CORE

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 1 November 2018
Accepted 13 November 2018

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; thiophene; Hirschfeld surface.

CCDC reference: 1871776

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Synthesis, molecular structure and Hirshfeld surface analysis of (4-methoxyphenyl)[2-(methylsulfanyl)-thiophen-3-yl]methanone

S. Nagaraju, ${ }^{\text {a }}$ M. A. Sridhar, ${ }^{\text {a* }}$ C.S. Pradeepa Kumara, ${ }^{\text {b }}$ M. P. Sadashiva, ${ }^{\text {b }}$ B. N. Lakshminarayana ${ }^{c}$ and N. K. Lokanath ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore, Karnataka, India, ${ }^{\mathbf{b}}$ Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru, Karnataka, India, ${ }^{\text {c }}$ Department of Studies in Physics, Adichuchanagiri Institute of Technology, Chikkamagaluru, Karnataka, India, and department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, Karnataka, India. *Correspondence e-mail: mas@physics.uni-mysore.ac.in

The title compound, $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$, crystallizes in the triclinic space group $P \overline{1}$. The molecular structure is substantially twisted, with a dihedral angle of 43.70 (2) ${ }^{\circ}$ between the 2-(methylsulfanyl)thiophene and 4-methoxyphenyl rings. In the crystal, molecules are linked through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and form a bifurcated layer stacking along the b-axis direction and enclosing $R_{2}^{2}(10)$ ring motifs. The phenyl rings are involved in $\pi-\pi$ interactions with a centroidcentroid separation of 3.760 (2) A. The Hirshfeld surfaces were studied and the contributions of the various intermolecular interactions were quantified.

1. Chemical context

Thiophenes are five-membered sulfur-containing heterocyclic compounds with important applications in areas such as agrochemistry, pharmaceuticals, molecular electronics, liquid crystalline materials and corrosion inhibition. Thiophenes are also important building blocks in organic synthesis. Their aromatic character gives enough stabilization to allow the manipulation of various substituents (Mishra et al., 2011). α Oxoketene thioacetals are powerful building blocks for the synthesis of numerous heterocyclic scaffolds, where the carbonyl carbon generally provides hard centers and the carbon-bearing methylsulfanyl group acts as a soft electrophilic center (Junjappa et al., 1990). This synthetic building block was used for the synthesis of (4-methoxyphenyl) [2-(methylsulfanyl)thiophen-3-yl]methanone (Pradeepa Kumara et al., 2016).

2. Structural commentary

In the title compound, the 2-(methylsulfanyl)thiophene and 4-methoxyphenyl aromatic rings are connected via a $\mathrm{C}(=\mathrm{O})-\mathrm{C}$ methanone bridge (Fig. 1). The compound is

Figure 1
Molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
substantially twisted about the methanone bridge as indicated by the dihedral angle of $43.70(2)^{\circ}$ between the thiophene ($\mathrm{S} 1 /$ $\mathrm{C} 1 / \mathrm{C} 5 / \mathrm{C} 7 / \mathrm{C} 10)$ and phenyl (C2-C6/C11/C13) rings. The methyl group at S 2 is in a + syn-periplanar conformation, as indicated by the $\mathrm{C} 8-\mathrm{S} 2-\mathrm{C} 10-\mathrm{S} 1$ torsion angle of $6.09(16)^{\circ}$. However, in the related compound (4-fluorophenyl)[2-(methylsulfanyl)thiophen-3-yl]methanone (Nagaraju et al., 2018), this group is in a -syn-periplanar conformation with a torsion angle of $-1.7(2)^{\circ}$. Atom C12 adopts a nearly trigonal geometry, as indicated by the bond angles $\mathrm{C} 7-\mathrm{C} 12-\mathrm{O} 2=$ $119.5(2)^{\circ}, \mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 4=119.2(2)^{\circ}$ and $\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 7=$ 121.3 (2) ${ }^{\circ}$. The methoxy group attached at C 11 is in a -antiperiplanar conformation $\left[\mathrm{C} 3-\mathrm{C} 11-\mathrm{O} 1-\mathrm{C} 9=-176.9(2)^{\circ}\right]$. The bond lengths and angles are normal (Sreenatha et al., 2017; Rajni Swamy et al., 2014; Gopinath et al., 2016).

3. Supramolecular features

The crystal structure features intermolecular hydrogenbonding interactions of the type $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 2$ (Fig. 2, Table 1) and displays a bifurcated layer stacking along the b axis direction through $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$ interactions, which link inversion-related molecules into dimers enclosing an $R_{2}^{2}(10)$ ring motif. $\pi-\pi$ stacking interactions are also observed between the phenyl rings (centroid $C g$) of adjacent molecules $[C g \cdots C g(2-x,-y, 1-z)=3.760(2) \AA]$. The packing of the title compound is illustrated in Fig. 3.

The $R_{2}^{2}(10)$ ring motif formed via intermolecular $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$ hydrogen bonds (Table 1). The $\pi-\pi$ interactions are also shown.

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots 2^{\mathrm{i}}$	0.93	2.48	$3.374(4)$	161
$\mathrm{C} 9-\mathrm{H} 9 A \cdots 2^{\mathrm{ii}}$	0.96	2.45	$3.400(4)$	172

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x, y-1, z$.

4. Hirshfeld surfaces and 2D fingerprint plots

Hirshfeld surface (HS) analysis and the associated fingerprint plots (FP) (CrystalExplorer; Spackman \& Jayatilaka, 2009) are useful tools for visualizing the types of intermolecular interactions present in a crystal structure and quantify their percentage contributions to the crystal packing. The 3D HS mapped over $d_{\text {norm }}$ between -0.2106 a.u (blue) and 1.2279 a.u (red) is shown in Fig. 4. The area and volume of the HS are $287.29 \AA^{2}$ and $305.24 \AA^{3}$, respectively. The deep-red spots on the $d_{\text {norm }}$ surface are due to the presence of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Sreenatha et al., 2018). The 2D FP analysis (Fig. 5) shows that the $\mathrm{H} \cdots \mathrm{H}$ contacts make the highest contribution (39.3\%) followed by the $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ contacts (20.1%), which are seen as a pair of blunt spikes in the region $1.2 \AA<\left(d_{\mathrm{i}}+d_{\mathrm{e}}\right)<1.75 \AA$. The $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$ contacts make a contribution of 16.9% and appear as butterfly wings in the region $1.2 \AA<\left(d_{\mathrm{i}}+d_{\mathrm{e}}\right)<1.9 \AA$. The pair of sharp spikes is observed in the region $1.2 \AA<\left(d_{\mathrm{i}}+d_{\mathrm{e}}\right)<1.32 \AA$ is due to the presence of $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ contacts $(15.6 \%$ contribution). The $\mathrm{C} \cdots \mathrm{C}$ contacts (3.4% contribution) are visible as wings in almost the same region, $1.7 \AA<\left(d_{\mathrm{i}}+d_{\mathrm{e}}\right)<1.72 \AA$. The relative contributions of all the contacts to the Hirshfeld surface are depicted in Fig. 6.

Figure 3
Packing for of the title compound viewed along the b axis.

Figure 4
Hirshfeld surface for the title compound mapped over $d_{\text {norm }}$ in the range -0.2106 to 1.2279 a.u. highlighting the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions.

5. Database survey

A search for thiophene derivatives was carried out in the Cambridge Structural Database (CSD, Version 5.39, update of February 2018; Groom et al., 2016). The most relevant compounds are 5-[bis(4-ethoxyphenyl)amino]thiophene-2carbaldehyde (HOJCIU; Tan et al., 2014) and 2-[4-(benz-yloxy)phenyl]-5-(3,4-dimethoxyphenyl)-3, 4-dimethylthiophene (ACETEI; Shi et al., 2004), which are both non-planar. In ethyl 4-acetyl-5-anilino-3-methylthiophene-2-carboxylate (AFIGIH; Mabkhot et al., 2013), the thiophene and phenyl rings make a dihedral angle of $36.81(10)^{\circ}$.

Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $\mathrm{H} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{H},(d) \mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H},(e) \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H},(f) \mathrm{C} \cdots \mathrm{C},(g) \mathrm{S} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{S}$ and (h) S \cdots S interactions. The d_{i} and d_{e} values are the closest internal and external distances (in \AA) from given points on the Hirshfeld surface.

Figure 6
The relative contributions (\%) to the Hirshfeld surface for the various contacts.

6. Synthesis and crystallization

To α-oxoketene dithioacetal (0.1 mol) and 1,4-dithiane-2,5diol $(0.05 \mathrm{~mol})$ in dry ethanol $(10 \mathrm{~mL})$, anhydrous potassium carbonate (0.12 mol) was added. The reaction mixture was refluxed on a water bath for 30 minutes (the condenser being protected by a calcium chloride guard tube). After completion of the reaction (monitored by TLC), the catalyst was filtered off and washed with fresh ethanol. The combined ethanol solution was removed on a rotary evaporator to obtain a viscous liquid. The crude product was purified by column chromatography using silica gel with 5% ethyl acetate and petroleum ether to yield the title compound as a yellow solid product, which was recrystallized from dichloromethane solution. M.p. 489-493 K. IR (KBr) $\nu_{\max }=3449,3079$, 2923,

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$
M_{r}	264.35
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	293
$a, b, c(\AA)$	$7.806(4), 8.263(3), 10.414(6)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$97.260(11), 109.65(2), 93.79(2)$
$V\left(\AA^{3}\right)$	$623.3(5)$
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.41
Crystal size (mm)	$0.30 \times 0.26 \times 0.20$
Data collection	
Diffractometer	Bruker APEX
No. of measured, independent and	$2924,2165,1899$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.109
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.595
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.046,0.128,1.09$
No. of reflections	2165
No. of parameters	157
H-atom treatment	$\mathrm{H}-\mathrm{atom}$ parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.37,-0.33$

[^0]$2841,1772,1600,1493,1253,1167,1015,842,694,550 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.79-7.77 ($\mathrm{m}, 2 \mathrm{H}$), 7.27-7.25 (m , 1H), 7.16-7.14 ($\mathrm{m}, 1 \mathrm{H}$), 6.9-6.93 ($\mathrm{m}, 2 \mathrm{H}$), $3.86(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 188.86, 162.73, 151.33, 135.36, 131.60, 131.47, 130.24, 130.59, 122.02, 113.44, 55.37, 18.06. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}[M+\mathrm{H}]^{+}$ 265.0312; found 265.0407.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed at calculated positions and refined using a riding model with $\mathrm{C}-$ $\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic ring atoms and with $\mathrm{C}-\mathrm{H}=0.96$ A with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups.

Acknowledgements

The authors are thankful to the Department of Physics, University of Mysore, and Adichuchanagiri Institute of Technology, Chikkamagaluru, Karnataka for support

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Gopinath, S., Sethusankar, K., Stoeckli-Evans, H., Rafiq, M. \& Mohanakrishnan, A. K. (2016). Acta Cryst. E72, 1310-1314.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Junjappa, H., Ila, H. \& Asokan, C. V. (1990). Tetrahedron, 46, 54235506.

Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. \& Yousuf, S. (2013). Acta Cryst. E69, o1049.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Mishra, R., Jha, K. K., Kumar, S. \& Isha, T. (2011). Pharma Chem. 3, 38-54.
Nagaraju, S., Sridhar, M. A., Sreenatha, N. R., Pradeepa Kumara, C. S. \& Sadashiva, M. P. (2018). X-ray Struct. Anal. Online, 34, 1314.

Pradeepa Kumara, C. S., Byre Gowda, G., Vinay Kumar, K. S., Ramesh, N., Sadashiva, M. P. \& Junjappa, H. (2016). Tetrahedron Lett. 57, 4302-4305.
Rajni Swamy, V., Gunasekaran, P., Krishnakumar, R. V., Srinivasan, N. \& Müller, P. (2014). Acta Cryst. E70, o974-o975.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shi, J.-X., Zheng, X.-F., Zhu, K., Lei, Y.-J. \& Shi, J.-G. (2004). Acta Cryst. E60, o1977-o1978.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 1932.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. \& Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23-24.
Sreenatha, N. R., Lakshminarayana, B. N., Madan Kumar, S., Mahadeva Prasad, T. N. K. S., Kiran, D., Vijayshankar, S. \& Byrappa, K. (2017). Chem. Data Collections, 11, 131-138.
Tan, J.-Y., Kong, M. \& Wu, J.-Y. (2014). Acta Cryst. E70, o1075-o1076.

supporting information

Synthesis, molecular structure and Hirshfeld surface analysis of (4-methoxy-phenyl)[2-(methylsulfanyl)thiophen-3-yl]methanone

S. Nagaraju, M. A. Sridhar, C.S. Pradeepa Kumara, M. P. Sadashiva, B. N. Lakshminarayana and

N. K. Lokanath

Computing details

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
(4-Methoxyphenyl)[2-(methylsulfanyl)thiophen-3-yl]methanone

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=264.35$
Triclinic, $P \overline{1}$
$a=7.806$ (4) \AA
$b=8.263(3) \AA$
$c=10.414$ (6) \AA
$\alpha=97.260(11)^{\circ}$
$\beta=109.65(2)^{\circ}$
$\gamma=93.79(2)^{\circ}$
$V=623.3(5) \AA^{3}$

Data collection

Bruker APEX diffractometer
Radiation source: graphite
Detector resolution: 0.894 pixels mm^{-1}
SAINT (Bruker, 2006) [not correct; type of scans needed]
2924 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.128$
$S=1.09$
2165 reflections
157 parameters
0 restraints

$$
Z=2
$$

$$
F(000)=276
$$

$D_{\mathrm{x}}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2924 reflections
$\theta=3.5-25.0^{\circ}$
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.30 \times 0.26 \times 0.20 \mathrm{~mm}$

2165 independent reflections
1899 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
$\mathrm{R}_{\text {int }}=0.109$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$\mathrm{h}=-9 \rightarrow 9$
$\mathrm{k}=-9 \rightarrow 9$
$1=-12 \rightarrow 11$

Extinction correction: SHELXL2018
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.060 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
S1	$0.77364(8)$	$0.32143(7)$	$-0.09953(6)$	$0.0412(3)$
S2	$0.73606(8)$	$0.60555(7)$	$0.10012(6)$	$0.0422(3)$
O1	$0.7606(3)$	$-0.1498(2)$	$0.62854(18)$	$0.0582(5)$
O2	$0.7950(3)$	$0.4642(2)$	$0.33504(18)$	$0.0601(5)$
C1	$0.8084(3)$	$0.1302(3)$	$-0.0527(3)$	$0.0450(6)$
H1	0.820956	0.039871	-0.110524	0.054^{*}
C2	$0.6715(3)$	$0.0359(3)$	$0.3139(2)$	$0.0419(6)$
H2	0.607492	0.011357	0.219380	0.050^{*}
C3	$0.8621(3)$	$0.1072(3)$	$0.5930(2)$	$0.0437(6)$
H3	0.927331	0.131023	0.687398	0.052^{*}
C4	$0.7766(3)$	$0.1880(3)$	$0.3679(2)$	$0.0361(5)$
C5	$0.8153(3)$	$0.1275(3)$	$0.0773(2)$	$0.0402(5)$
H5	0.834586	0.034541	0.119774	0.048^{*}
C6	$0.8701(3)$	$0.2215(3)$	$0.5107(2)$	$0.0407(5)$
H6	0.938609	0.323029	0.550038	0.049^{*}
C7	$0.7900(3)$	$0.2813(3)$	$0.1446(2)$	$0.0352(5)$
C8	$0.6913(4)$	$0.6721(3)$	$-0.0642(3)$	$0.0525(6)$
H8A	0.594501	0.598579	-0.133310	0.079^{*}
H8B	0.800026	0.672480	-0.087893	0.079^{*}
H8C	0.655487	0.781032	-0.059371	0.079^{*}
C9	$0.6614(5)$	$-0.3123(4)$	$0.5746(3)$	$0.0726(9)$
H9A	0.704580	-0.365458	0.505805	0.109^{*}
H9B	0.533040	-0.303439	0.533903	0.109^{*}
H9C	0.681017	-0.375822	0.648323	0.109^{*}
C10	$0.7680(3)$	$0.4010(3)$	$0.0595(2)$	$0.0341(5)$
C11	$0.7571(3)$	$-0.0450(3)$	$0.5371(2)$	$0.0426(5)$
C12	$0.7881(3)$	$0.3201(3)$	$0.2846(2)$	$0.0397(5)$
C13	$0.6597(3)$	$-0.0792(3)$	$0.3964(2)$	$0.0459(6)$
H13	0.586967	-0.179094	0.358019	0.055^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0427(4)$	$0.0471(4)$	$0.0361(4)$	$0.0025(3)$	$0.0176(3)$	$0.0050(3)$
S2	$0.0402(4)$	$0.0346(4)$	$0.0488(4)$	$-0.0026(2)$	$0.0148(3)$	$0.0010(2)$

O1	$0.0729(13)$	$0.0652(12)$	$0.0423(10)$	$0.0013(10)$	$0.0272(9)$	$0.0124(8)$
O2	$0.0870(15)$	$0.0460(10)$	$0.0429(10)$	$0.0040(9)$	$0.0214(9)$	$-0.0041(8)$
C1	$0.0512(14)$	$0.0421(13)$	$0.0453(13)$	$0.0072(10)$	$0.0235(11)$	$0.0008(10)$
C2	$0.0356(12)$	$0.0535(14)$	$0.0302(10)$	$-0.0047(10)$	$0.0073(9)$	$-0.0002(9)$
C3	$0.0400(12)$	$0.0615(15)$	$0.0258(10)$	$0.0005(11)$	$0.0106(9)$	$-0.0013(10)$
C4	$0.0325(11)$	$0.0448(12)$	$0.0296(10)$	$-0.0001(9)$	$0.0115(8)$	$0.0009(9)$
C5	$0.0409(12)$	$0.0393(12)$	$0.0421(12)$	$0.0079(9)$	$0.0157(10)$	$0.0067(9)$
C6	$0.0375(12)$	$0.0484(13)$	$0.0311(11)$	$-0.0036(10)$	$0.0110(9)$	$-0.0048(9)$
C7	$0.0290(10)$	$0.0398(11)$	$0.0335(11)$	$0.0008(8)$	$0.0089(8)$	$0.0007(9)$
C8	$0.0504(15)$	$0.0444(13)$	$0.0623(16)$	$-0.0009(11)$	$0.0170(12)$	$0.0173(12)$
C9	$0.108(3)$	$0.0627(18)$	$0.0627(18)$	$-0.0042(17)$	$0.0516(18)$	$0.0122(14)$
C10	$0.0243(10)$	$0.0389(11)$	$0.0356(11)$	$-0.0033(8)$	$0.0096(8)$	$-0.0005(9)$
C11	$0.0407(13)$	$0.0548(14)$	$0.0372(11)$	$0.0036(11)$	$0.0204(9)$	$0.0068(10)$
C12	$0.0351(12)$	$0.0443(12)$	$0.0336(11)$	$-0.0001(9)$	$0.0080(9)$	$-0.0026(9)$
C13	$0.0409(13)$	$0.0528(14)$	$0.0387(12)$	$-0.0097(11)$	$0.0129(10)$	$-0.0014(10)$

Geometric parameters ($A,{ }^{\circ}$)

S1-C10	$1.719(2)$	C4-C6	$1.400(3)$
S1-C1	$1.724(3)$	C4-C12	$1.494(3)$
S2-C10	$1.744(2)$	C5-C7	$1.430(3)$
S2-C8	$1.793(3)$	C5-H5	0.9300
O1-C11	$1.360(3)$	C6-H6	0.9300
O1-C9	$1.448(4)$	C7-C10	$1.391(3)$
O2-C12	$1.230(3)$	C7-C12	$1.458(3)$
C1-C5	$1.340(4)$	C8-H8A	0.9600
C1-H1	0.9300	C8-H8B	0.9600
C2-C13	$1.379(3)$	C8-H8C	0.9600
C2-C4	$1.394(3)$	C9-H9A	0.9600
C2-H2	0.9300	C9-H9B	0.9600
C3-C6	$1.365(3)$	C9-H9C	0.9600
C3-C11	$1.397(4)$	C11-C13	$1.387(3)$
C3-H3	0.9300	C13-H13	0.9300
C10-S1-C1	$92.19(11)$	S2-C8-H8A	109.5
C10-S2-C8	$100.76(12)$	S2-C8-H8B	109.5
C11-O1-C9	$117.8(2)$	H8A-C8-H8B	109.5
C5-C1-S1	$111.72(18)$	S2-C8-H8C	109.5
C5-C1-H1	124.1	H8A-C8-H8C	109.5
S1-C1-H1	124.1	H8B-C8-H8C	109.5
C13-C2-C4	$121.9(2)$	O1-C9-H9A	109.5
C13-C2-H2	119.0	O1-C9-H9B	109.5
C4-C2-H2	119.0	H9A-C9-H9B	109.5
C6-C3-C11	$120.7(2)$	O1-C9-H9C	109.5
C6-C3-H3	119.6	H9A-C9-H9C	109.5
C11-C3-H3	119.6	H9B-C9-H9C	109.5
C2-C4-C6	$117.6(2)$	C7-C10-S1	$110.79(16)$
C2-C4-C12	$124.3(2)$	C7-C10-S2	$127.08(17)$

$\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 12$	$118.1(2)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 7$	$113.6(2)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 5$	123.2
$\mathrm{C} 7-\mathrm{C} 5-\mathrm{H} 5$	123.2
$\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 4$	$121.0(2)$
$\mathrm{C} 3-\mathrm{C} 6-\mathrm{H} 6$	119.5
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{H} 6$	119.5
$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 5$	$111.7(2)$
$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 12$	$120.6(2)$
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 12$	$127.7(2)$
$\mathrm{C} 10-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 5$	
$\mathrm{C} 13-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 6$	$0.0(2)$
$\mathrm{C} 13-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 12$	$-177.3(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 7$	$0.8(3)$
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 4$	$-1.4(4)$
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 3$	$1.7(3)$
$\mathrm{C} 12-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 3$	$178.7(2)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 10$	$-1.4(3)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 12$	$179.4(2)$
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 10-\mathrm{S} 1$	$1.3(2)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 10-\mathrm{S} 1$	$-179.42(16)$
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 10-\mathrm{S} 2$	$-179.26(16)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 10-\mathrm{S} 2$	$0.0(3)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 10-\mathrm{C} 7$	$-0.78(18)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 10-\mathrm{S} 2$	$179.77(14)$
$\mathrm{C} 8-\mathrm{S} 2-\mathrm{C} 10-\mathrm{C} 7$	$-173.3(2)$

$\mathrm{S} 1-\mathrm{C} 10-\mathrm{S} 2$	$122.13(14)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 13$	$125.0(2)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 3$	$115.7(2)$
$\mathrm{C} 13-\mathrm{C} 11-\mathrm{C} 3$	$119.3(2)$
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 7$	$119.5(2)$
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 4$	$119.2(2)$
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 4$	$121.33(19)$
$\mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 11$	$119.5(2)$
$\mathrm{C} 2-\mathrm{C} 13-\mathrm{H} 13$	120.3
$\mathrm{C} 11-\mathrm{C} 13-\mathrm{H} 13$	120.3
$\mathrm{C} 8-\mathrm{S} 2-\mathrm{C} 10-\mathrm{S} 1$	
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 13$	$6.09(16)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 3$	$-176.9(2)$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 11-\mathrm{O} 1$	$179.4(2)$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{C} 11-\mathrm{C} 13$	$-0.2(4)$
$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 12-\mathrm{O} 2$	$-11.1(3)$
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 12-\mathrm{O} 2$	$168.1(2)$
$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 4$	$168.49(19)$
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 4$	$-12.4(4)$
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 12-\mathrm{O} 2$	$141.9(3)$
$\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 12-\mathrm{O} 2$	$-34.8(3)$
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 7$	$-37.6(3)$
$\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 7$	$145.6(2)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 11$	$-1.1(4)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 13-\mathrm{C} 2$	$-178.2(2)$
$\mathrm{C} 3-\mathrm{C} 11-\mathrm{C} 13-\mathrm{C} 2$	$1.4(4)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6—H6 $\cdots{ }^{\mathrm{O}}{ }^{\mathrm{i}}$	0.93	2.48	$3.374(4)$	161
C9—H9A $\cdots \mathrm{O}^{\mathrm{ii}}$	0.96	2.45	$3.400(4)$	172

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x, y-1, z$.

[^0]: Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

