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ABSTRACT

This thesis focuses on the development of a mathematical model to investigate

the effect of magnetic field and body acceleration on blood flow characteristics, heat

and mass transfer from a stenosed artery, a condition due to the abnormal narrowing

of a blood vessel. The arterial segment is assumed to be a cylindrical tube in an

inclined position with oscillating boundary condition and the stenosis taking the shape

of a cosine function. The momentum equation is based on the generalized power law

model which is expected to handle the variations in blood rheology as blood flows

through a different-sized vessel, with the index n < 1, n > 1 and n = 0 describing the

shear-thinning, shear-thickening and Newtonian fluid respectively. The full governing

equations comprising the generalized power-law equation, heat and mass equations

are non-linear partial differential equations whose numerical procedure involves the

discretization of the equations using the Marker and Cell (MAC) method, where

pressure along the tube is calculated iteratively using the Successive-Over-Relaxation

(SOR) technique. The results have been compared and validated with existing results

in certain limiting cases. New results in terms of pressure, streamlines, heat and mass

distribution are obtained for various parameter values of each of the external body

forces. Specifically, for a stenosis with 48% occlusion, separation is seen to occur for

Newtonian fluids at Re = 1000 and this region can be seen to increase in the case of

shear thickening fluids, while the shear-thinning fluid is shown to be free of separation

region. Moreover, blood velocity, wall shear stress and pressure drop decrease with

increase n, while heat and mass transfer increase. It is also demonstrated through the

simulations that under the influence of magnetic field, the velocity in the centre of the

artery and the separation region are reduced with a sufficient strength of magnetic field,

depending on the severity of stenosis. For a 75% and 84% occlusion, the separation

zones entirely disappear with magnetic strength 8 and 12 Tesla respectively, while the

pressure drop, wall shear stress, heat and mass transfer increase. On the other hand,

increasing periodic body acceleration leads to increase velocity and the pressure drop

while reducing heat and mass transfer. Inclination angle increases the velocity and

wall shear stress but decreases the pressure drop and heat and mass transfer. Based

on the results, patients with blood vessel disease are advised not to do a high-intensity

exercise; it can put extra strain on the heart leading to a risk in chest pain or even

cardiac arrest. Regular exercise and suitable intensity of magnetic field could enhance

vascular health.
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ABSTRAK

Tesis ini memberi tumpuan kepada pembangunan model matematik untuk

mengkaji kesan medan magnet dan pecutan jasad terhadap ciri-ciri aliran, pemindahan

haba dan pemindahan jisim bagi aliran darah di dalam arteri berstenosis, iaitu suatu

keadaan di mana saluran darah menyempit secara abnormal. Segmen arteri diandaikan

suatu tiub silinder kedudukan condong dengan syarat sempadan berayun dan stenosis

sebagai berbentuk fungsi kosinus. Persamaan momentum adalah berdasarkan kepada

model hukum kuasa teritlak yang boleh mengendalikan variasi reologi darah yang

mengalir melalui saluran darah pelbagai saiz, dengan indeks n < 1, n > 1 dan

n = 0 masing-masing mencirikan bendalir penipisan ricih, penebalan ricih dan

Newtonan. Persamaan menakluk yang terdiri daripada persamaan hukum kuasa

teritlak, persamaan haba dan persamaan jisim adalah persamaan pembezaan separa

tak linear dengan prosidur pengiraan berangkanya melibatkan pendiskretan persamaan

tersebut menggunakan kaedah Marker dan Cell (MAC), di mana tekanan di sepanjang

tiub dikira secara lelaran menggunakan teknik Successive-Over-Relaxation (SOR).

Keputusan kajian telah dibanding dan disahkan keputusan dengan hasil kajian sedia

ada bagi beberapa kes mengehadkan. Keputusan baru bagi tekanan, garis arus, taburan

haba dan jisim diperoleh untuk pelbagai nilai parameter bagi setiap daya jasad luaran.

Khususnya, bagi stenosis yang tersumbat sebanyak 48%, pemisahan dilihat berlaku

untuk bendalir Newtonan pada nilai Re = 1000 dan rantau ini diperhatikan meningkat

bagi bendalir penebalan ricihan, manakala bagi bendalir pencairan ricihan, didapati

bebas dari rantau pemisahan. Selain itu, halaju darah, tekanan ricih dinding dan

kejatuhan tekanan menurun dengan peningkatan n, sebaliknya, pemindahan haba

dan jisim bertambah. Melalui simulasi juga ditunjukkan bahawa di bawah pengaruh

medan magnet, halaju di pusat arteri dan rantau pemisahan menurun dengan kekuatan

medan magnet yang sesuai, bergantung kepada tahap stenosis. Untuk arteri yang

tersumbat 75% dan 84%, zon pemisahan hilang sepenuhnya masing-masing dengan

kekuatan magnet 8 dan 12 Tesla, manakala kejatuhan tekanan, tekanan dinding ricih,

pemindahan haba dan jisim meningkat. Sebaliknya, peningkatan berkala pecutan jasad

membawa kepada peningkatan halaju dan kejatuhan tekanan di samping pengurangan

pemindahan haba dan jisim. Sudut kecondongan meningkatkan halaju serta tegasan

ricih dinding tetapi mengurangkan kejatuhan tekanan dan pemindahan haba dan

jisim. Berdasarkan keputusan, dijangkakan pesakit dengan masalah saluran darah

dinasihatkan untuk tidak melakukan senaman berintensiti tinggi; ia boleh memberikan

tekanan tambahan ke atas jantung yang boleh membawa kepada risiko sakit dada atau

serangan jantung. Senaman yang kerap dan intensiti medan magnet yang sesuai boleh

meningkatkan kesihatan vaskular.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The understanding of the dynamics of blood flow is important in the

investigation of the vascular disease development and in the modelling of blood flow.

The mathematical depiction of blood flow can be very complicated, yet some simplified

models provide a fairly good understanding of the behaviour of blood when flowing

through the vessels. The study of the behaviour of blood flow in the blood vessels

provides an understanding of the connection between flow and the development of

diseases such as atherosclerosis, aneurysms and thrombosis and how the characteristics

of the blood flow are changed under these conditions. The understanding of the flow

dynamics in the presence of external forces such as gravity, body acceleration and

magnetic field will help improve the design of the model. The affecting of several

properties of blood and vessels can be improved if the blood flow behaviour through

certain conditions is well understood.

Blood is essential for life. It receives oxygen from the lungs and nutrients from

the intestine and delivers them to whole body cells. Blood is mainly composed of

plasma, which carries proteins, platelets (thrombocytes), red blood cells (erythrocytes)

and white blood cells (leukocytes). Red blood cells contain a protein called

hemoglobin, which has a high affinity for iron. The average hemoglobin iron
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concentration is 17% by volume for males and approximately 15% by volume for

females (Ramsay, 1957). The main constituent of the blood is red blood cells, which

make about 45% by volume of the blood, while the platelets and white blood cells are

less than 1%. At rest, the red blood cell shape is biconcave disks with a diameter of

roughly 8µm and across at its thickest point 2.5µm. The membrane of the cell is quite

flexible so that in the flow, the cell shape is less defined.

Figure 1.1: Blood constituents (Caro et al., 1978).

Blood rheology can be described as a non-Newtonian viscosity model and

may depend on the size of blood vessel. The assumption of Newtonian behaviour

is acceptable for high shear rate flow, as in larger arteries with radius greater than

1mm. However, this supposition is not valid when the shear rate is low as in

smaller arteries and in the downstream of the stenosis, blood exhibits non-Newtonian

in small arteries (Mandal, 2005). From a biomechanics perspective, blood would

not obey the simple, one parameter and linearized law of viscosity established by

Newton. Fluids that exhibit a non-linear relationship between the shear stress and

the rate of shear strain are called Non-Newtonian. According to Enderle et al.

(2000), the non-Newtonian behaviour of blood must be modelled by higher order

constitutive equations. Investigations have showed that the shear-thinning blood

rheology can be represented as a function of shear rate by various commonly used

mathematical models, such as, power law, Casson, Carreau and their derivatives Cross,

Walburn-Schneck, Carreau-Yasuda and the generalized power law models (Cho and
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Kensey, 1991; Ballyk et al., 1994). However, power-law and the Walburn-Schneck

models estimate the blood behaviour well at low shear rates; but at high shear rates

they predict decreasing viscosities and hence fail to hold the Newtonian behaviour at

such high shear rates (Johnston et al., 2004). According to Pries et al. (1992), Carreau-

Yasuda and Casson models hold the experimental blood behaviour well at both low and

high shear rates. Moreover, a modified Casson model also can be utilized to represent

the haematocrit of the blood (Das et al., 2000). According to Ballyk et al. (1994),

the generalized power law model can be considered to be a general non-Newtonian

model for blood viscosity. It encompasses the power law model at low shear rates,

the Newtonian model at mid-range and high shear rates, (more than 200s−1) and has

the Casson model as a special case for a given haematocrit value. In addition, there

is a close agreement between the generalized power law and Carreau model at low

shear rate (between 0.5 and 50s−1). Hence, for this study, blood rheology is adequately

described by the generalized power law model.

Recently there are many types of research have been carried out on stenosed

arteries: arteries with a blockage caused by atherosclerosis, which literally implies the

solidifying of the arterial walls. The artery walls are normally smooth to allow blood

flow easily through the artery and for easy transportation of oxygen, nutrients and other

vital substances from blood to the body tissues. Stenosis tends to cause a hardening

of the walls as well as a narrowing of the vessels (Young, 1968; Biswas, 2000; Biswas

and Chakraborty, 2009; Sankar and Lee, 2009). Therefore, it is no wonder that this

topic is of a significant concern to the community and numerous researchers. Stenosed

artery is one of the widespread diseases that lead to serious circulatory complaints,

by narrowing or occluding the blood vessels. Stenosis in arteries providing blood to

the cerebrum can lead to a diseased condition called cerebral strokes, likewise, in the

coronary arteries; it can bring myocardial infarction that cause a heart attack (heart

failure) (Sinha and Singh, 1984). Furthermore, it was observed by researchers, that

the resistance of the stenosis was basically reliant on its minimum cross-sectional area

instead of its length (Chakravarty and Datta, 1989).
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Figure 1.2: Vascular disease.

(http://www.mayoclinic.org/diseases-conditions/stroke/symptoms-causes/dxc-

20117265)

The study of magnetohydrodynamic (MHD) blood flow problems has found

applications in numerous fields like blood stream estimations, MHD power generation,

etc. The utilization of MHD principles in medication and biological science is

of interest in the literature of biomathematics (Vardanyan, 1973; Sud et al., 1974;

Sud et al., 1978). Blood has been recorded to have different magnetic susceptibility

values depending on its oxygenation state. Deoxygenated blood, which travels through

veins towards the heart, behaves as a paramagnetic solution and has a magnetic

susceptibility of 3.5 × 10−6. Oxygenated blood, which is found in arteries and is

pumped from the heart, has diamagnetic properties, with a magnetic susceptibility

of −6.67 × 10−7 (Haik et al., 1999a). The magnetic relaxation of blood has been

experimentally measured to be in the order of a few seconds, meaning that it will

take at least a second for blood to reach its equilibrium magnetization when exposed

to a magnetic field (Higashi, 1993). The externally applied magnetic field to the

blood flow is governed by MHD principles. By Lenz’s law, the Lorentz’s force
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will contradict the stream of conducting liquid and the mathematical model ignores

the impact of magnetization. The principles of MHD can be utilized to reduce the

blood flow in the arterial system and therefore it may be used in the treatment of

certain cardiovascular diseases that accelerated blood flow such as hypertension and

haemorrhages (Korchevskii and Marochunik, 1965). MHD can also be used in the

improvement of magnetic tools for cell separation, as targeted drugs transport i.e.

utilizing magnetic particles as drug bearers, magnetic injury treatment, reduce bleeding

during surgery, and cancer tumor treatment using magnetic hyperthermia (Haik et al.,

1996; Plavins and Lauva, 1993; Ruuge and Rusetski, 1993). As opposed to the MHD,

Ferrohydrodynamics (FHD) which deals with electrically poor conductors fluid (no

induced electric current), and takes into account the magnetization effects on the flow

in the magnetic field. Thus, the FHD equations consider the magnetization of the

fluid. The rising force subject to magnetization depends on the presence of a spatially

varying magnetic field and with a uniform magnetic this force disappears (Haik et al.,

1999a; Haik et al., 1999b; Haik et al., 1996; Haik et al., 2001; Haik et al., 2002).

However, blood exhibits substantially high static electrical conductivity (Frewer, 1974;

Gabriel et al., 1996; Jaspard and Nadi, 2002). Magnetic tools sold to patients usually

use uniform magnetic fields produced by permanent magnets and not varying magnetic

fields.

Figure 1.3: Effect of magnetic field on blood flow.

(http://www.frequencyrising.com/magnettherapy.htm)
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Figure 1.4: Magnetic therapy.

(http://alaml-algaded.com/google150cc6a3ffa5c10e.html/magnetic-therapy/)

In some conditions the human body is subject to external body accelerations

or variations, for example, when vibration treatment is applied to a patient with

coronary disease, during flying in a spacecraft, or sudden movement of the body

during sports actions, etc. In all such cases, a specific portion of the whole body

may be exposed to an external acceleration that may cause disturbance to the blood

flow. Though human body has the natural capacity to adapt to the changes, but long

exposure to such variations may lead to some serious health problems like headaches,

nausea, abdominal pain, abnormal pulse rate, and hemorrhage in the face, lungs and

brain (Majhi and Nair, 1994). So the investigation of the impact of the magnitude,

duration and frequency of the periodic acceleration may play a critical part in the

finding, diagnosis and treatment of heart disease.

The normal temperature of the human blood is about 37◦C. When it increases

above 41◦C, irreversible ill effects occurs in the proteins of blood and this is the cause

of death after such high fever (Cokelet, 1987). When magnetic field was imposed

the temperature increase of more than 3◦C and injuries of 12 and 20cm2 closed after

21 − 26 days. Similar injuries that were not imposed to magnetic field showed sores

and scabs even after 50 days. Moreover, hypothermia or hyperthermia is widely used

for many purposes such as open heart surgeries and cancer treatment. Especially for

the tumor treatment, the role of the temperature is substantially important (Ahuja and

Hendee, 1978). For rising of 1◦C the time of cure is reduced to the half for a particular
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biological result like the decrease of cancer cells of a tumor (Lin et al., 1999).

Although it was reported that oscillatory and low wall shear stress are often

positively associated with localized atherosclerosis (Ku et al., 1985; Friedman et al.,

1981), the correlation between wall shear stress and formation of atherosclerotic

is yet to be persuasively established. It has been proposed that wall shear stress

is not the only mechanism responsible for enhancing the formation and develop

atherosclerosis (Joshi et al., 2004; Steinman et al., 2002; Kaazempur-Mofrad et al.,

2004). Mass transport is a movement of atherogenic molecules and dissolved gases

such as Low-density lipoprotein (LDL), oxygen (O2) and carbon dioxide (CO2) within

the blood flow and arterial wall or vice versa. This action has been proved to

contribute to the formation of atherosclerosis (Fry and Vaishnav, 1980; Kaazempur-

Mofrad et al., 2005). Caro et al. (1971) proposed that atherosclerosis may occur as a

result of shear dependent mass transport mechanism of cholesterol between blood and

the arterial wall. In order to make an appropriate assessment regarding the possible

relationship between the spots of atherosclerotic lesions and the mass transfer patterns,

an accurate characterization of mass transfer behaviour is very important. Moreover, a

clear knowledge of mass transfer in stenosed artery is of considerable medical interest

in the investigation of the formation and development of atherosclerosis. The presence

of stenosis in the artery causes blood flow separation and complex hemodynamic

features and these in turn affect mass transfer phenomenon.

1.2 Problem Statement

Blood flowing in stenosis artery possess serious Pathophysiological problems

because it has numerous arterial diseases such as endothelial damage, hemolysis,

thrombosis and other injuries. These can lead to the malfunction of the cardiovascular

system which is in close correlation with blood flow characteristics and deformability

of the vessel wall.
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It is well-known that numerous vessels in physiological systems are not

horizontal, but have a certain inclination to the axis. The force of gravity comes into

blood flow due to the consideration of inclined artery. On the other hand, blood flow

patterns, pressure, mass concentration as well as temperature are often affected by

external forces such as magnetic field and body acceleration and various pathological

conditions which include stenosis causing serious problems in the cardiovascular

system but these conditions have not been fully investigated by previous investigators.

Studying the effect of these forces on the blood flow characteristics with heat and mass

transfer will help in better understanding of the roles of blood dynamical factors in the

development and progression of arterial diseases.

An important factor which needs to be considered in blood flow analyses is the

heat transfer. Lack of proper investigation of this parameter will result in irreversible

damage in the blood proteins and hence causes high fever and probably loss of life.

Therefore, it is important to consider the energy equation where the blood temperature

can be calculated to determine the behaviour of heat transfer through an inclined

stenosis artery in the presence of a magnetic field and body acceleration.

Blood exhibits various types of rheology behaviour depending on the size of

the vessel, and the presence of stenosis will change the size of the vessel in a specific

location. Therefore to handle these variations, the blood flow is characterized by the

generalized power law model taking into account the shear-thinning, shear-thickening

and Newtonian contrarily to other blood models which cannot handle all these blood

rheology behaviour.

Pressure has not been calculated previously but this research applied Marker

and Cell (MAC) method to discretize the governing equations where the pressure

equation is derived and solved iteratively using successive over relaxation (SOR)

technique. The main advantage of MAC method is that the pressure boundary

conditions at the inlet and outlet are not needed.
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1.3 Research Objectives

The main objective of this research is to develop a mathematical model of the

unsteady two-dimensional blood flow with heat and mass transfer in inclined stenosed

artery subject to a magnetic field and body acceleration and the specific objectives are:

1. Determine the effect of a magnetic field on the characteristics of blood flow

modelled as a generalized power law in a stenosed artery.

2. Determine the response of blood flow to body acceleration in an inclined

stenosed artery.

3. Investigate the effects of body acceleration and magnetic field on the heat and

mass transfer in an inclined stenosed artery.

4. To develop a matlab code based on the mathematical model that can simulate the

behavior of the blood flow characteristics with heat and mass transfer.

1.4 Scope of the Study

In this study, the artery having stenosis is taken as an inclined cylindrical tube

with elastic wall containing an incompressible non-Newtonian electrically conducting

fluid. This involves the consideration of realistic situations which often give rise

to complex mathematical equations. The blood flow is considered to be unsteady,

laminar, two-dimensional, axisymmetric and fully developed, characterized by the

generalized power-law model with energy and mass conservation equations. The blood

flow is considered to take place in presence of external forces (magnetic field, body

acceleration and inclination angles). As a numerical technique, the MAC method is

developed in the cylindrical coordinate system in order to tackle the highly nonlinear

governing equations of motion.
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1.5 Significance of the Study

Cardiovascular disease is the main killer disease in almost all countries around

the world. World Health Organization (WHO) reported that about 75% of all deaths

in the industrialized world are caused due to circulatory disease. Almost 9.4 million

people die annually from cardiovascular disease. Thus, cardiovascular diseases are the

number one cause of death in the world. Cardiovascular disease causes 17.3 million

deaths in 2008 about 30% of all global deaths. It is estimated that nearly 23.6 million

people will die from cardiovascular diseases, mostly from stroke and heart disease by

2030 (WHO, 2003). Moreover, Heart disease, stroke and other cardiovascular diseases

accounted for more than 786, 641 deaths of all 2515458 deaths, approximately one in

three American deaths (Mozaffarian et al., 2015). Thus, intensified efforts need to

prevent and control this disease.

The present research can estimate the behavior of blood flow, wall shear stress,

pressure, temperature and mass concentration and this in turn can help to predict and

diagnosis certain problems such as heart attacks non-invasively, and suitable alternative

treatment can then be given. In addition, some diseases such as arthritis, gout etc.

patients are often advised to take protective pads or tractions and by applying proper

magnetic field attached with those instruments we may enhance their activities. Again,

in the case of magnetotherapy, by maintaining a proper magnetic field, blood flow

velocity and pressure drop may be regulated. Furthermore, The present temperature

profiles distributed over the various locations of the stenosed artery may have some

implications in hyperthermia in a way to initiate and help develop more accurate

models of ablative therapies and improve ablation procedures.
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1.6 Thesis Organization

This thesis is divided into seven chapters including this introductory chapter

that presented a general introduction of the research background containing the

basic information about blood, cardiovascular system diseases, the external forces

(inclination, magnetic field and body acceleration) as well as heat and mass transfer.

Then in this introduction chapter the problem statements, the objectives, scope and the

significance of the study were presented.

In Chapter 2 a brief review of literature that related to the considered problems

is provided. It consists of discussions of generalized power law model in blood flow,

the external forces, heat and mass transfer, and MAC method. All the problems

throughout of this thesis considered the generalized power law and were solved using

MAC method.

Chapter 3 describes the mathematical model and the differential form of

equations that governed the flow streaming namely the generalized power law model

with energy and mass concentration equations. This chapter also presents the solution

procedure to solve the problems using the numerical method MAC which is carried out

in staggered grid.

Chapter 4 accounts for the unsteady blood flow, behaving as generalized power

law model in a stenosed artery, under the effect of an externally applied magnetic field.

The effects of the generalized power law index, Hartmann number and the severity of

stenosis on the axial velocity, wall shear stress, pressure and streamlines are studied.

The MAC method is validated with the previous works for the axial velocity and

pressure drop. New results in terms of pressure, streamlines and wall shear stress

are presented for different values of Hartmann number, Reynolds number and area

occlusion of stenosis.
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Chapter 5 addresses the generalized power law model for a two-dimensional

unsteady blood flow, in an inclined stenosed artery subject to body acceleration. The

solution procedures are the same as in Chapter 4.

Chapter 6 is an improvement from problems encountered in the previous

chapters by considering mass concentration and the energy of the fluid in order to

investigate the effect of severity of stenosis and the external forces on the heat and

mass transfer to blood flowing through inclined stenosed artery. Chapter 7 is the last

chapter which consists of a summary of the study, conclusion and several suggestions

for future work.
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