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160 00 Prague 6
Czech Republic

Copyright c© August 2019 Ing. Petr Mizera



Declaration

I hereby declare I have written this doctoral thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, August 2019

............................................
Ing. Petr Mizera

iii



iv



Abstract

This thesis deals with possible applications of Articulatory Features (AF) in speech recog-
nition systems with special focus on improvement of Czech spontaneous speech recogni-
tion. As spontaneous speech is caused by frequent occurrence of coarticulation process,
assimilation and reduction of phones and as AF contain the information about speech
production mechanisms, they might represent a possible way how to improve results of
these systems. So, the potential contribution of AF-Based TANDEM ASR architecture on
the tasks of the recognition or phonetic segmentation of spontaneous speech is described
in this work as well as their performance under more adverse acoustic conditions.

As the first result, the multi-valued AF classes for Czech and four East-European
languages (Slovak, Polish, Hungarian, and Russian) were defined and unified and further
work was focused on the estimation of AF using artificial neural networks. The suitability
of standard and advanced acoustic speech features were analyzed for the AF estimation,
mainly from the point of view of temporal context at the input of ANN/DNN network.
The optimum length of 210÷ 310 ms was found across languages. The Czech AF classes
were estimated with the average FAcc around 90%. The behaviour of AF estimation in
mismatched or adverse noisy acoustic conditions was also studied and the robustness of
DCT-TRAP features was proved as the best choice for this task.

The application of AF within ASR was realized in the form of AF-Based TANDEM
system, however, baseline ASR systems had to be prepared, mainly Czech casual speech
recognition system with focus on optimization of acoustic and language models as well as
the usage of different corpora resources for this task. The performance of the AF-Based
TANDEM system was then analyzed for the English phone recognition and Czech ASR
tasks. Positive impact of this system was observed for standard monophone (mono) and
triphone (tri1) systems, which are based on MFCC features. The ASR combination of
GMM-HMM/DNN-HMM with the AF-Based TANDEM system on the level of lattice
with decoded hypotheses significantly improved baseline results.

Finally, phonetic segmentation task was analyzed using various type of acoustic model
architectures (GMM-HMM, DNN-HMM, and AF-based TANDEM) as well as focusing
on proper pronunciation variant selection. It was done for the following two task: read
English (TIMIT) and casual Czech (NCCCz) and two-stage forced-alignment with com-
bination of DNN-HMM and optimized monophone-based system was proposed and the
improvement of phone boundary determination was proved for both tasks. The 93% phone
boundaries accuracy on the level of 30ms criteria was achieved for read speech in TIMIT,
the accuracy around 90% was achieved on for casual one in NCCCz.

Keywords: articulatory features, automatic speech recognition, casual speech recogni-
tion, phonetic segmentation, Kaldi
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Abstrakt

Předložená disertačńı práce se zabývá možnými aplikacemi artikulačńıch př́ıznak̊u (AF)
v úloze rozpoznáváńı řeči s užš́ım zaměřeńım na zlepšeńı rozpoznáváńı spontánńı a ne-
formálńı řeči pro češtinu. Zejména řeč vytvořená při neformálńıch rozhovorech je velmi
ovlivněna řadou fonetických jev̊u jako jsou koartikulace, asimilace či redukce hlásek d́ıky
méně přesné artikulaci. Artikulačńı př́ıznaky, které obsahuj́ı informaci o produkci řeči, se
proto nab́ızej́ı jako jedno z možných řešeńı pro zlepšeńı přesnosti rozpoznáváńı neformálńı
řeči. Práce popisuje potenciálńı př́ınos TANDEM systémů založených na AF v úlohách
rozpoznáváńı a fonetické segmentaci spontánńıch promluv.

Práce se nejprve zabývá definićı a popisem artikulačńıch př́ıznak̊u pro český jazyk
a čtyři východoevropské jazyky (slovenštinu, poľstinu, mad’arštinu a ruštinu), pro které
byly artikulačńı tř́ıdy sjednoceny. Druhou významou část́ı práce je implementace klasifiká-
tor̊u AF tř́ıd z řečového signálu založených na bázi hlubokých neuronových śıt́ıch, včetně
výběru vhodných akustických př́ıznak̊u pro odhad AF. Hlavńı pozornost je věnována op-
timálńımu nastaveńı časového kontextu na vstupu DNN śıtě. Výsledkem experimentálńı
části pak je nalezeńı časového kontextu v rozmeźı 210 ÷ 310 ms pro všechny analyzo-
vané jazyky. AF tř́ıdy byly pro češtinu odhadnuty s přesnost́ı 90% na úrovni klasifikace
v krátkodobých časových rámćıch. Dále byla analýzována přesnost odhadu AF v šumu
a nepřizp̊usobených akustických podmı́nkách. Zde se prokázala robustnost DCT-TRAP
př́ıznak̊u a jejich vhodnost pro AF klasifikaci.

V daľśı části práce jsou použity AF v rozpoznávač́ıch na bázi TANDEM architektury
s ćılovým zaměřeńım na implementaci a optimalizaci rozpoznáváńı neformálńı řeči. Ne-
jprve však byly vytvořeny základńı systémy resp. akustické modely (GMM-HMM, DNN-
HMM resp. TANDEM). Přesnost AF-TANDEM systému byla studována na rozpoznáváńı
anglických hlásek a české řeči. Experimenty ukázaly pozitivńı př́ınos AF-TANDEM na
úrovni monofonńıch a trifónových systémů. Kombinace GMM-HMM/DNN-HMM a AF-
TANDEM systémů s AF-TANDEM systémem ukázala významné zlepšeńı oproti základ-
ńımu systému trénovaného bez AF př́ıznak̊u na úrovni dekódovaných hypotéz.

Posledńı část práce je věnována fonetické segmentaci realizované pomoćı r̊uzných aku-
stických model̊u (GMM-HMM, DNN-HMM a AF-TANDEM) s přihlédnut́ım na vhodný
výběr výslovnostńıch variant. Experimenty byly provedeny pro dvě úlohy: anglickou
čtenou řeč a českou neformálńı řeč. Zvýšeńı uspěšnosti automatické segmentace bylo
dosaženo algoritmem dvoufázové fonetické segmentace, kde komplexńı DNN-HMM sys-
tém je použit pro źıskáńı fonetického přepisu pro následné automatické zarovnáńı pomoćı
optimalizovaného monofonńıho systému. V př́ıpadě složitěǰśı úlohy, jako je neformálńı řeč,
kombinace dvou typ̊u DNN-HMM systémů vedla na 90% přesnost určeńı hranic hlásek.
Pro anglickou čtenou řeč byly hranice určeny s 93% přesnost́ı.

Kĺıčová slova: Artikulačńı př́ıznaky, automatické rozpoznáváńı řeči, rozpoznáváńı ne-
formálńı řeči, fonetická segmentace, Kaldi
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Chapter 1

Introduction

As the voice represents the most effective way of communication between humans, the

idea of developing a system which would allow to process human-machine communication

has been a natural interest for researchers from the early 20th century. It will be soon 100

years since a real application first used voice iteration [22]. The huge effort and enthusiasm

of speech researchers allowed to transform the dreams about a natural human-machine

communication to a real voice technology system which are now used in real life conditions.

Of course, the big progress in information technologies and the digital revolution boosted

the development of voice technologies. High performance computing clusters containing

graphical processing units make it possible to train and deploy voice-driven systems based

on Artificial Intelligence (AI).

Various applications are commonly used in our daily lives. The list includes dictation

systems [84] enabling us to replace keyboard input with a natural speech, virtual agents

and voice-controlled devices to smart homes, cars, or mobile phones [15], on-line subtitling,

archiving, or monitoring of broadcast or TV programs [138], analysis of speech in medical

application for diagnostic purposes, general identification of speaker, or many others.

The research in the field of automatic speech recognition (ASR) started using speech

recognition based on Dynamic Time Warping (DTW) [125]. Since then, the field has made

a great progress towards the Large Vocabulary Continuous Speech Recognition (LVCSR)

based on hidden Markov models (HMM) which were proposed by Jelinek from IBM labo-

ratories [54] in 1980s. This statistical approach using combined Gaussian Mixture Models

(GMM) and HMM has become the state-of-the-art for many years. In 1990s, artificial

neural network (ANN) was suggested to replace GMM in HMM modelling. The hybrid

ANN/HMM ASR system was proposed by Morgan [91] where a multi-layer perceptron

(MLP) network was used to estimate the HMM state-posterior probabilities. This ap-

proach was designed to overcome limits of the GMM/HMM approach, specifically the

fact that modeled features must have a Gaussian distribution [124]. A TANDEM archi-

1
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tecture was later proposed by Hermansky, where the an MLP was used as a classifier

generating phoneme posterior probabilities which were then transformed, decorrelated

and used as features on the input of standard GMM/HMM-based ASR system [47].

The final great leap, in terms of recognition accuracy, came with the adoption of the

deep neural network (DNN) and deep-learning techniques to model the acoustic and the

language components of the speech. The Microsoft Research team[21], [48], [23] proposed

a system based on context-dependent deep neural network - hidden Markov models (CD-

DNN-HMM) [21], [48], [23] and the architecture was, for a time, a mainstream solution

for all LVCSR tasks running in real-time. The most recent trend, enabled by an increase

in computational power and the availability of huge amount of data, includes ASR that

model simultaneously the whole recognition chain, i.e. so called End-To-End ASR systems

(proposed by Google in 2015 [16]). End-to-End, and DNN-based ASR systems in general,

are currently at the top of research interest and they typically achieve a very high accuracy

in normal conditions for a majority of world languages.

The precision of an ASR is worse in the case of spontaneous or casual speech, where the

pronunciation of particular words can be strongly reduced. Creating a robust ASR system

for spontaneous speech has been a challenge for several decades which makes it a popular

research topic. Also, the situation of strongly adverse environmental conditions, i.e. when

background noise in recorded speech is very high, can decrease the accuracy of an ASR.

Many times, it is also not possible to use too complex architectures (e.g. for embedded

systems) or a system development is constrained by a limited amount of available data.

In such cases, traditional approaches based on GMM-HMM architecture still play a very

important role as a looking for an optimization of speech features computed in the front-

end part of general ASR system.

The idea to use Articulatory Features (AF) for extension of standard speech features

used in ASR is one possible way of how to improve the robustness of spontaneous or

noisy speech recognition. The speech production knowledge is a natural part of an ASR

system and the examples include using decision trees for triphone state tying or Vocal

Tract Length Normalization (VTLN) to reduce speaker variability. It has been showed

that including AF for acoustic modelling in a TANDEM system and for pronunciation

modelling can achieve very good results in the task of spontaneous speech recognition

for the English language [33], [80], [73]. Concerning the Czech language, the issue of

spontaneous speech has been worked on for several years [138], [52], [113], [116], [96], [114].

However, the achieved word error rate (WER) is still rather low, about 50%.

Therefore, the general motivation of this work is to find an optimized approach of

AF estimation for Czech and other languages and to analyze the contribution of AF in

real-life applications, mainly for robust spontaneous and casual speech recognition.
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Finally, the thesis is organized as follow.

• Chapter 2 summarizes the state-of-the-art in ASR and discusses usage of AF within

speech technology and goals of this thesis are defined.

• Chapter 3 describes the ASR framework and speech databases which are used in

the experimental part for training and evaluation of AF classifiers, AM, phone rec-

ognizer, and automatic phonetic segmentation. The chapter presents the baseline

LCVSR results under various conditions. Finally, the design of ASR system for

Czech casual speech recognition task is presented and analyzed.

• Chapter 4 describes the multi-values AF classes for Czech language. The unification

of AF for four East-European languages (Slovak, Polish, Hungarian, and Russian)

is also presented. The chapter provides a design of AF classifiers with focus on

optimum structure of MLP/DNN, type of input features and studies the optimum

temporal context at the input of MLP/DNN networks. The accuracy of AF classi-

fiers for all languages is presented.

• Chapter 5 presents the results of experiments focusing on the contribution of AF

in the task of phoneme recognition for English and the task of ASR for recognition

of Czech read and casual speech. The incorporation of AF information into ASR

is analyzed in the form of AF-TANDEM system and using combination of ASR

decoded hypotheses. Then, the possible contribution of AF in Clinical applications

is discussed.

• Chapter 6 deals with automatic phonetic segmentation of English read speech and

Czech casual speech. The chapter analyzes the impact of various types of AMs

(GMM-HMM and DNN-HMM) on the accuracy of phone boundaries determination

for both languages. The two-stage forced-alignment is proposed, described and

analyzed in this chapter. Finally, the chapter describes the process of canonical

NCCCz lexicon review and updated the LexFix tool for these purposes. The impact

of irregular pronunciation on automatic phonetic segmentation of Nijmegen Corpus

of Casual Czech with created lexicon is analyzed.

• Chapter 7 summarizes the content and contributions of this thesis and discusses the

next potential work with AF.
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Chapter 2

ASR and Articulatory Features:

State-of-the-Art

The automatic speech recognition task represents the complex problem which requires

knowledge from various research areas such as mathematics, digital signal processing, ar-

tificial intelligence, acoustics, phonetics, phonology and linguistics. Therefore, the goal

of this chapter is to introduce an ASR system, describe the state-of-the-art ASR archi-

tectures, and discuss challenges and motivation for the research described within this

thesis.

2.1 Conventional GMM-HMM ASR system

Generally, the goal of the recognizer is to decode an input speech signal which contains

an encrypted linguistic message spoken by a speaker to a word sequence. The structure

of a modern ASR recognizer consists of five basic modules: feature extraction, a acoustic

model, a language model, a pronunciation dictionary, and a decoder, and it is shown

in 2.1.

The module of feature extraction segments a discrete sequence of speech samples to

short frames and transforms frames from time to frequency or cepstral domain. The

feature extraction process removes redundant information from speech signal (fundamen-

tal frequency, a phase) and keeps only the information which is important for acoustic

modelling. The benefit of cepstral features is that they are decorrelated, which is pre-

ferred by GMM-based acoustic modelling, but also due to the fact that similarly sounding

speech units create clusters in the cepstral domain. To improve the robustness of cepstral

features, cepstral-mean normalization is commonly applied to reduce channel or speaker

variably.

The acoustic model describes the acoustic variability of modelled speech units. The

5
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Figure 2.1: The principle structure of the ASR system

selection of the speech units is largely arbitrary but the typical choice is to use mono-

phones (i.e. context-independent phones) or triphones (context-dependent phones). The

stochastic approach based on HMM coupled with GMM has been traditionally used to

tackle the variability in both time and cepstral domains for several decades.

The purpose of the language model (LM) is to model dependencies between particular

words in a sentence. Typically, rule-based or stochastic models are used. The parameters

of a stochastic LM are trained on huge text corpora. The dictionary contains mapping

between words and theirs pronunciations.

Before the decoding process starts, the acoustic, language models and dictionary are

compiled to a complex decoding graph which represents the source of knowledge for the

decoding process. The decoding process starts with computation of features which are

then passed to a decoder that computes acoustic scores in an acoustic matching block

and combines them with language scores that are stored in the recognition graph. The

process ends by searching a large hypotheses space for the word sequence which maximizes

a posterior probability for given input sequence of features.

From a mathematical point of view, the recognition problem can be formulated using

the following equation:

Ŵ = arg max
W

P (W|O) (2.1)

where W = w1, w2, ..., wn is the sequences of spoken words, O = o1, o2, ..., oj is the se-

quences of the feature vectors and Ŵ represents the decoded hypothesis. The conditional
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probability can be re-written applying Bayes theorem to

Ŵ = arg max
W

P (O|W)P (W)

P (O)
(2.2)

where the P (O|W) represents acoustic model, P (W) represents language model and

P (O) is the feature vectors probability (it is independent of Ŵ).

2.1.1 Cepstral-based speech features

To solve the speech recognition problem means to solve a pattern classification problem.

The design of suitable features is critical for this approach. Various methods of feature

extraction were designed with regards to understanding how the speech is produced by a

human production system and how the speech is perceived by a human auditory system.

This chapter describes a category of cepstral features which model spectral properties of

a shot-time speech signal. Cepstral coefficients are used as features for speech recognition

due to arguments based on speech production and perception knowledge [76]. The first

is that the cepstrum deconvolves voice source from the vocal tract. The second is that

humans perceive sounds in critical bands. The most common feature set includes the so

called mel-frequency or perceptual-linear-predictive cepstral coefficients (MFCC of PLP).

Articulatory features represent another category of ASR features which are based on

speech production knowledge. The process of speech production and the AF features is

discussed and described in section 2.3.

Short-time spectral analysis

The goal of the feature extraction component shown in 2.1 is to convert speech signal

to sequences of features vectors for further classification describing well a variation of

non-stationary speech signal characteristics during the time. Discretized and quantized

analog speech signal is usually saved in 16bit Pulse-Code Modulation (PCM) format (µ-

law/a-law represent formats used in 8k telephone domain). Digital speech signal is then

represented as a sequence of samples x[n] = {x[0], x[1], ..., x[N − 1]}, where N is number

of samples.

A preemphasis filter is often used as the first step in the extraction process for many

speech features. The objective of the preemphasis is to amplify high-frequency components

as a compensation for their attenuation during human production [115]. The filter is

designed as a 1st order FIR filter described by one coefficient representing the zero point

of its transfer function.
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The signal is then split into quasi-stationary short-time frames and each short-time

frame is multiplied by a weighting window w[n] (usually Hamming window). The typical

window length and the shift is 25 ms and 10 ms respectively. The window is applied to

compensate for the effect of spectral leakage in the spectrum computed on the basis of the

DFT (realized by an FFT, Fast Fourier Transform algorithm). This procedure represents

the first part for a majority of feature extraction techniques.

Mel-Frequency Cepstral Coefficients

MFCC cepstral features were designed to model human auditory system. They approxi-

mate nonlinear behavior of human perception as a function of frequency and the compu-

tation process is shown in Fig. 2.2.

Figure 2.2: MFCC feature extraction

Computed real and imaginary spectral components still contain a lot of redundant

information for a classifier, so the phase information is discarded and the magnitude spec-

trum is transformed using a filter bank to reduce number of spectral components. For

MFCC features, this next step involves using the mel-based filter bank which approxi-

mates the non-linear perception of frequencies by the human auditory system. Mel-based

filter bank consists of overlapping triangular filters which are linearly spread on the mel-

frequency scale. These values represent the energy in particular frequency bands. Such a

filter bank is usually realized using DFT, where the mel-based logarithmic filter-bank ener-

gies gj are computed as a multiplication of square magnitude spectrum and the frequency

response Hmel,j of the j-th filter as

gj = ln

N/2∑
k=0

|S[k]|2Hmel,j[k] for j = 1, 2, ..., M , (2.3)

where S[k] is DFT-based spectrum, N length of analyzed frame in samples, and M the

number of bands in used filter bank. Finally, gj is a real and even sequence which is

transformed to cepstral domain using Discrete Cosine Transform (DCT) to obtain cepstral
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coefficients cn, i.e.

cn =

√
2

P

P∑
j=1

gj cos
(πn
P

(j − 0.5)
)

for n = 1, 2, ..., M . (2.4)

The low dimensional MFCC coefficients describe the shape of magnitude spectra which

represents the configuration of vocal tract, zeroth-cepstral coefficient c0 is related to the

power of signal, and MFCC coefficients do not contain information about fundamental

frequency. The standard practice is to use 13 MFCC for GMM-HMM systems as the

application of DCT decorrelates the features on top of transforming them to the cepstral

domain. For DNN-HMM system, the filter bank coefficients gj (FBANK) are sometimes

preferable, but a high dimensional MFCC are also used quite often.

Perceptual Linear Prediction

Perceptual Linear Prediction analysis (PLP) represents an alternative to MFCC and it

is the second most frequently used approach for speech feature extraction. PLP was

developed by Hermansky [46] and the computation process is shown in Fig. 2.3.

Figure 2.3: PLP feature extraction

The close similarity of MFCC and PLP features can be clearly observed from the

diagram. The digitized speech signal is transformed to the short-time power spectral

domain and then transformed in several steps which aim to exploit knowledge of the hu-

man auditory system (critical-band analysis, equal-loudness-curve and intensity-loudness

power-law application). The filter bank is implemented in the power spectral domain and

consists of the trapezoidal filters which are equally spaced on the bark scale.

The extraction process ends with the computation of cepstral coefficients using LPC

(Linear Predictive Analysis), i.e. modified power spectrum is modeled using all-pole

autoregressive (AR) model of the order p. More specifically, inverse DFT transforms power

spectra to autocorrelation coefficients and then, Yule-Walker method is used to estimate
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the autoregressive coefficients ak. The final PLP cepstral coefficients are obtained from

the autoregressive coefficients using recursive formula as

cn = −an −
1

n

n−1∑
k=1

(n− k)akcn−k, for n = 1, 2, ..., p.

Temporal context information

It was shown by many authors that the long temporal contextual information is very

important for increasing accuracy of ASR systems [92], [103]. The above mentioned

cepstral features describe a speech signal in short-time frames which capture temporarily

limited information about speech units modelled by a classifier. To capture the longer

temporal context and to improve the ASR accuracy, the delta (dynamic), delta-delta

(acceleration), or third differential (delta-delta-delta) features are often concatenated into

the final feature vector. These features describe the evolution of static features [62] and

thus capture the movement of the vocal tract during the phonation. Dynamic features

are computed from static features using simple difference formula which is applied across

a window

dn =

K∑
k=1

k ∗ (cn+k − cn−k)

2 ∗
K∑
k=1

k2
, (2.5)

where dn represents the delta coefficients for current feature frame cn and K determines

the size of the contextual window (2K + 1). Its typical value is 2. The acceleration as

well as the third differential coefficients are computed in the same manner as the delta

coefficients.

Another approach to integrate the long temporal contextual information into ASR that

is typically used in TANDEM system [47] is the use of the TempoRAl Pattern (TRAP)

based features. The TANDEM system and DCT-TRAP features are described in 2.2.2.

Normalization techniques

Normalization methods are commonly used in ASR or speaker recognition systems to

compensate for convolution noise distortion which is caused by channel and speaker vari-

ability (e.g. different type of microphone for AM training and testing) or by stationary

additive noise. The set of possible options includes two basic techniques. The first option

is the Cepstral Mean Normalization (CMN) where mean cepstrum is subtracted from

each short-time static cepstral vector. Second option is the Cepstral Mean and Variance

Normalization (CMVN) where the subtraction of average cepstrum is followed by a scal-

ing (dividing by standard deviation). Both of these techniques can be computed on per
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utterance or per speaker basis. In the case of per utterance basis, the mean and standard

deviation are estimated from all frames within one utterance. The computed stats are

then applied on all frames to provide zero-mean and unit-variance cepstral features for

next processing [24]. The former is preferred in online ASR systems whereas the later in

offline systems.

LDA-based and speaker-dependent features

An alternative option to dynamic features on how to incorporate temporal context into

the feature vector is to stack the static features with a context window of length l, where

l is the number of preceding and following frames added to the current frame. It is

often used as an input to MLP/DNN classifiers in various tasks such as voice activity

detection (VAD), phone recognition or DNN based ASR systems. Concerning convention

GMM-HMM system, it can be used as well, however, the dimension of stacked features

must be reduced using Linear Discriminant Analysis (LDA) [43] as well as decorrelated

using Semi-Tied Covariance (STC) [34] transform. The features processed in such a way

are suitable for modelling by HMM with diagonal covariance matrix in a GMM-HMM

system [108].

This target feature vector of the size 40 can be further speaker-adapted using feature-

space Maximum Likelihood Linear Regression (fMLLR) and these features are used in

modern LVCSR systems with GMM-HMM architecture as a standard setup. Fig. 2.4

illustrates the whole processing chain from raw MFCC to final features which are fed into

the decoding block.

2.1.2 GMM-HMM based Acoustic Modelling

As it was mentioned before, speech signal is a non-stationary signal. The same speaker,

when asked to phonate the same speech unit, can produce signals with a large degree

of variability due to the speaking rate, speaking style, quality of the pronunciation or

state/age of the speaker. To efficiently model this variability in representation, the

stochastic approach was introduced very early on and it still represents an important

part of ASR systems working in real-live conditions.

The Gaussian Mixture Models and Hidden Markov Models (GMM-HMM) combination

represented the first conventional approach for AM which was widely used by the speech

community. The HMM model is finite-state automaton which is characterized by the

following parameters:

• non-emitting/ emitting states,

• bj(o) emission probability distributions,
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Figure 2.4: Feature extraction used in GMM-HMM systems.

• A transitions matrix,

• initial state probabilities

The structure of a HMM model is defined by a configuration of non-emitting and

emitting states. The non-emitting states are used for initial and target states and are

mainly for concatenation of particular models to high level structures. The emitting

states in HMM are described by a probability density function and they are used to

model relationship between HMM state and acoustic observation (e.g. triphones clusters

in cepstral domain). The movement between particular states is defined by transitions

matrix and its transition probabilities. The commonly used structure for speech unit

modelling is a left-right HMM model. The model consists of 3 emitting states without skips

which model triphones (8-15 states are used in a word-model) and typically 5 emitting

states configuration is used for silence modelling. The GMM distribution was found to

be effective for modelling of speech units in cepstral space. An n-dimensional Gaussian

function is defined by the following equation

N (o, µ, C) =
1√

(2π)N |Cj|
· e−

1
2
(o− µ)TC−1(o− µ) (2.6)

where N is dimension of the Gaussian function which is equal to the dimension of a

feature vector o, µ is vector of mean values and C is a covariance matrix which describes

shape or rotation of distribution. When particular dimensions in feature vectors are

decorrelated, the Gaussian function with diagonal covariance can be used. This is a

typical situation, because cepstral features fulfill well above mentioned assumption thanks

to DCT in the last step of MFCC computation. Above mentioned Gaussian distribution

is used in acoustic model for state description in a generalized form of the GMM, i.e. as

the weighted sum of several Gaussian functions (mixtures). Probability density function
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which describes j-th state of HMM models is then defined as

bj(o) =
M∑

m=1

cjm ·N
(
o, µjm, Cjm

)
, (2.7)

where M is number of Gaussian mixture components and cjm is weight of particular

Gaussian mixture. To estimate the parameters of a GMM-HMM model, several training

algorithms were successfully developed, i.e. Maximum Likelihood (ML) estimation based

on Baum-Welch algorithm, discriminative training based on Maximum Mutual Informa-

tion (MMI) [18], boosted Maximum Mutual Information (bMMI), or Minimal Phone Error

(MPE) [55].

2.1.3 Language Modelling & Dictionary

Further important component in ASR is the language model (LM), which covers the

linguistic level of spoken and written language and models order of word sequence in

recognized utterance. Typical conventional approach used for LM is based on n-grams,

which models history of n1 words. Regarding the equation 2.2, the goal of the LM is to

estimate apriori probability of a word sequence P(W) based on the following equation

P (W ) = P (w1)P (w2|w1)P (w3|w1w2)....P (wi|w1w2...wi−1) =
n∏

i=1

P (wi|w1, ...wi−1) , (2.8)

where P (wi|w1, ...wi−1 represents the probability of the word i which has dependency on

i− 1 previous words [37].

Since estimating the probability of a word depending on large number of previous words

is practically impossible, bigrams or trigrams (i.e 2-grams or 3-grams) represent the most

frequently used LMs for decoding within conventional ASR. The higher orders of n-grams

(4-grams or 5-grams) are typically used during re-scoring of decoded hypotheses. The

n-gram models are trained on large text corpora, but to deal with the problem of sparse

data for some n-grams, smoothing techniques must be involved. The commonly used

smoothing methods are Good-Turing (GT), Kneser-Ney (KN) and Witten-Bell (WB).

Another typical problem of a LM is the mismatch between train corpora and target

domain for ASR. Therefore, the LM interpolation methods are used to adapt a generic

LM to the target recognition domain.

Additional kind of a special LM is a class-based n-gram model, where the words with

similar meaning can be included in a class. Typical examples is a class based LM for ASR

designed to control devices, e.g. GPS commands, where we can have class for countries,
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cities or streets. Nowadays, some systems use LMs based on neural networks where

recurrent (RNN) or long short-term memory (LSTM) neural networks are used to model

longer dependencies more efficiently [145].

As the purpose of this thesis is the study of an impact of special features within

conventional ASR system, the basic setup based on n-gram LMs are discussed in the

corresponding experimental parts of this thesis.

The next important component in a ASR system related to language-level description

is pronunciation dictionary containing pronunciations for every decoded word. In fact, it

joins the modelling at the level of AM and LM respectively. Pronunciation dictionaries

contain usually a mapping from orthographic level of a word to canonical phonetic form,

i.e. regular pronunciation. In case a lexicon containing good representation of multiple

recognition domains is created, automatic methods called g2p (grapheme-to-phoneme)

conversion can be used to learn this mapping. For some languages with strong and

regular relationship between written and pronounced form of a word, g2p conversion can

be defined on an expert level. Czech is such a language and all further described work

uses] such g2p tool.

2.1.4 Recognition graph, decoding

The acoustic model, language model, and lexicon represent the key resources of knowledge

which need to be put together and saved in an effective format for a searching process in

the recognizer. These particular modules of ASR systems are nowadays typically based on

Weighted Finite State Transducers (WFST) which allows to simplify the representation

of above mentioned parts. A final static recognition graph is then given by a composition

of particular automata as

HCLG = H ◦ C ◦ L ◦G (2.9)

where HCLG represents final WFST decoding graph, H is HMM topology for modelled

triphones, C represents conversion of monophones to context-dependent phones, L is a

lexicon mapping words → monophones, and G is a probabilistic grammar or a stochastic

language model. The symbol ◦ is used for the composition operation which is applied to

join above mentioned parts, i.e. automata (modules) H, C, L, and G.

A minimization and determination operation are involved to remove redundant paths

from the final decoding graph. This step has significant impact of a size of the graph and

the speed of decoding and it represents the main reason to use WFST approach. The

process of compilation and minimization of a decoding graph is not a goal of the thesis

too and it is used as a standard module in the experimental part. More details can be
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found in the following resources [90], [109], [107]. Finally, the token-passing algorithm is

typically used to find the best hypotheses for a given observation feature vector and the

decoded output can be represented using one-best/n-best results or a lattice [109].

2.2 DNN-based speech recognition

The section describes two widely used approaches for integration of artificial neural net-

works with a HMM-based ASR architecture.

2.2.1 DNN-HMM-based Acoustic Modelling

An alternative approach to GMM for estimating of emitting probabilities within an HMM

is based on artificial neural networks and the architecture is called as ANN-HMM hybrid

ASR system and it was introduced early by Morgan [91]. In this configuration, MLP-based

ANN structure was used for classification of senons which represent states of context-

dependent triphones in an AM. Nowadays, these feed-forward neural networks with several

hidden layers, called as DNN were found as the most efficient way for AM [48]. DNN-HMM

approach significantly improves the accuracy of an ASR when compared to legacy GMM-

HMM architectures and it represents an important milestone in the AM development.

Figure 2.5: Symbolic structure of DNN network.
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DNN definition

DNN structure consists of an input layer, several hidden layers and an output layer as

shown in Fig. 2.5. The input layer distributes the speech features, and therefore the

number of its neurons depends on the size of an input feature vector. Each neuron output

in the hidden layer is defined by a commonly used sigmoid activation function

fk(zk) =
1

1 + ezk
, (2.10)

which is applied on inner neuron potential zk computed as a general weighted sum of the

neuron inputs

zk = bk +
I∑

j=1

wjkxj, (2.11)

where the weights wjk and bias bk are associated with the k-th neuron. The DNN output

represents a posteriori probability of a given HMM state and the possible value is in the

range of 0 ÷ 1. It is computed by a softmax activation function defined for the k-th

output neuron and particular neuron potentials zj as

fk(zk) =
ezk

K∑
j=1

ezj
. (2.12)

The size of the output layer is always given by a number of classified classes (monophones,

triphones, senons).

DNN acoustic model and its training

The integration of DNN to HMM based acoustic models is demonstrated in 2.6. As it was

mentioned, DNN provides a prediction of context-dependent triphone state probabilities.

Computed a posteriori probabilities of the triphone states are also often transformed to

likelihood domain by dividing with a priori probabilities of particular triphone states,

which is estimated from a train data set.

Concerningthe training of a DNN-HMM acoustic model, it can not be done from

scratch as is the case for a GMM-HMM acoustic model. The training process is typi-

cally split to two stages. First, the GMM-HMM system is trained to prepare targets for

DNN-HMM training obtained by a forced alignment which associates context-dependent

triphone states with particular frames. Then, the process of DNN training can start with

random initialization of weights or with the initialization of hidden layers based on Re-

stricted Boltzmann Machines (RBMs) [48]. Further, cross-entropy objective function is

used together with a backpropagation algorithm. The discriminative training approaches
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Figure 2.6: Architecture of DNN-HMM ASR system

were adapted for DNN-HMM as well and they represent the next improvement of AM

quality [110].

Features used for DNN-HMM architecture

Typically, the short-time feature vectors based on cepstrum and delta and delta-delta

features can be used at an input of a DNN. Usually, the features are simply stacked

with a temporal context without any further processing as it is not necessary to perform

decorrelation for DNN-based models. On the other hand, it is strongly recommended to

realize the mean and variance normalization of used features if they are used as an input

of a DNN.

Concerning nowadays used DNN-HMM systems, they often use previously mentioned

advanced LDA-based features, however, they are still further stacked with the temporal

context of several frames to increase the number of input information. An illustrative

block scheme of feature extraction procedure using MFCC is in Fig. 2.7.

2.2.2 TANDEM architecture of ASR

Based on the first MLP-HMM based ASR system development, the TANDEM architecture

was introduced by Hermansky [47]. The TANDEM system consists of the MLP network,

which is used to extend front-end processing and it is followed by the convention GMM-

HMM architecture for the AM. Such an architecture is shown in Fig. 2.8. The design
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Figure 2.7: Feature extraction used in DNN-HMM systems.

procedure of a TANDEM system can be split into two stages. In the first stage, MLP

classifier is trained to map input feature vector to context-independent phoneme classes.

Then, the trained MLP classifier is used as a feature extractor component and produces

class probabilities per frame. The class probabilities are also called a posterior features.

Assuming GMM modelling of features, the logarithm operation and Principal Component

Analysis (PCA) are applied on a posterior features to obtain decorrelated features with

Gaussian distribution which are suitable for GMM-HMM acoustic modelling. All methods

developed for the convention GMM-HMM acoustic modelling (e.g. speaker adaptation or

discriminative training) can be used to improve a TANDEM system.

A posterior-feature-based GMM-HMM TANDEM system achieves better results in

noisy acoustic conditions when compared to the conventional cepstral-based GMM-HMM

or hybrid MLP-HMM ASR systems. However, its performance on ASR tasks in clean

conditions were similar to cepstral based GMM-HMM system. Various setups of the

feature processing pipeline used within GMM-HMM acoustic modelling were analyzed

during last two decades [38], [29], [140]. Simply post-processed a posterior features used

within the first TANDEM classifiers are typically combined with standard PLP-∆-∆∆-

HLDA-39 features for LVCSR ASR tasks [7]. Around 2008, the TANDEM system was

improved with the bottleneck features (BF), which were proposed by Grezl [38]. The

architecture with BF overcame the convention cepstral based GMM-HMM ASR system

for the first time in [40], [39]. Later, the more complex hierarchical structure of BF

extractors were developed for ASR, speaker recognition or language identification tasks

[140], [81], [27].

In the case of features for MLP/DNN classifier, the stacked MFCC/PLP cepstral

features or TRAP based features are commonly used to represent longer temporal context.

As it was discussed, the purpose of using time context information in ASR is to describe

the process of co-articulation produced within human speech production.

TANDEM system was first to apply TRAP feature-extraction technique which is based

on using the temporal trajectories of spectral power in the individual critical bands. The

technique was proposed by Hermansky and Sharma in 1998 and the analysis of various

variants continued in [139], [29]. Both mel or bark filter banks are used and the temporal
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Figure 2.8: Architecture of TANDEM ASR system

trajectories of critical band energies are independently classified or compressed using DCT.

First, the signal is filtered with a preemphasis filter, followed by the auditory spectral

analysis. Typically, the number of bands in the auditory spectral analysis is smaller than

within the standard MFCC computation and this setup was found to be a good compro-

mise. It enabled to decrease a computational complexity of a MLP and it still proved to

yield sufficient accuracy in the classification task. The temporal patterns were created

within a context window per each critical band and temporal patterns were compressed

using the DCT to decrease the input vector dimension and to increase their decorrelation.

In the end, concatenated DCT coefficients represent the DCT-TRAP feature vector on

the input of classifier. The significance of contextual information in the task of phone

recognition was analyzed in detail for English language in [103], [102], [128] and found to

be around 90-110 ms.

As discussed before, the authors in [128], [38] showed that TRAP based features

can significantly improve the performance of ASR systems and phone recognition and

they have became common for front-end processing in the TANDEM systems. Only one

work [112] has applied TRAP to the estimation of AF. In addition, an inclusion of longer

context at the input of an ANN-based AF classifier was discussed in [137]. As a result,

the next chapter presents the analysis of DCT-TRAP-based estimation of AF for Czech

and English language.
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2.3 Articulatory Features within Speech technology

Previously discussed approaches of speech representation based on spectral or cepstral

analysis respectively are used in many ASR systems with a very good performance under

standard conditions. However, when acoustic conditions as well as speaking style with

analyzed utterance are worse, these standard features reach their limit due to the possible

removal of particular details of a signal characteristic during smoothing procedure as well

as due to removing some further information, e.g. about fundamental frequency, etc.

An option on how to improve the representation of a speech signal under more adverse

conditions is to include useful information about human speech production or articulation.

We are speaking about so called Articulatory Features and they represent one possible

way of how speech production knowledge can be incorporated into the ASR systems.

Within further sections, speech production process is briefly summarized as well as known

applications of AF within speech recognition system are discussed.

2.3.1 Speech Production

The speech signal is an acoustic signal determined by the air flow which comes out of

the mouth and which represents the basis of a speech generation. It is generated by the

asynchronous movement of various muscles in the voice tract and therefore, the speech

signal is a non-stationary signal, however, it can be considered as quasi-stationary signal in

short-time periods. The quasi-stationary character allows to process the digitized speech

signal using DFT framework in spectral domain as was discussed in section 2.1.1 with

regards to auditory features. The quasi-stationary character can be clearly observed in

time and spectral domain in Fig. 2.9.

Figure 2.9: Speech signal - time/frequency domain

The whole process of speech production starts in the respiratory system, where the air

flow is expelled from lungs, continues to pass through the trachea into the larynx where

the vocal tract is located. An important part of the larynx related to speech generation

are the vocal folds. They modulate the rising air-flow. When the vocal cords are tight,
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Figure 2.10: Speech vocal tract (source [3])

the rising air-flow generates a glottal cycle which includes glottal open instant and closure

instant (pitch marks). The pitch marks can be automatically detected and they are

represented using blue lines in Fig 2.9. They are commonly used in the pitch-synchronous

segmentation during building of TTS systems or are used for speed modification which

is widely used as data augmentation method in an AM [67]. It means that the periodic

vibration of the vocal folds creates the voice source signal, which forms the basis of the

human voice.

The vibration period of the vocal cords is called the fundamental period or the pitch

period T0 and its inverse value f0 = 1/T0 is the fundamental frequency. The fundamental

frequency is also commonly used in ASR systems for Asian languages and it can be

automatically estimated via auto-correlation based methods [36]. The estimated contour

of f0 is shown as the blue line in Fig. 2.9.

The fundamental frequency is an important basic feature of voiced sounds. The voice-

less voices are generated by a stream of air passing through the open vocal folds and

therefore do not contain the fundamental tone. If the vocal cords and vocal tract are

completely calm and open, only breathing occurs. Consequently, the voicing allows to

distinguish between voiced and unvoiced speech consonants, so it represents an important

AF class.

Concerning further speech production process, the air-flow is modulated in the vocal

tract cavities and it is radiated out as acoustic sound waves from the mouth and nostrils.

The vocal tract represents a key component of speech production and its anatomy is

shown in Fig 2.10. It consists of various organs which are called articulators. The acoustic
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resonance frequencies of those cavities are also called the formants (the estimated formant

frequencies are plotted as red line in spectral domain in Fig. 2.9), which help to distinguish

among individual phonemes.

The articulation system consists of oral, nasal and pharyngeal cavities. The pharynx,

the soft palate, the hard palate, the alveolar ridge, the tongue, the teeth and the lips

represent organs which are involved in the speech production process. The articulation

organs have an direct impact on a character of produced speech sound and allow to

distinguish among particular vowels and consonants. The tongue is an active organ in the

vocal tract and its position has an impact on a creation most of speech sounds. Typically,

when the tongue touches the soft palate the velar consonants are created, when alveolar

ridge is touching the tongue alveolar consonants are produced or the dental consonants are

created when the tongue touches the front teeth [122]. The changes in shape and position

of the articulators takes some time, which is referred to as the co-articulation. Position of

articulators as well as their possible movement is the bases to define AF classes. Likewise.

The vocal tract and movements of articulators is unique for each speaker which allow to

use them as human characteristics in Voice Biometry.

Signal model of speech production

To model the speech production process, the pulses/noise generators and a digital filter

need to be defined. Digital filter model allows to generate quasi-stationary speech sig-

nal s[n] based on periodic updates of its parameters. The block diagram of the speech

production model is shown in Fig. 2.11.

Figure 2.11: Artificial model for generation of speech signal

The pulses (with desired fundamental frequency f0) or noise generators (white noise)
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represent the vocal cords and their task is to simulate a voice/unvoiced character of air-

flow. The shape of target spectrum is modeled by digital filter representing the vocal tract.

Typically, an all-pole filter is used for modelling the resonators (cavities) in a articulatory

system and its parameters can be estimated using an LPC. The volume is simulated by

the parameeter G (amplification coefficient).

2.3.2 Speech description at phonetic level

The alternative description of the speech production is using the articulatory phonetics

and phones. The phone is the acoustic realization of a phoneme, which represents a

phonological unit, which allows to distinguish between words. The Czech language has 9

allophones. The phones allow to describe a speech sound with regards to the configuration

of the articulation system. Each language has its specific phones set and the unification

of language specific phones created of The International Phonetic Alphabet (IPA). The

IPA charts is shown in Fig. 2.12. The vowels and consonants classes in IPA table are

widely used as articulately features for ASR systems. The difference between standard

MFCC/PLP speech features and AFs is that AF describe properties of vocal rather tract

than properties of acoustic signal. Therefore, the AF contains complementary information

about the speech production.

2.3.3 Applications of Articulatory Features

Articulatory features contain useful information about human speech production or articu-

lators and represent one of the ways how speech production knowledge can be incorporated

into the ASR systems. Summary and challenges of using the speech production knowledge

in ASR systems are synoptically mentioned by Kirchhoff in [65], Livescu in [78], [80], King

and Frankel in [61], Metze [85] and Mitra [87]. The most important arguments for using

speech production knowledge in ASR can be summarized in the following points:

• speech data can by used more effectively because some AFs can be shared across a

group of phonemes,

• AFs enable better modelling of the co-articulation, assimilation and reduction pro-

cess which are present especially in spontaneous or casual speech [33],

• AFs can help in adverse conditions when background or convolutional noise is

present [65], [66], [86],

• AFs are more suitable for the usage in multilingual tasks in comparison to the usage

of language-universal phoneme set.
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 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive           
Nasal           
Trill           
Tap or Flap           
Fricative           
Lateral 
fricative           
Approximant           
Lateral 
approximant           

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible. 

Clicks Voiced implosives Ejectives

 Bilabial  Bilabial  Examples: 

 Dental  Dental/alveolar  Bilabial 

 (Post)alveolar  Palatal  Dental/alveolar 

 Palatoalveolar  Velar  Velar 

 Alveolar lateral  Uvular  Alveolar fricative 
 

Front Central  Back
Close      

     
Close-mid     

     
Open-mid    

     
Open     

Where symbols appear in pairs, the one 
to the right represents a rounded vowel. 

 Voiceless labial-velar fricative   Alveolo-palatal fricatives

 Voiced labial-velar approximant   Voiced alveolar lateral flap

 Voiced labial-palatal approximant   Simultaneous and

 Voiceless epiglottal fricative 
Affricates and double articulations 
can be represented by two symbols 
joined by a tie bar if necessary. 

 Voiced epiglottal fricative 
 Epiglottal plosive 

 

 Primary stress 

 Secondary stress 

 Long  

 Half-long  

 Extra-short  

 Minor (foot) group 

 Major (intonation) group 

 Syllable break  

 Linking (absence of a break) 

LEVEL   CONTOUR

or Extra  or Risinghigh 

 High Falling

  Mid High
rising

  Low Low
rising

  
Extra Rising-
low falling

Downstep  Global rise 

Upstep  Global fall 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2018) 
CONSONANTS (PULMONIC) © 2018 IPA

CONSONANTS (NON-PULMONIC)

OTHER SYMBOLS

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g.

VOWELS

SUPRASEGMENTALS

TONES AND WORD ACCENTS

 Voiceless    Breathy voiced    Dental   

 Voiced    Creaky voiced    Apical   

 Aspirated    Linguolabial    Laminal   

 More rounded    Labialized    Nasalized   

 Less rounded    Palatalized    Nasal release   

 Advanced    Velarized    Lateral release   

 Retracted    Pharyngealized    No audible release  

 Centralized    Velarized or pharyngealized     

 Mid-centralized    Raised  ( = voiced alveolar fricative) 

 Syllabic    Lowered  ( = voiced bilabial approximant) 

 Non-syllabic    Advanced Tongue Root      

 Rhoticity    Retracted Tongue Root      
 

Figure 2.12: The IPA table - 2018 revision
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These advantages and recommendations for incorporating speech production knowl-

edge to ASR have motivated researchers for several decades and a lot of research has

been done to develop end-to-end ASR systems based on the speech production knowledge

(both observation modelling and pronunciation modelling are based on AFs). Therefore,

a lot of research was focused on using AFs in other speech applications such as:

• spontaneous, conversational ASR [33],

• pronunciation modelling [77],

• phone recogniton [120], phonetic segmentation [49]

• spoken term detection [111],

• speaker recognition, speaker verification [130],

• robust speech recognition [41],

• voice conversion [11],

• multilingual or cross-lingual ASR [73], [146],

• application for under-resourced languages [8],

All these areas have been thoroughly studied recently. The above mentioned advan-

tages and applications incorporating AFs represent the motivation for this work. The

main focus on the Czech language systems lies in the following tasks:

• spontaneous, conversational ASR,

• robust speech recognition,

• phone recogniton,

• phonetic segmentation segmentation.

2.4 Goals of the thesis

On the basis of the above summary of the start-of-the-art in the given research field,

the motivation of this work is to study the properties of articulatory features same as

their potential contribution in several tasks of speech recognition, phone recognition and

phonetic segmentation, both with the main focus on the processing of the casual and

spontaneous speech. The challenge attempt to solve the task of spontaneous speech

recognition have been employed by the researchers in the speech community for several

decades and it is still a very current topic.

The solution to this problem requires using modern techniques of feature extraction,

acoustic modelling and also pronunciation and language modelling. The main motivation

of this work should be to incorporate the speech production knowledge using articulatory
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features to the state-of-the-art ASR systems and to develop a robust spontaneous speech

recognition system. Special attention will be paid to the systems working for Czech.

Finally, goals of this thesis can be summarized more precisely in the following points.

• The study of articulatory features contribution for speech recognition and phonetic

segmentation.

• In general, to explore modern techniques of feature extraction and acoustic modelling

with a special focus on the possible contribution of articulatory features to the

description of spontaneous and casual speech (with further applications in the field

of informal speech recognition).

• More specifically, perform the optimization of AF estimation and AF-based phone

recognition for Czech and English (possibly also for other languages); for this pur-

pose the modern approaches based on DNN.

• To contribute to the processing of speech collected under adverse conditions because

informal speech is typically produced in the real environment, often with some level

of disturbances (background noise, cross-talks, distant speech, etc.); such approach

should be then applied also to other robust speech recognition systems (e.g. in the

car environment).

• In the application field, to implement an AF-based phone recognition, a phonetic

segmentation, and a AF-TANDEM-based ASR system for the task of spontaneous

and informal recognition (focused mainly on Czech, but other languages will be also

included).

• Concerning the implementation issues, to use modern toolkits available in the speech

research community allowing the realization of above mentioned applications, i.e.

KALDI, TNet; the use of our private feature extraction tool CtuCopy will be also

extended to include newly designed feature extraction techniques; and the created

final implementations will be publicly available.

• Regarding the experimental part, to conduct experiments under various acoustic

conditions, i.e. standard read speech (database SPEECON, TIMIT), the speech

containing higher level of background noise (car speech data), spontaneous speech

(data containing technical lectures), and finally casual speech (Nijmegen Corpus of

Casual Czech).

• As a by product of experimental part, special selections of suitable speech data,

language models or lexica from available resources completed possibly by additional

information according to the requirements of above mentioned experiments are also

supposed to be prepared; these data should be then publicly available for the research

community when it is allowed by particular license conditions.



Chapter 3

Experimental ASR Framework

As a common ASR framework is used for experiments describing contributions of AF in

several different applications in the following parts of this thesis, this section provides

a brief overview of the used tools and speech corpora together with some baseline ASR

results are presented.

There are several software packages used to conduct ASR experiments: i.e. QuickNet,

TNet, CtuCopy, Kaldi. The earliest neural network training was done using the QuickNet

package [57]. the TNet software is commonly used for parallel training of the neural

networs, using either the multithread data-parallelization for CPU or CUDA parallel

computing architecture (GPU). The software was moved to nnet1 in Kaldi around 2012

(developed by Karel Vesely from VUT Brno Group [141]). After the presentation of the

Kaldi toolkit at ICASSP 2011 in Prague, Kaldi has become the most popular development

toolkit for acoustic modelling that has been under continuous development.

3.1 Kaldi toolkit

The Kaldi toolkit is a modern speech recognition toolkit which supports many the-state-

of-the-art training techniques both for GMM-HMM and DNN-HMM ASR architectures.

Kaldi is distributed under a non-restrictive Apache licence v2.0 and there exist many

recipes which allow the user to build an ASR system on freely available corpora or other

commercial corpora provided by the ELRA or LDC. These facts, coupled with the effi-

ciency of its implementation, makes Kaldi the default toolkit not only for beginners or a

junior researcher but also to all other members of speech research community.

Kaldi is written by C++ language and it requires various external libraries which allow

to work with finite-state transducers, linear algebra, etc. (i.e. OpenFst, ATLAS, BLAS

and LAPACK supporting both UNIX and Window systems). A parallelization of Kaldi

to cluster computation is also supported using Sun GridEngine software and Slurm. More

27
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details on the historical overview can be found at [107].

Kaldi recipes are one of the most important feature of the toolk. They demonstrate an

example of how to work with the Kaldi executable tools using standard bash scripts and

demonstrate the usage of implemented tools for building various ASR systems (conven-

tional diagonal GMM, sGMM, SAT using fMLLR, MMI, MPE, hybrid and tandem based

DNN models, etc.). The Kaldi includes complete recipes for ASR, speaker recognition and

language identification supporting more than 40 corpora for various languages: English

(WSJ, TIMIT, switchboard, rm, etc.), Danish (sprakbanken), Spanish (fisher callhome),

Egyptian (callhome egyptian), Arabic (gale arabic), Mandarin Chinese (gale mandarin,

hkust, thchs30), Swahili (swahili), Japanese (csj), Persian speech (farsdat), as well as

Czech (vystadial cz [70]) or other multilingual corpora (GlobalPhone and Babel). The

Kaldi recipes are also used as ASR baseline systems for various challenge tasks such as

ASPIRE [4], CHIME [5], REVERB [64]. A major portion of this thesis was done using

the toolkit.

Although Kaldi supports all popular feature extraction algorithms, our private tool

CtuCopy was also used within this thesis. It is an universal feature extractor that contains

also speech enhancement techniques developed at our department [30]. Within this work,

the CtuCopy tool was extended by several funcionalities, e.g. the computation of general

derivative of static features, the convolution distortion normalization based on CMS,

simple trapper catching various lengths of standard features using the context window,

etc. [88], [12].

3.2 Used corpora for training & testing of ASR

All experiments were done with various Czech corpora (e.g. Czech SPEECON database,

Czech car speech (CZKCC), NCCCz, CtuTest or CzLecDSP), for English language TIMIT

database was used. Concerning other languages, SpeechDat-E (Czech, Polish, Slovak,

Hungaria and Russia) corpora were used. These corpora will be described briefly in this

section.

3.2.1 Czech SPEECON

Czech SPEECON corpus consists of 550 adult speakers with utterances containing phonet-

ically rich sentences and words as well as some other application commands. Recordings

were done in several environments such as office, entertainment, public place or a car,

and they were collected by four microphones (channel 0 - headset microphone, channel

1 - close distance, channel 2 - medium distance, channel 3 - far distance). The speech

signals were digitized by 16 kHz sampling frequency and saved in raw 16bit PCM format.
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All utterances were transcribed at an orthographic level [104], a pronunciation lexicon

containing all present word forms is also included. The Czech SPEECON database was

used for acoustic modelling, automatic phonetic segmentation, AFs estimation and phone

recognition.

SPEECON subset for creating and testing AM

The recordings from the office and the entertainment environments were used for training

the basic AM. The training subset consisted of phonetically rich sentences and words,

general words and phrases, or digit sequences, and they represented typical clean recording

conditions. Utterances which are distorted by strong noise or music, e.g. radio in the

background) were found by listening tests and removed from the training subset. The

subset for testing of AM quality contained the selection of digit sequences. This test

subset was, of course, disjunctive to the training subset. More details are summarized in

Table 3.1.

corpora set speakers gender (M/F) sentences hours

SPEECON office
train 160 79/81 43396 38.2
test 21 8/13 620 1
dev 20 11/9 589 1

SPEECON office ent train 217 100f+110m 58722 51.7

Table 3.1: Data subsets for creating AM

SPEECON subsets used for AF estimation

With regards to the experiments focused on AF classification, the following two subsets

were created: the first one containing rather clean speech signals from a standard office

environment (OFFICE subset) and the second one with more noisy utterances from a car

environment (CAR subset). Utterances with digits and phonetically rich sentences and

words from all available recordings were selected for these subsets. Selected data were

divided into non-overlapping training, cross-validation (CV), and test sets. Sizes of these

subsets are summarized in more details in Table 3.2.

OFFICE CAR

set sentences hours speakers sentences hours

training 101 3450 4.99 48 4042 4.40

cross-val. 17 585 0.88 4 101 0.16

test 77 94 0.16 4 39 0.07

Table 3.2: Data subsets for AF experiments

Since SPEECON database contains only information about the orthographic transcrip-

tion, the AF targets for MLP/DNN learning were obtained using HMM-based forced-
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alignment. The produced phone boundaries were then used for mapping of phones to

articulatory features. For the test sets, phone boundaries were determined both automat-

ically and manually. The reference manual segmentation of testing data was created by

engineers with the knowledge of phonetics and phonology.

Noisy subsets used for AF estimation

The SPEECON corpus contains data from various input channels. These data were used

for experiments focused on the robustness of the AF estimation for the same utterances

collected with the microphones of different quality. SNR levels strongly vary in these

channels, from the average SNR of about 26.82 dB (for channel CS0) representing a clean

speech to the average SNR about 6.43 dB (for channel CS3) corresponding to the speech

distorted by both convolutional and additive noise. SNR level estimates for all channels

are summarized in more details in Table 3.3.

CS0 CS1 CS2 CS3

OFFICE 26.82 19.51 12.71 6.43

CAR 14.00 6.95 12.06 8.99

Table 3.3: Average values of SNR [dB]

Subsets used for phonetic segmentation

The testing subset for the phonetic segmentation experiments consists of the selection

of phonetically rich sentences or digit sequences. The selected utterances represent a

rather clean recording conditions from channel CS0. The statistics are summarized in the

following Table 3.4.

Current state

Sex minutes speakers sentences phones

Male 1.09 6 16 923
Female 0.20 2 3 172

Total 1.29 8 19 1095

Table 3.4: The evaluation subset statistics

3.2.2 CZKCC - Czech car speech

The CZKCC corpus represents a private database of Czech speech from 1000 speaker

recorded in a car environment1. The corpus contains car speech recorded in 2 channels

1The corpus was collected for TEMIC Speech Dialogue Systems GmbH and Harman Becker Automo-
tive Systems respectively at Czech Technical University in Prague in co-operation with Brno University
of Technology and University of West Bohemia in Pilsen.



3.2. USED CORPORA FOR TRAINING & TESTING OF ASR 31

under various driving conditions using three different microphone setups. In our experi-

ments we use the sub-part containing the speech recorded by a headset microphone only.

The recorded utterances contain different application commands supposed to be used

in a car environment as well as phonetic reach sentences. As all phonetically rich material

was recorded always in a quiet car (i.e. standing with an engine turn off), these data can

be used for the training of general acoustic models. The summary about data subset used

in our experiments is in Table 3.5.

corpora set speakers gender (M/F) sentences hours

CZKCC headset
train 244 115/129 10379 16.9
test 30 14/16 581 1.1
dev 27 13/14 499 1

Table 3.5: Data subsets for creating AM

3.2.3 NCCCz - Nijmegen Corpus of Casual Czech

The data from the Nijmegen Corpus of Casual Czech (NCCCz) were used for experiments

related to spontaneous speech recognition and automatic phonetic segmentation respec-

tively. It contains more than 30 hours of high-quality recordings of casual conversations

among 10 triplets of male and 10 triplets of female friends. Sasual speech is defined

as a way of talking used within a conversation among close people. All speakers were

recorded simultaneously on separate audio channels using cardioid microphones avoiding

possible cross-talks in particular channels for each speaker. The speakers were engaged

in conversations for approximately 90 minutes and the recordings were obtained by the

the procedure described below, which resulted in very informal spontaneous speech data

which was presented in [25].

One speaker from each triplet always acted as a confederate who asked two friends of

the same gender (henceforth the naive speakers) to participate in recordings of natural

conversations. Each session was recorded in a soundproof booth and in the first part of the

recording, the confederate pretended to have received an important phone call that had to

be answered immediately and the two naive speakers were left alone without information

about whether they were already being recorded. Depending on the liveliness of the

conversations between the two naive speakers, the confederate returned to the booth.

The second part of the recording consisted of free conversation among the three speak-

ers. Various topics including school, relationships, common hobbies, and stories about all

sorts of encounters were addressed. In the third part of the recordings, the experimenter

used a list of questions on political and social issues and the speakers were asked to dis-

cuss at least four issues from the list and negotiate a common opinion for each question.
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This recording procedure of NCCCz was the same as the one used for the collection of

similar Dutch, French, or Spanish corpora [135]. The whole corpus has been annotated at

orthographic level using standard non-reduced transcription joined by additional marks

for non-speech events.

Data subsets for experiments focusing on ASR

corpora set speakers gender (M/F) sentences hours

NCCCz
train 40 20/20 18192 16.1
test 20 10/10 863 1.1

Table 3.6: Data subsets for creating AM

Data subsets for experiments focusing on Phonetic segmentation

The experiments focused on phonetic segmentation were done on utterances from

speakers with a standard level of reduced pronunciation and without disturbances such

as additive noise, non-speech acoustic events or overlapping speech. These were manu-

ally segmented at the phonetic level. This segmentation was created by specialists with

knowledge in phonetics and phonology. Consequently, the evaluation subset containing

selected utterances from 8 speakers was created. The amount of data in this evaluation

subset is summarized in Table 3.7 (values for the target state are estimated).

Sex minutes speakers sentences phones

Male 1.09 6 16 923
Female 0.20 2 3 172

Total 1.29 8 19 1095

Table 3.7: The NCCCz evaluation subset statistics

3.2.4 SpeechDat-E Corpora

SpeechDat-E corpus consists of 5 East European languages which were collected via fixed

telephone network. The corpus contains speech recording of Russian, Czech, Polish, Hun-

garian and Slovak languages and it is available via ELRA [106]. The corpus is well

balanced with regards to age, gender and dialects and the number of speakers is between

1000-5000. Signals were recorded via fixed ISDN telephone network and sampled at 8

kHz and quantized using 8bit a-law format. These data were used for experiments for

AF estimation and phone recognition tasks. Statistics of used corpora are summarized in

Table 3.8.
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corpora set speakers gender (M/F) sentences hours

SPEECHDAT CS
train 852 426/ 426 43139 73.4
test 100 45/55 943 2.1
dev 100 55/45 951 2.1

SPEECHDAT SK
train 800 394/406 36526 49.56
test 100 45/55 1117 1.88
dev 100 55/45 1113 1.87

SPEECHDAT HU
train 900 457/443 37861 51.2
test 100 54/46 1085 1.73
dev 100 54/46 1085 1.71

SPEECHDAT PL
train 900 439/461 42506 69.64
test 100 49/51 1148 2.3
dev 100 52/48 1169 2.4

SPEECHDAT RU
train 2000 993/1007 91079 126.2
test 250 110/140 1827 3.55
dev 250 139/111 1829 3.42

Table 3.8: SpeechDat-E data subsets

3.2.5 CtuTest - Czech read journal sentences

CtuTest is a private CTU database which consists of read journal sentences of various

topics. The corpus contains 577 utterances from 40 speakers with the total duration of

approximately 1 hour. Signals were recorded at 16 kHz sampling frequency and saved

within 16bit linear-PCM format. This corpus was created mainly for purposes of AM

evaluation.

3.2.6 CzLecDSP - Czech technical lectures

CzLecDSP is also a private CTU database which was collected within doctoral seminars

containing technical lectures from the DSP field held at CTU [118]. The recorded data has

spontaneous nature but they are more formal in comparison to NCCCz corpus. Signals

were recorded at 16 kHz sampling frequency and saved within 16bit linear-PCM format.

The corpora were mainly created for the purposes of evaluating continuous and more

spontaneous speech.

Testing subsets

database speakers utterances hours

CtuTest 40 577 1.1

CzLecDSP 8 1417 1.7

Table 3.9: CtuTest & CzLecDSP data sets
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3.2.7 TIMIT

The TIMIT database is commonly used for the evaluation of AF classification and phone

recognition tasks for English by many authors [128], [32] as well as for other experiment

related to speech recognition in general. It is used to compare our results of AF estimation

with results obtained by other authors.

The speech data in TIMIT are recorded using a 16 kHz sampling frequency and man-

ually labelled at phone level. Existing manual labels represent a significant benefit of this

corpus and they were used in our experiments with the English language. Finally, the

speech data without all SA utterances were chosen and divided into a standard subset

such as training, cross-validation, and test one. A simplified set of 39 phones was used

for experiments following the work of [128]. The contents of each subset are summarized

in more details in Table 3.10.

data set speakers sentences hours num. words num. boundaries

TRAIN 462 3696 3.14 30132 -

CORE test set 24 192 0.16 1570 7215

COMPLETE test set 168 1344 0.81 11025 50754

Table 3.10: TIMIT data sets used in presented evaluations

3.3 Evaluation criteria

The accuracy of LVCSR systems was measured on the basis of Word Error Rate (WER)

WER =
S +D + I

N
× 100 (3.1)

where N is total number of word from test list; S, D, and I are numbers of substitutions,

deletions and insertions respectively, and Sentence Error Rate (SER) criteria

SER =
C

N
× 100 (3.2)

whereN number of sentences in test set and C is the number of correctly decoded sentence.

When a performance of phone recognition systems was tested, Phone Error Rate

(PER) was used for the evaluation. It was computed similarly to WER as

PER =
S +D + I

N
× 100 (3.3)

however, the numbers N , S, D, and I are related to number of all tokens, substitutions,

deletions, and insertions at a phone level.
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The quality of LMs used in our LVCSR systems was evaluated on the basis of two

criteria OOV (Out-Of-Vocabulary words) and PPL (Perplexity). OOV quantifying the

number of words which are not covered by a given LM (vocabulary) is computed as

OOV =
U

N
× 100[%], (3.4)

where U is the number of unknown words and N is the total number of words in train

set. �PPL, which describes a quality of LM, is defined as inverse normalized probability of

word sequence W = w1w2w3 . . . wN given by test corpus and it can be approximated using

a trained n-gram LM. The following equations is a specif case of the previous equation

valid for a trigram LM

PPL(W ) = 2LP(W )
(
≈ 1

N
√
P (w1w2w3 . . . wN)

)
, (3.5)

LP(W ) = − 1

N

N∑
i=1

log2 P (wi|wi−2wi−1) . (3.6)

This estimation was used in all experiments as well as for unigram and bigram LMs.

3.4 Particular results of the Czech ASR (LVCSR)

This section describes initial ASR experiments. The performance of ASR system under

various acoustic and speaking style conditions is presented, i.e. ASR setups and achieved

results for reading, spontaneous, and informal speech recognition are described. Particular

parts of the mentioned ASR systems were used within experiments in this thesis and the

presented results give an idea about the overall quality of these basic ASR modules as

well as the whole system.

3.4.1 Setup of common ASR modules

The exact setup of key components of the basic Czech ASR system is described in this

part, i.e. frond-end processing as well as acoustic and language modelling.

Frond-end processing

MFCCs features described in sections 2.1.1 and 2.2.1 were computed using CtuCopy tool

with the following setup: preemphasis with the coefficient of 0.97 was applied, short-time

frame had the length of 25 ms and it was moved with the step of 10 ms. Mel-filter bank

contained 30 bands in the frequency range of 100-7940 Hz and 12 cepstral coefficients with
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additional c[0] were computed. Cepstral mean normalization (CMN) was applied on per

the speaker basis and these features were extended with delta and delta-delta parameters.

LDA-based features for GMM-HMM architecture were based on static and normalized

MFCC features extended with the a context of ±5 frames. The dimension of final feature

vector was set to 40, see Fig. 2.4.

Acoustic modelling

Acoustic models were built using standard approaches for current ASR systems. The

set of 45 Czech phones were expanded to the context-dependent crossword triphones.

The set was extended with a silence phone which represented long silence. Concerning

GMM-HMM approach, the initial context-independent AM (mono) consisted of left-right

HMMs with 3 emitting states without skips for real non-silence phones and of 5 emitting

states containing skip connections for silence phones. The mono alignment of the train set

was used for building the context-dependent triphone-based AM (tri1). Phonetic decision

tree and context-dependent phones were automatically derived using the data-driven ap-

proache. The mono and tri1 AMs were trained using 13 MFCC coefficients and their delta,

delta-delta coefficients. The next training process continued with the training of the sec-

ond context-dependent AM (tri2) using the above mentioned LDA+MLLT features. The

following step included training the tri3 AM which used speaker adaptive training (SAT)

using feature-space maximum likelihood linear regression (fMLLR). The derived fMLLR

features and their delta, delta-delta were used for training the Subspace GMM (SGMM)

system and the system was finally retrained discriminatively using bMMI criteria.

The topology of the DNN-HMM hybrid approach consisted of an input layer with

440 units (the context of 5 frames with 40 dimensional LDA-fMLLR features normalized

with MVN) was followed by 6 hidden layers with 2048 neurons per layer and the sigmoid

activation functions. The process of building of DNN-HMM system started with the

initialization of hidden layers by Restricted Boltzmann Machines (RBMs) and then the

output layer was added. The process continued by using the frame cross-entropy error

function and ended with sMBR sequence-discriminative training.

Particular acronyms represent the following systems:

• “mono” - monophone GMM-HMM with MFCC features + ∆ + ∆−∆ features,

• “tri1” - triphone GMM-HMM with MFCC features + ∆ + ∆−∆ features,

• “tri2” - triphone GMM-HMM with LDA+MLLT features,

• “tri3” - triphone GMM-HMM with LDA+MLLT followed by SAT,

• “SGMM” - subspace GMM,
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• “bMMI” - discriminatively trained models,

• “DNN” - cross-entropy trained DNN-HMM system.

• “DNN sMBR” - discriminatively trained DNN-HMM system.

Language modelling

Concerning language modelling, we worked with standard n-gram-based statistical

language models (LMs). The suitability of five general LMs for various speech recogni-

tion tasks was analyzed. The LMs were collected from three different publicly available

resources, i.e. from Czech National Corpus (CNC) [51], Google n-grams distributed by

Linguistic Data Consortium (WEB1T) [113], and from the corpora ORAL 2006, ORAL

2008, and ORAL 2013 produced by the Institute of Czech National Corpus [50]. Gen-

eral LMs from CNC and WEB1T corpora containing a general text were built in various

numbers of word forms (60k, 120k, 340k) and the process of their creation is described

in [113]. These models were expected to cover the general Czech language sufficiently.

3.4.2 Basic LVCSR Under Various Condition

This section presents the obtained results for the Czech ASR system under various acoustic

and speaking styles conditions using two standard state-of-the-art architectures (GMM-

HMM and DNN-HMM). The baseline recipes for the building of LVCSR using Speech-

Dat, SPEECON, CZKCC, and NCCCz corpora with the updated feature extraction tool

CtuCopy which supports currently Kaldi format were analyzed. Obtained results are

presented for whole AM training-cycle which started from mono AM, continued through

tri1, tri2, tri3, tri3 sgmm, tri3 sgmm bmmi systems and ended with dnn, dnn smbr stages.

The generic trigram CNC340k LM designed for the LVCSR task was used to present more

realistic results.

Baseline LVCSR results for particular databases with matched LM

The performance of ASR systems, which were trained separately on particular databases

is summarized in Table 3.11. It means that both acoustic and language models were

trained using only the a train set of a particular database. The language models for

these systems were built separately from a corpora of transcriptions contained in the

train subsets. Bigram LMs were trained using Witten-Bell smoothing technique with

the help of the SRILM toolkit [132]. We can observe the results between 10-44% WER
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depending on the system setup. The best result was achieved for SpeechDat setup and we

can observe an increase of WER for SPEECON, more noisy car speech from CZKCC, and

a serious increase of WER for spontaneous speech from NCCCz. Concerning DNN-HMM

architecture, WER was reduced for all analyzed acoustic conditions in general, while the

largest improvement was observed for sMBR discriminative technique.

GMM-HMM DNN-HMM
data set mono tri1 tri2 tri3 sgmm bmmi dnn sMBR

SPEECON test 24.36 17.52 16.90 16.86 15.78 15.43 15.00 13.73
office dev 26.68 19.18 17.90 17.31 16.39 16.30 15.96 14.95

CZKCC test 39.58 32.10 31.89 31.64 30.02 29.87 28.01 27.13
headset dev 29.80 24.08 24.18 24.87 23.41 23.38 22.11 21.22

NCCCz test 76.86 58.73 57.78 51.71 48.40 46.84 46.65 43.45
SPEECHDAT test 22.46 14.33 14.36 14.78 14.05 13.97 13.04 10.86
Czech dev 20.06 13.96 13.96 14.08 13.44 13.32 13.28 11.15

Table 3.11: Baseline results for particular databases with matched LM

Results for LVCSR using CNC language model

The above described results were achieved using an optimal setup and thus report on

an ideal case. The main issue was that the LMs were created from available transcrip-

tions that could potentially contain texts from the testing sets of SpeechDat, SPEECON,

and CZKCC databasest since the prompt sheets used for recording were not completely

disjunct among speakers.

Table 3.12 summarizes the results for the LVCSR task using 340k-word language

model created from the Czech National Corpus (CNC340k LM). It is possible to ob-

serve an increase in WERs in comparison to the results in Table 3.11. Slightly higher

WERs were most likely due to the fact that test set utterances contained phonetically

rich sentences with a slightly enhanced appearance of words with rare phones. The

contribution of more complex AMs is clearly apparent when we compare the results

of context-independent mono vs. context-dependent tri1, speaker-independent tri2 vs.

speaker-dependent tri3 acoustic models, or discriminatively trained GMM-HMM bmmi

vs. discriminatively trained DNN-HMM dnn smbr. The AMs based on mono, tri1, dnn

were trained on SPEECON corpus and were later analyzed using experiments focusing on

phonetic segmentation. The speaker dependent AM tri3 were used for generating frame

alignment within experiments with AF and phone recognition.

Results for LVCSR under far field acoustic conditions

The following experiments focused on evaluating the ASR system under more adverse

acoustic conditions. Channels other than SPEECON office were used for this evaluation.
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GMM-HMM DNN-HMM
data set mono tri1 tri2 tri3 sgmm bmmi dnn sMBR

SPEECON
test 51.32 31.37 27.48 23.54 19.59 19.06 18.99 17.46

office
CZKCC

test 29.20 15.90 14.79 11.57 9.56 9.43 9.39 8.4
headset

NCCCz test 88.09 69.32 66.29 59.92 57.63 55.63 51.15 48.79

Table 3.12: The results for particular databases using CNC340k LM

GMM-HMM
data set mono tri1 tri2 tri3 sgmm bmmi

SPEECON test 53.85 29.83 27.49 22.08 19.42 18.34
CS0 dev 51.82 28.12 25.36 20.40 17.33 16.49

SPEECON test 63.63 36.92 35.82 27.95 23.90 23.21
CS1 dev 63.07 32.76 24.46 22.00 20.74 20.36

SPEECON test 67.59 39.59 37.73 30.33 26.77 24.39
CS2 dev 72.13 44.29 40.86 30.40 27.05 24.24

SPEECON test 92.85 77.72 74.56 67.57 61.23 58.59
CS3 dev 95.38 84.39 81.06 74.80 68.60 65.46

Table 3.13: The results for all channels in SPEECON using CNC340k LM

The impact of far field microphones CS1, CS2 and CS3 channels was apparent by looking

at the obtained results. The absolute difference between CS0 and CS1 and CS2 is around

6% WER for SNR within the of range of 19 − 13dB. The performance on channel CS3

was above 50% WER and the corresponding SNR was around 6dB. The channel CS3 was

also found to be challenging in the phonetic alignment task, the most likely causes being

the far field speech nature and a very low volume of recorded audios.

Partial conclusions

The above described results prove that the developed LVCSR system for Czech can achieve

stat-of-the-art accuracy comparable to other ASR systems. This observation held true for

various acoustic conditions and speaking styles and proved that the trained AMs could be

used for further research which focused mainly on AF and phonetic segmentation. Some

results are also used as baseline results in the following experiments.
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3.4.3 ASR framework for Causal Czech Recognition

The purpose of this section is to extend on the previous baseline results for NCCCz and to

describe the design of more sophisticated ASR system for Czech casual speech recognition

task. The focus was on the contributions of acoustic and language models as well as on

pronunciation lexicon optimization. The AM was trained on large speech train set which

consists of several Czech corpora available at our department. Special attention was also

paid to the impact of publicly available corpora suitable for LM creation.

The section starts with discussion about the state-of-the-art of Czech Casual Speech

recognition and continues with the description of implemented solutions to improve the

accuracy of casual speech recognition. It is divided into three subsections: robust acoustic

modelling, improvement to language modelling and extensions of pronunciation lexicons.

Results of particular experiments are discussed in the context of other results obtained for

other speaking styles. The section also presents a comparison between the GMM-HMM

system and DNN-HMM hybrid approach.

The recognition of spontaneous speech still represents a very challenging task. The

commonly achieved accuracy is still rather low in comparison with a generally high accu-

racy for standard LVCSR systems. This conclusion is supported by many other works for

other languages [70, 6, 95, 97, 116, 20, 129]. The spontaneous or colloquial speech recog-

nition deals with similar problems, i.e. strong variability in the pronunciation (mainly

strong pronunciation reduction), changes in the word morphology, free word order in the

sentence, sentence breaks, and some others [75, 94].

Many authors have presented solutions for the above mentioned problems and achieved

varying results for various languages, speaking styles, or recording conditions. The authors

in [13] worked with transcriptions of oral interviews of survivors and witnesses of the

Holocaust and they reported 39.60% WER for English and 39.40% for Czech. However,

when the level of speech spontaneity is higher, typically for very informal speaking style,

the accuracy of speech recognition falls. Authors in [70] worked with the recordings of

telephone conversations and reported 48% WER for the Czech language. Similarly in [97],

authors presented results around 31-56% WER for the case of a very informal speech

recognition task. Results presented by other authors were also confirmed also by our

evaluation of casual speech recognition which were based on data from NCCCz, described

previously. The recognition accuracy in a standard LVCSR task using a standard setup

decreased significantly, see Table 3.11 and Table 3.12. The possible improvement of these

results is discussed in the following parts this section.



3.4. PARTICULAR RESULTS OF THE CZECH ASR (LVCSR) 41

Impact of front-end processing & Acoustic modelling

The front-end processing and AM training for NCCCz followed the setup previously de-

scribed in 3.4.1. This was possible mainly because the conversations available in NCCCz

were recorded in a quiet environment which was similar to headset recordings from a quiet

SPEECON environment. Other speech corpora which were similar to NCCCz, from an

acoustic conditions point of view, were also included in order to create a larger and more

generic train set. This was especially important for DNN-HMM system. To summarize,

office subpart of SPEECON (SPEECON CS0 OFFICE), clean subpart of car database

(CZKCCC headset) and training part of NCCCz (NCCCz train) were used as a set for

AM training in all further experiments.

Impact of language models for casual Czech

The standard n-gram-based statistical LMs described in section 3.4.1 were used for NCCCz

corpus. With regards to NCCCz corpus, the significant problem which had to be solved

was a choice of a suitable resources that would appropriately cover the casual speech. The

suitability of five general LMs collected from three different publicly available resources,

CNC, WEB1T, ORAL 2006, ORAL 2008 and ORAL 2013 were analyzed. While the

corpora CNC, same as WEB1T, contained text that was rather general in nature that

were built with various size of word forms up-to 340k and these models should cover general

nature of Czech. The corpora of ORAL family contain spontaneous conversations and it

was thus expected the produced LM would be a better fit for the NCCCz domain. The

number of word forms obtained for ORAL corpus was 162k and 29k for NCCCz. This

differences amounted to 73k additional words from ORAL and 9k words from NCCCz

approximately. Finally, in order to cover the maximum vocabulary for our task, we have

also created LMs from NCCCz. The first LM was trained from a defined training part of

NCCCz containing the transcription of 60% utterances per each recorded session which

were also not used for the evaluations later. It represented a slightly more realistic scenario

as the content of recognized utterances has not been seen before. The second LM was

created for comparison purposes as an optimal LM for causal speech since it was made

from all available NCCCz transcriptions.

Impact of pronunciation variation modelling

The modelling of pronunciation variation in casual speech (mainly pronunciation reduc-

tions) was the last point of interest. The particular rules, some of them known from other

works, e.g. [94] or [127], others obtained from results of the psycholinguistic study of pro-

nunciation reduction in NCCCz [69] were applied. In the end, we have used approximately
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6700 additional pronunciation variants. The illustrative examples of several rules are

“v[sSzZ]→[sSzZ]”- e.g.“vždyt’, vstát”(“but, to stand up”),

“[td]J→ [cJ\J]” - e.g. “letńı” (“adj. summer”),

“cons_1-t-cons_2→ cons_1-cons_2” - e.g. “jestli” (“if”),

“js → s” - e.g. “jsem” (“I am”),

“j[eai] → [eai]” - e.g. “jestli, jinam” (“if, elsewhere”),

“zj → z” - e.g. “zjist́ı̌s” (“You will find”),

“t-S → t_S” - e.g. “věťsina” (“majority”),

“nsk → nt_sk” - e.g. “č]́ınský” (“Chinesse”),

“vZd → vd” - e.g. “vždycky” (“always”).

Results of experiments & discussion

The achieved results for previously established recognition tasks are evaluated from the

following points of view: the optimization of acoustic modelling, the impact of language

modelling and pronunciation variation. Experiments were performed on utterances from

the following Czech databases: SPEECON, CtuTest, CzLecDSP, and NCCCz which cover

different levels of spontaneity, i.e.

• T1 - read speech recognition

a) read sentences, phonetically rich (SPEECON database),

b) read journal sentences, phonetically unbalanced (CtuTest database),

• T2 - spontaneous speech recognition

recordings of technical lectures (CzLecDSP database),

• T3 - casual speech recognition

recordings of highly informal conversations (NCCCz database).

The principal results of these experiments are those for spontaneous speech data from

NCCCz and CzLecDSP (test sets TA2 and TA3). Experiments performed on testing

subsets from SPEECON and CtuTest (test sets T1a and T1b) which contained read

speech were done for comparison purposes to analyze the overall recognizer setup in a

more standard task.
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I. The impact of AM type

The first results describe the quality of used AM, i.e. starting from a basic GMM-HMM

approach and ending with the best AM based on a DNN-HMM architecture. General

340k-word bigram LM based on CNC was used for all of these experiments. The obtained

results shown in Table 3.14 demonstrate that our DNN-HMM LVCSR system obtained

accuracy comparable to the current state-of-the art systems, i.e. 15.2% of WER for

standard read speech. For spontaneous speech we have obtained WER of 37.4% for the

task of lecture transcription (i.e. with slightly more formal speaking style) and 72.0% for

very informal (casual) speech from NCCCz.

tasks tri2 tri3 SGMM bMMI DNN
T1a 29.8 23.4 22.2 21.8 21.1
T1b 24.0 17.0 15.9 15.3 15.2
T2 49.9 41.3 39.9 38.0 37.4
T3 82.5 76.1 74.9 74.2 72.0

Table 3.14: WERs of LVCSR in the phase of AM optimization

II. The impact of LM

Results shown in Table 3.15 present the analysis of various LMs. The first part summarizes

achieved WERs for all speaking styles using general CNC and WEB1T-based LMs where

the strong decrease for the case of casual speech is clearly shown. The second part of

Table 3.15 presents the results for TA3 task (casual speech) and using LMs trained on

ORAL and NCCCz (i.e. transcriptions of recorded casual speech). The reduction of out-

of-vocabulary (OOV) rate as well as the perplexity (PPL) confirmed improved match for

casual speech and resulted in WER of around 60-70%. The achieved results also showed

that trigram-based LMs brought a very small improvement in WER but the complexity

of used HCLG graph increased significantly. Due to this fact, bi-gram LMs were used

in further experiments. The last line of Table 3.15 represented a rather exceptional case

where the LM NCCCzAll was created from all available transcriptions in NCCCz (i.e.

including also the test set). This model had OOV of 0% and a very low value of PPL, both

of which were expected. This result was presented purely as a limit case to demonstrate

the theoretical limits of used modelling approaches.

The next experiments were focused on minimizing OOV and WER in the TA3 task by

merging of various bigram LMs. The results for merged LMs with the uniform interpo-

lation weights are summarized in Table 3.16. The usage of various merged LMs reduced

the level of OOV significantly but the WER decreased only marginally as the setup of

the interpolation weights (λ) was not optimal. Therefore, we also optimized the value of
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Tasks LM OOV PPL 2-gram 3-gram
TA1a CNC 1.6 3572 21.1 21.8

TA1b CNC 1.8 2034 15.2 14.7

TA2 CNC 4.8 2937 37.4 37.2

TA3 CNC 4.6 2065 72.0 72.2
WEB1T 4.5 4427 68.9 -

TA3

ORAL06 6.5 389 67.1 66.4
ORAL08 6.7 445 66.8 66.3

ORAL13 4.7 475 66.1 65.4

ORALall 4.0 426 63.6 62.5

NCCCz60 7.2 248 61.4 61.2

NCCCzAll 0 69 41.3 28.4

Table 3.15: WERs of LVCSR with various 2-gram a 3-gram LMs on particular tasks.

bigram LMs OOV WER
CNC+WEB1T 4.3 69.8

CNC+WEB1T+ORALall 2.8 64.7
CNC+WEB1T+ORALall+NCCCz60 1.5 61.2

Table 3.16: DNN-HMM casual speech recognition (TA3) with merged bigram LMs.

NCCCz weight λ

LMs OOV 0.0 0.25 0.50 0.75 1
CNK340+NCCCz60 2.2 72.0 62.8 60.8 59.4 61.4

ORALall+NCCCz60 2.5 63.6 60.9 59.8 58.9 61.4
WEB1T+NCCCz60 2.1 68.9 62.3 60.6 60.0 61.4

Table 3.17: DNN-HMM with various weights of NCCCz in merged LMs on TA3 task.

λ for particular LMs. The best result was obtained with the following weights λ: 0.2 for

ORAL LM, 0.15 for CNC 0.15 for WEB1T and 0.5 for NCCCz. The corresponding WER

reached about 59.7%. The final investigation focused on merging various LMs with the

NCCCz-based LM. The contributions of various interpolation weights λ to the final WER

are summarized in Table 3.17. The best results were achieved for the setup with λ = 0.75.

In the end, the combination of all LMs brought an improvement in target OOV but the

decrease of WER was smaller. The results proved that general LMs (CNC and WEB1T)

did not contain proper information to describe the causal speech in NCCCz. However, the

LMs created from ORAL corpus modelled casual speech very similarly to a LM created

directly from NCCCz, with the exception of NCCCzAll language model used also the test

data.
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III. The impact of pronunciation reduction

The final results presented in this chapter describe the achieved WER for three approaches

of pronunciation modelling. First, automatically generated pronunciation was used for all

words in analyzed LMs (which is used always if a word is not present in the available

dictionary). Second, an approved canonic pronunciation of all words from NCCCz was

created by manually by two independent experts. Third, the dictionary with the additional

pronunciation variants containing phone reductions using the above-described rules was

used. All obtained results are summarized in Table 3.18 and, according to preliminary

assumptions, the recognition accuracy has improved but by only about 1.4%.

LM Lexicon WER
automatic 59.8

0.25 ORALall + 0.75 NCCCz60 canonic checked 58.9
reduction variants 58.4

Table 3.18: Impact of pronunciation variation in DNN-HMM system

Conclusions

This section describes an optimization of DNN-HMM and GMM-HMM based LVCSR for

casual speech recognition for Czech and its performance on data from the Nijmegen Corpus

of Casual Speech. Achieved results confirmed that it is possible to use these systems for

casual speech recognition, but the results are significantly worse when compared to the

results for more formal speech. It was also proved that publicly available corpora ORAL

which contains transcriptions of spontaneous conversations and corpora of formal Czech

can be used for the creation of basic LMs for the task of casual speech recognition.
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Chapter 4

Estimation of AF for Czech and

other languages

This chapter summarizes the research on the estimation of AF from an acoustic speech

signal. The term of AF is introduced and the definition of AF classes for Czech, English,

and several other languages is discussed. Further, widely used approaches of AF estima-

tion are summarized. The chapter is closed by a description of performed analyzes of AF

estimation realized for particular languages as well as acoustic conditions.

4.1 Articulatory features for analyzed languages

The term it Articulatory features generally represents a set of features trying to describe

how the human speech is generated. Articulatory information can be obtained using direct

measurements of the motion of particular articulators (e.g. lips, tongue, jaw) or various

statistic methods estimating this information from the acoustic speech signal. Since a lot

of approaches to achieve articulatory information it have been suggested, there are various

ways to represent AF.

With regards to the statistical methods, the representations of AF are standardly

based on articulatory phonetics or different theories of phonology [60], [78]. The following

three representations of AF are the most important ones:

• multi-valued features which are based on articulatory phonetic categories,

• phonological distinctive features proposed by Chomsky and Halle,

• articulatory gestures used in articulatory phonology and proposed by Browman and

Goldstein.

AF based on multi-valued features or articulatory gestures are widely applied in the speech

applications which were previously mentioned. They are commonly used for observation

47
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AF class Cardinality Feature values

English

place 10 alveolar, dental, labial, postalveolar, rhotic, ve-
lar, labiodental, lateral, none

degree 6 approximant, closure, flap, fricative, vowel

nasality 3 front, central, back

rounding 3 stop, nasals, affricates, fricatives

glottal sta. 4 aspirated, voiceless, voiced

vowel 23 aa, ae, ah, ao, aw1, aw2, ax, ay1, ay2, eh, er,
ey1, ey2, ih, iy, ow1, ow2, oy1, oy2, uh, uw, nil

height 8 high, low, mid, mid-high, midlow, very-high, nil

frontness 7 back, front, mid, mid-back, mid-front, nil

voicing 3 voiced, unvoiced

Table 4.1: AF classes for English

modelling in ASR, robust speech recognition, and nowadays also in important areas of

multilingual/cross-lingual ASR or low-resource speech recognition. In the contrast, the AF

based on articulatory gestures are standardly used in the task of pronunciation modelling.

These different representations of AF were analyzed separately in several experiments

during Johns Hopkins University (JHU) Summer Workshop [78] and it was also proposed

how these AF sets could be combined in ASR system by Hasegawa-Johnson [45].

This work analyzes the AF-based TANDEM approach, which was presented in JHW [33],

[14], [72] with focus on Czech language. Therefore, it uses AF based on multi-valued fea-

tures (further referred to only as AF) for observation modeling with the aim to improve

general ASR accuracy, phone recognition, as well as phonetic segmentation precision for

the analysis of Czech spontaneous speech.

AF with multi-valued feature representation of speech production knowledge for ob-

servation modelling was used with the purpose of making these features acoustically dis-

tinguishable which is discussed more within next sections.

4.1.1 AF set for English

As mentioned previously, AF are principally defined on the basis of a particular phone

generation (articulation) which deals with the articulatory phonetics. When multi-valued

features are defined it is commonly proceeded on the basis of the International Phonetic

Alphabet which divides distinctive sound to phonetics categories such as manner, place,

voicing and others. For English, several approaches of multi-valued features definition are

used with slightly varying amount of classes and categories; i.e. defined on JHU Summer

Workshop [78] for AFs classification (JHU set), for better uses in the case of manual

transcriptions [79], or in the task of automatic phonetic segmentation (Hosom set) in [49].

Hosom marks these features as distinctive phonetic features. In [120], authors compared
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two approaches based on JHU or Hosom sets. Their results showed that both approaches

could achieve similar classification accuracy.

Finally, within this work the JHU approach with one additional class for the voic-

ing [33], [17] is used. A brief overview of used AF for English is presented in Table 4.1.

More details on phone mapping to AF can be found in [33].

4.1.2 AF set for Czech

For the Czech language, AF have not yet been defined unambiguously. Therefore, it

was necessary to define them similarly to the above-mentioned English standard, taking

into account the phone categories used standardly for Czech [142]. Standard inventory

of phones for Czech defined by SAMPA standard [143] consists of 49 phones including

several rare allophones as well as schwa and glottal stop which do not appear in Czech

canonical pronunciation.

Within this work, the same set of phones which was standardized for Czech ASR

systems was used. This set does not contain syllabic variants of consonants, i.e. phones

“m=, l=, r=”, and voiced phone “G” which appears only in very special contexts at word

boundaries, as well as glottal stop “?” which also does not have regular appearance in

Czech pronunciation.

The resulting phone inventory consists of 44 phones (including diphthongs) which can

be categorized into the following phonetic classes according to the methodology described

for English in [66], [17], [61] together with the application of standard conventions for

Czech defined by [100] and [142]. The more particular details of Czech vowel and conso-

nant categorization are described Table 4.2 and 4.3 and final multi-valued features-based

AF for the Czech language are then summarized in Table 4.4. Each AF class is completed

by the ’silence’ value which increases class cardinality. The phones which cannot be put

into categories within a particular AF class (e.g. vowel ’a’ is not eligible for consonants

categories) are marked by the value ’nil’. The complete overview of the AF used for the

complete Czech phone inventory is shown in Table 4.5.

4.1.3 AF sets for Speechdat-E languages

To prove the language independence of an estimation of AF, the research on other lan-

guages was also performed. Finally, Slovak, Polish, Hungarian, and Russian have been

selected as languages of SpeechDat-E corpora set which is available at our department.

The AF for these languages have not been defined unambiguously to our best knowledge.

Therefore, this section provides a summary of AF definition for given languages.

Similarly to Czech, the multi-valued AF based on phone inventory mapping to partic-
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Manner
stop affricates fricatives approximants

plosives nasals trills lateral glides

P
la

ce

labial bilabial p b m
labiodental M f v

alveolar prealveolar t d n ts dz s z rfi
˚

rfi r l

postalveolar tS tZ S Z
palatal c é ñ j
velar k g N x

glottal H

Sonority (Sonors/Noises) No No So No No No No No No So So So

Voicing (Voiced/Unvoiced) U V V U V N V U V V V V

Table 4.2: Phonetic categorization of Czech consonants

Manner
front central back

P
la

ce

close u
close-mid I @ o
open-mid E
open a

Rounding unrounded rounded

Table 4.3: Phonetic categorization of Czech vowels

AF class Cardinality Feature values

Voicing 3 voiced, unvoiced

Place con 9 bilabial, labiodental, prealveolar, postalve-
olar, palatal, velar, glottal, nil

Place vow 5 front, central, back, nil

Manner con 9 stop, nasals, affricates, fricatives, trills, lat-
eral, glides, nil

Manner vow 5 open, mid, close, nil

Rounding 4 rounded, unrounded, nil

Sonority 4 noise, sonor, nil

Table 4.4: AF classes for the Czech language

ular articulatory-phonetic classes using the IPA table were defined. To assign phones to

their articulatory categories, the phonetic inventory unification was to be first involved to

define mapping from SAMPA (Speech Assessment Methods Phonetic Alphabet) to IPA

because SAMPA alphabets which were used to represent phonetic transcription in dic-

tionary did not use systematically same symbols for all equivalent phones in particular

languages. This phonetic inventory unification was defined in [28] and within this thesis,

the unification of AF classes and mapping phones to articular categories for all languages
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Phones Voicing Place con Place vowManner conManner vowRoundSonor

I + nil front nil high − nil
E + nil front nil middle − nil
a + nil central nil low − nil
o + nil back nil middle + nil
u + nil back nil high + nil
I: + nil front nil high − nil
E: + nil front nil middle − nil
a: + nil central nil low − nil
o: + nil back nil middle + nil
u: + nil back nil high + nil

o u + nil back nil middle + nil
a u + nil central nil low − nil
E u + nil front nil middle − nil
@ + nil central nil middle nil nil

p − bilabial nil stop nil nil −
b + bilabial nil stop nil nil −
t − prealveolar nil stop nil nil −
d + prealveolar nil stop nil nil −
c − palatal nil stop nil nil −
é + palatal nil stop nil nil −
k − velar nil stop nil nil −
g + velar nil stop nil nil −
tS − prealveolar nil affricates nil nil −
dZ + prealveolar nil affricates nil nil −
tS − postalveolar nil affricates nil nil −
dZ + postalveolar nil affricates nil nil −
f − labiodental nil fricatives nil nil −
v + labiodental nil fricatives nil nil −
s − prealveolar nil fricatives nil nil −
z + prealveolar nil fricatives nil nil −
rfi − prealveolar nil trills nil nil −
rfi

˚
+ prealveolar nil trills nil nil +

S − postalveolar nil fricatives nil nil −
Z + postalveolar nil fricatives nil nil −
j + palatal nil glides nil nil +
x − velar nil fricatives nil nil −
H − glottal nil fricatives nil nil −
r + prealveolar nil trills nil nil +
l + prealveolar nil lateral nil nil +

m + bilabial nil nasals nil nil +
n + prealveolar nil nasals nil nil +
N + velar nil nasals nil nil +
ñ + palatal nil nasals nil nil +
M + labiodental nil nasals nil nil +

Table 4.5: Summary of articulatory features per particular Czech phones
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is completed.

Concerning particular languages, a 50 phones set with 10 vowels, 4 diphthongs and

36 consonants was defined finally for Slovak. The Slovak phones set consists of the long

lateral l: and long trill r: which represent allophones of l/r phones. As it is mentioned in

the [44], these allophones appear in very special contexts and with regards to the frequency

of these allophones in Slovak SpeechDat corpus, 0.07% for r: and 0.09% for l:, we decided

to map the allophones to the same AF class as l/r phones. The categorization of the

Slovak phones according to the position in IPA table is summarized in the Table 4.6 for

consonants and in the Table 4.7 for the vowels.

The Polish language consists of 37 phones with 28 consonants and 9 vowels. The

categorization of the Polish phones was defined with regards to the Polish IPA reference

in [53] and it is summarized in the Table 4.8 for consonants and in the Table 4.9 for

the vowels. Hungarian, as the phonetically richest language, consists of 68 phones with

54 consonants and 14 vowels. The conversation was realized based on description of the

Hungarian IPA in the [133]. The categorization of the Hungarian phones is summarized

in the Table 4.10 for consonants and in the Table 4.11 for the vowels. Finally, the Russian

language consists of 50 phones with 38 consonants and 12 vowels. To distinguish the

Russian consonants, the palatalization class has to be involved. The categorization of

the Russian phones was defined based on Russian IPA description in the [147] and is

summarized in the Table 4.12 for consonants and in the Table 4.13 for the vowels. The

complete overview of articulatory features for complete phone sets per particular Slovak,

Polish, Hungarian, Russian is available in Appendix A.
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Manner
stop affricates fricatives approximants

plosives nasals trills lateral glides

P
la

ce

labial bilabial p b m
labiodental M f v

alveolar prealveolar t d n ts dz s z r l
postalveolar tS tZ S Z

alveolopalatal tC dý C ý
palatal c ñ L j
velar k g N x

glottal h

Sonority (Sonors/Noises) No No So No No No No No No So So So

Voicing (Voiced/Unvoiced) U V V U V N V U V V V V

Table 4.6: Phonetic categorization of consonants for SK

Manner
front central back

P
la

ce

close i u
close-mid e @ o
open-mid
open a

Rounding unrounded rounded

Table 4.7: Phonetic categorization of vowels for SK

Manner
stop affricates fricatives approximants

plosives nasals trills lateral glides

P
la

ce

labial bilabial p b m
labiodental f v

alveolar prealveolar t d n ts dz s z r l
postalveolar tS tZ S Z

alveolopalatal tC dý C ý
palatal ñ j
velar k g N x

glottal

Sonority (Sonors/Noises) No No So No No No No No No So So So

Voicing (Voiced/Unvoiced) U V V U V N V U V V V V

Table 4.8: Phonetic categorization of consonants for PL

Manner
front central back

P
la

ce

close i 1 u
close-mid e @ o
open-mid
open a

Rounding unrounded rounded

Table 4.9: Phonetic categorization of vowels for PL
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Manner
stop affricates fricatives approximants

plosives nasals trills lateral glides

P
la

ce

labial bilabial p b m
labiodental M f v

alveolar prealveolar t d n ts dz s z r l
postalveolar tS tZ S Z

alveolopalatal tC dý C ý
palatal c é ñ ç j
velar k N x

glottal h,H

Sonority (Sonors/Noises) No No So No No No No No No So So So

Voicing (Voiced/Unvoiced) U V V U V N V U V V V V

Table 4.10: Phonetic categorization of consonants for HU

Manner
front central back

P
la

ce

close i, y u
close-mid ø @ o
open-mid E
open A

Rounding unrounded rounded

Table 4.11: Phonetic categorization of vowels for HU

Manner
stop affricates fricatives approximants

plosives nasals trills lateral glides

P
la

ce

labial bilabial p b m
labiodental M f v V

alveolar prealveolar t d ts s z r l
postalveolar S Z

alveolopalatal tC dý C ý
palatal c é ç j
velar k g N x

glottal

Sonority (Sonors/Noises) No No So No No No No No No So So So

Voicing (Voiced/Unvoiced) U V V U V N V U V V V V

palatalization pj, bj, fj, vj, rj, lj, tSj, Sj, kj, gj

Table 4.12: Phonetic categorization of consonants for RU

Manner
front central back

P
la

ce

close i 1 u
close-mid e @ o
open-mid
open a

Rounding unrounded rounded

Table 4.13: Phonetic categorization of vowels for RU
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4.2 AF Estimation techniques

In this section, we summarize the widely used approaches for estimation of AF features

from acoustic signal. The results of experiments focusing on the analysis of common

acoustic features in the task of Czech AF classification are presented. It follows with

experiments focusing on usage of temporal context for AF estimation. Two different

approaches are analyzed. The experiments for the Czech language end with analyzes

of the robust AF estimation under various environments or channels including different

types of noise. The section 4.2.4 continues with estimation of AF for English languages.

The suitability of other types of ASR features for the AF estimation is discussed and

the optimization of DNN hyper-parameters is analyzed. Finally, the chapter ends with a

review of AF estimation for other languages and for telephone acoustic conditions.

AF estimation techniques

Various machine learning algorithms have been used for the estimation of articulatory

features. The Artificial Neural Network (ANN) [33], [120] and the Dynamic Bayesian

Network are among the most frequently used approaches. Also other classifiers such as the

Hidden Markov models (HMM), k-nearest neighbour algorithm, Gaussian Mixture Model

(GMM) or classifiers using multi-task learning are used [61], [120], [93]. Deep Neural

Networks are successfully used for AF estimation in works [48], [148], [99]. Nowadays, the

end-to-end are becoming very popular in the speech community generally and they are

also used by some authors for AF estimation with very promising results [59].

Therefore, in this work, both the MLP with one hidden layer and DNN structures

with more hidden layers for particular AF classes were analyzed. The size of the output

layer is always given by the cardinality of the estimated AF class, as well as the size of

the input layer is given by the size of the input speech features. The size of the hidden

layer is typically set experimentally for the particular AF class.

AF classification accuracy

The accuracy of AF classification is typically measured on the level of percentage of

correctly recognized frames, i.e. Frame Accuracy (FAcc) defined as

FAcc =
n correct frame labels

total frames
· 100 . (4.1)

4.2.1 MLP-based AF estimation with common acoustic features

This section deals with the usage of basic acoustic features, i.e. Mel-frequency cepstral

coefficients (MFCC) or Perceptual Linear Prediction (PLP) coefficients, in the task of

MLP-based estimation of AFs for the Czech language. These features describe typically

the short-time spectral representation of a speech signal at the input MLP network [68].
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Other representations could be used as well, e.g. RASTA-PLP, spectrum derivative feature

(SDF), linear predictive coding coefficients(LPC). More detailed comparative study of

various acoustic features is reported in [35].

Realized analysis is focused on the study of the contribution of dynamic features such

as delta, double-delta, as well as triple-delta coefficients to the resulting accuracy of AF

classification. Generally, it is known that the expansion of static features joined with their

temporal derivatives improves the overall accuracy of the task of speech recognition [71].

These features carry the most simple way the time context information of a signal, i.e.

they give an information about trajectories of static features over time [62] so it was used

also for the estimation of AF using basic MLP network.

Experimental setup

MFCC/PLP features were computed using the following exact setup:

• MFCC

– preemphasis coefficient of 0.97,

– Hamming window with length of 25 ms,

– window shift of 10 ms,

– 30 filters in auditory based spectral analysis,

– 12 cepstral coefficients with the additional zeroth cepstral coefficient,

• PLP

– Hamming window with length of 25 ms,

– window shift of 10 ms,

– 20 filters in PLP-based auditory filter bank (for 16 kHz speech data),

– 12 cepstral coefficients with the additional zeroth cepstral coefficient,

The total length of these features vector varied from 13 to 52 coefficients. The subpart

from the Czech SPEECON database marked as the OFFICE set was used for all exper-

iments. The sizes of train, CV and test sets are summarized in Table 3.2 and they are

described in more details in section 3.2.1. The results were measured on the basis of FAcc.

Results & Discussion

I. Impact of dynamic features

The first analysis was focused on the usage of various dynamic features (∆, ∆∆, ∆∆∆).

Detailed results of this experiments are shown in Fig. 4.1 and 4.2. All temporal derivative

variants of static features significantly improved the MLP based AF classification as it

can be seen from bar graphs in Fig. 4.1 and 4.2. To analyze the contribution of temporal
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MFCC PLP
0 0 d 0 d a 0 d a t 0 0 d 0 d a 0 d a t

Voicing 0 3.6 5.2 6.1 0 3.6 5.3 6.2
Place con 0 10.0 13.1 14.6 0 9.4 13.0 14.4
Place vow 0 9.3 11.7 12.8 0 8.9 11.2 12.6
Manner con 0 10.4 14.3 15.7 0 10.4 14.1 15.8
Manner vow 0 8.5 11.2 12.2 0 8.6 11.3 12.5
Rounding 0 8.89 11.5 12.2 0 8.6 10.9 12.3
Sonor 0 9.1 12.3 13.4 0 9.2 12.3 13.4

avg 0 8.5 11.3 12.4 0 8.4 11.1 12.4

Table 4.14: The absolute improvement of AF estimation accuracy.

derivatives, the absolute improvement of FAcc during the expansion of static features by

their temporal derivatives is also presented in Table 4.14.

The best results for both features used (MFCC and PLP) were obtained when all

differential parameters (up to the 3rd derivative) were used. However, the setup of feature

extraction with 0 d a t coefficients achieved only a little absolute improvement (across all

AF classes about 1.1% for MFCC and about 1.3% for PLP) compared to the setup with

0 d a coefficients. Therefore, the most common setup, i.e. 0 d a, is supposed as the

optimum for AF classification achieving maximum accuracy with regard to the size of the

feature vector and thus the total number of MLP parameters. These setups are used as

MFCC or PLP baseline features for further analyzes realized in this work.

70

75

80

85

90

 0   0_d 0_d_a 0_d_a_t

Various dynamic features of MFCC [−]

F
a
c
c
 [
%

]

70

75

80

85

90

 0   0_d 0_d_a 0_d_a_t

Various dynamic features of PLP [−]

F
a
c
c
 [
%

]

Figure 4.1: The evaluation of AF estimation for automatically labelled test set. Bars: red
- voicing, yellow - placed consonant, blue - placed vowel, black - manner consonant, cyan
- manner vowel, magenta - rounding, green - sonority.
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Figure 4.2: The evaluation of AF estimation for manually labelled test set. Bars: red -
voicing, yellow - placed consonant, blue - placed vowel, black - manner consonant, cyan -
manner vowel, magenta - rounding, green - sonority.
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Out 0 0 d 0 d a 0 d a t
units hids Ep. test test m. hids Ep. test test m. hids Ep. test test m. hids Ep. test test m.

Voicing 3 700 3 87.6 87.8 400 3 91.2 89.0 1000 3 92.9 89.9 1100 4 93.8 90.1
Place con 9 700 1 69.1 71.6 800 5 79.1 74.4 2000 5 82.2 76.5 2400 5 83.7 77.3
Place vow 5 2200 1 74.9 77.9 500 5 84.2 79.9 1500 4 86.6 81.6 2000 4 87.6 81.7
Manner con 9 1500 3 68.7 72.2 400 5 79.0 74.9 2400 5 82.9 77.5 700 4 84.4 77.9
Manner vow 5 1300 1 73.9 76.7 400 3 82.4 78.6 600 4 85.0 80.5 2000 4 86.1 80.6
Rounding 4 2200 1 75.7 79.7 2400 3 84.6 80.2 1800 4 87.3 82.2 1500 4 88.0 82.1
Sonor 4 2200 1 73.8 77.6 1100 3 82.9 78.3 1500 5 86.1 80.8 2200 5 87.2 81.0

avg. 74.8 77.6 83.3 79.3 86.1 81.2 87.3 81.5

Table 4.15: Setup size of MLP for the best results with mfcc features. (Ep. = Epoch)

Out 0 0 d 0 d a 0 d a t
units hids Ep. test test m. hids Ep. test test m. hids Ep. test test m. hids Ep. test test m.

Voicing 3 500 3 87.6 88.0 600 3 91.2 89.1 800 3 92.9 89.9 1100 4 93.8 90.2
Place con 9 2200 1 69.0 71.6 400 5 78.5 74.0 1800 5 82.0 76.5 2000 5 83.4 76.9
Place vow 5 2200 1 74.9 78.0 2400 3 83.7 79.5 1300 3 86.1 81.3 1100 5 87.5 81.9
Manner con 9 1800 1 68.6 72.4 800 5 79.1 75.1 1800 5 82.7 77.6 2200 5 84.4 78.3
Manner vow 5 100 1 73.7 77.0 2200 3 82.2 78.5 600 4 85.0 80.5 2000 4 86.2 80.9
Rounding 4 2200 1 75.9 79.8 1800 3 84.5 80.2 2000 3 86.8 82.1 1800 4 88.2 82.3
Sonor 4 2200 1 73.9 78.1 1500 3 83.1 78.5 2200 5 86.2 81.1 900 5 87.3 81.3

avg. 75.0 77.8 83.2 79.4 85.9 81.3 87.3 81.8

Table 4.16: Setup size of MLP for the best results with plp features. (Ep. = Epoch)

With regards to particular AF classes, the significant improvement of FAcc can be

observed in the classes describing the place and the manner of articulation for consonants.

The contribution of temporal derivatives in classification of the Place vow, Manner vow,

Rounding, Sonor classes was slightly smaller than for the category of consonants. In

contrast, the smallest contribution of differential features can be seen in AF class of

voicing.

The summary of the best results for the particular AF classifiers is presented in Ta-

ble 4.15 and 4.16. The MFCC or PLP based input features of the MLP classifier achieved

very similar results. The average accuracy across all AF features for particular temporal

derivative ranged from 74.8% for MFCC 0, 83.3% for MFCC 0 d, 86.1% for MFCC 0 d a

to 87.3% for MFCC 0 d a t. The results for the optimum setup MFCC or PLP with delta,

delta - delta coefficients were compared with the state-of-the-art results of AF classification

for English [32].

II. Optimization of MLP size for AF estimation

The optimum setup of the number of neurons in the hidden layer of MLPs for all particular

AF classes and various dynamic features was also analyzed. This is one of factors having

a significant influence on the achieved accuracy and duration of training of MLP-based

classifier. The optimum setup was empirically analyzed in the range from 10 to 2400
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Figure 4.3: Number of hidden layer units optimization for input feature of MFCC. Lines:
red � - voicing, yellow ∗ - placed consonant, blue × - placed vowel, black • - man-
ner consonant, cyan . - manner vowel, magenta ◦ - rounding, green - sonor.

hidden neurons. These analyzes are presented for the MFCC features in Fig. 4.3. Here,

the dependency of target classification accuracy on the number of hidden neurons in MLP

is presented. The optimum setup for the static feature vector (MFCC 0 or PLP 0) is

about 50 neurons in the hidden layer of MLP for all particular AF classifiers. When

context information is included in the form of delta features, the optimum setup is about

200 up to 400 neurons in the hidden layer for all AF classes. The exact value depends

also on cardinality of particular class classifier and target optimum setup is summarized

in the following points:

• 200 for Voicing,

• 400 for Place con,

• 300 for Place vow,

• 300 for Manner con,

• 300 for Manner vow,

• 300 for Rounding,

• 300 for Sonor.

Conclusions

The experiments confirmed the contribution of differential features in the task of AF

estimation. Both features (MFCC/PLP) achieved similar accuracy of AF classifications.

The optimum setup of the number of neurons in the hidden layer of MLP for particular

AF and for various acoustic inputs has been found and it will be used for the purposes of

the comparison with other approaches of AF classification within the further analyzes in

this work.
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4.2.2 Extended temporal context in AF estimation

This section continues analyzing of AF estimation with other approaches of temporal

information based on splicing short-time features at the input of neural network. Such

temporal context has been proposed in hybrid MLP/HMM ASR systems where the input

feature vector to the MLP classifier is composed from neighbouring feature vectors defined

by a context windows of various length [91]. Generally, the purpose of using time context

information in ASR is to describe the process of coarticulation produced within the human

speech production. The contextual window is commonly made of MFCC/PLP and their

delta, delta-delta coefficients. This approach was analyzed by other authors showing that

the temporal contextual information was very important for increasing accuracy of ASR

systems [92] or phone recognition[120]. The significance of contextual information in the

task of phone recognition was analyzed in detail for English language in [103], [102] and

it was found that the suitable length of the context should be around 90-110 ms. With

regard to the usage in AF classification, the optimal length of the context window for

particular AF classes was analyzed in [65]for the English language. Nevertheless, the

length of 90 ms is standardly used by other authors for AF estimation [61], [120], [119].

Also further approaches of context information incorporating were proposed by other

authors, e.g. DCT-TRAP, wLP-TRAPS based on long temporal context information

proceeding (TRAP - TempoRAl Pattern) which was proposed by (Hermansky and Sharma

1998). The TRAP feature extraction technique is based on using the temporal trajectories

of spectral power in the individual critical bands. The authors in [128], [38] showed that

TRAP based features can significantly improve the performance of ASR systems and

phone recognition and they have become common for front-end processing in the state-of-

the-art ASR systems. Possible inclusion of a longer context at the input of ANN-based AF

classifier was discussed in [137]. Since only two works [112], were found in connection with

the application of TRAP to the estimation of AF, the results presented in this subpart

are focused on an analysis of TRAP-based AF clasification for Czech and English.

The temporal context information is at first included using a context window created

from several neighbouring short-time frames for MFCC/PLP and their dynamic coeffi-

cients and then it is obtained also using DCT-TRAP features. At the end, this section

presents also the results of direct or AF-based phone recognition for both languages. Fi-

nally, both approaches are compared with MFCC/PLP baseline results described in the

previous section.
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Experimental setup

Regarding the parametric representation of speech signals, the context window was created

from MFCC/PLP baseline features as defined above and then DCT-TRAP features were

used. The setup of DCT-TRAP features (standard TRAPs with the dimension reduction

using the discrete cosine transform) is summarized in the following points:

• DCT-TRAP,

– preemphasis coefficient 0.97,

– short-time FFT frame length of 25 ms and frame step of 10 ms,

– 22 filters of auditory spectral analysis,

– temporal pattern was computed from 50ms to 1s (5÷101 frames),

– each temporal pattern was transformed to 16 DCT coefficients.

Results for temporal context represented by context window

All experiments were realized with the data from SPEECON database described in sec-

tion 3.2, exactly with the OFFICE subset summarized in Table 3.2. The optimum length

of context information in AF estimation was analyzed in the two similar scenarios of the

experiments. Two groups of experiments were focused on finding the optimum length of

context information for the case where the context window was created either from static

or dynamic features.

I. Initial tuning of MLP size

The dependency of FAcc on the number of hidden neurons is shown in Fig. 4.4. The

optimum settings across AF classes is in the range 200÷600 hidden neurons and the best

setup of the MLP which achieved the best results in the estimation of AFs are summarized

in Table 4.17.
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Figure 4.4: Number of hidden neurons in MLP optimization for input PLP or MFCC
feature. Lines: red � - voicing, yellow ∗ - placed consonant, blue × - placed vowel, black
• - manner consonant, cyan . - manner vowel, magenta ◦ - rounding, green - sonor.



62 CHAPTER 4. ESTIMATION OF AF FOR CZECH AND OTHER ...

Out MFCC 0 cw 21 PLP 0 cw 21 MFCC 0 d a cw 13 PLP 0 d a cw 11
units hids Epoch CV hids Epoch CV hids Epoch CV hids Epoch CV

Voicing 3 700 4 94.9 2200 4 94.7 500 4 95.1 1500 4 95.3
Place con 9 2000 8 86.2 1500 9 85.9 2000 6 86.7 2000 8 86.9
Place vow 5 2200 5 88.6 2400 5 88.4 2000 4 89.2 1800 4 89.1
Manner con 9 2200 8 87.1 1800 7 86.9 1100 5 87.3 2200 7 87.9
Manner vow 5 2000 5 87.4 1300 5 87.3 2400 4 88.0 2000 5 88.1
Rounding 4 1800 5 89.2 2000 5 88.8 2200 4 89.9 1500 4 89.9
Sonor 4 1800 5 88.6 900 5 88.2 1100 5 89.2 1500 5 89.1

Table 4.17: The best setup size of MLP for the best results classification of AFs.

II. Optimization of context window length

The first experiments were focused on modelling of the contextual information based on

the context window with static MFCC or PLP features only. The context window size

in the range from 3 to 61 frames was analyzed and results are shown in Fig. 4.5 and

the best size of the context window is marked by blue color bar. The average absolute

improvement of the accuracy of AF classification depending on the varying size of the

context window was compared to the zero context.

Secondly, the similar scenarios were applied also to MFCC or PLP with differential

features. The results of experiments are presented also in Fig. 4.5. In this case the context

window size was analyzed in the range from 5 to 31 frames and the average absolute

improvement is also presented using a bar graph. The contribution of differential features

brings the improvement of 0.3% in the case of MFCC and 0.9% for PLP in contrast to

working with static coefficients only. This small improvement causes the input vector of

higher dimensions 507 vs. 273 for the window with static parameters, moreover, the effect

on the training time also increases or the data set etc. In the case of PLP the size is in the

ratio of 429 vs. 273. In view of this fact, it is better to use the context window created

from static MFCC or PLP features. All results presented in Fig. 4.5 were evaluated versus

automatically labelled test data set.

Finally, the optimum lengths of contextual information for both types of features

achieving the best results of AF classification are summarized in Table 4.18. Results

for the frame level accuracy evaluated against the manually labelled test set are also

presented. The best results of AF classification were achieved for PLP differential features

with the context of 11 frame (plp 0 d a cw 11). The average accuracy across all AF

features for particular best setups achieved about 89%. The Voicing class was classified

with accuracy about 95%. The FAcc for the classes such as Place vow, Manner con,

Manner vow Rounding, Sonor achieved in range 88 ÷ 89% and slightly worse accuracy

was achieved for Place con class about 87%.

To conclude this part, the detailed analysis of the optimum length of contextual infor-
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Figure 4.5: The evaluation of AF estimation for lengths of context information for static
features. Lines: red � - voicing, yellow ∗ - placed consonant, blue × - placed vowel, black
• - manner consonant, cyan . - manner vowel, magenta ◦ - rounding, green - sonority.

MFCC PLP
0 0 d a 0 0 d a

cw 21 cw 13 cw 21 cw 11
test test m. test test m. test test m. test test m.

Voicing 94.7 90.6 94.9 90.6 94.6 90.7 95.0 90.7
Place con 86.1 79.2 86.1 79.1 85.4 79.0 86.5 79.2
Place vow 89.0 82.5 89.3 82.8 88.7 82.6 89.4 82.6
Manner con 87.1 79.8 87.3 79.9 86.7 79.8 87.6 80.1
Manner vow 87.5 81.5 88.2 81.8 87.5 81.9 88.3 82.0
Rounding 89.4 83.0 89.8 83.3 89.0 83.1 89.8 83.1
Sonor 88.5 81.5 89.1 82.0 88.2 81.7 88.9 81.9

avg. 88.9 82.5 89.2 82.8 88.5 82.6 89.4 82.8

Table 4.18: The best results estimation of AFs for the optimum length of context infor-
mation.
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Figure 4.6: The evaluation of AF estimation for Czech; Features setup: dct-trap, 310
ms; Lines: red � - voicing, yellow ∗ - placed consonant, blue × - placed vowel, black • -
manner consonant, cyan . - manner vowel, magenta ◦ - rounding, green - sonority.

mation for AF classification showed that the optimum length for the modelling of context

information is between 150 and 210 ms for the static parameters. When differential fea-

tures were used, it decreased to 110 ÷ 130 ms for MFCC-based features and to 90 ÷ 13

ms for PLP-based ones.
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TRAP 31 16 TRAP 51 16

AF class hid. units CV epoch Test Test m. hid. units CV epoch Test Test m.

Rounding 900 91.2 6 89.3 83.9 800 89.6 5 89.2 83.0
Voicing 600 95.8 4 94.5 90.5 800 95.0 4 94.4 90.4

Place con 1000 88.6 7 84.9 78.8 1000 85.7 5 84.0 77.8
Place vow 800 91.1 7 88.8 83.3 1000 88.9 5 88.7 82.7

Manner con 1000 90.1 8 87.0 80.8 800 87.4 5 86.5 79.6
Manner vow 1000 89.9 7 87.5 82.2 900 87.5 5 87.2 81.5

Sonor 1000 90.9 6 88.9 83.1 900 89.1 5 88.9 82.3
avg AF - 91.1 - 88.7 83.2 - 89.0 - 88.4 82.5

Table 4.19: The best results estimation of AFs for Czech.

Results for temporal context represented by DCT-TRAP

The following sub-part continues with experiments focusing on the analysis of a contribu-

tion of temporal context to Czech AF estimation using TRAP-based features. The main

purpose is. again, to look for the optimum length of context information in DCT-TRAP

features as well as to find the optimum size of the MLP in this case.

Similarly to the previous experiment, the initial optimization of MLP size was per-

formed in the first step. For each AF class and each TRAP length, the optimum setup

of the number of neurons in the hidden layer of MLPs was evaluated, empirical analyses

were performed exactly in the range from 10 to 1000 hidden neurons and right part of

Figs. 4.6 shows the results of FAcc for the varying size of MLP hidden layer are again

in Figs. 4.6 on the left part. The optimum setup across AF classes is in the range from

400÷ 800 hidden neurons.

Then optimimum TRAP length was looked for, exactly AF estimation for the lengths

of TRAP-based context information in the range from 50ms to 1s was analyzed. The

obtained results are presented in Fig. 4.6 and the optimum length of TRAP trajectories

for AF estimation was found to be around 300 ms. Two best setups of AF estimation are

summarized in Tab 4.19. The best values of Facc for Czech were achieved for the length

of TRAP trajectories of about 310 ms for all AF classes.

The achieved results of this analysis proved that DCT-TRAP features with the given

optimum length of the temporal pattern represent a suitable speech representation for AF

estimation for both languages.

Partial conclusions

The best obtained results from the performed experiments are compared among them-

selves as well as with baseline features for Czech and they are summarized in Table 4.20.

All results for techniques using some temporal context significantly surpass the results

obtained by baseline features. The DCT-TRAP features seem to be very good in the task
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of AF classification and will be further analyzed with respect to the robust estimation

under adverse conditions.

baseline features context window DCT-TRAP
AF class mfcc plp cw 21 mfcc cw 13 mfcc 0 d a cw 21 plp cw 11 plp 0 d a dct trap 51 16

Voicing 92.9 92.9 94.7 94.9 94.6 95.0 94.4
Place con 82.2 82.0 86.1 86.1 85.4 86.5 84.0
Place vow 86.6 86.1 89.0 89.3 88.7 89.4 88.7
Manner con 82.9 82.7 87.1 87.3 86.7 87.6 86.5
Manner vow 85.0 85.0 87.5 88.2 87.5 88.3 87.2
Rounding 87.3 86.8 89.4 89.8 89.0 89.8 89.2
Sonor 86.1 86.2 88.5 89.1 88.2 88.9 88.9
avg AF 86.1 85.9 88.9 89.2 88.5 89.4 88.4

Table 4.20: Comparison the best results of AF classification. for Czech

4.2.3 AF estimation under adverse acoustic conditions

This part is focusing on the robust AF estimation for Czech language and the performance

of the MLP classifiers under adverse acoustic conditions was analyzed. Most published

works do not deal with the data gathered under adverse background conditions because the

experiments in published works are usually conducted with the TIMIT database which

contains speech data recorded under low noise conditions [60], [61]. Some analysis of

noise robustness can be found in [65] describing the experiments with noisy data from

the Verbmobil database using special MODSPEC preprocessing [63] of input features and

showing that AF based ASR system works very reliably in a high noise levels environment.

Within the experimental part the basic accuracy of AF estimation for Czech using three

different speech feature vectors was first tested and a detailed analysis of the optimum

number of neurons in the hidden layer of MLP network was made. In the second phase,

the robustness of this estimation for speech collected under various conditions from the

point of view of signal quality was tested.

Experimental setup

The baseline features and DCT-TRAP features with the best setup described in the

previous part were used. Speech data for these experiments were taken again from the

Czech SPEECON database, the OFFICE subpart (clean speech) and CAR subpart (more

noisy speech) were used, see section 3.2.
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Results & Discussion

Optimization size of MLP

Firstly, the dependency of the frame accuracy on the number of hidden neurons is again

presented illustratively in Fig. 4.7 for TRAP features at the MLP input and for 4 chan-

nels with different SNRs of collected speech signal. The optimum setup for particular AF

classes was found to be in the range from 300 to 500 hidden neurons forVoicing, Rounding, Sonor

and from 600 to 800 Manner vow, Place vow, Manner con, Place con across all channels.

Results for MLP-based AF classifier for which the best FAcc was achieved are summa-

rized in Table 4.21 for both analyzed environments. In comparison to [65], we did not use

any special preprocessing for noisy data. The same setup was used for both background

conditions, i.e. for the OFFICE and CAR environment.

Out OFFICE
units Channel CS0 Channel CS1 Channel CS2

hids CV Epoch test hids CV Epoch test hids CV Epoch test

Voicing 3 2000 94.9 4 94.3 300 94.2 4 93.6 2200 92.5 4 91.6
Place con 9 1800 85.6 5 83.9 2200 83.8 5 82.0 1500 82.3 5 80.7
Place vow 5 1500 88.5 5 88.3 1000 87.1 5 86.9 2200 85.5 5 85.2
Manner con 9 1800 87.2 5 86.5 1800 85.6 5 84.2 2400 84.0 5 83.0
Manner vow 5 2400 87.0 5 86.9 1300 85.8 5 85.6 1800 84.1 5 83.7
Rounding 4 1300 89.3 5 89.1 2400 88.0 5 87.8 1000 86.5 5 86.4
Sonor 4 1300 89.0 5 88.9 2200 88.0 5 87.5 1500 86.1 5 85.8

CAR
Voicing 3 1000 94.6 4 87.0 1300 92.9 3 85.3 2200 91.9 4 83.9
Place con 9 1500 85.6 8 77.8 2400 83.0 7 75.7 2000 82.0 7 74.6
Place vow 5 2200 88.8 4 80.1 1500 87.2 5 79.2 500 86.2 5 77.7
Manner con 9 2400 86.2 7 79.1 2000 84.0 6 77.0 1500 82.9 7 75.7
Manner vow 5 1800 87.5 4 79.0 2200 86.3 5 78.4 2400 84.8 5 77.0
Rounding 4 2000 89.4 5 81.3 2000 87.6 5 80.4 2000 86.5 5 78.8
Sonor 4 1000 87.9 6 80.8 2000 86.2 4 78.7 2200 85.5 6 78.0

Table 4.21: Optimum setup size of MLP for the best results with DCT-TRAP features.

Robustness of MLP-based estimation of AF

The results obtained for OFFICE environment are summarized in Fig. 4.8. These results

for MFCC and PLP features proved reliable standard estimation of AFs for Czech which

is comparable to the results of other authors. The best results were obtained for DCT-

TRAP features and for high-quality CS0 channel, i.e. 94.3 % for voicing, 83.9 % for place

of consonant, 88.3 % for place of vowel , 86.5 % for manner of consonant, 86.9 % for

manner of vowel, 89.1 % for rounding, and 88.9 % for sonoring. Concerning particular AF

classes, the best results were obtained for voicing detection, the most difficult seemed to

be the estimation of the place of articulation for consonats. When the environment is
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Figure 4.7: Number of hidden neurons in MLP optimization for DCT-TRAP feature; chan-
nel: � − CS0, ∗ − CS1, ∆ − CS2, ◦ − CS3; environment: OFFICE.
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Figure 4.8: FAcc of AF estimation for automatically labelled OFFICE test set; features:
MFCC- light gray, PLP - dark gray, DCT-TRAP - black.
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Figure 4.9: FAcc of AF estimation for automatically labelled CAR test set; features:
MFCC- light gray, PLP - dark gray, DCT-TRAP - black.

rather clean, i.e. standard office environment, only slightly worse results were obtained

for other, more noisy, channels (CS1, CS2 and CS3) with DCT-TRAP features.

Evaluations with manually labeled reference data were realized too and obtained re-

sults are in Table 4.22 using the average FAcc (calculated across AF). Because the evalu-

ation with manually labeled data represented mismatched conditions, better results were

always achieved in evaluations with automatically labeled reference data (automatically

set boundaries were used for the training). In each case, these results have similar trend

as those obtained by reference data labeled automatically.

Results obtained for more noisy CAR environment are in Fig. 4.9 and in Table 4.22 and

they proved the robustness of MLP-based AF estimation, especially, when DCT-TRAP

features were used as the output of acoustic analysis. We can see rather small decrease

of FAcc in comparison to results obtained for rather clean speech data from OFFICE

environment. However, for the comparison of results from these two environments, we

must note that channels CS2 and CS3 contain speech of slightly different quality.
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MFCC PLP DCT-TRAP
CS0 CS1 CS2 CS3 CS0 CS1 CS2 CS3 CS0 CS1 CS2 CS3

OFFICE 81.4 79.7 78.4 73.6 81.6 79.9 78.6 73.5 82.3 81.3 80.3 74.5

CAR 85.2 83.6 81.3 81.6 85.3 83.4 81.4 81.6 85.0 85.3 83.8 83.5

Table 4.22: Average FAcc of AF estimation for manually labelled.
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Figure 4.10: Average FAcc (across all AFs) for mismatched condition: A - channel mis-
match in OFFICE environment (dashed line - matched training, solid line - training on
CS0); B - - channel mismatch in CAR environment (dashed - matched training, solid -
training on CS0); C - environmental mismatch in CAR environment (dashed - matched
training in CAR; solid - training on OFFICE data).

The robustness of MLP-based AF estimation was also observed when the training

and testing conditions were not same, i.e. in the case of various mismatch because it

is common situation in real deployed systems having the significant influence on speech

recognition accuracy [117]. These analyzes are presented using the average FAcc (across

all AF) trend and the results for the channel mismatch and environment mismatch are

summarized in Fig. 4.10. The impact of switching from close-talk microphone to the

far-talk one is presented in Fig. 4.10A and 4.10B. The robustness of DCT-TRAP AF

estimation is demonstrated by very small decrease of average FAcc when training was

realized on CS0 channel only, especially in the case of CAR environment. The highest

decrease was observed for CS3 channel in OFFICE environment but in this case it is

the result for significantly degraded speech which SNR is typically about 6 dB only.

Environmental mismatch has higher influence as it is demostrated in Fig. 4.10C. The

decrease of average FAcc of AF estimation in CAR environment was about 6 ÷ 9% for

particular channels when training was done on OFFICE data.

Finally, the decrease of the detection accuracy of particular AFs influenced by the car

noise is presented in Table 4.23. Regarding particular AFs, the decrease is about 4÷ 6%

and the best results were achieved for Voicing with average FAcc across all channels about

84.9%; for other AF classes it was in the range 77%÷80% for Rounding, Sonor, Place vow,

and Manner vow; according to generally worse FAcc for Manner con and Place con classes,

the values were about 76% in this case. In the end, the realized experiments proved that
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OFFICE CAR
CS0 CS1 CS2 CS3 avg CS0 CS1 CS2 CS3 avg

Voicing 94.3 93.6 91.6 84.7 91.1 87.0 85.3 83.9 83.5 84.9
Place con 83.9 82.0 80.7 71.4 79.5 77.8 75.7 74.6 74.7 75.7
Place vow 88.3 86.9 85.2 77.1 84.4 80.0 79.2 77.7 76.9 78.5
Manner con 86.5 84.2 83.0 70.8 81.1 79.0 77.0 75.7 75.5 76.8
Manner vow 86.9 85.6 83.7 75.9 83.0 79.0 78.4 77.0 76.6 77.8
Rounding 89.1 87.8 86.4 78.2 85.4 81.3 80.4 78.8 78.3 79.7
Sonor 88.9 87.5 85.8 77.1 84.8 80.8 78.7 78.0 77.8 78.8

Table 4.23: FAcc of DCT-TRAP AF estimation for speech degraded by car noise.

the approach using DCT-TRAPs is generally robust for the task of AF estimation.

4.2.4 AF estimation using DNN

Estimations of AF described in previous sections were realized with shallow MLP, i.e. with

only one hidden layer. As deeper DNN structures are nowadays often applied in many

other applications, DNN-based AF estimation is described in this section. Experiments

analyzing the estimation of English AF on TIMIT database are presented firstly, because

it allows a comparison with the state-of-the-art results for AF classification task on TIMIT

obtained by other authors. Mentioned AF estimation was focused on the review of various

ASR features such as MFCC, PLP, FBANK, MFCC-LDA-MLLT, MFCC-FMLLR and

DCT-TRAP. The review of temporal context setup was analyzed as well as the tuning of

DNN hyper-parameters was performed. Described Czech AF classifier using DCT-TRAP

features only was further review, similarly as it was done also in the previous section

(see Table 4.20). The best AF classifier is then used within ASR, phone recognition and

phonetic segmentation experiments.

Experimental setup

Concerning the English AF estimation, the experiments were performed with TIMIT

subsets described in 3.10. TIMIT CORE test set only was used for evaluations of the

particular AF classifiers. Various feature pipe-lines, which are commonly used for building

of AM model were analyzed with regards to AF classification. For all cases mentioned

below, the short-time frame length of 25 ms and shift of 10 ms were used as well as the

selected frame was weighted by Hamming window. More details of particular feature

extraction setups are given in the following points:

• MFCC

– 30 filters (low/high 100/7940 Hz cut off) in auditory based spectral analysis,

– 12 cepstral coefficients with the additional energy value,
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• PLP

– 23 filters (low/high 100/7940 Hz cut off) in PLP-based auditory filter bank,

– 12 cepstral coefficients with the additional energy value,

• MFCC-LDA-MLLT

– MFCC stacked in 11 frames window size are reduced/decorrelated by LDA/MLLT,

• MFCC-LDA-MLLT-fMLLR

– fMLLR speaker-adapted MFCC-LDA-MLLT features ,

• FBANK

– 40 filters (low/high 100/7940 Hz cut off) in auditory based spectral analysis,

• DCT-TRAP

– a similar setup to 4.2.2 was used,

– 40 filters of auditory spectral analysis,

– each temporal pattern was transformed to 12 DCT coefficients.

Optimization of DNN-based AF estimation for English

The first part of experiments realized with TIMIT CORE test set for English were focused

on the review of various features pipe-line setups, which are commonly used for training

of AM. The standard feature setup such as MFCC, PLP, FBANK and DCT-TRAP was

extended with MFCC-LDA-MLLT and MFCC-LDA-MLLT-fMLLR features. The speaker

dependent setup of AF estimation based on the MFCC-LDA-MLLT-fMLLR feature was

also analyzed. As it was described in AM section, the MFCC-LDA-MLLT-fMLLR input

feature are typically stacked with context of 11 frames to create 440 dimensional feature

vector for traditional tied-states DNN classifier. The same setup of context window was

used and fixed for all analyzed features within the first batch of AF experiments.

The obtained results are shown in Fig. 4.11 as average FAcc across all AF classes.

This experiment was already performed with a more advanced neural network with more

hidden layers, so an impact of the number of hidden layers (blue - 1 layer, red - 2 layers,

yellow - 3 layers, green - 4 layers, orange - 5 layers) as well as the impact of number of

neuron per layer on accuracy of AF estimation is presented in particular graphs across

all features setups. The particular hidden layers of DNN were initialized using RBM

pre-training and then frame cross-entropy training was followed. We observed that RBM

based pre-training helps around 0.3% with compare to random initialization of DNN

weights. Therefore, the RBM pre-training was used for next all experiments.
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Based on the archived results, the optimum setup across all feature setup is for DNN

with two layers and 1024 neurons per layer. To conclude, the MFCC/PLP cepstral fea-

tures achieved the average FAcc below 86%, MFCC-SPLICE 5-LDA-MLLT scored with

86% and DCT-TRAP 5/ FBANK-SPLICE 5 features overcame 86% value. The speaker

dependent system achieved the best value close to 89.5%.
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Figure 4.11: The evaluation of AF estimation for various ASR features and DNN setups.

The second group of the experiment was focused on improving speaker-independent

DNN classifiers and the optimization of temporal context was analyzed. The experiments

were performed with fixed DNN with two layers and 1024 neurons per layer. MFCC,

PLP, FBANK and DCD-TRAP features followed same analyzes protocol which were pre-

formed for the Czech language. The review of an optimal length of context window, was

performed. The window length was analyzed in the range from 3 (0.03s) to 101 (1.01s)
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Figure 4.12: The evaluation of AF estimation for lengths of context information for static
features.
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Figure 4.13: The optimization of DCT-TRAP feature.

frames and the DNN based classifier consisted from two hidden layers and 1024 neurons

per layer. The results for MFCC, PLP, FBANK features are summarized in the Fig. 4.12.

The first line in the figure shows results per AF class. The second line contains

the average absolute improvement of the accuracy of AF classification depending on the

varying length of the window against the zero context setup (the best size is marked by red

color). The optimum size of the context window length is between 19 and 21 frames for all

analyzed features. The results for DCT-TRAP features are summarized in the Fig. 4.13.

The optimum size of temporal pattern in DCT-TRAP setup is around 21 frames across
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AF classes avg.
feature type cw vowel degree frontness glottal state height nasality place rounding voicing FAcc
MFCC-LDA/MLLT 5 77.53 86.63 80.36 91.32 81.04 94.25 82.59 87.54 91.61 85.87
MFCC 0 21 77.48 86.30 80.26 92.40 80.81 94.00 82.75 87.57 92.39 86.00
PLP 0 21 77.75 86.42 80.46 92.33 81.04 94.17 82.65 87.79 92.42 86.11
FBANK 0 19 78.86 87.20 80.94 92.79 81.84 94.55 83.96 88.44 92.88 86.83
DCT-TRAP 21 79.60 87.62 81.58 92.79 82.36 94.53 84.65 88.71 92.84 87.19

MFCC-LDA/MLLT
5 82.63 89.30 84.35 93.16 85.14 95.50 86.87 90.74 93.31 89.00

-FMLLR

Table 4.24: The particular results for the optimized feature setup.

all AF classes.

Finally, the summary of the particular results per AF class for all analyzed features in

the Table 4.24. The performed experiments confirmed the benefits of DNN based classifier

and the DNN structure consisted of 2 hidden layers and 1024 hidden units was found

as suitable configuration for AF classification task. In the case of results with speaker

independent features, the voicing, glottal state and nasality classes were classified with

accuracy above 90%. The rounding and degree classes scored above 85% and the score

around 80% achieved classes frontness, height and place. The vowel class was classified

with 79%. The FBANK 0 cw 19 features overcame the cepstral features and achieved

similar results as the best setup with DCT-TRAP features. With regards to optimum

context window length or length of TRAP trajectories of cw 19/cw 21 frames, the results

for English classes are very similar to results which were achieved for Czech language. The

benefit of speaker-dependent fMMLR features was observed for AF classification task and

achieved around 2% better results against speaker-dependent features.

Previously published results obtained by other authors for English and presented

in [61], [120] can be summarized in the following numbers:

- voicing: average accuracy 90.28 %, the best 93 %,

- place: average 75.4 %, the best 85.9 %,

- manner: average 85.3 %, the best 88.5 %,

- rounding: average 86.21 %, the best 92 %,

- front-back: average 83.7 %, the best 87.4 %.

Concerning this comparison, it must be stated that these values were not always obtained

under absolutely the same setup. Some authors used sometimes different AF classes,

some authors also measured the accuracy at the label level, others at frame level (as it

is in our case), or presented results were obtained on cross-validation set instead of test

sets. Consequently, it is impossible to use a setup equivalent to all published results, but

generally, it can be said that obtained results are comparable with the results obtained

by other authors.
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the number of hidden layers
1 2 3 4 5

Voicing 94 94.28 94.4 94.42 94.4
Place con 86.14 87.39 87.84 87.98 88.05
Place vow 89.23 89.88 90.04 90.1 90.14
Manner con 87.16 88.14 88.5 88.65 88.67
Manner vow 87.95 88.72 88.88 89.07 89.1
Rounding 89.76 90.31 90.45 90.57 90.59
Sonotiry 88.98 89.67 89.97 90.05 90.11
avg. 89.03 89.77 90.01 90.12 90.15

Table 4.25: The impact of hidden layers on DNN-based AF estimation for Czech.

DNN-based AF estimation for Czech

The second part of experiments were focused on the review of Czech AF estimation in

which more deeper DNN classifier was involved. DNN-based AF classifier based on DCT-

TRAP features only was here evaluated. The impact of more hidden layers was analyzed

on the Speecon Office CS0 test set and it is described in Table 3.2. The results are

summarized in the Table 4.25. The addition of the second and the third hidden layer

helps to improve average accuracy on the level of FAcc around 0.7% for DNN with 2

hidden layers and around 1% for DNN with 3 hidden layers.

Partial conclusions

The performed experiments for English language proved that FBANK and TRAP features

represent a suitable speech representation for AF classification task. The optimum value

for temporal context was found around 21 frames. The speaker depended FMLLR features

improved the AF results, however, our generic goal is to build speaker-independent AF

classifier. The optimum configuration of DNN based AF classifier was found for DNN

structure consisted from 2 hidden layers and 1024 hidden neurons per layer.

4.2.5 AF estimation for Speechdat-E languages

Within the experiments for Czech and English languages, the analyzes of various type

of features, temporal context setups and DNN structure were released mainly on 16kHz

corpora. In this section, we continue with the next AF experiments with focus on East

European languages from SpeechDat-E corpora which were recorded through telephone

line. Finally, Russian, Slovak, Polish, Hungarian as well as Czech languages were analyzed.

Experimental setup

As it was mentioned above, the experiments were performed with E-Speechdat corpus

and particular data sets were described in section 3.2 or in more details in Table 3.8.
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Figure 4.14: The AF results for all languages.

The DNN based AF classifier was used for these experiments, targets were created using

GMM-HMM system with tri2 AM trained per particular language, DNN was then trained

using cross-entropy training, and features were computed with the following setup:

• DCT-TRAP

– preemphasis coefficient 0.97,

– short-time FFT frame length of 25 ms and frame step of 10 ms,

– 20 filters (low/high 100/3800 Hz cut off) of auditory spectral analysis,

– temporal pattern was computed from 50ms to 1s (5÷101 frames),

– each temporal pattern was transformed to 16 DCT coefficients.

Results & Discussion

The released experiments are summarized in the Fig. 4.14 and in the Table 4.26. The best

results were achieved for the Czech language which significantly overcame other languages

with the average FAcc across all classes around 89.51%. The Polish and Slovak languages

achieved average FAcc around 87% and the avg. FAcc around 83% was achieved for

Hungarian and Russian languages. The Voicing class was classified with accuracy about

94%. The FAcc for the classes such as Rounding, Manner vow and Sonotiry achieved FAcc

around 90% and slightly worse FAcc was achieved for Place con, Manner con, Place vow

classes around 87% for the Czech. With regards to AF class FAcc across languages,

the Voicing class was classified with accuracy 92%, the classes Rounding, Manner vow,

Place vow, Sonotiry achieved FAcc around 85 ÷ 87% and the classes Place con, Man-

ner con were classified with FAcc around 81÷ 83%. The Palatalization class included in

Russian language was classified with accuracy above 92%.
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Language Place con Manner con Palatalization Sonority Voicing Place vow Manner vow Rounding avg.
CS 86.41 87.5 - 89.69 94.86 87.83 89.99 90.32 89.51
HU 77.99 77.68 - 81.71 89.36 83.54 85.02 85.67 82.99
PL 83.26 84.57 - 87.97 93.62 85.91 85.85 87.76 86.99
SK 82.86 84.92 - 87.41 93.97 86.18 87.65 88.41 87.34
RU 77.85 80.7 92.27 84.2 91.65 82.67 84.08 85.74 84.90
avg. 81.67 83.074 - 86.20 92.692 85.226 86.518 87.58 -

Table 4.26: The particular AF results.

To conclude this part, it can be stated that achieved results for 5 East-European

languages are comparable with achieved results for Czech and English in the previous

sections. The reduction of signal spectral content given by telephone-band environment

also did not have significant negative impact on estimation of AF classes, e.g. for both

8kHz and 16kHz variants of Czech AF estimation, equivalent results were achieved with

average FAcc around 89%.
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Chapter 5

Applying Articulatory Features

within Speech Processing

The previous chapter described the design of AF classifier and presented the performance

of implemented classifiers on the level of FAcc. In this chapter, a number of possible

applications of AF are presented. First, a tool for pure visualization of estimated AF

classes around a given speech signal is presented. Further, the integration of AF features

into acoustic modelling of speech recognizer is described as a key application of AF. It is

implemented in the form of AF-based TANDEM system. The experimental part related

to his task analyzes the contribution of AF features to phone recognition as well as to ASR

under various acoustic conditions tasks. Further supposed ASR application is in phonetic

segmentation algorithm, however, it is described separately in next chapter. This chapter

ends by the discussion about a potential usage of the AF classifiers within automatic

clinical assessment of pathological speech disorder.

5.1 Visualization of estimated AF

An analyzing of AF estimation is realized typically on selected testing datasets because

such results can give statistically significant classification of AF estimation accuracy. On

the other hand, to understand better the behaviour of AF classifiers, an observation of

obtained results aligned around selected particular utterance is very illustrative and useful.

The information about articulations obtained on the basis of AF can benefit also general

phonetic research as well as the manual phonetic segmentation which must be frequently

prepared for evaluation sets for phonetic segmentation or some other basic ASR tasks.

This visualization was realized in Praat-tool [10] and one illustrative example of

TextGrid with information about estimated AF is shown in Fig. 5.1. We can see here

a signal and its spectrogram (potentially with other estimated features, here, pitch is

79
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Figure 5.1: Illustrative example of visualized AF features.

estimated) which are aligned with the TextGrid contain 10 layers with AF information.

Particular layers are defined as follows:

1 . layer: manually set word boundaries,

2 . layer: manually set phone boundaries,

3 . layer: automatically aligned phone boundaries,

4 . layer: estimated voicing,

5 . layer: estimated place of articulation for consonants,

6 . layer: estimated place of articulation for vowel,

7 . layer: estimated manner of articulation for consonants,

8 . layer: estimated manner of articulation for vowel,

9 . layer: estimated rounding,

10 . layer: estimated sonority.

The procedure of creating TextGrids with estimated AF was integrated into the imple-

mented automatic phonetic segmentation script. Results of phonetic segmentation as well

as of AF estimation is obtained in the form of very readable ctm-format. It is a text

format of segmented data including time marks and illustrative example of ctm-file for

voicing AF class is shown in next lines.

18_241108_s1_0261_wav 1 0.00 0.17 sil

18_241108_s1_0261_wav 1 0.17 0.08 -

18_241108_s1_0261_wav 1 0.25 0.17 +
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Then python classes for manipulation with Praat TextGrids created by Gorman were

used1. The tools for conversion between TextGrid and ctm-file (and vice verse) were

created using above mentioned python library, as well as some tools for manipulating

with particular layer in given TextGrid. Exactly we have now available the following

tools:

• ctm2textgrid - it allows to load various number of ctm files are concatenated them

to tiers in textgrids

• textgrid2ctm - it allows to split textgrid to specific ctm file per tier

Presented extended TextGrids with information about articulation are used in our

laboratory and they help with research focus on the study of irregular pronunciations on

NCCCz corpus.

5.2 AF application for ASR & Phone Recognition

As it was mentioned in section 2.3.3, AF were successfully integrated in various speech

tasks. With regards to the acoustic modelling in speech recognition, the integration of the

outputs from the MLP based AF classifiers into both the hybrid ANN-HMM architecture

and the TANDEM architectures was analyzed by authors in [66], [85], [31], [33], [78] for

various languages and the comparison of the both approaches was investigated in [78] with

the conclusion that the TANDEM system achieved better results in comparison to the

hybrid system based on AF. The TANDEM system was investigated in the cross-lingual

ASR in [14], [73]. Recently, a joint estimation approach where AF and AM are jointly

estimated was proposed in [1] and successfully applied on the low-resource languages ASR

task.

In this thesis, the AF-based TANDEM approach is investigated with regards to analyze

the contribution of AF in the large-vocabulary tasks. Authors in [66], [33], [14], [78]

presented the results for the TANDEM architecture based on the monophone or triphone

AMs, which were based on MFCC/PLP cepstral features and targeted to a rather small-

vocabulary ASR task.

The AF-based TANDEM ASR system

The standard TANDEM architecture was described in section 2.2.2. The TANDEM sys-

tem consists of two components, the first part with ANN classifier which extracts phone

posteriors features and the second part with GMM-HMM model. In the case of the

1http://github.com/kylebgorman/textgrid.py
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AF-based TANDEM system, the first part contains for each AF class specific ANN clas-

sifier, which produce posteriors features per AF class. These AF posteriors features are

combined to final AF high-dimension vector and the logarithm operation and PCA are

applied to obtain suitable feature vector for the GMM-HMM AM. Finally, the processed

AF posteriors feature vector is typically concatenated with a cepstral MFCC/PLP feature

vector.

5.2.1 AF-Based Phone Recognizer for English

The initial experiments focusing on the incorporation of AF into ASR system for Phone

recognition task were realized. The phone recognition system was implemented based on

Kaldi (timit/s5 recipe 2). The standard Kaldi TIMIT recipe presents the performance

of the Phone recognition on the CORE test set for various complexity of AMs. Kaldi

reference results were used as baseline results for comparison with the AF-TANDEM

system in the experimental part.

Experimental setup

As it was mentioned, the experiments in this section were performed with the TIMIT data

sets, which were described in Table 3.10. The performance of the phone recognition was

measured on the level of PER and AF-TANDEM system consisted of the AF classifiers and

GMM-HMM model. The bigram LM was trained on train set with phonetic transcription

and specific lexicon with pure list of phones instead of words (phone-to-phone mapping.

e.g.: ah -> ah) was used for decoding purposes. The setup of articulatory classifiers is

summarized in the following paragraph.

The detailed review of articulatory classifiers was presented in the previous chapter

and the classifiers with the best performance on the level of FAcc accuracy were selected

for the AF posterior feature extraction task. The 9 independent DNN based classifiers

for particular AF classes such as degree (87.62% FAcc), frontness (81.58% FAcc), glottal

state (92.79% FAcc), height (82.36% FAcc), nasality (94.53% FAcc), place (84.65%

FAcc), rounding (88.71% FAcc), vowel (79.60% FAcc) and voicing (92.84% FAcc) were

selected. The particular DNN classifier consist of 2 hidden layers and 1024 hidden units.

The classifiers were trained on top of DCT-TRAP features where the length of the TRAP

trajectories was 21 frames.

During the next step, the frame posterior features were extracted from particular AF

classifier and concatenated to final high-dimensional vector. The dimension of AF poste-

rior vector is 67 for English. Then, the logarithm operation is applied on AF posterior

2https://github.com/kaldi-asr/kaldi/tree/master/egs/timit/s5
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vector and finally, the vector is de-correlated and reduced by PCA. The processed AF fea-

ture vector is concatenated with various type of feature pipe-lines depending on the type

of AM complexity. In the case of the TANDEM mono and tri1 systems, the processed

AF feature vector is concatenated with the MFCC cepstral features and their ∆ and ∆∆

coefficients. The TANDEM tri2 system is based on concatenated the processed AF fea-

tures with MFCC-SPLICE5-LDA-MLLT features. The speaker-dependent TANDEM tri3

system uses the processed AF features concatenated with MFCC-SPLICE5-LDA-MLLT-

fMLLR features. To conclude, the experiment with hybrid DNN-HMM system was trained

on concatenated speaker-dependent MFCC-SPLICE5-LDA-MLLT-fMLLR features with

the processed AF feature vector.

Results & Discussion

The experiment part can be divided into two parts. The first part compares the Kaldi

baseline models with the AF-Based TANDEM systems. Then, AF class specific based

TANDEM system were trained to present the contribution of particular classes on the

PER. Finally, the second part analyzes the combination of both systems together.

The results for Kaldi baseline models and implemented AF-TANDEM systems are

summarized in the Table 5.2. The AF-TANDEM system based on combination of all

AF classes achieved better results for mono and tri1 based AM systems. The achieved

results are correlated with the results of other authors in [78], which presented the same

positive impact of AF-TANDEM for mono and tri1 systems. The AF-Based TANDEM

systems achieved significantly worse results for tri2, tri3, dnn, which are based on stacked

feature vectors which describe temporal context and possible cover the complementary

information of AF features, which helped mono and tri1 system. To better understand

which AF class help to reduce WER, the AF-TANDEM system was trained on the con-

catenated MFCC features and selected AF class posterior feature vector. The obtained

results are summarized in the Table 5.2. The AF class voicing as well as degree, frontness

and glottal state have major impact on adding complementary information to AM trained

on MFCC features. The minor contribution was observed for the classes height nasality

place and class vowel.

mono tri1 tri2 tri3 dnn
baseline 32.7 25.6 23.7 21.6 18.5

af-tandem 27.2 24.8 25.1 27.1 19.9

Table 5.1: Achieved PER for baseline models and AF-TANDEM systems.

The next part of experiments was focus on combination of ASR systems trained with

and without AF information and the results are summarized in the Table 5.3. The ASR

systems combination was realized based on the lattice-level MinimumBayes Risk (MBR)
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DNN-HMM AF-DNN-HMM
senones all vowel place nasality heigth glottal state frontness degree voicing

18.5 19.9 20.3 19.6 19.2 19.1 18.8 18.7 18.7 18.6

Table 5.2: Achieved PER for AF class specific DNN-HMM systems.

system combination approach [136]. The positive impact of combined AM systems was

observed for mono, tri1, tri2 and dnn types. A little bit worse result was obtained for

tri3 system. The big PER reduction was observed for mono system and around 1.5% for

combination of DNN-HMM systems.

mono tri1 tri2 tri3 dnn
baseline 32.7 25.6 23.7 21.6 18.5

af-tandem 27.2 24.8 25.1 27.1 19.9
combined system 24.9 23.5 23.3 23.9 17.1

Table 5.3: The impact of AMs combination.

5.2.2 The AF-based TANDEM system for Czech

In this section, we continue with experiments focused on the Czech language. The first

part analyzes the behaviours of AF-based TANDEM system in LVCSR task on SPEECON

and NCCCz databases. The first experiments were realized in the close-talk channel

microphone in clean office environment. Then, the behaviour of the TANDEM system

under other acoustic conditions such as CAR was analyzed. Finally, the behaviour of AF-

TANDEM system was reviewed on the NCCCz test set with causal speech utterances.

Experimental setup

As it was mentioned, the experiments in this section were performed with the SPEECON

and NCCCz data sets, which were described in Table 3.1 and in Table 3.6. Similarly

to English, the Czech AF classifiers were selected based on the review in the previous

chapter. In total, 7 independent DNN based classifiers for particular AF classes such

as Place con (87.39% FAcc), Manner con (88.14% FAcc), Place vow (89.88% FAcc),

Manner vow ( 88.72% FAcc), Rounding (90.31% FAcc), Sonority (89.67% FAcc), and

Voicing (94.28% FAcc) were selected. The particular AF DNN based classifiers consist of

2 hidden layers and 1024 hidden units. The classifiers were trained on top of DCT-TRAP

features where the length of the TRAP trajectories was 21 frames.

The whole process of recognition with AF-TANDEM system starts with the extraction

of AF posteriors from trained DNN classifiers and computation of MFCC features. The

extracted posteriors features per AF class are concatenated to final 39 dimensional AF

feature vector and then post-processed with logarithm operation and PCA transformation
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to final feature vector with 38 dimension. The processed AF feature vector is appended

with ASR features in feature pipe-lines of particular AM systems such as mono, tri1, tri2,

tri3 and dnn. The tri-gram based LM with Witten-Bell smoothing was trained on the

text file from train part of NCCCz corpus.

Results & Discussion

The first results describe the behaviour of AF-TANDEM system on recognition of Czech

read speech. The GMM-HMM and AF-TANDEM systems were trained on the Speecon

OFFICE environment and close-talk CS0 microphone. The performance of both archi-

tecture was analyzed on the matched and the mismatched acoustic conditions. In the

case of the matched setup, the AMs were tested on OFFICE CS0 close-talk channel.

As mismatched environment was selected CAR CS0 channel environment which contain

higher amount of car noise with compare to OFFICE environment. The obtained results

for matched setup of experiment are summarized in the Table 5.4. The AF-TANDEM

system achieved better results on the level of mono and tri1 systems. Worse results are

observed for tri2 and tri3 system. The accuracy of mono and tri1 system can be further

improved using MBR system combination. The next improvements were not observed for

tri2 and tri3 system.

AM type GMM-HMM AF-TANDEM Combined

mono 21.32 20.69 19.08

tri1 15.26 17.93 14.96

tri2 15.99 19.81 16.23

tri3 15.87 19.21 17.18

Table 5.4: WER results on Speecon - OFFICE CS0 test set

The second part of experiments was focus on the performance of AF-TANDEM system

on casual speech recognition task on NCCCz corpus. The achieved results are summa-

rized in the Table 5.5. The achieved results shown significant better performance of mono

AF-TANDEM system with compare to GMM-HMM architecture. Slightly smaller im-

provement was observed for tri1 AF-TANDEM system. The tri2 and tri3 AF-TANDEM

systems achived worse results with compare to GMM-HMM version. In the case of ASR

system combination, the positive impact was observed for mono and tri1 system. The

ASR combination of tri1 and tri2 did not archived better results over baseline GMM-HMM

system.

In this section, the AF-Based TANDEM system was presented and analyzed in the

phone recognition for English and for Czech ASR tasks. The AF-TANDEM system based

on mono, tri1 achieved better results in comparison with standard mono and tri1 GMM-

HMM systems in both recognition tasks. The presented results confirm the results of
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AM type GMM-HMM AF-TANDEM Combined

mono 78.28 74.47 74.15

tri1 61.53 61.33 60.54

tri2 59.14 62.44 60.44

tri3 54.66 61.78 54.69

Table 5.5: WER results on NCCCz test set

other authors that the AF-TANDEM based mono, tri1 systems help on small vocabulary

recognition tasks [78], [33]. The benefit of the AF-TANDEM system for tri2, tri3 and dnn

was not observed. However, the positive contribution was observed from combination of

decoded hypotheses from both systems and significant improvement PER reductions for

mono, tri1, tri2 and dnn AM systems was obtained. In the case of ASR experiments on

Speecon and NCCCz corpora, the benefit from ASR systems combination was observed

for mono and tri1. The realized experiment confirmed the usage of the developed AF

classifiers for phone recognition and ASR tasks.

5.3 AF in Biomedical Speech Applications

The two previous sections presented the incorporation of AF classifiers into ASR systems

and proved the quality of the trained DNN based classifiers. As other application of

developed AF classifiers could be an integration into systems used in clinical biomedical

applications studying particular diseases affecting voice production. This is really up-to-

date topic from commercial point-of-view.

The recent research from this area has shown that about 7.6% of adults in the United

states are affected by a voice disorder annually and only a smaller part of adults find

professional help [9]. However, to help this smaller group of adults who ask for the

health-care system, large financial and human resources are required. The automatic

clinical assessment of voice disorders represent active research topic in the past years.

The mainstream approaches are based on the combination of a machine learning and

signal processing tools [42]. The challenges for developing of real assistant systems, which

could be used in a clinical practice are that the amount of medical speech data is very

limited. Typically, collected speech data are under strict policies or the amount of speech

is too limited. The other issue is that the labels have to be created by specialists and

strongly depend on subjective assessment. That is why the researches are trying to transfer

knowledge and frameworks from the ASR field where data is abundant [101] and systems

are well developed [108], [2].

The knowledge from an ASR domain can be transferred to medical speech domain

using pre-training of a system on the non-pathological speech and then fine-tune the sys-
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tem on the pathological speech [144]. The next approach is to train a system on healthy

speakers from one database, perform the evaluation on healthy speakers and pathological

speakers from another database, and compare differences. Typically, these works report

acceptable results wiht regards to correlation between features and clinical intervention.

The MFCC/PLP features are generally used, which makes the results difficult to under-

stand for specialist from clinical domain. This feature makes the system unusable for

deployment to real practice.

Therefore, there have been attempts to use features which are easily interpretable for

these specialist. The AF feature represent the suitable features for this task due to their

correlation with vocal tract properties. This approach was presented in a study [56] where

the author trained multi-label RNN to map MFCCs to AF and the for training was used

TIMIT database. Then, the authors used the trained model to extract AF for dysarthric

and normal speakers and checked differences. The achieved results shown that AF were

significantly different for dysarthric patients with compare to healthy patients. The ap-

proach was verified in a study [123] which showed that appended AF vector with standard

MFCC vector can increase ASR performance for disarthric speakers. This conclusion was

confirmed by [26].
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Chapter 6

Phonetic Segmentation and

Pronunciation Detection

This chapter deals with phonetic segmentation and pronunciation detection tasks which

are applied on both the formal and casual speech. In the beginning, the performed

study focused on the analysis of accuracy for various acoustic modelling techniques such

as GMM-HMM vs. DNN-HMM, monophone vs. triphone, or speaker independent vs.

speaker dependent. The impact of pronunciation lexicon on the accuracy of phonetic seg-

mentation is also analyzed. These analyses are presented for English and Czech languages

and a possible contribution of AF is also analyzed at the end.

6.1 Phonetic segmentation state-of-the-art

Automated phonetic segmentation is a task which has possible applications in a variety

of speech technology systems. It is a procedure which defines boundary locations of

particular phones in a given utterance and whose usage is necessary in situations when

phone boundaries must be found for very huge corpora. It is typically used to create

sub-word units for the purpose of concatenative speech synthesis [83], [121], to determine

phone boundaries in a huge speech corpora for the training of neural-networks-based

recognizers, for voice activity detection systems and articulatory feature classifiers, or in

other applications motivated by a study of pronunciation variability based on phonetic

segmentation. When phone boundaries are known, a detailed analysis of particular phone

realizations can contribute to the clinical diagnostics of serious diseases which influence

speech production [98] or to an analysis of pronunciation variability in a spontaneous or

informal speech [89].

89
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6.2 Phonetic Segmentation Framework

Automatic phonetic segmentation can be implemented in various ways. HMM-based au-

tomatic phonetic segmentation, which is well-known as a forced alignment, is the most

widely applied technique. However, other approaches for the phoneme localization us-

ing Bayesian change-point detector, or artificial neural networks are also used by some

authors [19].

HMM-based forced-alignment

The HMM-based forced alignment is a well known and basic solution which is based on

the alignment of trained HMM models to a given utterance when the utterance content

is known. This algorithm is based on looking for the maximum likelihood path through a

decoding graph composed of an acoustic model and a grammar representing the utterance

content. For this purpose, the selection of proper pronunciation, ideally the one that has

been observed, plays a significant role in the segmentation accuracy. Phone boundaries

are then determined by the occupancy of HMM states representing particular phones over

the found optimum path. This procedure is commonly used during the acoustic model

training. As it was mentioned, Kaldi toolkit was used for all experiment within this thesis

but it is not very common to use deep AMs for speech segmentation [82]. It is more

common to use a low-level AM which are also used to generate targets for DNN-HMM

training. The task presented in this chapter makes use of speaker-independent/dependent

GMM-HMM models and DNN-HMM models that were used in the previous chapters. The

abbreviations for these models follow the ones set in previous chapters: mono, tri1, tri2,

tri3, dnn.

Evaluation of phonetic segmentation accuracy

The evaluation of phonetic segmentation accuracy was done using the criteria describing

both the accuracy at the level of phone recognition correctness as well as the accuracy of

phone boundary placement (this approach was also used by authors in [58] or [82]). The

phone recognition correctness evaluates the standard Phone Error Rate (defined using

equation in 3.3) computed on the basis of Levenshtein distance. For the purpose of

phonetic segmentation classification, it is also suitable to use Phone Correctness computed

as

PCorr =
N − S −D

N
· 100, (6.1)

whereN is the number of phones in the reference and S andD are numbers of substitutions

and deletions in the aligned data. This criterion is more suitable because the evaluation of

the accuracy of a particular boundary placement makes sense just for correctly recognized
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phones not for possibly inserted phones. All deleted phones are also removed from the

reference transcript, inserted phones from aligned transcript, and substituted phones are

removed from both of them. The cleared transcripts are then used for the evaluation of

boundary placement accuracy. When two couples of reference and transcribed boundaries

for each phone realization are available, i.e. begph,ref [i] and endph,ref [i] vs. begph[i] and

endph[i], Phone Beginning Error (PBE) and Phone End Error (PEE) can be defined for

each particular phone ph as

PBEph[i] = | begph[i]− begph,ref [i] | , (6.2)

PEEph[i] = | endph[i]− endph,ref [i] | . (6.3)

as well as Phone Length Error (PLE)

PLEph[i] = | endph[i]− begph,ref [i]− endph,ref [i] + begph,ref [i] | . (6.4)

The accuracy of phone boundary placement for a given test set can be then approximated

using the rate of phone boundary error which is below the chosen threshold which can be

defined as

PBEph,thr =

Nph∑
i=1

(PBEph[i] < thr)

Nph

· 100 (6.5)

where ph is phone/class identification, Nph is the number of phone/class realizations, and

thr is the value of chosen error threshold. Similarly, same procedure is applied for the

computation of PEEph,thr and PLEph,thr. Threshold values used for evaluations within

this work were 5, 10, 20, or 30 ms respectively. All of these criteria can be computed

with basic statistics for all phones, however, it is more common to do the evaluation over

defined phone classes, which are generally language independent. The phone classes for

English were defined according to [58], i.e. VOW - vowels, GLI - semivowels and glides,

VFR - voiced fricatives, UFR - unvoiced fricatives, NAS - nasals, STP - stops, UST -

unvoiced stops, and SIL - silence. Finally, PronER (Pronunciation Error rate) is also

used to evaluate pronunciation detection accuracy

PronER =
S

N
· 100 (6.6)

where N is the total number of words in the reference set and S is the numbers of

incorrectly recognized (substituted) pronunciation variants.
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6.3 Baseline Phonetic Segmentation for English

The section describes baseline HMM-based phonetic segmentation and the task of finding

the optimum acoustic model, the impact of extended pronunciation lexicon, and the ac-

curacy of pronunciation variant detection when more variants are available in the lexicon.

The experiments were performed using TIMIT corpus which is often used as a standard

for the evaluation of phonetic segmentation for English. This also allowed us to compare

obtained results with those published by other authors.

Experimental Setup

The experiments covering this task were realized with both predefined COMPLETE and

CORE test sets available in TIMIT corpus. Only the phonetically-compact sentences

(marked as SX sentences) and phonetically-diverse ones (marked as SI sentences) were

the used. Following this selection criteria, the COMPLETE test set consisted of 50754

boundaries and the CORE set of 7215 boundaries. The summary of used data sets is

presented in Table 3.10. TIMIT phone set was reduced from 61 to 48 phones for the

purpose of creating the AM. This is a standard step that is the most often used for acoustic

modelling. The set was then further reduced to 39 in order to perform the boundary

scoring as this is a standard size of a phone set for English used in Kaldi recipes as well as

by many other authors for their ASR systems [74]. We started with a standard approach

to create the ASR (s5 recipe in Kaldi) and we optimized it with regards to improving the

accuracy of automatic phonetic segmentation task. HMM topology consisted of 3 emitting

states models for non-silence phones and 5 emitting states models for silence. Direct phone

transcription, which includes also silence marks, was then used for the training the AM.

Therefore, silence appearing in training graphs and silence boundaries were also scored,

but optional silence were not.

6.3.1 Optimum AM for direct phonetic segmentation

The optimum choice of a proper AM had to be found. This task required using as precise

of a transcription as possible, ideally using a a correct sequence of phones not words. As

TIMIT contains transcriptions at a phone level, it allowed us to perform this step using

this input for forced-alignment. When phonetic content is available, no phone needs to

be recognized and PER is equal to 0 %. Obtained results are presented in the Table 6.1.

Similarly to several other works (e.g. [82] or [134]), the highest accuracy were obtained

for the simplest monophone AM, for both the CORE and COMPLETE test sets. Slightly

lower accuracy of triphone- and DNN-based AMs might have been caused due to the fact

that input features are taken from larger context, which yields to higher uncertainty when



6.3. BASELINE PHONETIC SEGMENTATION FOR ENGLISH 93

CORE SET COMPLETE SET
5 ms 10 ms 20 ms 30 ms 5 ms 10 ms 20 ms 30 ms

mono 29.16 52.79 83.08 93.00 29.00 52.71 82.79 92.63
tri1 27.80 51.21 81.69 92.82 27.84 50.89 81.40 92.12
tri2 27.40 49.55 79.72 91.45 27.10 48.96 79.27 90.91
tri3 27.42 49.34 79.18 91.24 27.18 48.74 78.41 90.36
dnn 27.73 48.87 78.84 90.77 27.11 48.49 78.32 90.09

Table 6.1: Results of direct phonetic segmentation, PER = 0, PCorr = 100

CORE SET COMPLETE SET
5 ms 10 ms 20 ms 30 ms 5 ms 10 ms 20 ms 30 ms

mono144 31.05 54.57 82.51 92.17 31.37 54.67 81.90 91.73
mono288 31.68 55.80 84.70 93.79 32.02 56.39 84.55 93.11
mono432 30.45 54.73 84.74 93.74 31.03 55.32 84.46 93.06
mono720 29.76 53.50 83.53 93.35 29.95 53.70 83.48 92.99
mono1008 29.16 52.79 83.08 93.00 29.00 52.71 82.79 92.63
mono1440 28.18 51.50 81.80 92.82 28.13 51.31 81.80 92.30

Table 6.2: Optimization of monophone AM for direct phonetic segmentation (PER = 0,
PCorr = 100)

determinaing a boundary position. Speaker dependent AMs achieved lower accuracy,

Figure 6.1: Phone Beginning Error PBE for particular phone lasses: blue - monophone
system, red - DNN-based system
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most likely, due to the limited amount of data available per speaker in the TIMIT corpus.

Concerning the monophone AM, we looked for its optimized setup. Same as in other

published works [82], it was confirmed that a smaller amount of Gaussian mixtures per

state gives better results. The best results were achieved for 2 mixtures per state, see

Table 6.2. The numbers in acronyms mono144, mono288, etc. in Table 6.1-6.2 represents

the number of Gaussian components in whole HMM, e.g. 288 means 288 components with

2 mixtures per state, 3 emiting states per each monophone, and 48 phones in given HMM

(2x3x48).

Finally, the distribution of values of PBE for particular phone classes is presented

in Fig. 6.5. Particular bars describe distribution of PBE determined by 0.25 and 0.75

percentiles. Significantly worse results are observed for DNN system. However, the sig-

nificant portion of the observed error can be attributed to the silence phone whereas the

error increase for other phone classes is not so critical.

6.3.2 Phonetic segmentation with pronunciation variability

The second analysis describes the phonetic segmentation when exact phone sequence is

not available and phonetic content is obtained from a pronunciation lexicon. This sitau-

ation represents the most frequent scenario. However, the main issue is how well is the

pronunciation variability covered in the lexicon and how the proper choice of word pronun-

ciation variant influences the accuracy of the phonetic segmentation. We performed the

experiments with 3 pronunciation lexicons: the first lexicon contained just canonic pro-

nunciations, the second one contained all pronunciation variants observed in the TIMIT

corpus, and the third one was based on merging previous two lexicons.

The lexicon containing all pronunciations which had appeared within phonetic tran-

scription of TIMIT corpus (called further as timit-variants) was obtained from available

transcriptions at the word and phone level. A significant majority of words from TIMIT

had more than one pronunciation, so we could analyze also the ability of used AM to

recognize the correct pronunciation variant for particular word realizations. In total, we

obtained 19184 pronunciations for 6256 words, moreover, in some cases the number of

pronunciation variants was very high (22 words had more than 20 pronunciations), as it

is shown in more details in Table 6.6. This lexicon should also simulate using TIMIT

corpus in a more realistic situation of informal speech when each word can have more

pronunciations due to pronunciation variability in informal speaking style.

Obtained results are shown in Tabs 6.3-6.5 and a significant decrease of PER was

observed when lexicon contained pronunciation variants. Further, the usage of more

advanced AM (DNN-based one) contributed to further decrease of achieved PER below

10%. Consequently, it means the increase of PCorr, i.e. more than 92% of all phones were
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PER PCorr 5 ms 10 ms 20 ms 30 ms

CORE
mono 32.58 71.43 23.94 43.54 72.39 85.82
tri1 32.8 71.58 23.15 42.23 70.28 84.19
tri2 32.55 71.64 22.96 40.82 67.83 83.45
tri3 32.46 71.57 23.92 40.41 66.08 81.70
dnn 31.88 71.45 23.67 40.14 65.28 80.60

mono288-dnn 31.88 71.45 25.78 45.37 72.01 84.54

COMPLETE
mono 31.15 72.28 23.92 43.23 72.34 85.78
tri1 31.79 72.18 23.23 41.96 70.18 84.21
tri2 31.45 72.22 23.00 40.50 67.82 83.16
tri3 31.3 72.24 23.47 40.41 66.33 81.20
dnn 30.52 72.28 23.43 40.32 65.83 80.59

mono288-dnn 30.52 72.28 26.39 46.38 72.71 84.93

Table 6.3: Phonetic segmentation with canonic lexicon

PER PCorr 5 ms 10 ms 20 ms 30 ms

CORE
mono 12.24 89.69 28.77 51.61 82.26 92.58
tri1 11.49 90.85 27.19 50.18 80.70 92.01
tri2 11.16 91.14 26.93 48.59 78.89 90.71
tri3 10.24 91.91 27.51 48.45 78.03 90.59
dnn 9.58 92.03 27.64 48.55 78.03 90.05

mono288-dnn 9.58 92.03 31.28 54.94 83.81 93.09

COMPLETE
mono 12.06 89.62 28.82 52.11 82.25 92.30
tri1 11.89 89.83 27.58 50.28 80.81 91.65
tri2 11.17 91.19 26.88 48.41 78.50 90.39
tri3 10.75 91.46 27.04 48.10 77.68 89.90
dnn 10.00 92.06 27.16 48.28 77.73 89.55

mono288-dnn 10.00 92.06 31.91 55.98 84.17 92.93

Table 6.4: Phonetic segmentation with TIMIT-variant lexicon

PER PCorr 5 ms 10 ms 20 ms 30 ms

CORE
mono 12.43 89.48 28.79 51.69 82.25 92.64
tri1 11.74 90.64 27.25 50.17 80.72 92.08
tri2 11.31 91.02 26.97 48.64 78.91 90.76
tri3 10.42 91.75 27.48 48.46 78.08 90.56
dnn 9.76 91.88 27.65 48.51 77.99 90.00

mono288-dnn 9.76 91.88 31.33 55.00 83.84 93.12

COMPLETE
mono 12.40 89.28 28.83 52.08 82.25 92.31
tri1 11.45 90.92 27.60 50.29 80.83 91.69
tri2 11 91.2 26.90 48.44 78.51 90.42
tri3 10.23 91.84 27.04 48.11 77.64 89.90
dnn 9.28 92.17 27.12 48.22 77.63 89.44

mono288-dnn 9.28 92.17 31.92 55.97 84.14 92.93

Table 6.5: Phonetic segmentation with canonic lexicon extended by TIMIT variants
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No. of pronunciation variants 1 2 3-5 6-10 11-20 < 20

No. of words 631 3372 1516 637 78 22

Table 6.6: Lexicon timit-variants - statistics

correctly identified, however, the accuracy of boundary determination slightly decreased

when DNN-based system was used. On the other hand, when the recognized phone

sequence is realigned with optimized monophone system with 288 Gaussian components

(acronym mono288-dnn), both the best PER and boundary placement accuracy were

achieved [131].

6.3.3 Pronunciation recognition

When pronunciation lexicons contain a very high number of pronunciation variants, cor-

rect detection of the proper pronunciation variant is a very important task and phonetic

segmentation in this scenario can also serve the purpose of detecting proper pronunciation

variants within an analyzed utterance. It can then play an important role in the research

focused on pronunciation variability so the correctness of pronunciation variant selection

was analyzed at the end as well.

In fact, the choice of correct pronunciation was already quantified to some degree by

looking at the the decrease in PER described in previous section. However, for many words

we had a rather high amount of pronunciation variants which could be very important

feature of such a system. From the results described in Table 6.3.3, we can observe

a significant decrease in PronER when more advanced acoustic modelling are used. The

same held true for lexicons. The best results were obtained with DNN-based system, where

we observed a significant decrease in PronER; 76.34% were obtained for basic monophone

system and CORE test set, while 31.89% weas achieved for DNN-based system. The

contribution of GMM-HMM systems with triphone-based models was seen too. The same

trend in obtained results was also observed for the COMPLETE set.

6.3.4 Summary

The implementation of the HMM-based phonetic segmentation was presented together

with the analysis of various acoustic modelling techniques on the final accuracy of phone-

boundaries determination. The evaluations were performed with TIMIT database and

they proved the contribution of advanced acoustic modelling when the task was to choose

the proper pronunciation variant. We achieved more than 92% correctness for phone

recognition within forced-alignment with the DNN-HMM system. The improvement of

phone boundary placement was also observed in the second step with an optimized mono-
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canonic timit canonic+variants
PER PronER PER PronER PER PronER

CORE

mono 32.58 76.34 12.24 39.48 12.43 40.18
tri1 32.80 76.28 11.49 37.82 11.74 38.46
tri2 32.55 76.28 11.16 35.97 11.31 36.54
tri3 32.46 76.28 10.24 33.48 10.42 34.06
dnn 31.88 76.34 9.58 31.44 9.76 31.89

COMPLETE

mono 31.15 74.22 12.06 40.39 12.40 41.44
tri1 31.79 74.21 11.89 37.06 11.45 37.87
tri2 31.45 74.22 11.17 35.77 11.00 36.60
tri3 31.30 74.21 10.75 33.82 10.23 34.56
dnn 30.52 74.22 10.00 31.46 9.28 32.19

Table 6.7: Pronunciation variant recognition

phone GMM-based system; 83.84% of phone beginning boundaries were determined with

the threshold smaller than 20 ms, and the error reached 93.12% for the threshold smaller

than 30 ms. These results were obtained without any further boundary correction, as

that was not the goal in our applications, and the referenced authors did not employ such

techniques either.

6.4 Phonetic segmentation of Czech casual speech

The accuracy of the HMM-based forced-alignment technique used for phonetic segmen-

tation relies on the quality of acoustic data. It also depends strongly on the accuracy

of input phonetic contents. This section analyses the accuracy of phonetic segmentation

performed on NCCCz which contains informal speech of strong spontaneous nature. It

influences the character of the produced speech at various levels, mainly at the level of

rather free pronunciation.

Phonetic content of utterances is transcribed usually at orthographical level and can

be obtained by grapheme-to-phoneme conversion or from a pronunciation lexicon. The

basic lexicon with canonical pronunciations of words in NCCCz had to be created. The

description of this procedure and a tool supporting pronunciation check of lexicon items

is described below. To conduct the experiment of phonetic segmentation on NCCCz cor-

pus, the lexicon must cover the pronunciation variability, which was achieved by including

additional pronunciation variants. The lexicon with various pronunciation variants which

covers speech variability caused by processes of co-articulation, assimilation or reduction

had to be used when phone boundaries were to be determined for spontaneous and infor-

mal speech, higher diversity of language dialects, as well as in other situations when the

level of pronunciation variability is rather high. Such a lexicon can be obtained manually

(for some very specific situations) or automatically (to extend regular pronunciations by
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Figure 6.2: Illustrative example of the work with the LexFix tool

particular phone substitutions or reductions on the basis of defined rules.

6.4.1 The NCCCz lexicon

The Nijmegen Corpus of Casual Czech was created to provide a corpus of Czech contain-

ing high-quality recordings from naturally occurring interactions which would be suitable

for a detailed analysis of spontaneous speech. For the purpose of further studies and

developments, the orthographic transcription of records had to be created using a proper

pronunciation lexicon. Generally, a lexicon always represents an important component

which has a significant impact on the accuracy of the target ASR system. It is especially

important in the case of spontaneous or casual speech recognition for which the process of

coarticulation, assimilation and reduction often appears. Due to the very informal speak-

ing style resulting in the appearance of many rare or non-standard words, available lexicon

containing regular canonical pronunciation had to be corrected manually before being ap-

plied to NCCCz. The first version was created using grapheme-to-phoneme conversion

rules that have been verified for another lexicon for Czech [105].

The automatically generated pronunciation contained a large amount of incorrect pro-

nunciations mainly for foreign words as well as for above-mentioned non-standard ones.

The correction (editing) of the pronunciation lexicon was clearly needed. For this purpose,

the LexFix tool for lexicon editing was modified to allow working with the orthographic

transcription and listening to a recorded utterance at the same time. In general, the tool

was created to correct pronunciation of any word form, not only the ones appearing in

casual or informal speech. The ability to search for a word together with the neighbouring
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context in a huge corpus was necessary. It might also be very difficult to decide about

the pronunciation of a non-standard word without listening to it, so it was necessary to

play the particular sentence the word appeared in. The illustrative example of the work

with the LexFix tool is at Fig. 6.2.

During these checks, reduced pronunciations (e.g. “nějaký” vs. “ňáký”) were not

marked so the current lexicon contains only canonical pronunciation with a small amount

of pronunciation variants. Finally, the created pronunciation lexicon for NCCCz contains

approx 30 000 word forms. To capture the variability of informal spontaneous speech

pronunciation, created canonical lexicon was completed by adding more pronunciation

variants in next steps. For this purpose, the rules described in Sec. 3.4.3 were used and

brief summary is presented in Table 6.8.

No. of pronunciation variants

lexicon type total size 1 2 3-5 6-10 11-20 < 20

lexicon A 29077 27812 625 5 - - -
lexicon B 136065 7311 6431 7641 4340 2352 107974

Table 6.8: NCCCz Lexicons variants - statistics

The analysis of phonetic segmentation accuracy was realized using the following two vari-

ants of pronunciation lexicons:

• Lexicon A - the lexicon with canonical pronunciation,

• Lexicon B - the lexicon with canonical pronunciation extended with rule based pro-

nunciation variants.

Experimental Setup

The acoustic models used for experiments described in this section were trained on NCCCz

train data set, see Table 3.6. The experiments were realized with the following AMs:

mono, tri1, tri2, tri3, dnn. One difference, however, was the model denoted as dnn mono,

which was DNN system (2 hidden layers and 1024 hidden units) trained on monophones

as the targets, and not the senons, as is usually the case. To demonstrate the quality of

these acoustic models, Tabs. 3.11 and 3.12 present the WERs for a LVCSR task. Phonetic

segmentation experiments were carried out using utterances from the NCCCz which were

summarized in more detail in Table 3.7.

6.4.2 Optimum AM for direct phonetic segmentation

A manually created phonetic transcription was used as an input for HMM-based forced

alignment. The direct phonetic transcription represents an ideal case when proper pro-

nunciation is selected from pronunciation variants in lexicon. The demonstration of the
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Figure 6.3: Illustrative example of phonetic segmentation results with the canonical pro-
nunciation.

Figure 6.4: Illustrative example of phonetic segmentation results with the reduced.
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AM type PER PCorr 5 ms 10 ms 20 ms 30 ms
mono 135 0 98.17 34.40 57.74 79.70 87.61
mono 270 0 100 39.86 64.28 85.13 92.21
mono 405 0 100 37.67 61.69 83.33 91.69
mono 540 0 100 37.89 61.15 83.15 91.32
mono 675 0 100 36.58 60.68 83.25 91.22
mono 810 0 100 35.45 58.98 82.44 91.17
mono 945 0 100 34.11 58.12 81.94 90.68
mono 1080 0 100 36.21 59.37 82.96 91.14
mono 1215 0 100 35.20 58.76 82.34 90.95
mono 1350 0 100 34.36 58.12 82.46 91.12

tri1 0 100 37.25 60.88 83.60 91.93
tri2 0 98.17 34.17 57.71 82.04 90.93
tri3 0 100 33.10 56.14 80.59 89.39
dnn 0 100 3229 5459 7950 8873

dnn mono 0 100 36.21 60.66 84.58 92.33

Table 6.9: Results of direct phonetic segmentation of casual Czech

impact of proper pronunciation selection on phonetic segmentation accuracy for casual

speech is illustrated in Figs. 6.3 and Fig. 6.4. The figures demonstrate the importance of

proper pronunciation on phonetic segmentation accuracy for words with strong pronunci-

ation reduction.

Obtained results for analysed AMs are summarized in Table 6.9. In the case of casual

speech, the best results were obtained with dnn mono AM at the level of 30 ms threshold

and the optimized mono 270 system achieved the best results for 5, 10, 20 ms thresholds.

Similar results were observed for English, where the best results were achieved by using

mono system. The numbers used in acronyms in Table 6.9 (mono135, mono270, mono405

etc.) represents the total number of Gaussian components in the model. The speaker

independent DNN system, which was trained on the same features as the mono system

and monophones as targets, outperformed the speaker-dependent dnn system which was

trained on stacked fMLLR features.

6.4.3 Segmentation with reduced pronunciation

The next step was to compare the accuracy of phonetic segmentation when lexicon with

canonical pronunciation is used as well as when the pronunciation variability is cap-

tured. The results for phonetic segmentation with canonical pronunciation are in Ta-

ble 6.10 and for the segmentation with lexicon with additional variants are in Table 6.11.

The dnn mono system achieved the best segmentation accuracy of approx. 90% with

the 20/30ms thresholds for both lexicons. The best segmentation accuracy of approx.

37% with the 5ms threshold was archived by mono 270. Additional PER reduction was
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achieved, when the phone sequence was recognized with dnn model and then realigned

with dnn mono or mono models. Although the presented results were obtained in ex-

periments performed on a small evaluation subset of manually segmented utterances, the

results had demonstrated the contribution of including information about pronunciation

reduction into the lexicon.

AM type PER PCorr 5 ms 10 ms 20 ms 30 ms
mono 270 16.51 93.05 37.19 60.27 81.53 88.65
mono 405 16.36 93.07 35.42 58.63 80.38 89.08

tri1 16.65 93.12 35.19 57.21 80.81 89.40
tri2 16.56 93.12 32.42 54.52 78.87 87.77
tri3 16.44 93.17 31.46 53.57 77.62 86.89
dnn 16.26 93.20 31.29 53.79 77.66 86.50

dnn mono 16.04 93.17 34.81 58.31 82.07 89.85

Table 6.10: lexicon A - canonical pronunciation

AM type PER PCorr 5 ms 10 ms 20 ms 30 ms
mono 270 18.87 88.42 37.37 60.76 82.02 89.11
mono 405 18.48 89.03 34.84 58.31 80.80 89.10

tri1 16.87 91.73 35.65 57.84 81.45 90.03
tri2 16.85 91.59 32.93 55.14 79.69 88.37
tri3 16.14 92.20 32.00 54.24 78.31 87.46
dnn 15.83 92.44 31.21 53.97 78.37 86.52

dnn mono 17.36 89.93 34.92 58.60 82.81 90.43

dnn-mono 270 15.83 92.44 37.38 60.67 81.96 89.00
dnn-dnn mono 15.83 92.44 34.95 58.67 82.62 90.32

Table 6.11: lexicon B - canonical pronunciation extended with rule based pronunciation
variants

6.4.4 Reduced pronunciation recognition

The final step was to analyze the accuracy of pronunciation variant recognition on ca-

sual Czech speech. In the case of casual speech, it is more difficult because the acoustic

realization is often strongly irregular and influenced by an informal speaking style. More-

over, when the lexicon covering possible pronunciation variability is obtained using many

predefined rules applied to all words, it contains consequently a rather big amount of

pronunciation variants where many of them could be acoustically very similar as well as

the probability of appearance for many of them could be rather low. By looking at the

obtained results presented in Table 6.12, a significant improvement in accuracy on the

level of PronER was achieved with a DNN based system. The system outperformed the

GMM-HMM mono, tri1, tri3 systems and also speaker independent dnn mono.
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system lexicon A lexicon B
mono 270 37.28 44.98
mono 405 37.28 44.13

tri1 37.09 38.59
tri2 37.09 38.69
tri3 37.09 37.37
dnn 37.09 37.56

dnn mono 37.28 42.44

Table 6.12: Pronunciation variant recognition for casual Czech

6.5 Impact of AF for phonetic segmentation

The presented studies have analyzed the contribution of various types of AMs and lexicons

where the main goal was to maximize accuracy of the automatic phonetic segmentation.

It means that matched training and testing data were used (i.e. training and testing

data were both form NCCCz). In this section, a more realistic scenario is analyzed,

when the AM used for HMM-based phonetic segmentation was trained on data from

the SPEECON corpus. It means that NCCCz acoustic conditions were not seen during

the AM training, which mean that the automatic phonetic segmentation was tested on

purely unseen data. Such mismatch in speaking style represented an additional challenge

for the HMM-based phonetic segmentation task. To minimize the both the acoustic and

speaking style mismatches, the idea was to analyze the potential contribution of AF-based

TANDEM system for this task. The developed system described in the previous section

was used now for comparison purposes.

Experimental Setup

Finally, three types of AMs were used in the experiments. The first AM was based on

GMM-HMM architecture and the system was described in section 3.4.2. The second one

was based on AF-TANDEM architecture and the system was described in section 5.2.2.

Both GMM-HMM and AF-Based Tandem systems were trained only on speech data from

SPEECON database. The mono and tri1 types of AM were used for the analyses. The

third AM was trained on matched acoustic conditions (i.e. on NCCCz train set) and

the training procedure for this AM was described in section 3.4.2. The NCCCz test set

described in the Table 3.6 was used for the evaluation and both Lexicon A and Lexicon

B (NCCCz lexicons) were considered during these experiments.

Results & Discussion

The achieved results are summarized in Tab 6.13. The tri1 GMM-HMM system achieved

the best segmentation accuracy of approx. 87% with the 30ms threshold. This was bet-
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AM train set test set AM type PER 5ms 10ms 20ms 30ms
Lexicon A

speecon ncccz test mono 15.94 26.37 46.23 75.72 86.67
speecon ncccz test tri1 15.89 26.92 48.45 78.13 87.14
speecon ncccz test af mono 15.48 26.13 46.88 73.26 83.65
speecon ncccz test af tri 16.03 24.93 44.29 73.11 83.86
ncccz ncccz test mono 16.09 33.63 56.67 80.10 88.42
ncccz ncccz test tri1 16.56 34.22 56.51 80.85 89.35

Lexicon B
speecon ncccz test mono 20.19 26.26 45.52 74.92 86.02
speecon ncccz test tri1 18.49 26.87 48.03 77.37 86.82
speecon ncccz test af mono 19.82 25.27 45.49 72.67 83.44
speecon ncccz test af tri 18.98 25.34 44.93 73.44 84.77
ncccz ncccz test mono 18.07 33.76 56.81 80.32 88.57
ncccz ncccz test tri1 17.07 34.80 57.44 81.69 89.74

Table 6.13: The results for phonetic segmentation in mismatched scenario

Figure 6.5: Phone Beginning Error PBE. The first figure: GMM-HMM monophone
system. The second figure: AF-based Tandem monophone system. Lexicon A setup.

ter than both the mono GMM-HMM and mono/tri1 AF-based TANDEM systems. The

tri1 GMM-HMM system achieved around 2% worse results with 30ms threshold when

compared to the results achieved with the tri1 model trained on NCCCz. The signifi-

cant degradation was seen for both GMM-HMM and AF-Based TANDEM systems for
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more strict thresholds of 5ms, 10ms and 20ms. The positive impact of more pronunci-

ation variants Lexicon B on the accuracy of phonetic segmentation was observed for the

matched AM. In the case of GMM-HMM and AF-Based TANDEM systems, using the

more generic lexicon showed a negative impact. The comparison between GMM-HMM

and AF-Based TANDEM system on the level of Phone Beginning Error criteria is pre-

sented in the Fig. 6.5. The worse performance of AF-Based TANDEM system could

be explained by the worse generalization of AF to different speaking styles encountered

in NCCCz. The degradation of AF estimation of approx. 25% for average FAcc was

measured. The authors in [126] reached the same conclusion.

6.5.1 Summary

In this section, the pilot analysis of HMM-based phonetic segmentation accuracy with

regards to the usage of canonical and reduced pronunciations were performed. The exper-

iments were done with the speech from Nijmegen Corpus of Casual Czech (NCCCz), which

contains speech of a very strong and spontaneous nature. The results demonstrated the

significance of pronunciation reduction on the proper acoustic modelling of spontaneous

speech (applied currently on phonetic segmentation).

The proper lexicons were created to ameliorate this issue. The LexFix tool, which was

created as part of this thesis, represents another the important contribution of this work

because it supports general lexicon editing with the possibility to locate the word and its

neighbouring context in a very large corpus, and listening to it as the same time. The

reduction of the pronunciation is supposed to be solved automatically at further steps of

this wider research. On the other hand, the procedure of looking for the reduction rules

is also supposed to be supported by the NCCCz data together with the possible listening

of particular occurrences of lexicon items in the corpus.

The two stage forced-alignment consisting of combination of speaker-dependent DNN-

HMM system and DNN-HMM trained on monophone targets was analyzed on casual

speech NCCCz test set and showed to achieve results comparable to English read speech.

In the end, the performance of GMM-HMM and AF-Based TANDEM systems was

analyzed in the mismatch conditions. The benefits of the AF-Based TANDEM systems

could not be confirmed for automatic phonetic segmentation.
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Chapter 7

Conclusions

The general goal of this thesis was to study basic the properties of articulatory features,

their estimation techniques and their potential applications in ASR systems and for the

task of phonetic segmentation. Particular conclusions were already discussed in more

details within previous chapters but the most important contributionss of this thesis can

be summarized as follows.

• The general properties of AF were studied and the state-of-the-art for their possible

applications was presented.

• AF classes for Czech were defined, including the mapping of phones to particular

AF categories. Only a minimal number of works described an up-to-date research

on AF for Czech, moreover, majority of them deal with other target applications

(e.g. speech synthesis). In addition, they often use slightly different approaches.

A similar unification of AF classes was done also for several other East-European

languages, namely for Slovak, Polish, Hungarian, and Russian.

• DNN-based estimation of AF was optimized. This task was done for Czech, English,

Slovak, Polish, Hungarian, and Russian languages. The optimum temporal context

as an input for a DNN was estimated to be between 210÷ 310 ms for all languages.

The modern techniques of feature extraction such as DCT-TRAP, stacked cepstral

feature, MFCC-LDA-MLLT, or FMLLR features were analyzed for the classifica-

tion of AF features. The fMMLR feature proved to have a positive impact on AF

estimation. The Czech AF classes were estimated with the average FAcc of around

90%.

• The visualization of estimated AF in the Praat environment was prepared. It is

expected to help in a study of AF estimation accuracy as well as in the research of

phonetics and other fields where the articulation is analyzed.

107
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• Incorporation of AF into the phone recognition, AF-TANDEM-based LVCSR, as

well as phonetic-segmentation was implemented as the first steps to improve the

recognition of spontaneous and informal speech. These steps were focused mainly

on Czech and English languages.

• The first experiments were related to the above mentioned tasks on corpora with a

formal read speech (database SPEECON, TIMIT, SpeechDat), and on the corpora

with the speech containing a higher level of background noises (car speech data),

and finally on spontaneous speech (data containing technical lectures) and casual

speech. The design of Czech casual speech recognition system with the focus on

the optimization of the acoustic and language models was presented. Concerning

the obtained results, the best setup was achieved for the DNN-HMM system with

merged language model and pronunciation variation modelling. It achieved 58.4%

WER, which is comparable to the results presented by other authors. The lexicon

with manually corrected canonical pronunciations improved the results by about 1%,

in terms of the WER. The built system was also evaluated on other spontaneous data

(lecture recordings, which were slightly more formal) where it achieved somewhat

better WER of 37.2%. In addition, this system was evaluated on the of formal read

speech recognition where the WER of 14.7% was achieved. The observed margin

between the casual and formal speech recognition illustrated the challenge for the

research in the field of more informal speech recognition.

• The review of AF contribution to phone recognition and ASR performances un-

der various speaking style was presented. It was done using an AF-based Tandem

ASR system. The positive impact of AF-Based TANDEM system was observed for

standard (mono) and triphone (tri1) systems for both languages and confirm the

previous results achieved by other authors. The next improvement was achieved us-

ing the ASR combination of GMM-HMM or DNN-HMM and AF-Based TANDEM

systems. The most important result was the 17% PER, which was achieved for a

combined DNN-HMM system that was trained with and without AF features. The

AF-based Czech TANDEM surpassed the GMM-HMM (mono) and triphone (tri1)

systems for the task of causal speech recognition.

• The impact of various types of AM on automatic phonetic segmentation was ana-

lyzed for two speaking styles on TIMIT for English read speech, and NCCCz with

Czech casual speech. The two stage forced-alignment consisting of a combination

of DNN-HMM and optimized monophone GMM-HMM-based or DNN-HMM based

system was proposed in this thesis. The positive impact on the level of phone bound-

ary determination was observed for both read English speech and casual Czech

speech test sets. The best phone boundaries accuracy on the TIMIT was around
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93% for the 30ms criteria and a 90% accuracy was achieved on NCCCz test set.

The positive contribution of using a lexicon with reduced pronunciation variants was

confirmed. The AF-Based TANDEM system was analyzed in a mismatched setup

but the system did not improve the results.

• Concerning the implementation as as a by-product of this thesis, Czech ASR LVCSR

system was implemented using the modern Kaldi toolkit and the recipes for all

available Czech corpora in our lab such as CZKCC, NCCCz, SPEECON, Speech-

Dat, CzLecDSP, CtuTest were created. The CtuCopy feature extraction tool was

extended by cepstral normalization techniques.

• Concerning the experimental part, the processing of the NCCCz corpus was final-

ized. The data sets of NCCCz were cleaned-up and converted to a format suitable

for being used in Kaldi recipes and they are now available at http://www.mirjam

ernestus.nl/Ernestus/NCCCz/index.php.

• A reviewed canonical lexicon was added to the NCCCz corpus. The corpus now

contains manually checked pronunciations of 29077 words. The LexFix tool was

adapted for this purpose and it can be used for other similar tasks. Finally, the most

important pronunciation variability was included and 630 words have additional

pronunciation variants.

Concerning the final summary, the thesis presented the study of estimation AF features

with the focus on the accuracy and possible contribution for speech processing of Czech

casual speech. The realized analyses for Czech language confirmed that AF feature con-

tained complementary information to standard cepstral features and consequently they

can contribute to the improvement of recognition accuracy with TANDEM-based system

using monophone and triphone GMM-HMM models. Similar results were presented also

by other authors for English language. Unfortunately, for more advanced GMM-HMM

systems based on stacked cepstral features followed by LDA/MLLT, or systems based on

a DNN-HMM architecture, the complementary information in the form of AF features

was not found to be of used. It is our hypotheses that this happened because these sys-

tems use features which include longer temporal context, or is is the case for DNN-HMM

systems, the deep model extracts information similar to the one carried by AF features.

On the other hand, the proposed estimation of AF features seems to be precise, so

further work on applying AF for speech processing task is a possibility. Further research

could be focused on improving current speech application such as computer assisted pro-

nunciation training or text-to-speech conversion systems. The usage of AF features for

biomedical clinical application, such as for the analysis of disordered speech, represents a

potentially interesting application area.
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Appendix A

Summary of articulatory features

mapping for all languages

The following tables provide the summary of articulatory feature per particular Slovak,

Polish, Hungarian, Russia phones in X-SAMPA phonetic alphabet.

Phones Place con Manner con palatalization Sonor Voicing Manner vow Place vow

C palatal fricatives nil - - nil nil
F labiodental nasals nil + + nil nil
J palatal nasals nil + + nil nil
J: palatal nasals nil + + nil nil
J palatal stop nil - + nil nil
J palatal stop nil - + nil nil
L palatal lateral nil + + nil nil
N velar nasals nil + + nil nil
S postalveolar fricatives nil - - nil nil

S’: postalveolar fricatives palatalized - - nil nil
S: postalveolar fricatives nil - - nil nil
Z postalveolar fricatives nil - + nil nil
Z: postalveolar fricatives nil - + nil nil
b bilabial stop nil - + nil nil
b’ bilabial stop palatalized - + nil nil
b: bilabial stop nil - + nil nil
c palatal stop nil - - nil nil
c: palatal stop nil - - nil nil
d prealveolar stop nil - + nil nil
d: prealveolar stop nil - + nil nil
dZ postalveolar affricates nil - + nil nil
dz prealveolar affricates nil - + nil nil
dz: prealveolar affricates nil - + nil nil
f labiodental fricatives nil - - nil nil
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Phones Place con Manner con palatalization Sonor Voicing Manner vow Place vow

f’ labiodental fricatives palatalized - - nil nil
f: labiodental fricatives nil - - nil nil
g velar stop nil - + nil nil
g’ velar stop palatalized - + nil nil
g: velar stop nil - + nil nil
h glottal fricatives nil - + nil nil
h: glottal fricatives nil - + nil nil
h glottal fricatives nil - + nil nil
j palatal glides nil + + nil nil
j: palatal glides nil + + nil nil

j r
k velar stop nil - - nil nil
k’ velar stop palatalized - - nil nil
k: velar stop nil - - nil nil
l prealveolar lateral nil + + nil nil
l’ prealveolar lateral palatalized + + nil nil
l: prealveolar lateral nil + + nil nil
l=
l=:
m bilabial nasals nil + + nil nil
m: bilabial nasals nil + + nil nil
n prealveolar nasals nil + + nil nil
n: prealveolar nasals nil + + nil nil
p bilabial stop nil - - nil nil
p’ bilabial stop palatalized - - nil nil
p: bilabial stop nil - - nil nil
r prealveolar trills nil + + nil nil
r’ prealveolar trills palatalized + + nil nil
r: prealveolar trills nil + + nil nil
r=
r=:
r r prealveolar trills nil - + nil nil
s prealveolar fricatives nil - - nil nil
s: prealveolar fricatives nil - - nil nil
s alveolopalatal fricatives nil - - nil nil
t prealveolar stop nil - - nil nil
t: prealveolar stop nil - - nil nil
tS postalveolar affricates nil - - nil nil
tS’ postalveolar affricates palatalized - - nil nil
tS: postalveolar affricates nil - - nil nil
ts prealveolar affricates nil - - nil nil
ts: prealveolar affricates nil - - nil nil
ts alveolopalatal affricates nil - - nil nil
tz alveolopalatal affricates nil - + nil nil
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Phones Place con Manner con palatalization Sonor Voicing Manner vow Place vow

v labiodental fricatives nil - + nil nil
v’ labiodental fricatives palatalized - + nil nil
v: labiodental fricatives nil - + nil nil
w labiodental glides nil + + nil nil
x velar fricatives nil - - nil nil
z prealveolar fricatives nil - + nil nil
z: prealveolar fricatives nil - + nil nil
z alveolopalatal fricatives nil - + nil nil
”1 nil nil nil nil + close central
”a nil nil nil nil + open central
”e nil nil nil nil + close-mid front
”i nil nil nil nil + close front
”o nil nil nil nil + close-mid back
”u nil nil nil nil + close back
1 nil nil nil nil + close central
2 nil nil nil nil + close-mid front
2: nil nil nil nil + close-mid front
A nil nil nil nil + open back
E nil nil nil nil + open-mid front
E: nil nil nil nil + open-mid front
I nil nil nil nil + close-mid front
a nil nil nil nil + open central
a: nil nil nil nil + open central
e nil nil nil nil + close-mid front
e: nil nil nil nil + close-mid front
e nil nil nil nil + close-mid front
i nil nil nil nil + close front
i: nil nil nil nil + close front
o nil nil nil nil + close-mid back
o: nil nil nil nil + close-mid back
o nil nil nil nil + close-mid back
u nil nil nil nil + close back
u: nil nil nil nil + close back
y nil nil nil nil + close front
y: nil nil nil nil + close front
Eu nil nil nil nil + open-mid front
au nil nil nil nil + open central
i â nil nil nil nil + close front
i ê nil nil nil nil + close front
i û nil nil nil nil + close front
ou nil nil nil nil + close-mid back
u ô nil nil nil nil + close back

Table A.1: Summary of articulatory features
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• M. Borský, P. Mizera, and P. Pollák. “Noise and Channel Normalized Cepstral
Features for Far-Speech Recognition”. English. In: Speech and Computer. Lecture
Notes in Artificial Intelligence. Pilsen, CR, 2013, pp. 241–248. isbn: 978-3-319-
01930-7. doi: 10.1007/978-3-319-01931-4_32

• P. Mizera and P. Pollák. “Accuracy of HMM-Based Phonetic Segmentation Using
Monophone or Triphone Acoustic Model”. English. In: Applied Electronics - 2013
International Conference on Applied Electronics. Pilsen, CZ, 2013, pp. 181–184.
isbn: 978-80-261-0166-6

Other publications

• M. Kosek and P. Mizera. “Implementation of Cepstral Voice Activity Detector”.
English. In: Proceedings of the International Student Scientific Conference Poster
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In: VI. Letńı doktorandské dny 2016. Praha, CZ, 2016. isbn: 978-80-01-05959-3
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