in a natural way. But as stated, it relies on assumptions regarding human
cognition that are not globally accepted by all researchers, and it does not produce simple
models which can be analysed mathematically. It seems that this methodology can be more
useful for integrating different models representing motor control, visual acquisition and
adaptation into a unified structure.

From the perspective of modelling driver behaviour, one fundamental question is: which
are the road distinctive attributes, or which are the regions of the road ahead, from which
the driver extracts the most significant information? Early experiments performed more than
fifty years ago on test-tracks [KA68], showed that visual information acquired at a particular
sighting distance is of special importance for human lane keeping on straight roads. Later
literature [Don78, LH95], advocated that drivers typically use information from near and
Jar regions of the road relative to the current position of the vehicle, to produce a suitable
steering wheel action. These considerations are the basis of the class of driver models which
employ multiple preview points as input.

A very well known example of a multiple preview driver model is the Salvucci and Gray
(SG) model in [SGO4], where a classical controller is proposed based on two preview points —
representing the near and far regions of the road respectively. Besides considering multiple
road region information, the SG model regards the human-driver as a discrete controller (see
Section 2.3.3). This model will be discussed in detail in Section 4.2.1. Another example
is the linear control approach presented in [SCS00]. This model employs different preview
sample values, which are the predicted lateral offsets according to a desired ideal path.

Another consideration, when modelling the human driver, is that humans present delays
and indifference thresholds in perception and response, and therefore are not linear actuators
(see Section 2.4); for example, human delays are dependent on the magnitude of the stimulus

and its duration [Mac03]. Although most driver models in the literature are linear, several
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non-linear models exist too. For instance, the linear model considered by Sharp [SCS00] was
converted to a non-linear model in the same publication, by adding saturation functions to
the perceived visual cues. Other examples are a non-linear version of the CO model [Gor(9]
and fuzzy controllers [SN85, NGGDPOS]. Fuzzy control resembles human cognition in some
aspects; humans combine information from different sources and use flexible and varying
thresholds, instead of classical variables. The main difficulty with fuzzy control systems —
when trying to model human behaviour — is the arbitrarity in setting up appropriate fuzzy rules.
Further, human behaviour is not necessarily characterised by rules which can be verbally
expressed — 1.e., declarative knowledge. Human behaviour may obey pre-learned procedural
patterns of action (Sec. 3.5.1). Hence, fuzzy control models may be more consistent in
applications where decision making is involved, such as lane changing or overtaking vehicles
[NGGDPO08] than merely in steering control.

Models can also be classified by the type of input variables they employ. These variables
can be engineering variables which are magnitudes expressed in term of physics variables,
and may not be directly accessible to the driver, or optical variables, i.e., variables visually
accessible to the driver. Some examples of engineering variables are the lateral offset — and
its derivatives — and estimated angular measurements, such as non-perceived angles and the
yaw rate of the vehicle. Particular cases of engineering variables in vehicle models are y,, in
(4.1) and the input variables in the SG model.

Optical variables have been more widely used for aircraft control than for ground vehicle
control [GM76]. One example of optical variable is the focus of expansion (FOE) produced
by the relative motion of the forward scene [BL96], also referred to as focus of outflow
[WH*88].

Further approaches in driver modelling have made use of artificial intelligence techniques
such as shallow neural networks [MJ96] and deep learning [HWT ™" 15] to achieve human-
level performance control. But, as with optimal control methods, such black box approaches
do not provide much insight or information about the characteristics of human control. And
in all the cited cases, the model adopts objective engineering variables as input.

In reality, no driver model can reproduce all the principles of operation of the human-
operator. Human behaviour is very variable and therefore difficult to replicate with deter-
ministic models. Nonetheless, from the reviewed literature and the analysis performed in
Chapter 3, a list of the characteristics that are desirable in human-control models is here
proposed. Human-control — and steering-control — models should satisfy at least several of
the following attributes:

1. Discrete time: as humans seem to behave as discrete servomechanisms (Sec. 2.3.3).
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. Hybrid (open-closed loop): there is evidence that humans use a combination of feed-

forward and feedback in control tasks (Sec. 4.2.3).

. Threshold based: as humans present perceptual and indifference thresholds (Sec. 2.3.3).
. Non-linear: human response can not be fully characterised by linear models (Sec. 3.5.1)

. Based on optical-variables: there is no reason to believe that human perception

employs engineering variables instead of perceived optical variables — this will be

studied in Section 4.4.

. Independent of an internal model: human behaviour is highly adaptive to new con-

trolled dynamics (Sec. 2.1.3 and 3.4.2).

. Stochastic: humans present stochastic properties such as variable delays. A human-

operator model should at least reproduce these properties statistically.

. Memory characteristics: The model should represent system memory (Chap. 3).

. Simple: A human steering model should be computationally simple in order to be used

as an analysis tool. This is also important because, the effectiveness of the model has
to be based on its design, and not on the flexibility given by an unreasonably large

number of parameters.

4.2 Data Analysis of NDD

4.2.1 Salvucci and Gray Model

Driver behaviour literature [Don78, LH95], advocates that drivers typically use visual infor-

mation from the near and far regions of the road relative to the vehicle, to produce a suitable

steering wheel action. The Salvucci and Gray model (SG) [SG04], simplifies the notions of

near and far road regions with a near and a far point at fixed previewed distances — situated at

the centre of the road. According to the SG model, the driver makes two types of corrections,

one to keep the vehicle within the lane edges, according to the heading-relative bearing of

the vehicle to the near point (6,), and the other to accommodate the trajectory of the vehicle

to the road geometry, by using the same measure with respect to the far point (6y).
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The SG model is analysed in this Section with NDD, where only roads which are

essentially straight are examined®. The SG control law is expressed by the relation:
Sf = Kj‘éf“i‘KnQn + K6, 4.4)

where Oy is the steering angle at the front wheels.

This approach, while explaining some qualities of human lane-keeping, has some limita-
tions. The control law (4.4) responds to the errors in a continuous manner. Additionally, it
reacts simultaneously to information from the near and the far regions of the road. Another

important remark is that the controller is linear.

Parameter Fitting of the SG Model with NDD

For parameter fitting, the discrete version of equation (4.4) is considered [SG04]:
Adr = KrAOBr + K, AB, + K;0,AT 4.5)

where AT = 0.1s is chosen to match the sampling rate of the driving data. The discrete
version provides a time base for representing discrete control actions (Sec. 2.3.3).

To fit the parameters, all the recorded driving events (Appendix B.2) were sliced in
segments 2s long. For each segment , the parameters K¢, K, and K; were fitted using the
Moore-Penrose pseudo-inverse matrix, obtaining a distribution of fitted parameters. So for

each slice, from

A8 AB;y A6, AT6,,
Ky Ky
A8; 5 AB;y A6,, AT,
. - . . . n| = M@ : Kn (46)
K; K;

A 20 ABro0 AB,20 AT 6,20

the pseudo-inverse of Mg is computed (M g ) and the parameters obtained:

U L | A8
K,| =M&-| 4.7)
K '
A6f720

3The road segments in the NDD generally had a radius of curvature > 500m (see Appendix B.2).
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In the present analysis, the near and far preview point distances are chosen to be d, = 6m,
dy = 30m respectively. These values were found to overall produce a higher clustering
density in the parameter distribution (Fig. 4.1). The segment duration of 2s was chosen
according to this same criterion. Considering that we are representing a human control system
and that parameter identification in closed-loop is well known to be prone to dispersion — due
to actions related to disturbance rejection — the clustering density of the distribution of the
fitted parameters appears to be very high — Fig. 4.1 first column.

The distribution of parameters suggests that it can be fitted by a three dimensional
Gaussian model which yields mean values Ky = 1.0826, K;,, = —0.2228 and K; = 0.0415 —
Fig. 4.1 second column. The distribution shows that the sign of K; is ill-defined and K}, has
clearly a negative sign. Thus, as the parameter fitting seems consistent, it suggests that there
is a flaw not in the identification of the parameters but in the model itself.

The most likely reasons for this are: the pulse like nonlinear nature of steering signals,
and the evidence that the CNS operates on a combination of feedback and feed-forward
control.

The eigenvalues of the SG model, working in closed-loop with the vehicle model in
Eq. 3.14, according the the fitted parameters are: (—0.078 +1.082i, —0.357, 0.065 £ 0.225i).
The eigenvalues correspond to the states: lateral offset y, lateral speed y, yaw-angle v,
yaw-rate s and steering angle 8. Thus the system is unstable with the fitted parameters from
NDD; one pair of eigenvalues are complex conjugates with positive real part. This suggests
that this model does not fully characterise the way in which humans perform steering control.

4.2.2 Identification of Natural Pulses in NDD

Steering signals obtained from NDD do indicate that steering actions consist of a series of
relatively short pulse-like corrections rather than smooth, linear and continuous steering
motion. It has been verified [Mor81] that hand movement in reaching behaviour follows
a bell-shaped pattern over time. As a consequence, it has been hypothesised that motor
movements are composed by combining different motor primitives [ABMS82]. In [BM14a]
it is shown that steering corrections can be fitted by Gaussian functions and that they can
be described by superposition of symmetric motor primitives. Thus a possibility in driver
modelling is to explicitly include such motor primitives into the controller design. In [GS14],
a model of steering control which considers such motor primitives was introduced.

Here it is conjectured that the steering angle signal of a driver can be described as a
combination of a ramp function, required when taking a curve, a bump function, which
changes the heading of the vehicle, and a ripple function, which brings about a lateral offset
shift (Fig 4.2a).
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Fig. 4.1 Subfigures (a), (b), (c): Distribution of each of the fitted parameters K¢, K, K;.
Subfigures (d), (e), (f): Projections for each parameter pair with the fitted Gaussian model
contour lines. The outer ellipses enclose a confidence region of 95%.
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The normalised pulses (ramp 8, bump &, and ripple 63) can be described analytically

according to the haversine function:

81(t,T,) =1/2- {1 —cos(71)} if0<t<T,

(4.8)
1 otherwise
0t T,)=12-{1 —cos(zT—Zt)} if0<t<T,
4.9)
0 otherwise
&(t,Ta) = 4/(3v3) - sin(F1) - &(t,T,) if0<t < T,
(4.10)

0 otherwise

where T, is the activation time span of the pulse or pulse duration.

These signals are here referred to as elementary steering pulses, and any superposition of
them as a complex steering pulse. It is shown that steering angle signals, recorded from driver
in real road conditions, can be constructed as a sparse representation of complex steering
pulses, and that the complex steering pulses found in real data are linear combinations of the
same elementary steering pulses. To extract the elementary steering pulses from the NDD
we will apply an unsupervised feature extraction method: singular value decomposition
(SVD) [KLS80]. This technique has the advantage of extracting the natural pulses from the
data without any prior assumption about the pulse shapes — unsupervised learning. However,
it does not provide a suitably sparse representation. The data show that the nature of the
steering signal pulses is sparse in human lane keeping control. Once the pulses are identified,
a matching pursuit dictionary [MZ93] is built with them. The matching pursuit algorithm
will reconstruct the signal as a sparse superposition of the elements in the dictionary.

The adopted approach is to slice each signal into sub-samples of 1s of duration — since it
is verified that for human lane keeping pulses shorter than 1s are typical. From the slices, a

two-dimensional matrix M is built:
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Fig. 4.2 Row (a): Simulated examples of normalised ramp function, bump function and ripple
Junction with T, = 0.5s of activation each. Row (b): Responses for each of the simulated
pulses. The dashed line shows the yaw angle in radians while the sign markers show the
offset from the centre of the road in meters.
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where the steering angle o was sampled at 0.1 Hz, and principal component analysis SVD
[KL80] is employed over M.

The results are found to be very similar for all the driving events, and for a chosen driving
event they are displayed in Fig. 4.3. The most dominant mode is a flat curve, containing 84%
of the energy of the signal. This flat curve is responsible of dealing with the geometry of
the road (compare 4.3a with 4.3c and 4.3d) and is the only pulse that clearly has a constant
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Fig. 4.3 (a): Road geometry for one chosen experimental driving event (event 30 of driver A).
(b): The five dominant modes of the steering signal analysed in 1 s slices. (c): Time history
of the linear combinations to describe the signals with the modes. (d): Recorded steering
signal for the given driving event, along with the detrended version and the reconstruction
through matching pursuit — using 60 pulses.

offset in amplitude (4.3b). The flat curve is followed by a ramp, a bump and a ripple pulse of
smaller energy content. These three are the steering primitives or elementary steering pulses
above hypothesised.

The given analyses also suggests a way to detrend the data, as the main interest is to
describe human lane keeping, and not how humans follow a particular road geometry. From
the SVD output (matrices U, X,V such that ULV | = M), the rows and columns corresponding
to the first mode (flat curve) are eliminated (reduced U, i, V), obtaining a detrended signal
with almost no road geometry content (M such that M = ULV ). Thus it is possible to
preserve the frequency and amplitude of the pulses for posterior analysis (Fig. 4.3d). After
detrending, the relative energies of the ramp, bump and ripple are 48%, 22% and 10%
respectively. So the three main modes account for 80% of the energy of the detrended signal.
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Pulse Duration

Regarding the question of what is the typical pulse activation span time (7}) of a human driver,
the possibility of these pulses to be asymmetrical is contemplated. In previous literature,
symmetrical pulses were already considered [BM14a].

As we are analysing detrended signals, essentially devoid of road geometry content, it is
assumed that the ramp pulse has no relevance and it may only be used to shape bumps by
joining a rising and a falling ramp. The ripple can be constructed in the same way by joining
two bumps, so the most crucial pulse for lane keeping is the bump, as all pulse activity can
be reconstructed by a superposition of bumps.

Hence, a matching pursuit dictionary of asymmetrical bumps is built. These have different
rising and falling time — rising and falling duration from 0.05s to 1.5 as longer pulses were
regarded as spurious and shorter as noise — and running the matching pursuit algorithm over
the 200 driving events, the histogram of chosen rising and falling time is obtained (Fig. 4.4a).
The matching pursuit algorithm was constrained to utilise one pulse per second on average.

The rising part tends towards a shorter duration than the falling part, the latter also
displaying more variability. The distribution of the mean rising and falling time of the pulses
for each driving event exhibits differences among drivers. Drivers A and B use shorter pulses,
especially driver B, which is the most distinct driver compared to the others (Fig. 4.4c). For
all the drivers, the relationship between rising and falling time is inverse — the quicker the
driver makes the initial ramp, the slower they make the reverse ramp. We hypothesise that the
rising and falling pulse duration could be used to classify different driving states, although

this is not tested here.

4.2.3 Open-loop vs. Closed-loop Control

According to the above, it is proposed that the driver performs an initial response to a potential
conflict, by performing a first initial quick adjustment according to an open-loop scheme —
the quicker rising part of the bump shaped pulse. After this adjustment has been made, that
due to its open-loop nature will result in a over- or under-correction, the driver will perform
a falling ramp in closed-loop. This falling ramp will have a different duration depending
on how good the initial open-loop guess was. Thus its length has a higher variance than
the rising part. In the proposed model, the rising ramp will correspond to a learned pattern
(pre-cognitive action [GS14]), while the falling ramp to a smoother adjustment relative to
the current driving scenario and the magnitude of the error produced by the first ramp. It
is expected that the more imminent the potential conflict, the faster the driver will tend

to execute the first ramp, and the more error will occur resulting in a longer closed-loop
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Fig. 4.4 (a) Histogram of rising and falling duration span of the bumps chosen by the matching
pursuit algorithm over 200 driving events. (b) Distribution of the mean rising and falling
duration time over the same driving events tabulated by driver. The mean values after fitting by
a Gaussian distribution are: A : (0.3286,0.3935), B: (0.2890,0.3456), C : (0.3521,0.4029),
D : (0.3458,0.4077). The outer ellipse corresponds to a confidence region of 95%. (c)
Comparison of the ellipses for each driver that enclose a 50% confidence region and their
centres.
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correction. The mechanism proposed is consistent with the presented signal analysis, and
also is consistent with known mechanisms of the CNS. Specifically, the process is analogous
to the way in which the human eye tracks a target. It first produces a quick saccade, to
make a first approach to the target, and then smaller saccades that occur 0.15 — 0.3 s after
[JFO3, YS63]. Also, experimental research has shown that the CNS uses a combination of
open-loop and closed-loop control [HBDS97], and it has been found [BS99] that control
only via open-loop cannot reproduce human motor behaviour. Open-loop systems are poor
controllers, although they have the advantage of responding quicker.

4.2.4 The Critical Normalised Yaw-rate Metric

Regarding the question of what makes the human driver trigger a pulse, different lane keeping
metrics have been defined and considered for human lane keeping, for example, the time to
lane crossing (TTLC) [LU96], the yaw-rate error (YRE) [GBB09] and the near point angle
in the two-point model [SG04]. Here, an alternate formulation of the YRE is defined, the
critical normalised yaw-rate (CNYR). The CNYR is easier to correlate to pulse amplitude
than the YRE, although the conceptual meaning of the metric is the same.

To define the CNYR, the critical yaw rate must be characterised first; the critical yaw
rate is the yaw rate (/) that if sustained would cause the vehicle exiting the driving lane at a
given distance [GBBT09]. It is expressed independently for each road boundary. For the left

boundary it is given by the following relation:

L 2UsingL

Yerit = dL 5 (4 12)

where U is the velocity of the vehicle and dy, the distance from the left front tire to a predefined

boundary point in the left boundary. ¢ is the left azimuth angle — i.e., the heading-relative

bearing to the left boundary point. The right critical yaw rate (I[/frit) is equivalently defined.
From the critical yaw rate the CNYR () results:

X = -1 (li/chit+ wfrit) _
1/ z (li/chit B ‘ilgit)

(4.13)

The CNYR is a non-dimensional variable combining the information of both critical yaw
rates — left and right. When y = l]/CLrit or l,i/CRrit then ¥ = 1 or —1 respectively. Therefore, it
suffices to maintain |x| < 1 in order to keep the vehicle within the lane boundaries at all

times.
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Fig. 4.5 Amplitude of the pulses against different lane keeping error metrics: (a) 6, (b) 6,
and (c) CNYR ().

In Figure 4.5 the amplitude of the pulses obtained by the matching pursuit algorithm is
compared to different lane keeping error metrics. The figure is generated by plotting only the
amplitude of the pulses that occur in the direction that would neutralise the corresponding
error. In this manner, a more populated figure represents a higher correlation between the
steering actions and a particular error measure. For the near angle (6,), 62% of the pulses
occur in the right direction. The derivative of the near angle (6,) has a slightly higher
correlation 65%. On the other hand, for the CNYR the percentage or corrections in the
right direction is significantly higher (74%). Additionally, a weak linear correlation can be
observed between the error and the response for the CNYR (Fig. 4.5¢).

Furthermore, it has been mentioned that the driver may not be persistently responding to
errors in a continuous way, as this will involve a high observational workload [GZ15] and
steering action workload. On the other hand, the CNYR does not require constant monitoring
because it can be understood as a satisficing metric. In any case, the elementary steering

pulse-y relationship seems to be most consistent.
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4.2.5 Hybrid Control Law

According to the above considerations, a Hybrid Open-close Loop (HOCL) pulse control

scheme is now defined by the relations

5(1) :Izi-c?(‘(r)) if R(E(t) < T, 4.14)
1t

b O (t —10,T,p) - F (E(t)) otherwise

where K is a vector of parameters, C a vector function controller (working in closed-loop,
linear and continuous/discrete) that acts according to another vector function of selected
errors £, when these are below the threshold 7}, relative to a function R. When R is above the
threshold at a given time #, a rising bump 8,;, is performed (open-loop) of rising duration 7},,.
For the duration of the rising bump C is interrupted, then the control is passed back to C until
the termination of the pulse. The amplitude of §,;, depends on a constant parameter K, and
on the magnitude of the errors according to a function F. The HOCL control scheme also
assumes a wait time 7,, during which may not trigger further pulses. This is further justified
by the sparsity of higher amplitude pulses, as shown in the matching pursuit reconstruction
(Fig 4.3d). This control scheme is an adaptation of the model proposed in [GS14].

The HOCL scheme can also be applied with different types of elementary steering pulse
acting on superposition. Here we consider a HOCL that triggers elementary steering pulses
according to the right or left boundary margins which are defined as the difference between

the critical yaw rate and the actual yaw rate:
mg =y —yk. (4.15a)

mp =yl — (4.15b)

and the closed-loop control is the SG model,

5(t) = KOy + K, 0, + K6, if min(mz,mg) > 0 416
0(t) = KrpOppy(t — 10, Trp) - (mg —my) otherwise. '

K, K; are taken as in the above fitted parameters (Fig 4.1), and T,;, = 0.3 according to the
rising time results (Fig. 4.4).

The parameters K,, — which as fitted through NDD was leading to instability — and K},
are fitted using a genetic algorithm. The objective function evaluates performance based on

=N

lane keeping quality and smoothness steering: P = ]%,Z,:tl <|yk| +C |5k|> , where N is the

number of time samples ¢, ...y, Vi is the lateral offset from the centre of the lane and S
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the steering rate in rad/s at each time sample. C is a constant set empirically to 100 which
relates both terms in the objective function. With the given setup the optimised parameters
are K, =0.1105 and K,,, = 0.0119.

The wait time T, has been set to 0.5s. Although this value has not been optimised, it has
been observed that much longer or shorter wait times were less effective. With longer wait
times the pulse control offers reduced error correction, whereas with shorter wait times the
closed-loop part of the model does not have time to counterbalance the effect of the pulses.
In this case the trajectory becomes too jerky, which forces the triggering of continuous pulses
to rectify this, as the threshold is continuously surpassed.

In simulation, with a linear vehicle model (Eq. 3.14), the above implementation of HOCL
model performs better than the SG model with the fitted parameters from NDD. Running
the SG model and (4.16) in the road geometry of the same driving event as in Fig. 4.3, it
is shown that SG model becomes unstable after about half of the event has been covered
(Fig. 4.6a). The hybrid model, although presenting a jerky spot at the same point where SG
model becomes unstable, is able to recover the stability and proceed to the end of the event
within the lane boundaries (Fig. 4.6b). Testing also the HOCL on a straight track with an
initial lane offset of 3 m to the left, the simulations show that the vehicle is able to neutralise
the offset and stabilise at the centre of the lane (Fig. 4.6b). The SG model was also tested
in a straight track, and even without initial offset the noise in the simulation was enough to
destabilise it, and thus not presented in the figure.

Nevertheless, although the HOCL control law is the first steering control model proposed
here, this approach involves the introduction of several artificial parameters, which have
proven difficult to fit as they tend to produce non-sparse steering angle signals. In the next
sections, a new modelling approach with a simple formulation, and that produces pulsing

behaviour in a natural way, will be developed.
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Fig. 4.6 (a) Recorded steering signal for driving event 30 of driver A, along with the steering
signals of SG model and the HOCL example (4.16) (b) Lane offset from the centre of the
road for the HOCL example in the curved geometry of the same driving event, and on a
straight track with an initial offset of 3m. Negative offsets are to the left and positive offsets
to the right. The outer margins are the lane boundaries, while the inner margins mark when
the wheels of the vehicle reach to the lane boundaries.
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4.3 A Multiplicative Model of Steering Control

Nearly every human-control model incorporates a series of parameters, which not always
have physiological interpretation. Usually, with the intention of reproducing the control
actions of the human-operator as close as possible, the parameters are adjusted to match the
responses of human subjects. This approach, while not incorrect, has one inconvenience:
often it is difficult to tell to which extent an accurate model representation is the result
of a good model, or of the optimisation procedure to fit its parameters. This is especially
true for models with many parameters. The most pre-eminent example is the use of neural
networks to model the human [MKS™15]; neural networks can be used to model virtually
any dynamical system. Although in many respects these models are very valuable, they do
not produce insights on the characteristics of human-control. Furthermore, different subjects
may use diverse control strategies that not necessary match the same model. At the same time,
for sufficiently complex systems, alternative interpretations can explain the same observed
effects.

Hence, when trying to fit the parameters of a deterministic model to data recorded from
humans — for example steering signals — multiple caveats make the process difficult, even
when the model is representative of human behaviour. With respect to the specific case of

modelling the human driver, some of these caveats are:
- Data recorded from humans drivers are very noisy.

- The computation of engineering and optical variables estimates from the recorded
driving data may add bias and more noise. In general, variables such as the CNYR or
the vehicle lateral offset are not recorded, unless the experiments were conducted with

a simulator.

- Human drivers have stochastic components in their response, for example due to
variable time delays, which depend on the driver level of attention and intended

performance.

- Human drivers may establish varying acceptable error thresholds — according to the

desired level of comfort and smoothness of driving, stress or time constraints.

- Usually there is large variability among different human subjects. So even a well-posed
biofidelic model may result in overfitting the data, depending on the optimisation

process used.

- A model based on a superposition of terms may create local minima in the optimi-

sation process; one parameter may achieve unreasonable values just to compensate
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another. This is what may have happened when fitting the parameters of the SG model

(Sec. 4.2.1), where a negative parameter was obtained.

In order to avoid some of these obstacles, a statistical approach to biofidelic modelling
is here introduced. The approach consists in considering a model to be biofidelic when
it reproduces some of the statistical properties of the human-operator in a particular task.
The intended goal is to organise the observed results into a model that is as simple as
possible. In particular, the log-normal probability distribution is considered, which arises

from multiplicative processes.

4.3.1 Log-normal Distributions and Multiplicative Dynamics

A factor of motivational value for this research is that, recent and relevant studies in neuro-
science, have shown that several aspects regarding the dynamics of the brain are characterised
by long-tailed probability distributions such as the log-normal. One example is the distri-
bution of firing rates in cortical neurons; log-normal distributions yield the best fit for the
distribution of neuron firing rates in the cortex [WHM13]. Another example is the activity
of neurons in the lower spine of turtles while engaging in rhythmic scratching; this appears
to be also distributed according to a log-normal [PB16]. And interestingly, in [GBS99] it
is shown that, visual perceptual learning can be described as a process in which the human
observer reduces the magnitude of internal multiplicative noise. Additionally, in [BM14b], it
is suggested that complex interconnected biological systems produce multiplicative and not
additive interactions.

So the possibility of steering wheel control in a tracking task to be characterised by a
log-normal distribution is considered. Given that the log-normal distribution arises as a result
of multiplicative processes, a multiplicative human-control model is proposed.

The derivation of the model starts with a brief outline of log-normal probability distribu-

tions. Consider a multiplicative process of the form

Ik
Gl‘k = élkle,l = Gt() H §i7 (417)

i=h

where (#;,2;11) C RTU{0} are equispaced time intervals and G;, > 0, & > 0. Taking natural
logarithms in (4.17) results in

Ik
log Gy, =1og Gy, + Z logé;. (4.18)

=t
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If &; are identically distributed and independent random variables, the Central Limit
Theorem (CLT) applies to the summation term of (4.18) and, for large enough k, log G,
will be approximately normally distributed. Therefore, G;, will follow approximately a
log-normal distribution.

As a reminder, a random variable X, whose logarithm has expected value E[log(X)| =
u and variance E[(log(X) — u)?] = o2, is said to be log-normally distributed when its
probability density function (PDF) is*:

1 (log(x)—p1)?

fx(x) = e 27 . (4.19)

xV2mo?
In general, the discrete observations of a time series (&;) are not independent, unless the
series is a Markov process. However, an alternate formulation of the CLT that applies for the

analysis of arbitrary time series can be employed [HR48].

Definition 4.3.1 (m-dependent random variables) A sequence of random variables X; for
i=1...N is said to be m-dependent when |i — j| > m implies that X; and X are independent.
If the sequence {X;}i—1. n is understood as a time series, m-dependence means that events

occurring at least m time steps away are independent.

Theorem 4.3.1 (Central Limit Theorem for m-dependent random variables) If X; is a
sequence of m-dependent random variables with expected value E[X;] = 0 and E [|Xi|3] < oo,
then

N—o0

N
Yoo = lim N™? ) X; (4.20)
i=1

N

is normally distributed with E[Y.] = 0 3. In particular, for large N, Yy = Y. X; approximates
i=1

a normal distribution with zero expected value.

This result is more a technical requirement than a limitation. In practice, a given time
series — predicted to arise from a multiplicative process — is fitted to a log-normal probability
distribution after under-sampling the series with different values of m. If the results are
equivalent for m > i, the original time series can be considered riz-dependent; the under-
sampled time series can then be treated as a Markov process.

4 As the log-normal is a probability distribution of maximum entropy, the presented approach is equivalent
to introducing the least possible number of constraints. In this research, the human-operator is modelled based
on partial information; only data from recordings of operator’s responses in a control task are used. It is
considered that almost no knowledge about the features of human-control is known; in reality this turns out to
be the case. Thus the methodology is consistent with the Principle of Maximum Entropy [Jay57].

SThere is also an expression for the variance of Y., in [HR48].
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4.3.2 Statistical Analysis of the HTE Dataset

The uncertainty in the response of a human-operator to an input, is a challenge when trying
to identify the operator as a deterministic actuator. The exact input to which the operator
responds is itself generally unknown. Hence, the possibility of characterising the responses
of the human-operator in a probabilistic manner is examined.

By analysing the magnitude of the human responses (|c(¢)|) to the displayed error in
the HTE dataset® (Appendix. B.1), empirically one sees that it has the shape of a skewed
distribution (Fig. 4.7a). To visualise the data, the steering responses of all the ten subjects
were combined, after being under-sampled to a sampling rate of 1Hz. This was done in
order to confirm that the series is m-dependent (Def. 4.3.1). For m > 100 no appreciable
differences were observed visually or numerically in the results. Additionally, values such
that |c(7)| < 0.02 were discarded. This threshold was set because no evident pattern was
found in the data for smaller magnitudes, and because the log-normal is defined over a
positive support.

The parameters of the log-normal distribution were fitted to the data through maximum
likelihood estimation. Subsequently, a goodness-of-fit test was performed — which is de-
scribed in Appendix C — from which a p value of 0.317 is obtained. Thus the log-normal
distribution is accepted to be representative of the data (p > 0.1, see Appendix C).

Between the individual subjects the fitted parameters present some variability (Table 4.1),
although the values are comparable; since different subjects employ different control strate-
gies and have different skill levels, this was not considered surprising.

Thus the statistical analysis indicates that, the magnitude of the control responses over a
threshold, can be explained as a process distributed according to a log-normal. This result
induces the possibility of modelling the human-operator responses as a multiplicative process
(Eq. 4.17).

4.3.3 Multiplicative Human-control (MHC) Model

A non-linear multiplicative human-control (MHC) model is now proposed. In the MHC
model, the control response Cy(#;), according to a time discretisation 1,t,...,f,...,tr With
fixed time-step A; = t;, — tx_1, 1s defined as

Ci (1) = KuSy My, 4.21)

®For this application, only the data recorded with the steering wheel and non-fractional dynamics were
considered.



92 Biofidelic Steering Control Modelling

0.5 1
magnitude of the human response

(b)
l trboiridrieSrir AN
0.8 -
LL 06 B 1
()
Oopat |
0.2 r A fitted 1
—empirical
O AN
0 0.1 0.2 0.3 0.4

magnitude of the human response

Fig. 4.7 (a) Normalised histogram for the experimental responses of all the subjects combined
—recorded from the steering wheel sensor — along with the fitted log-normal PDF. (b) Fitted
CDF and empirical values. The fitted parameters for the log-normal are u = —2.368,
with 95% confidence interval [—2.401,—2.337], and o = 0.550, with confidence interval
[0.528,0.573].
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human virtual human

Subject ‘ u o ‘ gain Ky U o

S1 —2.641 0.406 | 10.570 —-2.920 0.525
S2 —2.274 0.547 | 18.940 —-2.617 0.627
S3 —2.289 0.603 | 26.370 —2.602 0.699
S4 —2.036 0.506 | 15.626 —2.451 0.588
S5 —2.311 0.566 | 21.650 —2.640 0.587
S6 —2.354 0401 | 9.498 —-2.862 0.474
S7 —2.602 0459 | 11.417 —-2.926 0.578
S8 —2.338 0.652 | 23.759 —-2.817 0.617
S9 —2.425 0.458 | 18.385 —2.827 0.618
S10 —2.406 0.617 | 15.565 —2.709 0.514

Table 4.1 Fitted parameters for the log-normal distribution (4.19) tabulated per subject. The
table shows the results for the data collected from the human subjects, and for the artificial
data obtained by running the multiplicative control model — with the same quasi-random
forcing function r(r) that was presented to each subject. For the case of the artificial data, the
fitted gain of the multiplicative control model K, is also shown.

where K, represents the neuromuscular gain, M, is the magnitude of the response intent of
the human-operator, and §;, is a sign function that determines in which direction the response
is applied. M,, is designed to simulate a multiplicative process dependent on the previous
observations of the error signal, with multiplicative factor &, : (eo,...,e; ) — (0,00):

M, =EM, . (4.22)

With this scheme, different functions S;, and &, can be specified. Considering that humans
act after a delay 7 (Sec. 2.4.1), that can be represented as the number of discretisation steps
ng ~ /A, Sy, and §; are defined thus:

S, =sgn(L"{e;, }) (4.23)
and )
T €
£, =L { - } (4.24)

where p > 0 (here fitted p = 0.914) and L"* is the back-shift operator (L"*{e, } = ¢;,_, ). For
numerical stability, the case where S, = 0 or L"*{e;_, } = 0 can be handled separately by

assigning &, = &, _, or by setting an error threshold. With this particular choice of functions
(4.23)-(4.24), the MHC model can be written as
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CM(lk) = KMMtk (4.25a)
T — yng elk‘elk‘p 7
M, =L {W}Mtk" (4.25b)

which is a non-linear three parameter model.
Note that the Eq. 4.24 can be interpreted as a multiplicative derivative [BKOO0S]:

fH(t) = lim {%}A’. (4.26)

4.3.4 MHC Model Validation

Since different subjects present distinct control strategies (Fig. 4.8), the gain Ky was fitted
to match the control responses of each subject through a Bayesian optimisation algorithm
(Table 4.1). For example, the subject in Fig. 4.8a relies on lower amplitude and higher
duration pulses, compared to the subject in Fig. 4.8b. The neuromuscular lag was also fitted
from the subjects’ data by a cross-correlation method in Section 3.4.1 (7 ~ 0.361 for the
studied cases).

Once artificial data were generated by running the model, with the same randomised
instances of Equation (B.2) (for r(¢)) that were presented to each subject during the HTE, the
artificial data were fitted to a log-normal distribution. With this purpose, the same method
used to fit the subjects’ data was applied. For the combined data of all the simulations, the
results are summarised in Fig. 4.9. A goodness-of-fit test results in a larger p-value compared
to the human’s data (p = 0.752). This was anticipated since the artificial data originate from
a purely multiplicative process. The log-normal parameters for the particular instances of
r(t) of the virtual human were also calculated (Table 4.1), showing values comparable to

those from the subjects’ responses.

MHC and CO Model Compatibility

The MHC model is here contrasted with a standard methodology in human-performance
modelling, the CO model (Sec. 2.3.2). The CO model has been widely used as a benchmark
to validate other human-control approaches [Mac03, GS14]. For the presented application,
the data generated from the virtual human were fitted very well by this model (Fig. 4.10). The
CO model only gives an adequate representation of the human-operator frequency response
in the vicinity of the crossover frequency @.. The MHC model presents CO model behaviour

over a wider frequency range.
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Fig. 4.8 Amplitude of the steering signal for two different randomised forcing functions r(t)
in (a) and (b). The two curves in each plot represent the response of a human subject c(¢) and
the response Cy(t) of the MHC model (4.25) with fitted Kjs to match the subjects’ response:
(a) Ky = 10.570 and (b) Ky, = 18.385.

Relation Between the MHC Model and Fitts’ Law

Fitts’ law (Sec. 2.2) can be understood as a particular case of MHC. From equation 4.24, and

leaving aside the response delay n;, we have

g — el 4.27)

L
Now, if the initial error is D = |eg|, we can write

lex| = él/ ”élf’l ---611/ ’D. (4.28)
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Fig. 4.9 (a) Normalised histogram of the simulated MHC model responses, for all the
same instances of r(z) that were presented to the ten subjects, and fitted PDF. (b) Fitted
CDF and empirical values. The fitted parameters for the log-normal are u = —2.395,
with 95% confidence interval [—2.442, —2.347], and o = 0.782, with confidence interval
[0.751,0.816)].
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Fig. 4.10 Frequency response estimate from data simulated with the MHC model — for the
same simulated responses displayed in Fig. 4.8 (a) and (b) respectively — along with the
frequency response of the Crossover Model with parameters @, and 7 fitted to the data.
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human virtual human
Subject | @, RMSE | o RMSE
S1 0.108 3.506x 1073 | 0.088 5.271 x 1073
S2 0.287 3.055x 1073 | 0.156 4.914x 1073
S3 0.381 2.340x 1073 | 0.207 3.311x 1073
S4 0.254 3.915x1073 | 0.128 6.510x 1073
S5 0.362 2.812x1073 | 0.174 4.233x 1073
S6 0.191 3.833x1073 | 0.080 6.111x 1073
S7 0.115 3.440x 1073 | 0.095 5.170x 1073
S8 0.294 2.044x1073]0.189 3.119x 1073
S9 0.290 2.367x 1073 | 0.150 3.583x 1073
S10 0.269 3.037x1073 | 0.128 4.691 x 1073

Table 4.2 Crossover frequency @, (in Hz) and RMSE of the tracking task tabulated for each
subject and for the virtual human. In the case of the virtual human, an identical function r(z)
(B.2) as in each of the events with human subjects was used.

If the minimum acceptable threshold in the perceived error has magnitude R, the corrections
will be performed during n steps until |e,| < R. And, as Fitts’ Law applies to static targets,
then &, < 1; the error decreases at each step because the target does not move:

g/ ”éi,/f’l L&D <R (4.29)

Now, we make the assumption that &, is approximately constant §; ~ &, then

E'PD <R, (4.30)
and taking logarithms
D
logzﬁ <n(—log2§l/">. (4.31)
Defining the positive constant IP=— log, & Yo results in
1 D
po8 g (4.32)

Finally, by adding the number of steps n;, corresponding to the human delay, Eq. 4.32
becomes

1 D
n=n;+—=1log, —, 4.33
T 7 ng ( )

which essentially coincides with Eq. 2.2.
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Therefore the MHC law is in accord with Fitts” Law for the case when the target is
stationary, and the error is reduced by approximately a constant ratio at each discretisation
step. In reality, the index of performance [P and the human response delay n; will experience
stochastic variations, hence Fitts’ law is only true on average.

Additionally, in the Appendix. D, the stability of this model controlling second order
plants is demonstrated.

Although the presented methodology offers satisfactory results, there are a number of
discrepancies between the model output and the real data. Humans present a higher crossover
frequency than that of the MHC model (Table 4.2). This results in the MHC model having a
higher root-mean-squared error (RMSE) in the tracking task for the examined plant. Further,
the given approach requires the use of a threshold in the data. Human-control is likely to be
explained better below the threshold by another type of model. Moreover, the model assumes
that the human manipulative actions are a stationary process, thus learning and adaptation
are not considered.

In the following sections, the MHC model will be extended to the control of ground

vehicles.

4.4 Visual Input Variables for Steering Control

So far, the MHC model has been formulated as a human tracking control model. Before
formulating the MHC model as a driver model for lateral control, the question of which are
the variables that drivers employ during a driving task is now addressed.

A good deal of the complexity in driver behaviour is produced at the visual acquisition
stage, and a range of concepts regarding eye target acquisition populate the literature, from
the stochastic nature of the eye motion [LL94], to variable timing of target recognition
[KTIM17] — through Hicks law (Sec. 2.2.2).

With respect to steering control, the driving task can be categorised into two subtasks:

lane keeping and guidance level control (see [Don78] and Sec. 4.1):

Lane Keeping

Lane keeping is a response to perturbations produced by irregularities in the pavement, wind
gusts, drift effects in the steering system, vibrations and human induced noise; hence lane
keeping resembles a compensatory control task (Sec. 2.3.1). In [KA68] experiments were
conducted with test drivers which showed that drivers change their sight point continuously
while in a steering task, and that the distance to the sight point increases proportionally to

the speed of the vehicle. Also, their response was seen to be more jerky when only the
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near region of the road was visible. It has already been discussed that smoother control
responses are indicative of feed-forward control ((MWS93] and Sec. 2.3.3). In other reported
experiments [LH95], it was verified that drivers rarely fixate their gaze in the near region of
the road, but when the near region is not visible vehicle positioning performance decreases.
This suggests that drivers use peripheral vision to gather information from the near field.
Thus both, the near and the far region of the road, are important for lane keeping (Sec. 4.2.1).
Nevertheless, no consistent gaze pattern is found in human subjects while driving on straight
roads [LL94].

Guidance Level Control

Guidance level control is performed by anticipating changes in the road geometry, thus it can
be considered a feed-forward operation. By tracking drivers eyes in a driving task, it has been
established that drivers direct their gaze to the tangent point of the road 1-2 s before the car
enters the curve [LL94]. Drivers maintain their gaze near the tangent point during the curve
handling manoeuvre, with the exception of sporadic saccades to other parts of the road. In
another publication [LLPI13], it was suggested that drivers fixate their gaze in the immediate
region after the tangent point. A reasonable explanation for this consistent behaviour is that,
from the apparent motion of the tangent point the road curvature can be estimated.

Thus steering a ground vehicle is a combination of feedback and feed-forward components
(see also Sec. 4.2.3).

4.4.1 Indirect Visual Acquisition Experiments

Typically, drivers gaze patterns are assessed through eye tracking experiments [Gre97], or by
directly constraining driver’s head position and gaze direction [KA68]. Here an alternative
method is proposed, which consists in introducing perturbations in a computer generated road
scene. The two experiments presented next are part of the Driving Simulation Experiments
(DSE) described in Appendix. B.3. These experiments with test subjects consisted in a
simple 3D simulation representing the forward scene viewed from a car. The aim was to test
the possibility of drivers using the position of objects, that are essentially stationary in the

visual scene, to obtain course information.

Moon Perturbation Experiment (Exp. # 4 Day 1 in Table B.9)

This experiment consisted in driving during 180 s on a straight path. During the first 20s,
the road had normal visibility (Fig. 4.11a). After that, the road visibility was reduced so

that only the near distance — up to 4 m — was visible. Att = 60s, a moon appeared over the
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horizon (Fig. 4.11b) which behaved normally — as a stationary celestial body — until = 120s.
Between ¢ = 120 — 180s of the experiment, the moon oscillated with gradually increasing
amplitude — and at a frequency of 0.1 Hz.

The different phases of the experiment reveal different driver behaviour conditions. As
expected, drivers had a larger MSE — measured as the offset from the centre of the road
— when the road had limited visibility (Fig. 4.12a). Interestingly, the drivers’ performance
seems to have less variability when the moon was present at a stationary position; the
presence of the moon as a reference point seems to have improved the performance of some
subjects. When the moon oscillated, several naive subjects were deceived by the visual
effect, as this increased their MSE and variability considerably. Thus although having a
stationary body in the visual field did not increase the performance of all subjects, most
subjects seem to have relied on it to sustain course control, because when the moon started
oscillating their performance worsened — even compared as when the moon was not present
at all. Figure. 4.12b shows the lateral offset through the experiment displayed by Subject 6
(S6); it can be seen that S6 followed the celestial body, apparently unaware of the oscillatory
effect while neglecting the visible road segment.

After the experiment, the test subjects were asked by the investigator whether they felt
anything unusual in the visual display. Only two subjects (S3 and S8) answered affirmatively.
While S8 noticed that the moon was oscillating, S3 felt being followed by the moon, instead
of the other way around.

Moon Perturbation Experiment (Exp. # 1 Day 2 in Table B.9)

A similar experiment was performed on the second day of the tests (Tab B.9). The main
difference with respect to the previous experiment is that the subjects drove in a circular path.
When the moon first appeared in the display, it behaved normally as a stationary celestial
body, with apparent motion from left to right as a result of subjects following the road
curvature. The moon appeared a second time during the experiment, but this time it reversed
its direction upon reaching the centre of the display. In this case, three subjects noticed the
anomaly in the moon’s motion (S7, S8 and S9), but it was not observed any consistent change
in performance due to the moon perturbation. This suggests that the subjects did not rely on
the moon for vehicle positioning during this experiment, although they may have used the
moon for curvature estimation. Possibly the surprise effect of the test was lost because of the

previous similar experiments.
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Fig. 4.11 Screenshots from experiment # 4 in Day 1 (Table B.9): (a) During the first phase of
the experiment, the road was normally visible. (b) During the second phase, only up to 4 m
of road were visible and in the third phase, a celestial object was present over the horizon.
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Fig. 4.12 (a) Box plot showing the MSE of the lateral offset during the four phases of
experiment # 4 in Day 1 (Table B.9). (b) Lateral offset and moon perturbation (angle 6)
displayed by S6 in the same experiment.
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4.4.2 Perceived Angles vs. Lateral Offsets

Many human steering control models employ standard engineering variables as a surrogate
for visual input. In some models, these variables represent lateral offsets and their respective
derivatives. This approach comes with one caveat; the CNS is much better adapted to detect
angular misaligments than lateral offsets (Sec. 2.1.2).

The importance of optical flow for sensorimotor control was first suggested in [Gib50],
where it was shown that keeping the FOE of the optical flow near the desired target is a
plausible course control strategy. More recent literature advocates that the radial-outflow is
a more relevant cue [WH' 88, BL96, WS00]; for example, the case of an animal chasing a
prey when the FOE may be occluded by vegetation or the case where a human is driving in
the presence of fog can be considered. Indeed humans can perceive motion from outflow
patterns with an accuracy approximately 1deg [WH'88] — and are able to detect angular
misalignments of 1 s of arc in laboratory conditions [Cra48]. In more general terms, it can
be assessed experimentally that borders and edges are very important in visual perception
[Gre97].

Regarding how the radial-outflow lines are actually perceived, in [Gei199] it is proposed
that motion streaks caused by pooling the responses of different neurons can be used to
identify the direction of flow lines. Although neurons in V1 (Sec. 2.1.2) provide direction
information, direction is not necessarily interpreted as motion unless some prefiltering is
produced (see [Bur80] and Sec. 3.4.5).

Additionally, the retina in the human eye, which is where the photoreceptors are located,
is fundamentally a two dimensional surface. Thus vision can be regarded as a projection
from a three-dimensional space to a two-dimensional space. With this in mind, in [BL96] the
angles formed by the projection of straight lines in a visual scene — referred to as splay angles
— were emphasised as potential motion perception cues. With respect to driving, already
Donges articulated that lateral offsets may be perceived through the splay angles projected
from the road lines [Don78], but this was not included in the modelling strategy.

A summarised list of the advantages in considering angular information, instead of lateral

displacements, for modelling visual acquisition in the human-operator follows:

1. From a mathematical standpoint, angles are dimensionless quantities, and therefore not
affected by scaling. This means that visual course control based on angle perception is
not dependent on the size of the perceived objects.

2. A more practical consideration is that of the case when visual blockage occludes some
sections of the perceived scene. While displacement information can be very difficult
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to assess in such circumstances, angular information is a more robust measure — we do

not need to see the whole lane boundary to understand the road geometry.

3. Angles can be deduced from multiple gaze fixation points. Displacement between
objects can only be assessed by gazing at particular locations.

4. The visual cortex seems to be specially tuned to identify angular orientation (Sec. 2.1.2).

4.4.3 The Splay Error as a Lane Keeping Metric

Driving a vehicle is a boundary avoidance task, and not necessarily an offset minimisation
task. Along these lines, here it is assumed that human drivers respond primarily to angular
information for lane keeping. Equivalently, it is easier to design computer vision systems
that estimate angles than distances, as angular information can be easily inferred from the
projection of images over a two-dimensional subspace. Although there exist driver models in
the literature that use angular variables as input — for example the SG model described before
(Sec. 4.2.1) — even in this case the angles are assumed to be estimated in inertial coordinates,
and not directly perceived from the forward road scene.

Because of these reasons, the projections of the left and right markings of a traffic lane
over a flat surface are here considered. From these projections two angles are delineated:
0r and O (Fig. 4.13a). These angles are referred to as splay angles, and are defined as the
interior angles of the projections. Here it is considered that human lane keeping at low speeds
and for lane positioning at higher speeds is a response to the difference between the splay
angles. That is, the human driver is assumed to employ as control variable the splay error
(®):

O=0r—0. (4.34)

The splay error has only meaning in the near distance with respect to the position of the
vehicle, as in the far distance its projection is altered by the road geometry when the road
is not straight. Nevertheless, because in non-curved roads ® can be inferred by looking far
ahead in the road too, it is a variable robust to saccadic motions.

For an observer looking at a straight road path of width W, with a heading angle y, a
lateral offset / and from an eye level height / — all relative to the path — it can be proved (see
Appendix E) that

h

tan6; = Whl (4.35a)
h

tan O = (4.35b)

Wh+1



106 Biofidelic Steering Control Modelling
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Fig. 4.13 (a) Lateral displacements — presented on top of the figure in meters — translate to
changes in the splay angles — i.e., the interior angles resulting from the projections of the
road lines over a two-dimensional surface (Appendix E). This is independent of the heading
angle y. (b) On the other hand, changes in heading ¥ — in radians at the bottom of the figure
— displace the road lines laterally over the projecting surface.
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That is, ® does not depend on vehicle heading or gazing direction (Fig. 4.13a). This is
very relevant because it implies that ® is not affected by lateral saccadic motions, changes
in driver’s head rotation or vehicle heading; @ is rotation invariant. Although extra-retinal
information allows humans to perceive changes in gaze position [WS00], the splay error
does not require of it. On the other hand, it can also be proved that changes in y translate in
increments in lateral offset proportionally to tan y (Fig. 4.13b and Appendix E).

The splay error can be visually acquired when only a section of the road markings is
present. When the road markings are not present, it can be obtained from the edges of the
road and, even when the edges are not clear, radial outflow lines could be used instead to
replace the markings [Gei199].

The advantage of developing models that consider angular information, instead of lateral
displacement, as input can be further evidenced through examining optical illusions and

additional indirect visual acquisition experiments:

Optical Illusions

Different visual effects, such as size constancy, imply that human’s CNS may generate
significant errors when estimating objects amplitude or lateral distances [Gre97]. Size
constancy effects are corrections generated by the CNS to represent objects in the visual
field at approximately constant size, when varying their distance from an observer. These
distortions are produced by means of interpreted depth cues. Size constancy can be exploited
to generate different optical illusions, such as the Ponzo illusion [Gre97]. In Figure 4.14
the Ponzo illusion is reproduced over a road scene. Most people perceive the higher red
bar as having a bigger size than the lower bar. The brain interprets that the higher bar is
farther away in the distance, and hence its apparent size is increased. It seems unreasonable
to believe that humans drive a car by making predictions of lateral offsets in the future.

Another example is what is known as the leaning tower illusion [KYGO7]. This illusion
happens when two identical images are placed side to side — each of the images containing
projected parallel lines. Figure 4.15 reproduces the leaning tower illusion for two road scenes,
with left and right orientation respectively.

Although the brain preserves the parallelism of the road lines in each contiguous image —
as these lines seem to converge at a vanishing point — the vehicles in contiguous each images
are further separated by the optical effect — produced by the CNS while trying to analyse
both images as one.

Thus optical illusions can reveal mechanisms of perception in driving tasks. Another
known illusion, in this case producing wrong interpretations of the road slope, can be found
in [Kit15].



108 Biofidelic Steering Control Modelling

Fig. 4.14 Ponzo illusion over a roadway scene. The two red bars are of identical size, but the
CNS distorts their magnitude upon depth perception.
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Fig. 4.15 The leaning tower illusion for two pairs of images. Most people have difficulty
realising that the images on the left are identical to the ones on the right.
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Transition in Seating Position Experiment (Exp. # 3 Day 1 in Table B.9)

This experiment consisted of driving for 6 min in a straight lane with a moon on the back-
ground. The graphical simulation represented a driver sitting on the left seat of the car —
with an offset from the centre of the vehicle of 0.45 m. During the time interval 170-190 s,
the simulation modified the apparent driver position by smoothly shifting it from a left
seat to a right perspective (offset -0.45 s), producing a change in the projected splay angles
(Fig. 4.17a). After the experiment, the subjects were asked if they felt anything unusual
during the simulation. Only two subjects noticed that there was a graphical perturbation (S3
and S8). S3 thought that the road was distorted during the simulation but was unsure as to
how. S8 thought that the road had become wider during the test.

Figure 4.16 shows the lateral offset from the centre of the road for each subject during
the test. Although only two subjects noticed a change in the projected scene, they generally
reacted to the change. The data show that the drivers tended to centre their position on the
scene, instead of centring the vehicle position. That is, the naive participants attempted to

reduce the perceived splay error (®).

2

-1
—S10
---seat pos.
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time (s)

Fig. 4.16 Lateral offset for each of the subjects during experiment #3 in Day 1, along with
the seat position during the test.
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(a)

Fig. 4.17 (a) Screenshot for Exp. # 3 Day 1 (Table B.9) — where the visual scenes from the
left and from the right seat are overlayed in the same image. (b) Occlusion of the near field
up to 14 m in Exp. # 2 Day 2.
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Splay Angle Perturbation Experiment (Exp. # 2 Day 2 in Table B.9)

In another experiment — with a duration of 4 min — the subjects were exposed to a direct
perturbation in the splay error. This experiment was also performed on a straight road, in
this case without centre lane line to make the perturbation less conspicuous. The simulation
represented a driver sitting at the centre of the car. During the first 30 s, the subjects steered
the car in absence of any display perturbation. At ¢ = 30s, the display was partially occluded
with a black screen (Fig. 4.17b), which covered the road up to a distance of 14 m. The
subjects had 60s to adapt to this new display condition — until # = 90s, when the road
gradually widened from the right side of the lane by 1 m and returned to its normal width
(smoothly during 60 s), followed by 30 s without changes in the display. From ¢ = 180s,
the same effect was produced on the left side of the road. The road width was maintained
invariant at the vanishing point, thus the widening was perceived as a splay angle perturbation.
As the subjects could not see the near end of the road, they were mostly responding to the
perceived projected angles.

Upon questioning, three of the subjects claimed that felt some sort of graphical perturba-
tion during the test (S7, S8 and S9). Subjects 7 and 8 were unsure about what had happened,
while S9 thought that the vehicle had been pushed and pulled by a lateral force. Nevertheless,
again most of the subjects responded to the visual perturbation (Fig. 4.18a); initially the
subjects positioned the vehicle around the centre of the lane — as the simulation represented
driving from the centre of the car. When the road widened, the drivers adjusted the vehicle to
the new centre of the lane, although they could not see it. Anyhow, the subjects were less
consistently tricked during the second perturbation — road widening to the left.

Thus the subjects manoeuvred the vehicle based only on splay angle information. Addi-

tionally, their performance was lower when the occlusion was presented (Fig. 4.18b).

4.5 Human-centred Driver Model

4.5.1 MHC model for Low Speed Driving

For low-speed driving, local compensatory feedback is expected to dominate the steering
angle signal. Hence MHC is here implemented for low-speed driving. The input error to the
MHC model is taken to be the splay error — ¢;, = @(#), and the output the steering wheel
angle (SWA) — Cy(t) = 6(ty.).

Typically, the human operator is assumed to be a discrete actuator with a cycle time of
~ 50ms (Sec. 2.3.3), and with response delays that are in the range 133 — 528 ms [War67].
Thus the A; and 7 are set to be S0ms and 250 ms (n; = 5) respectively.
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Fig. 4.18 (a) Lateral offset for each subject during experiment #2 Day 2, along with the road
widening effect — to the right and to the left — during the test. (b) Box plots of the MSE
in the lateral offset for each subject during the normal and occlusion phases for the same
experiment.
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Additionally, humans present thresholds in visual perception. These are established by
the CNS to filter potential residual firing occurring within the photoreceptors [Gre97]. In
consequence, a threshold is set in the MHC model so that it updates its response only when
|O(#;)| > 1deg = THg (Sec. 4.4.2 and Tab. 2.2).

With these settings, the parameters in the MHC (Eq. 4.22-4.24) scheme were fitted using
multiobjective optimisation through a genetic algorithm. The algorithm run a simulation in
the IPG Carmaker environment [IPG15] at 6ms~! on a straight roadway. A random torque
perturbation over the heading of the vehicle was added every 0.1s. The two dimensional cost
function for the optimisation process consisted of the toral splay error (Tg) and the steering
workload (W) [Paul2]:

T

To = / @%(1)dt (4.36a)
0
T,

W, — /0 52(t) dr. (4.36b)

The genetic algorithm yielded optima near Kj; ~ 1.11 and p ~ 0.13. Figure 4.19 displays
the steering response 6 (#;) of the MHC model with the fitted parameters, along with the
splay error O(t;). The MHC model produces ballistic movements in the response. This
is supportive of the MHC model to behave in a biofidelic manner — i.e., to approximately
reproduce the principles of human control — as the hypothesis of human control consisting of
ballistic movements or pulses has long been recognised (Sec. 4.2.2).

Although we already proposed a steering control law that mimics the ballistic behaviour
exhibited by humans, it is relevant that the MHC model generates ballistic behaviour without
it being a priori considered during the design of the controller.

4.5.2 Far-point Error for Steering Control

At higher speeds, the steering response of the model Eq. 4.39 becomes excessively jerky
when only the splay error is available. The same effect is observed in humans when only
the near region of the road is accessible [LH95]. This is caused by the lack of preview
information to compensate for the response delay 7. Thus far-point preview control needs to
be incorporated into the model. Here, integral control results in a steering-rate proportional

to the CN'YR and with the same response delay 7:

dCy (1)
dt

=—K;L"{x(1)}. (4.37)
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Fig. 4.19 Splay error (®) and SWA () for a simulated event representing a Toyota Camry
2006 running with the control parameters Ky = 1.11 and p = 0.13, and in a straight lane at
6ms~!.

The preview distance to the left and right boundary points (d; ) is set at a preview time of
T, = 1.5s according to the current speed of the vehicle (d g = UT)).

Besides error corrective control, human drivers use guidance level control to anticipate
changes in the road geometry [Don78]; driving is a combination of feed-forward and feedback
actions. According to the relation for the Ackermann angle, the feed-forward component of

driving is reflected in the model by the relation:
Ci(ty) = rx(t)L (4.38)

where r; is the steering ratio, kK the road curvature and L the wheelbase of the vehicle.
Because drivers do anticipate changes in road curvature, there is no response delay in this
term. The curvature of the road can be estimated by looking at the tangent point of the road
[LH95].
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Hence, from the superposition of the three control terms in (4.25), (4.37) and (4.38), the
proposed model results (Fig. 4.20):

O(tx) = Cu(t) + Cy (1) + Cic (k). (4.39)

eR_>+ ® _TS_> KM/p
0—- 1€ MHC

X_>éTS_> 1/8

K>k

Fig. 4.20 Schematic of the proposed steering control model. The first two terms (Cys and Cy)
act as error compensators after a delay time 7, while the last term is a feed-forward controller.
Only the last two terms (C, and Cy) include road preview.

Model Parameters Optimisation at High Speed

The parameters of model (4.39) were fitted with the same setup as in Section 4.5.1, with
the exceptions that the ground vehicle simulation run over an oval circuit with curves of
200m radius and at a speed of 30ms~!. The resulting optima in the Pareto front were found
to be clustered around the values Kjs € [1.3,2.3], p € [0.018,0.027] and K, € [0.24,0.31]
(Fig. 4.21). With the chosen cost function (Eq. 4.36), the effect of the multiplicative controller
becomes negligible (p ~ 0) at high speeds. However, there is no reason to believe that human
steering control corresponds to minimising the total splay error (4.36a) and the steering
workload 4.36b, but rather to act as a satisficing controller. Therefore, steering workload
analysis and parameter estimation through NDD is performed to make the response of the
model correlate more closely to that of human drivers.

4.5.3 Driver Workload Analysis and Model Validation with NDD

To compare the behaviour of the model with that of human drivers, analysis of the steering

signal through the steering entropy metric (described in Appendix F) is conducted. Different
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Fig. 4.21 Steering entropy H), for fixed Kj; = 1.6 and for varying p and K. The surface
corresponds to simulated data where the model was stable — in red — or unstable — in blue.
The optima for low workload driving are displayed as yellow dots. In black, the contour line
for H), ~ 0.47 is shown. The grey dots are fitted values from NDD.

values of steering entropy (H)) reflect different levels of driver attention directed to the
steering task. For example, H, = 0.47 approximately matches the steering entropy of
attentive drivers — not performing additional tasks such as attending a conversation or typing
into a cell phone [NFNB99].

In Figure 4.21 the steering entropy is plotted for different control parameters. The
magnitude of H, was obtained by running the vehicle simulation with Kj; = 1.6 — which
approximately corresponds to the mean value found in the Pareto front — and with different
values for p and K. In the same figure, the contour line corresponding to H, = 0.47 is
displayed. The optimised values obtained in above are also visible.

The optimised parameters produce higher values of H), than those found in typical human
drivers (Hp ~ 0.54). In particular, the optimal points present a steering entropy analogous to
that of a partially distracted driver checking a navigation display — but certainly not due to
the same mechanism.
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Fig. 4.22 (a) Response of the model (4.39), (b) CNYR () and (c) splay error (®) for
simulated data with two different sets of parameters: {Ky = 1.6,p = 0.02,K, = 0.3} (Case
A) and {Ky = 1.6,p = 0.05,K, = 0.48} (Case B).

Commonly, driver parameters vary during the course of the driving task [Paul2]. With
this in mind, sliced segments — lasting for 5s — of the steering signal from the NDD were
utilised to fit the parameters of the model (4.39). This was done by keeping Kj, fixed — again
to 1.6 — and fitting p and K, to minimise the MSE between the SWA of the human drivers
and the model. The fitted parameters are shown in Fig. 4.21. Because human control is
partially stochastic — as a result of variable response delays due to varying levels of attention
— the fitted parameters appear scattered, but with higher density in the stable region near
H,~047.

Taking this into account two different sets of parameters are now compared. In Case

A, an optimising driver — according to (4.36) — with parameters in the Pareto front K, =
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1.6, p = 0.02 and K, = 0.3 is considered. Case B, represents a driver with parameters fitted
from NDD: Ky, = 1.6, p = 0.05 and K, = 0.48. The simulation was run for Case A and
Case B with the same pseudo-random perturbation, so the model was responding to the same
input in both cases. As expected, for Case B the steering response has a higher gain and in
some instants occurs earlier than in Case A (Fig. 4.22a). In both cases, the far-point error
control is relatively similar, although with slightly higher amplitude peaks in Case B; this
is due to the effect of the steering pulses of the MHC model (Fig. 4.22b). Further, Case B
exhibits a significantly lower splay error ® (Fig. 4.22¢). And lastly, Case B yields a higher
steering workload (W; = 0.39) as compared to Case A (W; = 0.11). Thus Case B reflects a
satisficing driver according to W;. The optimisation process (Section 4.5.2) seems to have
placed excessive emphasis on W, minimisation, due to the fact that small increments in p can
place the model near instability.

4.5.4 Discussion

At the beginning of this chapter, a list of potentially necessary characteristics that a steering
control model should possess was proposed (Sec. 4.1). Here, some retrospective thoughts on
how much of it has been achieved are included as concluding remarks.

First we presented a MHC model, for the simplified case of compensatory and pursuit
tracking tasks, and single loop closures. This model has non-linear characteristics and works
in discrete time. Additionally, the MHC model includes an indifference threshold — over
the perceived error variable — and replicates statistically the stochastic effects of the human-
operator. The model is further validated by contrasting it with the CO model — showing that
MHC is consistent with CO behaviour in the frequency domain — and by proving that Fitts’
law can be understood as a particular case of MHC, when the error is reduced at a constant
ratio. Both analyses are significant; the CO is an accepted standard benchmark for com-
pensatory tracking behaviour while Fitts’ law is a classically accepted human performance
result. Further, the MHC model has a reduced number of easily interpretable parameters and
is able to control second order dynamics, or any system that can be approximated by second
order dynamics — such as ground vehicles — without the presence of an internal model in the
control scheme.

A major part of the motivation for the design of the MHC scheme is towards shared control
systems [GGOS5]. In [ACMvVP12] it was determined that for achieving good performance in a
shared control task, the steering movements produced by the Al must be in agreement with
those of the driver. With a deterministic methodology this is very difficult to accomplish.

The driver behaviour literature has commonly applied human control techniques and
adapted them for the steering control of ground vehicles. In here, the same approach is
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applied; the MHC model is extended for the case of the human-operator being a driver
controlling the lateral dynamics of a car. The most relevant differences between steering
control of ground vehicles and a simplified compensatory task are: the type and number
of optical cues employed as error variables, the inclusion of a preview condition and the
evidence that driver behaviour presents feed-forward actions in a higher magnitude. Thus
these aspects are considered.

Through signal processing of NDD, a relationship was found between the steering
movements of test drivers and the CNYR. From a deep analysis, which included novel
experiments regarding visual acquisition, the splay error was identified as a very likely
candidate of visual cue for lane keeping at low speeds. And, as it has been long regarded
that humans act as hybrid controllers, this was also included in the proposed scheme. All
this resulted in a Human-centred driver model. This model, reflects pulse characteristics — as
those found in human drivers — and displays similar steering entropy features; the model is
able to produce stable control of vehicles within the same steering entropy values found in
test drivers.

The Human-centred driver model is extended from MHC, hence one valid question is how
it relates to the CO model. As already explained, in the human-machine systems literature
typically two control modes are employed: compensatory and pursuit (Sec. 2.3.1). For simple
dot following tasks such as in the HTE — and in the classical experiments performed by
Tustin and McRuer — compensatory and pursuit modes are very similar to each other. In
a roadway environment and while controlling a car, there are larger differences between
the two control modes; while controlling a car, the driver can use preview of the forward
scene, thus pursuit control is more related to feed-forward control than compensatory control.
Nevertheless, in the literature there are attempts to interpret driving as compensatory and
pursuit cursor tracking behaviour [WM?70]. For example, the Human-centred driver model
can be understood as the compensatory loop depicted in Figure. 4.23.

However, this approach yields several complications. In particular, the inner loop closure
— corresponding to ¥ in Figure. 4.23 — modifies the relationship between the forcing function
and the response of the virtual human. The effect of the inner loop is difficult to characterise
as it further depends on the road geometry, because in this case we are not dealing with
a simple human-machine — or driver-vehicle — system, but with a driver-vehicle-roadway
system. Even on straight roads, when the system can be reduced to a driver-vehicle system,
the effect of the inner loop on the whole control loop (Fig. 4.23) will depend on the control
parameters and the speed of the vehicle. That is, although for low speeds, small K, and
on straight roadways the model will present similar frequency behaviour as that of the CO

model, when varying these conditions the frequency response will change in different ways.
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Fig. 4.23 Driver-vehicle-roadway system in which the Human-centred driver model can be
interpreted as a compensatory loop closure.

Because of these difficulties, the multi-loop approach was developed to extend the
applicability of the CO model to the more general case of multiple control variables [WM?70].
However, this alternative approach has the inconvenience that it requires uncorrelated input
variables. For real cases such as driving a vehicle, the control manoeuvres over one variable
will also affect the other control variables; in our model, integral control over y will also
affect ® and vice-versa.

Lastly, as a result of the analyses in Chapter 3, it was also suggested that a human control
model should represent system memory. With respect to this, although the MHC model
acts as multiplicative accumulator, it does not include the explicit memory characteristics
of fractional calculus. This was done purposely to preserve the simplicity of the MHC.
Nonetheless, the proposed scheme to add memory effects to the control model can be seen in
Fig. 3.18. Hence, we offer a modular methodology in which the two control approaches can
be combined in blocks.






Chapter 5
Driving by Torque

Despite the fact that fully autonomous cars may still be far away in the future, ground vehi-
cles will gradually become more automated — for example through conditional automation
systems, advanced driver-assistance systems (ADAS), vehicle-to-vehicle (V2V) communica-
tion, vehicle-to-infrastructure (V2X) connectivity, brain-to-vehicle (B2V) technology and
infrastructure adaptation'. In front of the possibility that these technologies become common
for private and public transportation, one valid research inquiry is to explore the role of the
conventional steering wheel (SW) within this approaching scenario; is it functional to have a
SW rotating in front of the passenger when the car is driving autonomously? This may be
unnecessarily distracting for passengers performing side tasks — such as watching a movie or
using a cell phone — while the intelligent system drives the vehicle, and it may be confusing
in cases where the human must regain vehicle control — the human driver may need more
time to regain control when the SW is already performing movements under the command of
an Al system.

In this chapter, the novel concept of a fixed steering wheel, or Isometric Steering Wheel
(ISW) is explored conceptually and experimentally.

5.1 Background on Isometric Control Devices

The isometric control devices that have been tested in the literature until now, are control
sticks (or joysticks) and pointing sticks (or trackpoints). One of the earliest appearances
of an isometric control stick in the literature is found in [Gib54], where isometric control
was applied through a lever in a tracking task and compared with that of a moving lever.
The plants controlled by the lever represented proportional, rate and acceleration control.

I'Semi-autonomous vehicles do already exist, although these are only reliable under certain conditions and
produce accidents under relatively low probability situations (see Sec. 1.1).
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Interestingly, isometric control was shown to be consistently more efficient for the control of
those plants. In the same publication it is also reported that subjects learned to manipulate
the isometric device more rapidly. With a similar experimental apparatus, and some years
later, McRuer communicated comparable results [MMG66]. For the experiments reported in
both publications, the test subjects were skilled at tracking tasks — naval officers and pilots.

Later, in [CEB78] a rate isometric joystick — thumb controlled — was compared to a
computer mouse and to the arrow keys found on computer keyboards. In this case it was
concluded that the quickest performance and the lowest error were produced by the computer
mouse. Nevertheless, in this case the task at hand did not consist in a tracking exercise; it
was a pointing task in which test subjects had to select text in a display by moving the cursor.

In a later paper [RS90], the comparison between an isometric control device and a
computer mouse — here also for pointing tasks — was further studied. In this case the research
was aimed at identifying optimal transfer functions between the forces applied to the device
and the pointer speed. The tested transfer functions were of linear, parabolic and sigmoid
shapes. It was concluded that the sigmoid transfer function yielded the best results, and that
a dead-band was needed for better results for when the hands are not steady. In this case,
the isometric controller was a pointing stick very similar to what today is still incorporated
into ThinkPad® laptops, for the research in the mentioned publication is related to the
development of these particular devices by IBM Corporation®. In [RS90] it is also shown
that for pointing tasks a computer mouse is more efficient than a pointing stick, but for the
case when pointing is combined with typing, the pointing stick was reported to be slightly
superior.

A further advancement was incorporated into the design of the ThinkPad trackpoints,
which is perhaps the most well known application of an isometric control device to date; in
a following publication, by incorporating a transfer function with a negative inertia effect,
the pointing performance was significantly increased [BSRO95]. Negative inertia can be

accomplished for example through transfer functions of the form:

04541

The response of Eq. 5.1 is displayed in Fig. 5.1. Negative inertia yields an overreaction at the
initial stage of the control pulse and an under-reaction at the end of it. This effect assists in
reducing the latency between control transitions. Although this is useful for pointing tasks,
it is not a desirable feature for controlling a vehicle, where an overreaction could be fatal.
A similar concept to negative inertia was explored previously by Tustin [Tus47], but in this

case a spring-centred lever was used instead of an isometric controller (Sec. 2.3.2). Anyhow,
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Fig. 5.1 In red, response of a transfer function with negative inertia effect (Eq. 5.1) under an
input pulse (black line).

the conclusion was the same, the negative inertia effect improved the aiming performance in
tank turrets among the test subjects.

With respect to what causes isometric control to improve performance — for the reported
cases — different explanations can be recognised. In Section 3.4.4 it was seen that response
delays are smaller with a joystick than with a SW (Fig. 3.11). A joystick involves a lower
ratio between hand movement and control gain than a SW. In the same manner, an isometric
control device reduces the motion required to generate a control pulse to its lowest point. We
also saw that control with a joystick was less precise [ARBO03], due to more uncomfortable
arm positioning — as compared to the SW — and muscle and tendon vibration. Hence, for the
case of steering a ground vehicle, could it be that by implementing an ISW the advantages of
both control devices are combined? That is, a quicker response than that of a SW which is
smooth and precise — with reduced hand vibration amplification.

Additionally, there is the possibility that with an ISW the hands may use the control
device to stabilise the arms, thus reducing even more hand vibrations and instabilities . In
[GO98], it is shown that the viscoelastic properties of muscles are adjusted to produce smooth
and stable hand movements — viscoelastic regulation. The same idea is claimed by Kawato
[Kaw99]. And in [BOF'01] it is studied how the CNS increases impedance in unstable
directions of arm motion, also with the intent of generating smoother control movements.
Thus a part of any control strategy involves stabilising the arm itself. With an isometric

controller, arm stabilisation is achieved by just holding the device, and all the effort can be
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directed towards the control action itself. The reduction of arm vibration has another potential
benefit; it is known that externally induced tendon vibration can alter human’s perception on
applied force [JH85], thus a fixed arm position could improve control precision.

Another potential advantage is that an operator, controlling an isometric device, does
not need to look at the hand to assess visually the control input, thus unloading the visual
channel of control device supervision. Further, it is known that when the hand is not visible
visual drift occurs [BC98]. Hence, in low visibility conditions, isometric control devices may
reduce ambiguity in the control responses.

An ISW was already utilised in [NGDO7] to assess the effects of steering feel, but not as
a steering control device for vehicle driving. And, besides IBM’s pointing sticks, there have
been other examples of technology products containing some sort of isometric controller,
like the C-Stick included in some Nintendo® video-game systems, which is used to pan the
camera and adjust the field of view.

5.2 Training Experiments with an ISW

Part of the Driving Simulation Experiments (DSE) — Appendix B.3 — were designed to study
the characteristics of human control when using an ISW. The setup for the experiments,
in which ten subjects participated, consisted in a fixed steering wheel of 32 cm diameter
mounted on a torque sensor (Fig. B.4). During the DSE, the subjects had to control a vehicle
simulation with this device (ISW). The experiments were separated in two consecutive
days, with the intent of adapting the naive subjects gradually to the task. Specific details
regarding the experimental setup can be found in Appendix B.3. The DSE also included
visual acquisition experiments, which are reported in Sec. 4.5. In this chapter, only the DSE
relevant to isometric control are discussed.

The first two experiments with the ISW were intended to adapt the subjects to the use of
the ISW, and were performed in the same day (Day 1):

5.2.1 First ISW Training Experiment (Exp. # 5 Day 1 in Table B.9)

In the first training experiment, a red target circle was presented in the display, which
varied position along an arc between two alternate locations — corresponding to a torque of
4+10.5N-m (Fig. 5.2). The target changed its position every 20 s, and the total duration of
the experiment was 180s. A blue cursor dot represented the applied torque to the ISW in the
display. The subjects were requested to apply force on the ISW to place the cursor (blue dot)
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Fig. 5.2 Visual display as in experiments #5 and #6 during Day 1 of the DSE. The subjects
had to apply torque to the ISW to position the cursor (blue dot) inside the target (red circle) —
which varied its position at each time interval. The cursor and target moved only over the
circular arc (green dial), with rest state at its topmost position.

in the centre of target (red circle). For this experiment, there was no filtering between the
sensor and the position of the follower cursor in the display.

Generally the subjects adapted promptly to the test (Fig. 5.3a), although two of them,
Subject 3 and Subject 4 (S3 and S4), found that it was difficult to maintain that degree
of torque (+=10.5N-m) for 20s. Nevertheless, once they improved their hand positioning
strategy, they eventually became adapted to the ISW.

Besides accustoming the subjects to the ISW, one of the motivating factors for this test
was to determine if humans exhibit arm tremors when holding the ISW — due to isometric
muscle contraction — at particular frequencies. Peaks in the power spectrum at specific
frequencies during isometric contraction are reported in the literature, and this has been
suggested as evidence of coordinated neural firing acting in a thythmic manner [MRM97].
This idea is also consistent with human operators being discrete controllers (Sec. 2.3.3). In
our data, we did not find any characteristic peak in high frequencies (Fig. 5.3b). It is likely
that, because subjects used both hands to control the ISW, any frequency peak was filtered
out by both hands acting in anti-phase and muscle co-contraction.
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Fig. 5.3 Data collected in the first ISW training experiment. (a) Target position and torque
applied by subject 5. (b) PSD during the same test and for all the test subjects.
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5.2.2 Second ISW Training Experiment (Exp. # 6 Day 1 in Table B.9)

The second ISW training experiment was very similar to the first, and lasted also for 180s.
The difference was that the target changed position more frequently — every 6 s — and at
randomised locations over the dial (Fig. 5.4). The test subjects seemed to be able to track
comfortably the target during this exercise.

The data collected from this experiment were analysed through Fitts’ Law (Sec. 2.2.1):

The parameters of

1 D

were fitted to the data recorded in this experiment (Fig. 5.5). Here D was considered to
be the initial distance to target position while R the distance at time 7. The data yielded
N; = 0.3228s and IP = 4.17890bits/s. It is shown that the linear relationship of Fitts’ law
applies for the ISW up to feasible values of the ratio D/r.
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Fig. 5.4 Target position and torque applied during Exp. # 6 Day 1 by S5.
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Fig. 5.5 In black, each line is the average time vs. log, % relationship for the ten subjects and
for each of the randomised target positions they encountered — which were the same for all
the subjects. The average for each target position — black curves — is displayed in red, and a
line is fitted to this curve (in blue) for 0.1 < log, % <3.5.

5.3 Driving Experiments with the ISW

All the other experiments with the ISW involved driving a vehicle simulation, which consisted
of a linear vehicle model on a pseudo-randomly generated roadway — represented in OpenGL
3D graphics (see Fig. 5.6 and Appendix. B.3). Mostly, all the driving experiments with the
ISW were executed during Day 2. The only exception was Exp. #7 in Day 1, which was
performed in both days.

The emphasis was placed in investigating potential transfer functions between the torque
sensor and the vehicle model — translating torque to SW angle. And with this aim in mind,
different transfer functions were tested, which are summarised in Table. 5.1 and discussed in
more detail in the following.

As a baseline filter, a simple gain was first considered. The value of this gain, and those of

the parameters in the other transfer functions, were tuned empirically before the experiments
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Fig. 5.6 Forward view of the simulated road in the OpenGL simulation as it was presented to
the subjects in the ISW driving experiments

by informal testing. This was done to keep the experimental variants presented to the subjects
at an acceptable level. Next, a fractional order filter DV was also considered as a candidate
(see Appendix A for an introduction to fractional calculus). As the experiments involved
driving the simulation at different speeds (30,50, 70km/n), the index of fractional integration
was tuned empirically for each speed value. In the informal tests it was observed that higher
order of fractional integration was better for higher speeds. In addition, to contrast the effects
of the memory added by the fractional operator with a standard approach, a proportional
integral (PI) filter was also examined. In this case, as the PI filter involves a pure integral
with a very extreme memory effect — as compared to low level fractional integration — it
was observed that lowering the effect of the integrator was seemingly better at higher speeds
(Tab. 5.1).

| TF| speed— | 304km/n | 50km/n | 70km/n |
Gain K, K, =0.75 K, =0.75 K,=0.75
Fractional Integrator DY v =0.05 v=0.25 v=0.35
PITF Kp+(1—Kp)§ K,=0.5 K,=0.6 K,=0.7
Steven’s Law KgS° Kg=0.15,0=1.7 | Kg=0.15,60=1.7 | Kg=0.15,06 =1.7

Table 5.1 Different filters employed during the DSE with the ISW.
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Furthermore, because the intensity of perceptual cues does not necessarily map in a
proportional manner to human perception, Stevens’ Law (Eq. 2.10) was introduced in the
tests. The gain of Stevens’ law was also tuned empirically, while the exponent was taken
from previous research in laboratory experiments (Tab. 2.2).

5.3.1 Driving with an ISW at 30 km/h (Exp. # 3 Day 2 in Table B.9)

This experiment involved 7 min of driving with an ISW on a simulated roadway — which was
the same for all the subjects. The simulation represented a vehicle with a constant speed of
30km/h and the driver sitting at the left seat of the car. Every 60s, an acoustic signal and an
intermittent change in colour in the background sky, indicated to the driver that a change in
the dynamics of the vehicle had occurred®. The change in the dynamics reflected a different
transfer function between the torque sensor and the vehicle model.

The order in which the transfer functions were presented is specified in Table 5.2. Thus
the experiment consisted in seven phases. In each phase, after the subject had driven for
approximately 30 s, the investigator asked them if the current vehicle response was easier,
more difficult or equivalent to the one just before. The answers of the subjects were recorded
and numerically coded as better (+1), worse (—1) and same (0). After, these answers were
compared to their actual performance, measured as the MSE of the offset of the vehicle with
respect to the centre of the lane.

In Figure. 5.7a the MSE for each subject and at each phase of the experiment is shown.
In Figure 5.7b, the answers regarding steering feel are presented with a different coloured
marker for each subject. In the same figure, the cumulative sum of the mean — for the
numerically coded answers — through the different phases is displayed in black colour.

’The subjects had been informed about the procedure before the experiment was conducted. Additionally,
the subjects had performed the same experiment in Day 1, to achieve acceptable adaptation to the ISW.

Phase # H Transfer Function Duration
1 Gain 60s
2 Fractional 60s
3 PI 60s
4 Fractional 60s
5 Stevens’s Law + Fractional 60s
6 PI 60s
7 Stevens’s Law + PI 60s

Table 5.2 Filter used at each of the phases of the driving experiments with the ISW. The
filters were defined in Tab. 5.1
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Fig. 5.7 Results for Exp. # 3 Day 2. (a) MSE for each subject and for each phase of the
experiment. Boxplots of these values are also included in the figure. (b) The answers of the
subjects regarding steering feel with each filter are displayed with coloured markers. In black,
the cumulative sum of the mean for the numerically coded answers — through the phases of
the experiment — is presented.
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At 304m/n, the subjects did not find on average that the fractional filter improved their
control. On the other hand, Stevens’ law seemed to improve their steering feel — when
combined with the fractional filter — while the PI filter appeared to make it worse. The same
can be observed from the MSE of the lateral offset from the centre of the lane (Fig. 5.7a).
The subjects produced a larger MSE with the PI transfer function and a lower MSE with a

simple gain and with the fractional controller with Stevens’ law>.

5.3.2 Driving with an ISW at 50 km/h (Exp. # 4 Day 2 in Table B.9)

This experiment is analogous to the one before with the exception of the vehicle speed, which
in this case was 504m/h. An identical experiment to this one had been performed already in
Day 1, as part of the adaptation process to the ISW. Additionally, during the first day of the
experiments, the subjects drove the simulation with a SW on the same road and at the same
speed (Exp. #1 Day 1)*.

Figure 5.8a shows the evolution of the MSE through the different phases of the exper-
iment. The solid dots are the median of the MSE among all the subjects in Day 1. The
boxplots summarise the results for the same experiment in Day 2; there was a consistent
improvement in performance. The blue line indicates the median performance with a SW. It
is noticeable that the subjects showed a lower MSE with the ISW, but this may be related
to the characteristics of the employed Logitech SW and the vehicle simulation, which may
not necessarily mimic realistic driving. Anyhow this was unanticipated, and several subjects
were surprised by their own skill while using the ISW as they spontaneously manifested.

At 50km/n the differences between the tested transfer functions (Tab. 5.1) were more
significant than those at 30&m/h; the fractional transfer function yielded the lowest median
MSE - although adding Stevens’ law made it the worse performer, followed by the PI
controller as the second worse performer together with the proportional transfer function.
The answers of the subjects with respect to steering feel agree with these results (Fig. 5.8b).
Several subjects also claimed that the PI controller was foo slow.

In Figure. 5.9 the steering movements produced by S7 in this experiment with the ISW
and with the SW — Exp. #1 Day 1 — are compared. For the ISW, the signal is shown before
and after the fractional filter was applied. The steering signal in the ISW incorporates some
of the features of joystick control; it is composed of shorter pulses but of higher amplitude
than those of the SW. Thus somewhat the ISW combines the comfort of the SW with the
rapid control actions of a joystick (Sec. 3.4.4).

3Note that S4 control responses were in the outlier range for this and for most of the conducted experiments.
4For the case of the SW, the transfer function between the control device and the vehicle simulation was
simply the steering ratio gain (r;). A force-feedback effect was also implemented (Appendix B.3).
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Fig. 5.8 Results for Exp. # 4 Day 2. (a) MSE for each subject and for each phase of the
experiment. Boxplots of these values are also included in the figure along with the median
values (solid dots) of the lane keeping error in Day 1 (ISW). In blue, the performance with
the SW is shown. (b) The answers of the subjects regarding steering feel with each filter
are displayed with coloured markers. In black, the cumulative sum of the mean for the
numerically coded answers — through the phases of the experiment — is presented.
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Fig. 5.9 Comparison of the steering signals from Exp. #1 Day 1 (SW) with Exp. # 4 Day 2
(ISW) at 50km/n on a pseudo-random road for S7 with the fractional filter.

5.3.3 Driving with an ISW at 70 km/h (Exp. # 5 Day 2 in Table B.9)

The same experiment was repeated at 70km/n. At this speed, the differences between transfer
functions were even more pronounced but the results were very similar; the proportional
and the PI transfer functions were the worse performers (Fig. 5.10a). The lowest MSE was
obtained again with the fractional filter. Looking at the difference in performance between
the fractional and the proportional transfer functions, it is concluded that filtering becomes
more necessary as the speed increases. Even so, the extreme memory effect of a classical
integral — in the PI transfer function — makes the vehicle very difficult to control at higher
speeds. Nevertheless, the subjects were less sensitive while assessing their own performance
in this experiment (Fig 5.10b).

Albeit other transfer functions remain to be tested — for instance second order filters —
the results are suggestive of fractional order filtering to be effective and easily tuned. One
conceivable explanation is the evidence that the neuromuscular system presents fractionality
[Mag06]. As an ISW involves static control, some of the viscoelastic properties of the
muscles may be diminished, and a fractional filter could act as a surrogate of them. This is
compatible with the fact that at higher speeds larger fractional integration is needed; humans
will hold more tightly a SW for higher workload driving, increasing their arms mechanical

impedance to achieve greater limb stabilisation.
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Fig. 5.10 Results for Exp. # 5 Day 2. (a) MSE for each subject and for each phase of the
experiment. Boxplots of these values are also included in the figure. (b) The answers of the
subjects regarding steering feel with each filter are displayed with coloured markers. In black,
the cumulative sum of the mean for the numerically coded answers — through the phases of
the experiment — is presented.
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Regain of Control Experiments

One concerning condition, in autonomous driving systems research, is the transition of control
between the machine and the human. In [MJ09], experiments with subjects performing
simulated regain of control situations were reported; the subjects were requested to regain
control of a vehicle in a near collision scenario. It was shown that driver’s reaction time to a
potential hazard is larger when regaining control from an autonomous driving system.

A part of the DSE (Sec. B.3) was designed to test if the reaction time, when regaining
control, can be reduced with an ISW. In experiments 7a and 7b the subjects were asked to
look at the OpenGL simulation while the vehicle drove autonomously through a curved road
geometry — this was done with an implementation of the SG model (Sec. 4.2.1). The subjects
were requested to keep the hands off the SW (or ISW). At times, the display was temporarily
occluded with a black screen. This was done in order to represent switching attention to
secondary tasks, such as checking a cell phone. During the simulation, the subjects could see
the vehicle autonomously dodging an obstacle in the middle of the road, by slightly going
outside of the lane and returning to its centre. After a second full display occlusion was
cleared, and the subjects could see the road again, an acoustic signal and an intermittent flash
in the background signalled the drivers to take hold of the SW (or ISW) and regain control of
the vehicle’ to avoid a collision with a new obstacle (Fig. 5.11).

Experiments 7a and 7b were identical, with the exception that experiment 7a was executed
with the SW and 7b with the ISW. Nevertheless, the subjects were told that both experiments
were different, in order to minimise adaptation effects. Additionally, half of the subjects
performed experiment 7a before 7b, while for the other half the order was reversed. In
experiment 7a the SW rotated according to the steering angle applied by the autonomous
system. For the case of the ISW, steering control was implemented with the fractional transfer
function (Table. 5.1).

In Fig. 5.12a, the path of the vehicle for each subject in experiments 7a and 7b is shown,
from the time they were requested to regain control by the system. The subjects managed to
obtain higher distance margins from the obstacle and return to the centre of the lane quicker
with the ISW. All of the subjects decided to steer tangentially to the road, with the exception
of S9 when using the ISW.

Fig. 5.12b shows the steering movements of S6 with both control devices, and during
the obstacle avoidance manoeuvre; generally all subjects produced a higher amplitude

response in a shorter time with the ISW. This was expected, as the ISW does not involve arm

> The subjects had already performed a very similar, but much easier test (Exp.# 6 Day 2) before this one,
so they were familiar with all the elements in Exp. #7 in advance: autonomous driving, temporary occlusion,
and regain of control to avoid an object in the centre of the road.
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Fig. 5.11 Screenshot of the regain of control experiment at the moment the screen flashed
— different sky colour — and an acoustic signal was produced, requesting the driver to take
control of the vehicle in a potential collision scenario.

displacement. The notable result is that after the initial control pulse, the subjects with the
ISW managed to stabilise the vehicle in a shorter time.

5.4 Applications of an ISW

The presented study of vehicle control through an ISW is not specifically directed to propose
ground vehicles being driven with an ISW. In semi-static manoeuvres such as parking a
vehicle, it can be difficult to assess the wheels turning angle based only on steering feel.
This is even more true considering that the relationship between torque and steering feel
is non-linear (Sec. 2.2). Thus semi-static manoeuvres have not been considered here, and
are left for future work. Nonetheless, there are a number of schemes in which the ISW is a
feasible technology for vehicle driving. Perhaps the most relevant application is the design
of shared control systems.

It has been long recognised that, although vehicle technologies must be aimed to unburden
the human-operator, full automation is impractical in many situations [BT54]. Thus, as
humans are better controllers of plants with low order simple dynamics — specifically,
proportional control — SBW technology could be employed to reduce driving to a more

simple task, in which steering control is shared between the human and an intelligent system.
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Fig. 5.12 (a) Path of the cg of the vehicle for all the subjects in experiments 7a and 7b.
The blue lines display the position of the left and right lane lines, while the red dashed line
represents the middle lane line. (b) Steering signal in experiments 7a and 7b for S6. The
black dot marks the time at which the control was transferred back to the driver.
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One of the difficulties in designing shared control systems, is in determining the degree of
control that the intelligent system shares with the human. In [AMB12] this concept is referred
to as the Level of Haptic Authority (LoHA), and it specifies the resisting force of the control
device to the applied force by the human. Thus the LoHA is set to establish how much of the
control task is taken from the human-operator by the intelligent system. An analogous but
more illustrative concept is that of the H-mode [FCA™17], which compares shared control
to holding the reins of a horse more tightly — manual control from the human-operator — to
loosely — fully automated system. This is usually known as the H(Horse)-metaphor.

However, the control task at hand and the H-mode cannot be considered independent of
each other; the impedance of the SW may change the control response of the human, in the
same manner as muscle impedance changes the stability of motor control. The ISW though,
orthogonalises the control signal from the H-mode; thus it is a control device specially well
suited for the implementation of shared control systems.

To conclude the chapter, some of the schemes in which the ISW is applicable are

summarised. A more detailed study of these possibilities is also intended as future work.

1. Non automated control:

- Speed adaptive ISW: One possibility is a system that transitions from a SW — at
very low speed — to an ISW for highway driving at higher speeds. Although this
has not been tested, the ISW does not seem a priori appropriate for semi-static

manoeuvres.
2. Automated control:

- Strategic and manoeuvring levels of control: According to Minchon’s model,
driving is composed of three levels: control, manoeuvring and strategic level
[GS14]. The ISW could be used to control only some of these levels. For example,
a driver model could easily handle the control level by keeping the vehicle within
the lanes at all times, and adjusting the speed to avoid collisions. The driver
would communicate to the intelligent system — using the ISW — with the intention
of switching lanes (manoeuvring level) or exiting a highway to reach a destination

(strategic level) as examples.

- Low probability situation handling with full control: In view of the possibility
of an intelligent system capable of autonomous driving, it seems more reasonable
to consider an ISW instead of a moving wheel in front of the driver. In case of a
hazard which the automated system cannot handle, the human driver could bring

forth a swifter control regain with an ISW — in the same manner as in the regain
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of control experiments above (Fig. 5.11). Typically, Al or other sort of intelligent

systems are not efficient in handling low probability situations [Lic60].
3. Shared control:

- Low probability situation handling with shared control: Similar to the case
above, the driver could use the ISW to modify or over-ride the Al control manoeu-
vres or decisions. Input pulses on the ISW would be superposed to the control
response intended by the intelligent system. For instance, if the intelligent system
is handling the road curvature but there is an unexpected obstacle on the road,
the human driver could add a correction to the undergoing control action. This
steering pulse would be relative to the steering angle at the wheels applied by
the Al, and hence independent of any visual interpretation of the current steering
angle.

- Shared control through H-mode: With this scheme, the human driver controls
the car at all times, but with the help of the intelligent system. The intelligent
system utilises a driver model to maintain the vehicle within the lanes, but the
driver can over-ride the control decisions of the model according to a preset
(or adaptive) H-mode. ISWs are more analogous to the reins of a horse than
a conventional SW, as the position of the ISW is independent of the yaw rate.

Hence transitions in H-mode may be more natural to the driver with an ISW.

Lastly, the shape configuration of the controls in ground vehicles may also be reconsidered.
One immense and obvious advantage in using a circular configuration, for conventional SW
design, is its invariance with respect to the applied steering angle; hence it is uncomplicated
to perform suitable steering movements even when &(7) > %irad. With an ISW this is
inconsequential, and one can think on the design of new configurations. For instance a handle
bar or other options found only in concept cars until now, such as the Wrist-Twist Instant
Steering system — included in some Ford prototypes in the past — or the twin-levers in the
Honda EV-STER model. In this last example, the driver controls the car with two control
sticks — one at each hand. The sticks are coupled to each other, hence the anti-phase filtering
properties of the SW are preserved. This system makes use of SBW technology to modify
the torque in the sticks to neutralise the perturbations produced by lateral acceleration on the

driver.



Chapter 6
Conclusions and Future Work

The study of driver behaviour covers a broad spectrum of scientific domains, from neuro-
science and psychology to control systems engineering and artificial intelligence. At the
same time, and within any of these domains, driver behaviour can mean several different
things, such as gaze fixation patterns on the forward roadway scene, speed control, crash
avoidance manoeuvring, anxiety level measurements and drowsiness monitoring, just to
name a few. In this dissertation, the effort has been directed towards the study of steering
control.

This research has been conducted with the purpose of designing modelling strategies that
mimic the responses of the steering movements produced by humans — while controlling a car
on a public roadway. Even within this purpose, multiple research frameworks can be adopted.
For example, there is a vast literature on steering control models aimed at creating software
packages to test vehicles in computer simulations, removing the human driver from the
control loop or implementing conditional automation systems. Here, the modelling strategies
were designed with the idea of being deployed in shared control systems, i.e., systems in
which the control of the car — or of another type of machine — is shared between a human
and an intelligent system simultaneously. Shared control systems have gained relevance
in recent times — partly due to the availability of steer-by-wire technology in conventional
cars, artificial intelligence developments and an increase in the computational capacity of
low-power devices, such as FPGAs.

As it has been mentioned in this dissertation, and established in previous literature,
shared control systems in which the model for the virtual human is not representative of the
human steering movements may decrease control performance. On the other hand, when the
assisting virtual human model can imitate to an extent human control behaviour — and hence
referred to as biofidelic — shared control may increase performance. Thus the objective is, as

the dissertation title suggests, to construct a biofidelic model for steering control.
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Starting from before, and progressing in parallel to steering control modelling research, a
rich literature in human-machine systems has come to existence. This research seems to have
been initiated within the defence research realm in the 1940s. Hence the present study was
commenced by reviewing pertinent results on the human-machine literature, some of which
have been expanded and generalised; one of them being the well known Crossover model.
In particular, this classical research was initially more concerned with aeroplanes and tanks
than with cars, so not all of its results generalise to the case of steering control on roadways.

Commonly, the human-machine systems literature has borrowed numerous concepts
belonging to control systems theory, for instance classical linear control approaches through
transfer functions and optimal controllers. As these methods have analogous correlates in the
more general domain of ordinary differential equations, they elicit control responses only
according to a single vector of initial conditions — or at most weak memory effects such
as those produced by statistical measures and additive accumulators. Contrarily, biological
systems — and more generally any complex system — show responses based on a history
of past events, i.e., they are systems with memory effects or fractionality. Thus one of the
first contributions in this dissertation, was to extend the Crossover model for the control of
systems with memory. And for that, data collection experiments where naive test subjects had
to control plants with fractionality were executed for the first time. From these data, and by
using the mathematical theory of fractional calculus, the Crossover model was generalised
to include the control of such plants. These analyses led to additional results, such as
assessing fractionality in the visual system while the human is engaged in dot following tasks,
representing a vehicle with a grey-box modelling approach that compensates the uncertainty
in some parameters through fractional operators, and representing human control patterns
with finite impulse response filters. All these results add now to the already ample literature
on the topic of human-machine systems, offering new modelling possibilities.

More specific to the task at hand, which as indicated was modelling steering control,
the investigation was continued by analysing the steering movements found in naturalistic
driving data. From this inquiry two main conclusions were drawn. On the one hand,
the steering movements displayed by drivers, during lane keeping manoeuvres, can be
explained as a superposition of characteristic steering pulses. These pulses are asymmetrical,
which further endorses the hypothesis of humans using a combination of feed-forward
and feedback control in manual control tasks. On the other hand it is declared that, it
is impractical attempting to fit the parameters of deterministic steering control models in
the time domain from naturalistic driving data — for models with only a few parameters it
is virtually impossible, while for models with a large number of parameters it results in

overfitting the data. This notion challenges the traditional view and is justified with multiple



145

arguments: the human driver switches their attention to different things at different times,
humans present stochastically varying effective time delay, driving data are essentially noisy
— with additional neuromuscular noise introduced by the human, and the human driver may
attempt to optimise different things at different times, to name but a few. All these were
supplementarily corroborated, with the case example of the well known linear model by
Salvucci and Gray. Putting it in layman’s terms, a human driver will produce different
steering movements by driving through the same roadway segment at different times. These
differences may be even larger between different drivers. Hence, when fitting a steering
control model from data to represent the human driver, which human driver and at what
particular time are we thinking about? Does there exist a generic human driver — or a generic
human-operator in the more general case?

If a generic human-operator is there to exist, one possible way to characterise them
is in the frequency domain. Even if the control responses of humans are very variable,
they may present characteristic frequency response. This has been done extensively in the
classical literature, with the Crossover model as its foremost example. Here an alternative
approach has been developed, which consists in characterising the human-operator from
a statistical perspective. And this approach led us to the novel concept of multiplicative
human control. Summarising, the magnitude of human control responses in compensatory
tasks is shown to be well described by log-normal probability distributions. As log-normal
probability distributions arise from multiplicative dynamics, a multiplicative controller to act
as surrogate of the human operator is proposed here. The multiplicative model is validated by
comparing it with the manipulative control actions of human subjects, shown to be consistent
with the Crossover model and proved to be a generalisation of Fitts’ law — for the case when
the errors are reduced at a constant ratio.

To generalise compensatory dot following tasks — such as the ones explained by multi-
plicative control — to automobile driving, the greatest obstacle is on determining which visual
cue(s) drivers employ. Although there is literature with consistent results on the gaze patterns
of humans while driving on curved tracks, no conclusive results on which optical cues are
employed for lane keeping on straight paths were produced to date. Thus an extensive study
regarding this was conducted here. The study included new data collection experiments
with test subjects; these involved designing a simple driver simulator software application
specifically for this research. The results suggest that drivers employ the optical information
produced by the projection of the so-called splay angles over the retina as principal optical
variables, for lane-keeping and at low speeds. This is further justified from the viewpoint
of neuroscience, optical illusions and mathematical consistency. For lane-keeping at higher

speeds, further analysis of naturalistic driving data suggested that steering pulses have a
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stronger correlation with the Critical Normalised Yaw-rate than with other lane keeping
metrics.

Thus from all these conclusions a new model, reflecting multiplicative dynamics and far-
point error control — which it is termed the Human-centred Driver model — was designed and
first proposed here. Besides all the described human-like — or biofidelic — features exhibited
by multiplicative control and perception based on optical information, the model displays
pulse-like behaviour for lane keeping and is able to produce stable control, within the same
steering entropy value range as that of human drivers. Further, the model uses feed-forward
control for roadway guidance. Besides its potential application to shared control systems
design, the Human-centred Driver model can be applied for vehicle testing, developing
semi-autonomous control systems or as an analysis tool for driver behaviour. In a broader
context, the multiplicative human control model is an additional tool for human-machine
systems research.

As mentioned, this research has gained renewed interest, in correspondence with an
increasing interest in ground vehicle automation and the availability of steer-by-wire controls.
On that account, the dissertation concludes with an extension towards vehicle controls;
experiments were conducted in which naive test subjects had to control a vehicle simulation
driving by torque. These experiments additionally expanded classical literature in which
isometric control sticks were tested, and where it was shown that subjects perform more effi-
cient control with these devices as compared to conventional control sticks. Here, analogous
results were obtained with an isometric steering wheel, specially for the case in which the
driver has to take back the control from an autonomous system to avoid a collision with an
obstacle. Moreover, various transfer functions — acting as transducers between applied torque
and the steering angle at the wheels of the car — were evaluated. It was found that fractional
transfer functions are suitable options. We believe that this may have some relation to the
fact that muscular dynamics are well modelled through fractional differential equations;
hence a fractional filter yields filtering properties similar to those exhibited by the human

neuromuscular system.

6.1 Future Work

Commonly, when trying to bring out some answers, we find ourselves discovering new
questions. This is even more true for an interdisciplinary scientific project such as this one.
So there are a number of related topics that have been identified for forthcoming examination.

First of all, there is the question of online parameter adaptation of the Human-centred

Driver model. Different sets of parameters represent different operational regimes of the
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human driver and variability among drivers. If the model has to offer relatively good
predictions of what the human driver would do, so that there is good understanding between
the intelligent system and the human, the parameters need to change along a subspace
representing their biofidelic regime. One possibility is using adaptive self-tuning systems,
with some added constraints to maintain the parameters within the required subspace. Hence
for example, for different speeds, driver workload and driver’s level of intended performance,
the assisting model will employ different parameter sets. The Human-centred Driver model
would provide a sketch of the necessary steering movements a particular parameter set, while
the human driver could add high frequency information or further corrections.

A second prospect, related to the one above, is the possibility of the Human-centred
Driver model being used to monitor the driver, instead of assisting in the control of the
automobile. Thus similarly as already described, the control parameters will move along a
biofidelic subspace, and upon the parameters exiting it, distinct driver’s operational regimes
can be characterised: drowsiness, driver distraction, inebriation, or high anxiety levels to
name a few. In both of the pointed cases, the technical challenge resides more on the data
acquisition part than on the analysis, as similar techniques have been extensively applied for
monitoring industrial systems.

With respect to the here called biofidelic-subspaces, one parameter of special interest is
the effective time delay (7). A first investigation regarding this is currently being put forward
[ZMGG18], by considering the restricted one-dimensional case of the 7 biofidelic-subspace;
the parameter 7 is shown to fluctuate according to a Gamma distribution with parameters
representative of normal driving.

Furthermore, regarding the driving by torque concept introduced at the end of the dis-
sertation, a variety of fronts have been left open. Although preliminary testing through
experiments has been conducted for this research, additional combinations of torque-steering
angle transducer parameters may be tested, or different classes of transfer function can be
employed. Additionally, other configurations of the control device could be assessed — like
twin levers for instance. Most importantly, the integration of the isometric steering wheel
with the multiplicative human controller — in a shared control scheme — remains to be tested.
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Appendix A

Fractional Order Systems

In this appendix a more formal presentation of the theory of fractional calculus is given. The
brief notes in Section 3.3 deal primarily with fractional operations in the frequency domain,
aligned with some intuitive remarks. Here, mainly fractional computation in the time domain
— which is the standard way to present the concept — is derived. The summary starts with
the gamma function, an essential part in the definition of fractional derivatives and integrals.
Then, after introducing some of the properties of fractional calculus, the general aspects of
fractional differential equations are explained, including the methods used to integrate the

equations in real time in the experiments presented in this dissertation (Appendix B).

A.1 The Gamma Function

In order to compute non-integer powers of the differential operator D"*{-} := d"{:}/a", by
replacing n € N with an arbitrary positive real number v € R*, it is convenient to start
with some motivational examples of what to expect. It seems natural to conjecture that, a
fractional differential operator inherits the patterns exhibited by the classical derivative which

it generalises. Thus for example, as D"e” = a"e¢“ (a € R), it may be conjectured that
D'e" =a"e” forv e RY. (A.])

Further, for f(¢) =? with p € N, as D" f(t) = p!/(p—n)t? ™", in order to mirror this behaviour
into the fractional operator, we see that an equivalent of the factorial operation that works
with non-integer numbers is needed. This operator exists and it is known as the gamma

function.
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Fig. A.1 Gamma Function evaluation over the real numbers.

Definition A.1.1 (Gamma Function) For v € R\ {Z~ U{0}}, the gamma function is
defined as:

I'(v)= /xv_le_xdx.
0

One thing to notice is that I is not defined for v = 0 neither for negative integers — it has
poles for such values alternating between +oo (Figure A.1). On the other hand I" is defined
for complex values z € C\ {Z~ U{0}} (z =x+iy). This implies that a potential definition of
fractional operator could be extended to include complex powers of the differential operator;
and that is generally done in the mathematical literature [MR93]. For the sake of simplicity
here we will only consider real powers of the fractional differential and integral operator.

From Definition A.1.1 it can be proven that the gamma function satisfies the following

properties:
. T(n)=(n—-1)! vneN
2. T(z) =(z—1)['(z—1) Vze Cexcept when (z—1) € Z~ U{0}

3. I'(z) =+ VzeZ~U{0}.



A.2 The Differintegral Operator 163

The first property shows that I" is a shifted version of the extended factorial. Accordingly,
going back to the case of the monomial, from a fractional differential operator we would

expect that
C(p+1) i
I'p—v+1)

For if this is the case, then the operator will work in a consistent manner across all the

DVtP = (A.2)

analytic functions — i.e., functions f(¢) which coincide with their Taylor series expansion.

A.2 The Differintegral Operator

So far only the possibility of fractional derivatives has been discussed in a non-formal manner.
However, commonly fractional integrals are defined first. For the case of integration the
limits must be specified in the integral operator — we will write ,D;' f () = [} f(t)dt. The
intuitive motivation behind the definition of the fractional operator is rather transparent. In
[MR93] it is shown that the nested integral

131

WDy f (1) 3:}dt1fdt2tf2dt3... [ f(&)dé, (A.3)
h h h h

In—1

is equivalent to the expression

D) = o =8 7 (8) de (A4)

So in order to define fractional integrals, it is only required to substitute n by a non-integer

value, and replace the factorial term by the gamma function. Thus for v < 0,

WDy f (1) = ) (t=&) 7" F () déE. (A.5)

I'(—v

S — =

As Equation (A.5) depends on the chosen limit of integration 4, there are infinite potential
definitions of fractional integral. Going back to the case of a monomial (f(¢) = t”), it can
be shown that Equation (A.2) is only true for fractional integration (v < 0) if 4 = 0 [MR93].
Hence this is the value typically chosen in the literature, although other values have been
considered; in fact Equation (A.1) is only true for integration if 4 = —co!. In this dissertation,

only & = 0 is considered.

!Choosing & = —oo leads to the Liouville definition of the fractional operator
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Once fractional integration is defined, fractional differentiation results as a combination

of fractional integration and classical differentiation in a trivial manner:

oDy £(t) = DYDY M r(1)}, (A.6)

where [-] represents the ceiling function. Hence the complete definition of differintegral
operator follows:

Definition A.2.1 (Riemann-Liouville Fractional Differintegral Operator) Given v € R,
then

D) = il [ =) FE)dE forv <0
oDy f(t) =Z{f(t)} forv=20
oD} f(6) = DII{,Dy "V ()} forv >0

where 7 is the identity operator. Regarding the conditions on f for ,D; f(¢) to exist, if v < 0
a sufficient condition is that f is piecewise continuous function over the interval (0,7], and
integrable in the classical sense on [0,7]. For fractional differentiation (v > 0), it suffices that
f is differentiable up to order [ v] according to the classical differential operator.

What is interesting about (D} {-}, is that it is an operator with memory. This is true also
for differentiation, as fractional derivatives are defined through an integral. Thus fractional
calculus is useful for modelling dynamics where memory aspects can be consequential, such
as viscoelastic materials or electrical circuits with memory effects [Diel10]. Additionally, for
the case of integration, fractional calculus allows to modulate the temporal footprint of the
system — from no memory at all (v = 0) to an integer order integral (v = —1), where every
past event has equal importance (Figure A.2).

The fractional operator is still a linear operator and satisfies a series of properties;
some of them are what we expect from a derivative or integral, while others greatly differ
from the behaviour of classical calculus. For example, fractional differentiation does not
obey the chain rule in general. On the other hand, for a constant k € R it is true that
oD} f(kt) = k¥ [(Dy f(t)]. Also, the following theorem correspondent to the fundamental

theorem of calculus is established:

Theorem A.2.1 (Fundamental Theorem of Fractional Calculus) Let f be an analytic
function in a vicinity of the origin then, Vv € R and Vp € R~

oD} [oDF £(1)] = oD/ P £(2).
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Fig. A.2 Temporal footprint of the differintegral operator; the relative importance of f(r —7)
in the magnitude of the operator D} { f()} for different values of v is displayed. For v = —1,

at time ¢ every past event f(t —f) has equal effect on the differintegral operator. Different
values of v — displayed on the right side of the plot — weight the past events differently.

The above property only holds in general when fractional integration is performed first. Other
properties of the fractional differintegral operator can be found in [Pod98, Diel0].

An example of special interest is the fractional differintegral of the exponential function.
It can be shown, that for a,v € R

oo k v

JDVetl — Z H — (A7)

This could have been deduced simply by integrating the Taylor series of ¢ n € N times,
then substituting n by —V, and replacing the factorial by the gamma function — because we
chose & = 0 in Definition (A.2.1) to ensure that analytical functions are well behaved under
the differintegral operator. Nevertheless, we see that (D} e“ is not an exponential function,
but something similar. Moreover as linear differential equations have solutions which can
be expressed in terms of exponentials, this anticipates that solving fractional differential

equations may not be trivial. In fact, if v > 0 Equation (A.7) blows up for t = 0. Further,
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stability analysis of such fractional differential equations cannot be performed by direct
analysis of the eigenvalues of the system — or the poles of the corresponding transfer function.

Now as cos(z) = (¢“+e¢“)/2 and sin(z) = (¢“—¢*)/2i, and by linearity, Equation (A.7) lets
us compute fractional integrals and derivatives of sines and cosines. As [ cos() involves a
translation to the right of the cosine function by #/2 units, it seems reasonable to speculate
that ,D} cos(t) ~ cos(t — #/2v). Indeed this is true if we disregard the transient (Figure A.3).

A.3 Fractional Differential Equations

A.3.1 Analytical Results

For a fractional order differential equation (FODE), the existence and uniqueness results are

not as general as for an ODE. Still some partial results hold, specially for the case of linear
FODEs [Pod98]:

2 | .
1.5 § .
13 \,‘e&
7Y 2
A8 0.5 I =
S 0t E
=4y
——v=0.5 '»"
——1=0.25
-0.5 F |—=—u=0
——p=-0.25
1L —A—p=-0.5
10

Fig. A.3 Differintegral of a cosine function for different values of v. The plot is displayed in
logarithmic scale to better visualise the transient.
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Theorem A.3.1 (Existence and Uniqueness Theorem for linear FODE) Given a FODE
of the form

n—1
PO+ R Ari(0) [0 30|} (030 = 10

where rj(t) (for j =0,...,n— 1) are continuous functions in [0,T]| and v; > 0 (for
j=1,....,n)and v, € [m—1,m) (m € N), then the initial value problem corresponding to

D*y(0) fork=0,1,...,m— 1 has a unique continuous solution over [0, T).

Finding y(¢) as an analytical solution can be complicated, although it is possible for simple
cases through the method of the Laplace transform — and when f(¢) is a known function and
not a varying input. One of the caveats of this approach is that, when applying the inverse
Laplace transform to non-integer powers of s, usually initial conditions of fractional order
appear (OD,v "y(0)). If zero initial conditions can’t be assumed in a particular type of problem,
it is not clear how initial conditions of fractional order could be measured from a system?.
Nevertheless, in most situations numerical integration methods are used, as in the simulations

presented in this dissertation.

A.3.2 Numerical Integration of FODE

Definition (A.2.1) is the most common for mathematical analysis, but there is an alternative
definition for fractional differentiation which is helpful in deriving methods for integrating
FODE numerically — the Griiwald-Letnikov fractional operator. In this other definition,
fractional differintegration is expressed as the sum of a time series, and it follows from the
expression to define classical derivatives from backward differences,

D f (1) = lim— Y (" (Z) f(t —mh),neN (A.8)

that can be extended to non-integer order differentiation and integration, again by using the

gamma function®:

Definition A.3.1 (Griinwald-Letnikov fractional operator) Given a function f which is
differentiable up to order m € N, then for v € (m — 1,m) the Griinwald-Letnikov fractional

’In this case there is another definition of the fractional operator that can be used. Caputo’s fractional
differintegral operator is defined by inverting the order of integration and differentiation in A.6 [Diel0]. This
method is not used here and thus not presented.

3 And by applying the property of the Gamma function: I'(n —z)['(z—n+ 1) = (=1)"I'(—z)I'(1 + z) for
z€CandneN.
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operator is defined as

LT(i—v)

1
DY f(t) = lim— :
oDr /(1) heohvjzbl“(—v)]!

f(t—jh).

Both given definitions for ,D} {-} are equivalent for smooth functions. Therefore it is justified
to use the Griinwald-Letnikov to solve FODE without changing the context of the system.
The relation in Def. (A.3.1) can be approximated with its discretised counterpart:

- 1 & T(—v)
D/ f(t) =5 ), =, (t—jh). (A.9)

0 ;

! hY =T (=v);)!
The last expression, essentially a linear filter, displays more clearly that the fractional
operator is a weighted sum of past observations, and therefore it is an operator with memory.
It can be proved (see [Pod98]) that the discretisation error when computing Oﬁtv f(¢) satisfies*

oD} f(t) — oD} f(t) = O(h). (A.10)

The truncation error, by considering only a finite memory window of width L can be bounded

as follows: v
ML~

DYf(t)—, ;DY f(t)] < ——

|0 lf() t—L tf( )l_\l“(l—v)\

where M is a bound for | f|. Equation (A.11) is referred to as the short-memory principle,

(A.11)

and encapsulates the idea that recent events are more relevant than distant ones. Thus by
choosing L such that ML™"/|r(1—v)| & h the total approximation error is O(h).

In what follows, it is described how to integrate linear FODE using Equation (A.9). In
the tracking experiments described in Section B.1, the following type of transfer functions is
considered: Y (s) K

Us) = @ (Ts+1) for ot >0

which is equivalent to the FODE

T oD y(1) + oD%y(t) = Ku(r). (A.12)

“For analytic functions.
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Substituting (A.9) into (A.12) and reorganising terms yields:

1/h .
0) = g K) =7 Y
i I(; ) (A.13)
J— .
_hj:l —F(_a)j!y(t—]h)} +O(h).

By using (A.13) in a step-wise manner, equation (A.12) can be numerically integrated with
a local discretisation error O(h). While there exist higher order algorithms to approximate
fractional derivatives and for numerical integration of fractional differential equations [Lub86,
Diel0], for use in human-in-the-loop interactions and real time application the method in
Equation (A.13) seems to be appropriate. Also, there is little risk of drift arising from
any approximation error, since the human operator is constantly cancelling errors when
performing closed-loop control.

If higher accuracy is required, an additional property of fractional operators is needed in
order to develop higher order methods [Diel0]:

D’y(0)
!

m—1
oD [oDYy(1)] = y(1) — Y, t/ with v >0and m = [v]. (A.14)
J:

=0
As stated, the fundamental theorem (A.2.1) only works when fractional integration is applied
first. Now, for the initial value problem (D} y(t) = f(t) with D/y(0) = y} we have

m—1J

o)=Y %t’ +oD Y [F()], (A.15)
=0 J!

and by integrating the last term in the expression above — from Definition (A.2.1) — the
FODE can be solved. According to the order of the quadratures chosen to approximate the
integral, different methods are obtained. If the integral is computed by means of the rectangle
rule, a second order Adams-Moulton-Bashford method results. These methods are expensive
computationally speaking. The Adams-Moulton-Bashford method to solve ODEs has a
numerical complexity of O(h~!), while its fractional counterpart exhibits O(h~2) [DFF04],

due to the non-locality of fractional derivatives.

A.3.3 Stability Analysis

Stability analysis of linear FODEs is a little more intricate than for ODE case. This is

reflected — in the time domain — because fractional derivatives of exponential functions are
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not exactly exponential functions (Equation A.7). In the frequency domain, the transfer
function of an ODE exhibits non-integer powers of s. Thus instead of poles, the denominator
presents branch points. So the general strategy of using the eigenvalues of a linear system — or
their corresponding poles — to assess its stability does not work. Still, the following theorem —

which applies to the Laplace domain — extends the classical method to the fractional case
[Mat98]:

Theorem A.3.2 (Stability of Fractional Order Systems) Given a fractional order transfer

function G(s) and a non-fractional transfer function G(s) such that, for a particular value
0 < ¢ < 1, it satisfies G(s*) = G(s) then,

G(s) is BIBO stable <= |arg(p)| > {5
for every pole p of G(5).

The theorem has a simple visual interpretation as it can be seen in Section 3.5.4, where it
is applied to assess the stability of a FIR filter controlling a fractional order plant. In particular,
for £ = 1 the theorem coincides with the classical stability criteria for non-fractional transfer

functions based on pole location in the complex plane.



Appendix B

Data Collection And Data Sources

B.1 Human-in-the-loop Tracking Experiments (HTE)

A number of human tracking experiments were recorded from ten naive test subjects of
mixed gender, whose ages spanned from 22 to 33 years. In this dissertation, we refer to the
data collected in these experiments as the Human-in-the-loop Tracking Experiments (HTE)

dataset.

y SUBJECT: || S1 [ S2 | S3 | S4 [ S5 [ S6 | S7 | S8 | S9 [ S10 |
GENDER: M F M M M F M M M M
AGE: 32 24 22 28 22 28 24 28 33 32
EXP. VID. GAMES: || NO | YES | YES | YES | YES | NO | YES | YES | YES | YES
EXP. JOYSTICK: || NO | NO | NO | NO | NO | NO| NO | NO | NO | NO
DRIV. LICENSE: || YES | YES | YES | YES | NO | NO | NO | YES | YES | YES
EXP.DRIVER: || NO | YES | NO | YES | NO | NO | NO | YES | YES | YES
Table B.1 Gender and age of the 10 participants in the HTE. In the table it is also detailed
for each subject their previous experience playing video games, using a joystick and driving
experience status.

The experimental setup consisted of two different control devices — a joystick and
a steering wheel — and a real time software application that run on a desktop computer
(Fig. 2.1). At each time step, the application read the output of a control device and integrated
a FODE according to the method described in Section A.3.2. The display was updated during
the real time simulation at 15Hz, as with this frame rate the motion of the presented moving
cursors in the display seemed continuous (see also Sec. 2.4.2).

In each of the experiments, four signals were recorded: the forcing function r(¢), the
plant output m(t), the error signal e(¢) and the human response ¢(#) (Fig. 2.2). The controlled
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moving cursor was presented on a computer monitor as a circular solid dot, which varied
in colour for each plant considered, so that the test subjects were aware of a change in
the dynamics and thus the adaptation time was shortened. The reference target point was
displayed as a circle of slightly larger size and different colour (Fig. B.1).

The experiments were performed in compensatory and pursuit modes (Section 2.3.1).
Besides the two control modes, the HTE were presented other variants: two different control
devices, five different plants, and with or without a future prediction indicator. Whenever the
future prediction was active, an additional dot was presented in the screen. This dot gave
prediction information to the subjects about the speed and direction of the plant response, by
displaying its predicted position 0.5 s after the present instant!.

A training round of tests, which were not recorded, was performed prior to the actual tests
in order to habituate the participants to the experimental setup. Each participant performed
20 experiments grouped in rounds of five. Each experiment lasted for 90 s. After each round
of five experiments the subjects were requested to rest by the investigator for some minutes.
The five considered transfer functions of the controlled plants are

Y (s) K

U(s) s*(Ts+1) 8.1

with parameters o« = 0.5,0.75, 1, 1.25, 1.5 (and T = 0.1). K was adjusted empirically for
the joystick (K = 2) and the steering wheel (K = 5). The steering wheel was calibrated to
allow a total of 900 degrees of rotation lock to lock.

The order of the different plants was randomised for each subject (Table B.2 and B.3).
For each participant, half of the experiments were executed with the joystick and half with
the steering wheel. Half of the subjects performed the joystick experiments in compensatory
mode and the steering wheel experiments in pursuit mode.

The forcing function r(r) was composed of a sum of sinusoids with a range of frequencies
fx =0.01 —20Hz:

r(ty="Y e Yrsin(fi-2mt — @) (B.2)

£:€{0.01,0.02,...,20}
where ¢ € [—7, 7] is a randomised phase for each summation term. With this choice, the
amplitude is negligible for frequencies outside of the range where a human-operator can

perform adequate control (Sec 2.4.2).

! It was observed that, while some subjects made active use of the future prediction dot to reduce the
response delay, other subjects do not seem to have used it at all. We believe that more training was needed
before all the subjects could use the future prediction dot to improve their performance. As the results were
found to be inconclusive, they are not reported here.
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The experimental data were sampled at 100 Hz. For each of the 90 s events, the initial 20 s
were excluded, in case the subjects were adapting to the new plant dynamics. Another reason
to exclude these initial data is to allow the fractional operators to populate their internal
memory. Similarly the final 10 s were excluded, as during that time the forcing function was
gradually returned to zero, to minimise discontinuity during a change in plant dynamics.
Thus from each event, only 60 s of data were analysed.

In Table B.4 the experimental setup parameters are summarised. In Tables B.2 and B.3,
the order in which the rounds of experiments were performed is detailed.

(a) Compensatory mode

(b) Pursuit mode

Fig. B.1 Display presented to the subjects during the HTE. The blue dot, controlled by the
subject, follows the target — red circle. A white bar indicates the applied control gain.
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EXPERIMENT #:

S1

0.5

1.5

0.75

1.25

0.5

1.5

0.75

OO0 Q||| N B|W[N—

—

1.25

MODE:

NO PRED.

PRED.

Table B.2 HTE performed with a joystick as control device. The table shows the fractional
order o of the plant (B.1) for each subject and for each experiment in the order they were
performed — in compensatory and pursuit modes and with or without prediction dot. For each

subject the experiments were presented in a different order.

SUBJECT
EXPERIMENT #: S4 S6
1 1 1
2 1.25 1.25
3 1.5 0.75
4 0.5 1.5
5 0.75 0.5
6 1 1
7 1.25 1.25
8 1.5 0.75
9 0.5 1.5
10 0.75 0.5
MODE: C C

S8 S10

1 1 |5
15 075 | 2
05 15 3
125 05 | =z
0.75 125
1 1
s
. 5 |2
1.25 05 |~
0.75 1.25
C C

Table B.3 HTE performed with a steering wheel as control device. The table shows the
fractional order o of the plant (B.1) for each subject and for each experiment in the order
they were performed — in compensatory and pursuit modes and with or without prediction
dot. For each subject the experiments were presented in a different order.
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] Experimental Parameters \

Number of subjects 10

Age of subjects 22-33 years
Duration of each event 90 s (60 analysed)
Number of recorded events 200

Forcing function freq. range 0.01-20Hz*
Sampling frequency 100 Hz
Steering wheel range —450 to 450 degrees

Table B.4 Summarised experimental parameters. (x) The frequencies of the forcing function
are spaced every 0.01 Hz. Note that the frequencies are weighted so that they are only
effective up to 0.5Hz (B.2). The remaining frequency values are added to simulate noise in
the system.

The HTE were approved by the College of Science Research Ethics Committee of the
University of Lincoln with UID COSREC491.

B.2 Naturalistic Driving Data (NDD)

It is only recently that rich databases of naturalistic driving data (NDD) have become
available for research. Here, the source of the data is the Road Departure Crash Warning
(RDCW) Field Operational Test [LeB06]. The NDD dataset corresponds to 200 driving
events with 4 different drivers — 50 driving events per driver. This database was collected on
Nissan Altima 3.5SE vehicles (Tab. B.5) at 0.1 Hz.

For a part of the presented analysis and parameter estimation these 200 driving events
were used. The data are considered naturalistic, that is, the data are recorded in real road
conditions where subjects don’t have to interact with the logging equipment, and eventually
become unaware of it. Thus the data represent normal driving. Each of the driving events has
a duration of 60s. The four drivers — here called (A, B,C, D) — are all within the age range
from 40 to 50 years old. Drivers (A, B) are female while drivers (C, D) are male. The initial
speed of the events is 28 —32ms~! with an overall variation less than +5ms~!. The driving

events were recorded on roads relatively straight, with a radius of curvature of at least 500 m.

B.3 Driving Simulation Experiments (DSE)

NDD (Appendix B.2 and Section 4.2) are inherently noisy and complicated to analyse.
On the other hand, data collected from subjects in laboratory tasks, although may be less
representative of realistic driving, are more interpretable; this is partly due to the fact in

laboratory experiments the sensory inputs presented to the human-operator can be restricted
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Nissan Altima 3.5SE (2003) Parameters \

Steering ratio (ry) 16:1
Curb weight (M) 1471kg
Dist. from cg to front axle (/5) 1.064m
Dist. from cg to rear axle (I5) 1.736m
Wheelbase (1) 2.8m
Track 1.552m
Yaw moment of inertia (1) 1981kg - m?

Table B.5 Summarised parameters of a Nissan Altima 3.5SE (2003) vehicle.

to relevant variables. The data collected in Appendix B.1 consisted of a simple laboratory
task, designed to assess the basic features of human control and establish a methodology.
Here a semi-realistic setup was designed to collect steering data under varying conditions.
We will refer to this dataset as Driving Simulation Experiments (DSE) dataset.

B.3.1 Experimental Setup
Software

An application in C code was created for the purpose of performing the experiments. The
graphics were generated in 3D with the Open Graphics Library (OpenGL) API [SG109]
and the OpenGL Utility Toolkit (GLUT), through the GPU of a high performance desktop
computer® with a Linux operating system. The graphics in the display were refreshed at a
variable frame rate (40 Hz minimum) by the GPU.

The graphical simulation consisted of a forward road scene (Fig. B.2), with additional
elements in some of the experiments, such as a moon near the horizon or an obstacle on the
road. The geometry of the road path was first generated with Matlab® [MAT18] and saved
into a comma-separated values (CSV) file.

The software application loaded the road geometry CSV file into memory and initialised
the graphical window presented to the subject, then the simulation run in real time at 1000 Hz.
At each time step the variables of the vehicle simulation were updated through a Runge-Kutta
method of order O(h*) [Lam91]. The vehicle states were simulated with the linear vehicle
model in [Abel5] (Eq. 3.14 and Table B.6). Additionally, a random perturbation was added
to the yaw rate of the vehicle in order to mimic the effect produced by road pavement
irregularities and wind gusts. The perturbation was composed by a sum of sinusoids of
different frequencies and was tuned empirically.

2With an Intel 7th Gen Quad Core 17 7700K 4.2GHz CPU, a NVIDIA GeForce GTX 1070 8GB GDDRS5
GPU and a low latency SSD drive.
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Mass of the vehicle M 1500 kg
Distance from vehicle c.g. to front axle /¢ I.1m
Distance from vehicle c.g. to rear axle /, 1.6m
Wheelbase [ = [y +1, 2.7m

Front cornering stiffness (both wheels) Cq ¢ || 55000 N/rad
Rear cornering stiffness (both wheels) Cg 60000 N/rad
Yaw moment of inertia / 2500 kg-m?
Steering Ratio r; 16:1

Table B.6 Linear vehicle model parameters in the DSE.

Data were saved to another CSV file for each time step at the end of each test. The
recorded variables were the simulation time, vehicle position, vehicle heading, yaw rate,
lateral offset, body slip angle, steering angle (or torque, depending on the control device) and
associated variables according to the presented perturbations (moon position or splay angle
modifications).

Hardware

Attached to the computer, there were two displays and two control devices — one display
for each control device (Fig. B.4). Also, a pair of speakers were used to signal the driver of
varying conditions during the experiments. The two control devices were a Logitech G27
steering wheel, and an Isometric Steering Wheel (ISW). During the simulation the motor of
the gaming wheel was controlled from the C code routine to produce a self-aligning torque
effect.

The ISW was built for this particular experiment and consisted of a torque sensor (Tab. B.7

and Fig. B.3) attached to a support frame, made of wood and other materials. The signal

Fig. B.2 Forward view of the simulated road in the OpenGL simulation as it was presented to
the subjects.
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Model Omega TQ301-45N
Range Sensor 0—45N-m
Range in the set up — limited 0—15N-m
Accuracy +0.2 %FSO
Wheel Diameter 0.32m

Table B.7 Specifications of the torque sensor and the ISW.

from the torque sensor was read by a single-board micro-controller’ acting as a transducer.
The simulation application requested the state of the sensor to the micro-controller at each
simulation step. When requested, the micro-controller broadcasted the torque sensor back to

the application. The communication between the devices was set at 921600 baud.

-30

-40 -

-60 -

PSD (dB/Hz)

-70

-80 I I I
0 5 10 15 20 25 30 35 40 45 50

Frequency (Hz)

Fig. B.3 PSD of the torque sensor noise. The sensor, when in rest state, produces band limited
white noise. The PSD was computed with the Welch method with a window of ~ 0.5s and
50% overlap.

B.3.2 Driving Experiments with Test Subjects

Ten subjects of varying age, gender and level of driving experience participated in the
experiments (Table B.8). The experiments are summarised in Table B.9 and were performed
in the same order as in the table with one exception: odd subjects performed experiment 7a
before 7b while even subjects performed 7b first. The experiments were executed over two
different days — each day involving approximately 30 m of driving with some rest periods —
to monitor human adaptation to isometric control. In all the experiments — with the exception
of Exp. #3 Day 1, Exp. #2 Day 2 and the ISW training experiments — the visual projection
represented a driver view from the left seat of the car — offset 0.45 m.

3An Arduino Due.
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| SUBJECT: || SI | S2 [ S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 |
GENDER: M M F M F M M M M F
AGE: | 32 33 | 34 | 41 25 28 22 20 30 28
EXP. VID. GAMES: || NO | YES | NO | NO | NO | NO | YES| YES| NO | NO
DRIV. LICENSE: || YES | YES | NO | YES | YES | YES | YES | YES | YES | YES
EXP. DRIVER: || YES | YES | NO | YES | YES | YES | YES | YES | YES | YES
Table B.8 Gender and age of the 10 participants in the DSE. In the table it is also detailed
for each subject their previous experience in playing video games, whether the subjects hold
driving license or not and their driving experience.

The experiments with the Logitech G27 wheel were designed to assess different aspects
of visual acquisition during driving, and are discussed in Chapter 4. The experiments with
the ISW were executed to measure the capacity of humans to perform vehicle control based
on torque input (Chapter 5).

The DSE were approved by the College of Science Research Ethics Committee of the
University of Lincoln with UID COSREC491.

Fig. B.4 Human subject testing the experimental setup. The ISW is on the left side —
controlled by the subject. The gaming steering wheel is on the right side.
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DAY 1 |

Wheel

Duration

Description

Logitech

180s

Pseudorandom road path. Basic steering control to adapt the subjects to
the used setup (50 km/h).

Logitech

220s

A more challenging road than that in Exp.#1 — with sharper turns to
further adapt subjects to the setup (50 km/h).

Logitech

360s

Driving on a straight road. During # = 170 — 180 the graphical simula-
tion changes the seat position of the driver smoothly — from the left to
the right seat (50 km/h).

Logitech

180s

Driving on a straight road (50 km/h). From ¢ = 20s the drivers can
only see the near 4 m of the road. At¢ = 60s a moon appears over the
horizon. From ¢t = 120s the moon oscillates with increasing amplitude.

ISW

180s

A circle alternates between two positions in the display every 20s. The
drivers adjust the position of the follower by applying torque to the ISW.
This test is to adapt subjects to the ISW.

ISW

180s

A circle alternates between random positions in the display every 6s.
The drivers adjust the position of the follower by applying torque to the
ISW. This test is to further adapt subjects to the ISW.

ISW

420s

The subjects control a simulated vehicle on a pseudo-random curved
road with the ISW. Every 60 s a flash in the screen and a sound in the
speakers signal of a change in the transfer function between the ISW
and the vehicle (50 km/h).

DAY 2 |

Logitech

180s

Subjects drive on a circular road (800 m radius). At ¢ = 20s, the road
visibility is shortened to 4 m. At ¢ = 60s the road visibility normalises.
During the test a moon appears on the background — the moon moves
normally according to the road curvature and disappears on the left. At
t = 1205 the road visibility shortens again, and another moon appears
from the right, which 30 s later reverses its direction (50 km/h).

Logitech

240s

This test consists in driving on a straight road at 50 km/h. At =30s a
black screen occludes a part of the display, allowing the drivers to see
only in the far distance (from 14 m ahead). During the test the lane lines
perturbate their relative angles; the road becomes progressively broader
towards the right side by one meter, and then gradually returns to its
initial width (90-150s). This is followed by the same effect with in the
left lane line (180-240 s).

ISW

420s

Same as test 7 in Day 1 but at 30 km/h.

ISW

420s

Identical to test 7 in Day 1 (50 km/h).

ISW

420s

Same as test 7 in Day 1 but at 70 km/h.

Logitech

70s

The vehicle self drives and the subject keeps hands off the wheel for 50 s.
At times the display becomes fully occluded. Att = 50s the vehicle
requests the driver to take control (with a coloured flash and a sound).
The subject must dodge an object in the middle of the road (straight
driving at 50 km/h). This is an easy adaptation test for 7a and 7b.

Logitech

100s

The vehicle self drives and dodges an object on the road. The display
occludes at t = 75s. Att = 78s the display visibility normalises and
the driver is requested to intervene and dodge an obstacle on a curved
road — within a short reaction time — (50 km/h).

ISW

100s

Identical to test 7a but with the ISW.

Table B.9 Summary of the DSE in the order they were performed.
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Bootstrap Test of Goodness-of-fit

Once a probability distribution is selected to be representative of a data set X, and its

parameters are fitted to the data giving a probability density function (PDF) fx and a

cumulative distribution function (CDF) Fx, in order to quantify the goodness-of-fit the
following bootstrap method can be used [SMQ93]:

1.

Determine the distance between the fitted probability distribution and the empirical
data by using some statistical measure, for example the Kolmogorov-Smirnov distance
can be used:

D = max |Fx (x) — Fx(x)| (C.1)
xeX

where F is the empirical CDF.

. Generate a set of pseudo-random numbers Y distributed according to Fx.

. The parameters of the chosen probability distribution are fitted again to the new

artificial data Y, obtaining a new CDF Fy.

. The Kolmogorov-Smirnov distance is calculated for the artificial data set Y,

d =max |Fy(y) — Fy(y)|-
yeY

. Steps 2 to 4 are iteratively repeated many times (say 10000 — 100000 times) generating

a set of distances D = {dy, da,...,dy}.

. The p-value of the goodness-of-fit test is estimated according to

_ #{dcD|d>D}
b= N

(C.2)
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Bootstrap Test of Goodness-of-fit

where # denotes the cardinality of the specified set, that is, p is the proportion of
distances in ) greater than D. If p > 0.1 the goodness-of-fit test rejects the null
hypothesis of the data not belonging to the specified distribution; the data can be
explained by the distribution considered.
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Stability of the MHC model

In this appendix, the stability of the MHC model (Sec. 4.3), acting in closed-loop with a
second order system, is demonstrated.
System Equation

Considering a second order system with state x, input # and assuming that its relaxed state is

at x — u = 0, the system can be written as

mx" (t) = —b (xX'(1) —u' (t)) — k (x(r) — u(z)) (D.1)

mx" () +bx'(t) + kx(t) = ku(t) + bud (). (D.2)

Also, considering a forcing function r(¢), the error of the system in closed-loop is
e(t) = r(t) — x(t). Equation D.2 can now be rewritten as a first order system introducing an
additional variable w(t) = €(¢):

e (t) =wlt) (D.3a)

mw' (1) 4+ bw(t) +ke(t) = —ku(t) — bu' (1) + (mr' (t) + br' (1) + kr(1)) . (D.3b)

MHC Model Equations in Continuous Time

For convenience, the equations of the MHC model in discrete time can be written as:

_ |etk‘ P .
&, = with p >0 (D.4a)

|efk—1 |
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Now, given a small time step A, we have

hlk - htk_l (élk - 1)hlk—l

At At ’
and taking limits
gl 1 (le(t) Y
H(t) = lim —U=2) Wt —Ar) = ST ey
()= fim =4 t=a)="Cop "W

Then / !
W (1) (le(n)]) when A(¢) > 0 and e(r) # 0,

which can be written as
(logh(r))" = p(logle(r)])".

Taking initial conditions such that #(0)/|¢(0)|P = 1, the equation above solves to

System in Closed Loop

(D.4b)

(D.4c)

(D.5)

(D.6)

D.7)

(D.8)

(D.9)

(D.10a)

(D.10b)

Putting together the system (Eq. D.3) with the MHC response (Eq. D.10) acting in feedback

results in

(D.11a)

w(t) = n%{_bw(t) — ke(t) — K (ke(t) +bpw(t))|e(t) [P~ +mr” (t) + br' (t) + kr(z)}.

(D.11b)
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Or when r(t) =0,
e (t) =wlt) (D.12a)

w(t) = %{—bw(r) — ke(t) — K (ke(t) +bpw(1))|e(t)|P 1. (D.12b)

Stability of the System

The stability of the system D.12 can be established by finding a Liapunov function [Lue79],
that 1s, a continuous function V' that is positive within all the trajectories and its derivative is
negative for every trajectory. In this case we can choose the function:

K-k

1
Vie,w) = Ek62+§w2+m|e|p+l (D.13)

which satisfies V (e, w) > 0 except at (e,w) = (0,0), and

dv 2A% 2A%
- ew)= ﬁe/Jr%W/ = —bw? — Kpbw?|e|P™! (D.14)
which satisfies ‘il—‘t/(e,w) < 0 except at (e,w) = (0,0). Therefore the orbits of D.11 converge

to the fixed point r(z) (Fig. D.1).

Fig. D.1 Orbits of the system in Eq. D.12 form=1,6=09,k=1,p=04and K = 1.






Appendix E
Splay Angles Computation
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Fig. E.1 Diagram of the projection of the splay lines — in blue — on a plane 7. The observer

is situated at O. Here a road of width W is considered.
The splay angles are defined as the interior angles of the projection of the road lines over

a plane 7, situated at a distance d; from an observer O. The observer has its oculus at height
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h with coordinates O = (0,/,h) — with respect to the reference frame in Fig. E.1 — where [ is
the lateral offset, which is positive to the left.
Two points from each road line are considered: A7 and By on the left road marking, and
Apg and Bg on the right. The road is at an angle y with respect to the line of sight of the
observer. Thus,
AL = (dl,W/Z—i—dl tan l[/,())
B = (d2,W/2+d>tany,0).

(E.1)

The projection of these points over 7 are,

AL =Ap

- (E.2)
By = (di,l+di/ay(W/2+dptany — 1) ,h— hdi/dy).

Thus changes in heading () result in lateral displacement of the left splay line (Fig. E.1 in
blue and Fig. 4.13b) by d tan y. The left splay angle 6;, (Fig. 4.13a) results from the relation

h— hdi/a, h
oL I+difa,(W2+drtany — 1) —W/2—ditany W/2—1 E3)
Equivalently, it can be proven that
h
tan O = (E.4)

Wh+1



Appendix F

Computation of the Steering Entropy

The steering entropy (H),) is obtained by first computing the difference between a steering sig-
nal 8 (¢ ) and its prediction &(z;). The prediction 8(#;.) results from the second order Taylor se-
ries approximation of 8(r) at every time step. From the prediction errors e(t;) = & (1) — 8 (1),
the 90% percentile « is then calculated and the values e(¢) separated into the nine groups de-
termined by the following bin edges: {—oo, =50, —2.5a, — ¢, —1/2a, 1200, @, 2.50t, 500, 00 } .
Lastly, the entropy of the percentage of values p; (i = 1,...,9) inside each of the bins is
obtained [NFNB99]:

9
H,=—Y piloge{pi}. (F.1)
i=1
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