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This paper presents a simple, low cost method of synthesizing TiO2 nanoparticles by sol-gel method, 

where titanium isopropoxide is used as a starting material. Further, same TiO2 is used to sensitize  

2-cyano-3- (4-(7-(5-(4- (diphenylamino) phenyl)-4- octylthiophen-2-yl) benzo[c] [1, 2, 5] thiadiazol-4-

yl)phenyl) acrylic acid (RK-1 dye) and Di-tetrabutylammonium cis-bis (isothiocyanato) bis (2,2’-bipyridyl-

4,4’-dicarboxylato) ruthenium(II) (N-719 dye) for light harvesting applications. Anatase structure and av-

erage particle size of 7.3 nm were confirmed from XRD pattern. From SEM, it was noticed that particles 

were of varying size and shape and aggregation with clear porosity. FTIR spectra reveal Ti-O bond corre-

sponding to 483 cm – 1 and from UV-Vis absorption, energy band gap was found to be 3.2 eV. Photocurrent 

density (J) - photovoltage (V) characteristic of DSSC of different thicknesses of TiO2 were obtained, it was 

observed that optimum solar energy to electricity conversion efficiency () for RK-1 dye and N- 719 dye 

4.08 % and 5.12 % with TiO2 thickness of 5.4 μm and 8.6 μm respectively  under AM 1.5 irradiation  

(1000 W/m2) conditions. 
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1. INTRODUCTION 
 

Titanium dioxide (TiO2) is one of the most attractive 

wide band gap semiconductors (transition-metal oxide), 

non-toxic, highly stable, photo-active and absorbs light 

in UV region [1]. TiO2 exhibits corrosion resistance, 

good physical and chemical properties and considered 

promising material for solar cell applications and also 

used for fluorescence quencher, biological sensor and 

medical diagnosis etc [2]. TiO2 nanoparticles are almost 

popular materials for preparing DSSC photo-anodes 

made with different shapes of TiO2 nanostructures such 

as nanorods [3, 4], nanotubes [5, 6] and nanofibers [7], 

etc and demonstrated their own advantages. Most of 

the research focuses on modified properties of TiO2 

structures, morphology [8, 9], tuning of the phase [10] 

or external doping [11, 12] by different approaches. 

TiO2 nanoparticles morphology, specific surface area, 

crystal phase and crystalline structure play an im-

portant role in solar cell performance [13]. 

As silicon based solar cells have some disad-

vantages, such as high fabrication cost and release of 

hazardous gasses during fabrication lead the research-

ers to think for alternative solar cells [14]. Dye-

sensitized solar cell (DSSC) is one of the alternative 

solar cells which is a electrochemical photonic device 

convert solar energy directly into electrical energy and 

it can produce clean renewable energy (electricity). Dye 

sensitized solar cell (DSSC) is low cost device and envi-

ronmentally friendly [15]. In DSSC applications reduc-

tion in the size of the TiO2 nanostructured particles can 

i) enhance the surface area, ii) shorten electron diffu-

sion length and iii) yield poor light scattering ability. 

Larger surface area may provide better attachment of a 

dye however, the density of grain boundaries and defect 

sites retard the electron transport [13, 16]. Larger na-

noparticles have a longer electron diffusion length with 

higher light scattering ability but lower surface area. 

So, there is an optimal particle size for the best efficien-

cy and that has been known as 15 ~ 20 nm in diameter 

[13]. Further, the photovoltaic performance may be 

studied as function of TiO2 film thickness. It is noticed 

that overall power conversion efficiency (PCE) of a cell 

sensitized by pyronine G (PYR) dye has been increased 

as function thickness of TiO2. This may be attributed to 

the more dye adsorption which leads to more photon 

absorption resulting higher photocurrent [17]. TiO2 

nanoparticles can be synthesized by a several methods 

such as sol-gel, hydrothermal, micro-emulsion, thermal 

decomposition of alkoxides, and etc [18]. Usually TiO2 

nanoparticles were synthesized by a sol-gel process 

followed by hydrothermal treatment [19, 20] for DSSC 

applications. The hydrothermal treatment leads to 

prominent particle growths, which significantly de-

creases the surface area of nanoparticles and dye at-

tachment on nanoparticles. Hydrothermal treatment is 

hazardous and energy consuming, which should be 

avoided in large-scale production. The concern at this 

point is to avoid hazardous, enhancement of surface 

area and PCE of cell as a result of more dye adsorption. 

Keeping these concerns in view, it is proposed to 

synthesize TiO2 nanoparticles by sol-gel method without 

hydrothermal route which is considered as less expen-

sive simple method.  Same synthesized TiO2 nanoparti-

cles were characterized using X-ray diffraction (XRD), 

fourier transform infrared spectroscopy (FTIR), scan-

ning electron microscope (SEM) with energy dispersive 

analysis of X-ray (EDAX), atomic force microscopy 
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(AFM) and UV-Vis NIR absorption spectrometer and 

subsequently used to prepare photo-anodes of DSSCs.  

 

2. EXPERIMENTAL DETAILS 
 

2.1 Materials Used 
 

Titanium isopropoxide, Di-tetrabutyl ammoniumcis-

bis (isothiocyanato) bis (2,2’-bipyridyl-4,4’-dicarboxylato) 

ruthenium(II) (N-719 dye) and 4-tert-Butylpyridine 

(TBP) were procured from Sigma Aldrich. Triton X-100, 

Iodine and Lithium Iodide were procured from HiMedia 

laboratory and Alfa Aesar respectively. 2-cyano-3-(4-(7-

(5-(4- (diphenylamino)phenyl) -4-octylthiophen-2-

yl)benzo[c][1,2,5] thiadiazol-4-yl)phenyl) acrylic acid 

(RK-1 dye), Di Methyl 3-Propyl ImidAzolium Iodide 

(DMPII), Fluorine doped tin oxide (FTO) glasses and 

Pilkington Nippon Sheet Glass (NSG) (thickness of 2.2 

mm, (80 % visible light transmission and 7 Ω/sq sheet 

resistance) were procured from Solaranix. AR grade 

solvents such as ethanol and acetonitrile were used. 

Milli Q water (distilled water) was used.  

 

2.2 Methods of Characterization of Synthesized 

TiO2 Nanoparticles 
 

XRD, FTIR, SEM with EDAX, AFM and absorption 

measurements were carried out using Bruker D8 Dis-

cover diffractometer (CuKα radiation (  1.5406 Å)), 

IMPACT-410 Nicolet (USA), Nova Nano scanning elec-

tron microscope 600 with EDAX (FEI Co., Netherlands), 

Nanosurf Naio atomic force microscopy and UV-Vis NIR 

spectrophotometer (JASCO V-670, Japan) instruments 

respectively. 

 

2.3 Photocurrent Density (J) - photovoltage (V) 

and Thickness of TiO2 Film Measurements 
 

Photocurrent density (J) - photovoltage (V) meas-

urements of the fabricated DSSCs were measured using 

a laboratory designed automated solar simulator [21]. 

Philips halogen lamp of 100 W was used as a source of 

light and its illumination was calibrated to 1000 W/m2 

using NREL calibrated single crystal silicon reference 

solar cell. Thickness of the TiO2 film was estimated by 

gravimetric method using a microbalance with sensitiv-

ity of 10 g [22, 23].  

 

2.4 Synthesis of TiO2 Nanoparticles 
 

Initially, dry ethanol (14 ml) and distilled water 

(21 ml) were mixed in a beaker and the mixer was 

stirred using magnetic stirrer for 15 minutes, at this 

point without stopping the stirrer action a solution of 

titanium isopropoxide (7 ml) was added drop wise con-

tinuously for five hours until thick solution was ob-

tained. A thick solution so obtained was dried at 70 C 

for 2 hours to allow the evaporation of water and etha-

nol. Then, the product so obtained is subjected for hand 

milling to get dry powder and consequently sintered at 

450 C for 2 hours to obtain TiO2 nanoparticles. 

 

2.5 Preparation of Photo-anode 
 

Initially, TiO2 paste was prepared by taking 0.12 

gram of synthesized TiO2 nanopowder in a crucible 

containing 150  l and 250 l acetyl acetone and ethanol 

respectively. Later, it was grinded by adding distilled 

water gradually until distilled water reaches 700 l. 

Without stopping the grinding at this point, 60 l of 

triton –X100 was added to obtain a fine paste of TiO2. In 

order to prepare photo-anode, FTO glass was cleaned 

with soap water, distilled water and dry ethanol respec-

tively. Then, TiO2 paste was coated on FTO glass using 

doctor blading technique. Traces of solvents and addi-

tives, as a result of cleaning and coating on FTO glass, 

were removed by annealing FTO at 550 C for 45 

minutes. This photo-anode was sensitized by RK-1 dye 

and N-719 dye in ethanol for 12 hour and 24 hour re-

spectively. 

 

2.6 Preparation of Electrolyte 
 

The liquid redox electrolyte is prepared in acetoni-

trile (ACN)  containing a mixture of 0.5 M Lithium 

Iodide (LiI), 0.05 M  Iodine (I2), 0.5 M 4-tert-Butyl Pyri-

dine (4-TBP) and 0.6 M Di Methyl 3-Propyl ImidAzoli-

um Iodide (DMPII).  

 

2.7 Assembling of DSSCs 
 

The photo-anode sensitized by respective dye as 

mentioned above was placed on the platinum counter 

electrode so that the TiO2 film was sandwiched between 

the two conducting sides of the FTO glass plates. The 

glass plates were held tight by binder clips on the two 

lateral edges. Liquid electrolyte was then injected using 

small syringe at the interface of two glass plates (elec-

trodes) until electrolyte spreads and adsorbed on the 

TiO2 nano porous film by capillary forces. 

 

3. RESULTS AND DISCUSSION 
 

3.1 X-ray Diffraction (XRD) Analysis 
 

XRD is an effective method to analyze crystal struc-

ture and crystal size of the samples. Usually TiO2 crys-

tallizes in three forms namely anatase (tetragonal), 

brookite (orthorhombic) and rutile (tetragonal). Anatase 

and brookite forms appear at low temperature however 

when the same forms of material is heated over 600 C 

rutile form appears [24]. Crystal structure can be re-

vealed from TiO2 XRD pattern which is shown in Fig. 1. 

From this figure it is observed that peaks appear at 

(101), (004), (200), (211), (204), (220), (215) and (312) 

respectively which are the characteristic peaks of TiO2 

nanoparticles. XRD pattern is in good agreement with 

the JCPDS file of TiO2 (JCPDS-211272) and observed 

peaks reveal the anatase and crystalline nature of TiO2 

nanoparticles. The average particle diameter (d) of TiO2 

nanoparticles at most intense peak (101) plane is calcu-

lated using Scherrer formula (Eq. (1)) 
 

 d  (0.9/cosθ) (1) 
 

where  is X-ray wavelength of 1.54056 Ǻ,  is full 

width half maxima and θ is the Bragg's diffraction an-

gle. The estimated average particle diameter (d) of TiO2 

nanoparticles is found to be 7.3 nm.  
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Fig. 1 – XRD pattern of TiO2 nanoparticles 

 

3.2 Fourier Transform Infrared Spectroscopy 

(FTIR) Analysis 

 

FTIR is an effective method to analyze the composi-

tion of compounds or products. Fig. 2 shows the FTIR 

spectrum of TiO2 nanoparticles. From FTIR spectrum of 

TiO2 nanoparticles, Ti-O bending mode and deformative 

vibration of Ti-OH stretching mode may be observed at 

483 cm – 1 and 1623.50 cm – 1 respectively. Asymmetrical 

and symmetrical stretching vibrations of hydroxyl 

group (-OH) may be observed at 3404.82 cm – 1. The 

band at 1623.50 cm – 1 may be attributed to water ad-

sorbed on TiO2 surface [1, 24]. These results well agrees 

with earlier reports. 
 

 
 

Fig. 2 – FTIR spectrum of TiO2 nanoparticles 

 

3.3 Scanning Electron Microscope (SEM), Atom-

ic Force Microscopy (AFM) and Energy Dis-

persive Analysis of X-ray (EDAX) Analysis 
 

The surface morphology and elemental composition 

of TiO2 nanoparticles were analyzed from SEM, AFM 

and EDAX methods. Fig. 3 (a and b) shows SEM images 

of TiO2 nanoparticles alone and photo-anode coated 

with TiO2 nanoparticles respectively. Fig. 3(c) shows the 

AFM image of photo-anode coated with TiO2 nanoparti-

cles. From Fig. 3 (a, b and c) it is observed that the na-

noparticles with varying shapes and sizes, uniform 

distribution and good aggregation with clear porosity. 

Further, to analyze the composition of TiO2 nanoparti-

cles, EDAX spectra was recorded and is shown in Fig. 4, 

the chemical composition in terms of atomic percentage 

(At%) and weight percentage(Wt%) for different ele-

ments are given in Table 1. From Fig. 4 it is seen that, a  

 

 
 

Fig. 3 – SEM Image of (a) TiO2 nanoparticles alone, (b) photo-

anode coated with TiO2 nanoparticles and (c) AFM image of 

photo-anode coated with TiO2 nanoparticles 
 

 
  

Fig. 4 – Energy dispersive analysis of X-ray (EDAX) spectrum 

of TiO2 nanoparticles 
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Table 1 – Chemical composition of TiO2 nanoparticles in 

terms of atomic percentage (At %) and weight percentage  

(Wt %) from energy dispersive analysis of X-ray (EDAX) 

measurement 
 

Elements Atomic percentage (At %) Weight percentage (Wt %) 

Ti 35.34 62.07 

O 64.66 37.93 

Total 100 100 
 

peak around 0.3 keV of carbon appears which is weak 

compared to the other peaks such as Ti and O and it is the 

evidence for purity of synthesized TiO2 nanoparticles.  

 

3.4 Absorption Spectroscopy Analysis 
 

The absorption measurement of TiO2 nanoparticles 

was recorded in distilled water at room temperature 

using UV-Vis NIR spectrophotometer and normalized 

absorption spectrum is shown in Fig. 5(a). From 

Fig. 5(a), it is observed that TiO2 nano particles absorp-

tion peak appears at 261 nm. Fig. 5(b) shows the Plot of 

(hv)1/2 versus photon energy (hv) of TiO2 nanoparticles 

for the wavelengths from 500 to 230 nm and extrapolat-

ing the plot, linear relation is obtained [25]. Band gap 

energy (Eg) of the semiconductor material is determined 

according to Eq. (2) and is found to be 3.2 eV which is 

close to the reported value. 
 

 hv  A (hv – Eg)1/2 (2) 
 

where , hv, Eg and A are absorption coefficient, photon 

energy (eV), band gap and constant respectively. The 

normalized absorption spectra of RK-1dye and N-719 

dye in ethanol were recorded and shown in Fig. 5(c). 

From this figure, it is noticed that, RK-1 dye has two 

intense UV bands corresponding to 208 nm and 338 nm 

and another band in the visible region corresponding to 

467 nm. The bands in the UV region may be as a result 

of -* charge transfer transitions of the conjugated 

molecules where as a band in the visible region may be 

due to intramolecular charge transfer (ICT) transition 

between the electron-donor and electron-acceptor an-

choring moieties. In the same figure it is observed that, 

N-719 dye has two intense UV bands corresponding to 

213 nm and 307 nm and two more bands in the visible 

region corresponding to 382 nm and 523 nm. The bands 

in the UV region may be as a result of -* charge 

transfer transitions where as the bands in the visible 

region may be due to metal-to-ligand charge-transfer 

(MLCT) origin [26]. 

 

3.5 Photovoltaic Performance in Dye-sensitized 

Solar Cells as a Function of TiO2 Thickness 
 

Photocurrent density (J) versus photovoltage (V) of 

fabricated DSSCs sensitized with dye as a function of 

TiO2 thickness was measured using designed automatic 

load variable solar simulator [21]. Thickness (t) of the 

TiO2 film was estimated by gravimetric method using a 

microbalance [22, 23] as given by the following Eq. (3). 
 

    
     

    
 (3) 

 

Where, m0 is the mass of the FTO glass, m1 is the mass of 

FTO glass coated with TiO2 film. S and  are the surface 

area and bulk density of TiO2 film respectively.  

 
 

Fig. 5 – (a) Normalized absorption spectrum of TiO2 nanopar-

ticles, (b) Plot of (hv)1/2 versus photon energy (hv) of TiO2 

nanoparticles and (c) Normalized absorption spectra of RK-

1dye and N-719 dye 
 

It is well-known that, photovoltaic performances of 

DSSCs mainly depend on the film thickness. Thus 

short circuit current density (Jsc) and open circuit volt-

age (Voc) of respective DSSCs as a function of TiO2 film 

thickness are shown in Fig. 6(a) for RK-1 dye and 

Fig. 6(b) for N-719 dye respectively. Efficiency () of 

respective DSSCs as a function of TiO2 film thickness 

are shown in Fig. 7(a) for RK-1 dye and Fig. 7(b) for  

N-719 dye respectively. In the Fig. 6(a and b) it is ob-

served that, Jsc gradually increases to a peak value at 

  b 

  a 

  c 
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5.4 m and 8.6 m thicknesses for RK-1dye and N-719 

dye respectively and afterwards gradually decreases. 

Gradual increase of Jsc may be as a result of more ab-

sorption of photons as the film thickness increases. 

However, when the film thickness is beyond the light 

penetration depth, the number of photons useful for 

electron photo-generation will reach the limit and there-

fore, Jsc cannot be increased further since increase in 

the thickness beyond the light penetration depth may 

yield more recombination centers which results higher 

electron loss and gradual decrease in Jsc. Decrease of Jsc 

may also, be attributed to slower electron injection of 

dye molecules or self quenching if they undergo aggre-

gation, either before or during dye adsorption on metal 

oxides [58]. From the same Fig. 6 (a and b) it is ob-

served that, Voc decreases sharply as the thickness of 

film increases. This may be due to charge recombination 

and restricted mass transport in the thicker film as a 

result augmentation of surface area [17, 27, 28]. 

Fill factor (FF) and photovoltaic conversion efficien-

cy () of respective DSSCs are determined according to 

Eqs. (4) and (5) respectively.  
 

 FF 
         

       
 (4) 

 

    
           

   
  100 (5) 

 

where Voc is open circuit voltage, Jsc is short circuit cur-

rent density, Vmax is maximum power point voltage, Jmax 

is maximum power point current density and I0 is total 

incident irradiance (I0  1000 W/m2). Voc, Jsc, Vmax and Jmax 

values are obtained from the corresponding J-V plots. 

The variation of efficiency () as a function of film 

thickness is shown in Fig. 7(a) for RK-1 dye and Fig. 

7(b) for N-719 dye respectively. From Fig. 7(a and b) it 

is observed that,  gradually increases to peak value at 

5.4 m and 8.6 m thicknesses for RK-1dye and N-719 

dye respectively and afterwards gradually decreases. 

These figures resembles closely with Fig. 6(a and b) 

respectively. This may be inferred that Jsc is considered 

as an efficiency-determining parameter since the film 

thicknesses have shown stronger effect on Jsc than on 

the other photovoltaic parameters [28-30]. Finally, 

Fig. 8 shows J-V plot for RK-1 dye and N-719 dye with 

5.4 m and 8.6 m film thicknesses for optimum photo-

voltaic parameters given in Table 2. Optimum solar 

energy to electricity conversion efficiencies () are 

4.08 % and 5.12 % for RK-1 dye and N-719 dye respec-

tively under AM 1.5 irradiation (1000 W/m2) conditions. 
 

Table 2 – Optimum photovoltaic parameters of best-

performing cell with film thickness (Note: Active area of fabri-

cated solar cell was 0.50 cm2) 
 

Compounds Thickness 

 (m) 

JSC (mA/cm2) VOC  

(V) 

FF  (%) 

RK-1 dye 5.4 12.18 0.675 0.50 4.08 

N-719 dye 8.6 13.16 0.740 0.52 5.12 

 

4. CONCLUSIONS 
 

 Herein, we have successfully synthesized TiO2 na-

noparticles by sol-gel method. The same was character-

ized by using, XRD, FTIR, SEM, EDAX, AFM and UV-

Vis NIR spectrophotometer. TiO2 nanoparticles from  

 
 

Fig. 6 – Effect of TiO2 thickness on short circuit current densi-

ty (black color line indicates Jsc) and open circuit voltage (blue 

color line indicates Voc) (a) for RK-1 dye and (b) for N-719 dye 

of the fabricated DSSCs 
 

 
 

Fig. 7 – The conversion efficiencies () of the fabricated 

DSSCs as a function of TiO2 thickness (a) for RK-1 dye and (b) 

for N-719 dye 
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Fig. 8 – Photo-current density (J)-photovoltage (V) character-

istics of the best performed DSSCs (Note: Active area of fabri-

cated solar cell was 0.50 cm2). 
 

XRD and FTIR spectra reveals anatase nature, crystal-

line structure with average particle size of 7.3 nm and 

the appearance of Ti-O bending mode at 483 cm – 1. SEM 

and AFM images provide evidence for uniform distribu-

tion and good aggregation with clear porosity with vary-

ing shapes and sizes. Purity of TiO2 nanoparticles was 

confirmed by EDAX result. Band gap of the TiO2 is de-

termined from absorption spectra and the value agrees 

well with reported values. DSSCs sensitized by RK-1 

and N-719 dyes were fabricated using synthesized TiO2 

nanoparticles. The photovoltaic performance of DSSCs 

was studied as a function of TiO2 film thickness. The 

solar energy conversion efficiencies (η) of DSSCs gradu-

ally increases as the thickness of TiO2 layer increases 

up to certain thickness, after that it slightly decreases. 

This may be attributed to more absorption of photons as 

the film thickness increases as result of more dye ad-

sorption. Solar energy to electricity conversion efficiency 

(η) for RK-1 and N-719 dyes were of the order 4.08 % 

and 5.12 % with film thickness of 5.4 m and 8.6 m 

respectively under AM 1.5 irradiation (1000 W/m2) con-

ditions.  
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