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ABSTRACT

Many issues and challenges could be identified when considering integration
testing of Component-Based Software Systems (CBSS). Consequently, several
research have appeared in the literature, aimed at facilitating the integration testing of
CBSS. Unfortunately, they suffer from a number of drawbacks and limitations such as
difficulty of understanding and describing the behavior of integrated components, lack
of effective formalism for test information, difficulty of analyzing and validating the
integrated components, and exposing the components implementation by providing
semi-formal models. Hence, these problems have made it ineffective to test today’s
modern complex CBSS. To address these problems, a model-based approach such as
Model-Based Testing (MBT) tends to be a suitable mechanism and could be a potential
solution to be applied in the context of integration testing of CBSS. Accordingly, this
thesis presents a model-based integration testing technique for CBSS. Firstly, a method
to extract the formal finite state behavioral models of integrated software components
using Mealy machine models was developed. The extracted formal models were used
to detect faulty interactions (integration bugs) or compositional problems between
integrated components in the system. Based on the experimental results, the proposed
method had significant impact in reducing the number of output queries required to
extract the formal models of integrated software components and its performance was
50% better compared to the existing methods. Secondly, based on the extracted formal
models, an effective model-based integration testing technique (MITT) for CBSS was
developed. Finally, the effectiveness of the MITT was demonstrated by employing it
in the air gourmet and elevator case studies, using three evaluation parameters. The
experimental results showed that the MITT was effective and outperformed Shahbaz
technique on the air gourmet and elevator case studies. In terms of learned components
for air gourmet and elevator case studies respectively, the MITT results were better by
98.14% and 100%, output queries based on performance were 42.13% and 25.01%,
and error detection capabilities were 70.62% and 75% for each of the case study.
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ABSTRAK

Pelbagai isu dan cabaran dapat dikenal pasti apabila mempertimbangkan ujian
integrasi bagi Perisian Sistem Berasaskan Komponen (CBSS). Oleh yang demikian,
beberapa penyelidikan telah dilaksanakan dalam kajian lepas yang bertujuan untuk
memudahkan ujian integrasi bagi CBSS. Namun, kajian tersebut mengalami beberapa
kelemahan dan batasan seperti kesukaran dalam memahami dan menggambarkan
tingkah laku komponen bersepadu, kekurangan formalisme yang berkesan bagi ujian
maklumat, kesukaran dalam menganalisis dan mengesahkan komponen bersepadu, dan
pendedahan pelaksanaan komponen dengan menyediakan model separa formal. Oleh
itu, masalah ini telah membuatnya tidak berkesan untuk menguji kompleks CBSS
moden pada hari ini. Bagi menangani masalah tersebut, pendekatan berasaskan model
seperti Ujian Berasaskan Model (MBT) cenderung menjadi mekanisme yang sesuai
dan boleh menjadi penyelesaian yang berpotensi untuk digunakan dalam konteks ujian
integrasi CBSS. Sehubungan itu, kajian ini membentangkan teknik ujian integrasi
berasaskan model untuk CBSS. Pertama, satu kaedah untuk mengekstrak model
formal tingkah laku keadaan terhingga bagi integrasi komponen perisian bersepadu
menggunakan model mesin Mealy telah dibangunkan. Model formal yang diekstrak
digunakan untuk mengesan interaksi yang tidak berfungsi (kesilapan integrasi)
atau masalah komposisi antara komponen bersepadu dalam sistem. Berdasarkan
keputusan kajian, kaedah yang dicadangkan mempunyai kesan yang ketara dalam
mengurangkan bilangan pertanyaan keluaran yang diperlukan untuk mengekstrak
model rasmi komponen perisian bersepadu dan prestasinya adalah 50% lebih baik
berbanding dengan kaedah yang sedia ada. Kedua, berdasarkan model formal yang
telah diekstrak, teknik ujian integrasi berasaskan model (MITT) untuk CBSS telah
dibangunkan. Akhirnya, keberkesanan MITT ditunjukkan dengan menggunakannya
dalam kajian tempahan makanan dalam penerbangan dan kajian kes lif, menggunakan
tiga parameter penilaian. Keputusan kajian menunjukkan bahawa MITT berkesan dan
mengatasi teknik Shahbaz dalam kajian tempahan makanan dalam penerbangan dan
kajian kes lif. Dari segi komponen yang dikaji untuk kajian kes tempahan makanan
dalam penerbangan dan kajian kes lif, masing-masing, keputusan MITT adalah
lebih baik prestasinya sebanyak 98.14% dan 100%, permintaan keluaran berdasarkan
prestasi adalah 42.13% dan 25.01%, dan keupayaan pengesanan ralat adalah 70.62%
dan 75% bagi setiap kajian kes.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Since the early 1990’s, software development community was encountering
various challenges and issues in developing software applications (Sneed, 2010).
Today’s modern software applications have become increasingly larger in scale and
inherited several complex characteristics (Chakraborty and Chaki, 2016; Ghazi et al.,
2015; Lity et al., 2015). Current software applications are composed of several sub-
systems, more complicated, evolve over time into different versions, exist in many
different variants, distributed amongst network and very critical (Di Ruscio et al.,
2014; Lochau et al., 2014; Tran et al., 2015). Consequently, this complex characteristic
makes the development of modern software systems very expensive (Guan and Offutt,
2015). At the same time, software production cost and time-to-market for developing
and delivering software applications need to be reduced due to the customer demands
and the current competition amongst software businesses or companies to meet market
demands (Kajtazovic et al., 2014; Muschevici et al., 2015). Hence, achieving the
goals of on-time delivery and quality becomes more challenging (Alégroth et al.,
2015; Kaur and Batolar, 2015; Meyerer and Hummel, 2014). On the other hand, as
today’s software applications become more and more complex over time in terms of
size, effort and cost, software quality accordingly have become increasingly important
(Elhag et al., 2013; Farjaminejad et al., 2014; Goeb and Lochmann, 2011). Given
these reasons, to cope with the challenges that are being faced by software community,
software engineers and developers try to look for innovative alternative approaches that
facilitate the development of current complex and very critical software applications
(Bui, 2005; Mahmood et al., 2015; Patel et al., 2012).

Consequently, software engineers and developers found that today’s large,
complex, high quality software applications could be efficiently developed partially
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if not completely, by reusing and integrating pre-built, pre-tested, high-quality,
well-defined independent and “plug and play” sub-systems denoted by “software
components” that their operations have been previously tested as a part of successful
applications (Kaliraj et al., 2014; Siddiqui and Tyagi, 2016). This idea gave birth
to a very cost-effective, attractive, fast and efficient research branch in the area of
software engineering known as Component-Based Software Engineering (CBSE) (Le
and Pham, 2012; Tarawneh et al., 2011). Therefore, building a software applications
from prefabricated small pieces of software parts or components is seen as a solution to
these problems (Dimri, 2015; Kaur and Tomar, 2015). As a consequence, Component-
Based Software Systems (often referred as CBSS or CBS) have become a heart of most
modern software applications. It has been a common trend in system development
nowadays and the key benefits introduced by the CBSE approach (Pramsohler et al.,
2015; Shu-Fen et al., 2010). Hence, CBSE paradigm has introduced significant
changes in the development of current modern complex software applications thanks
to their solid advantages (Tiwari and Chakraborty, 2015; Tran et al., 2015).

CBSE approach has a great impact in the last few years in a wide variety of
application areas such as business applications, automotive and telecommunications,
distributed control applications, web-based applications, scientific applications,
medical and healthcare applications, and others, including several types of Embedded
Real-Time Systems (ERTS) (Guan and Offutt, 2015; Orso and Rothermel, 2014; Tao
et al., 2015; Zaki et al., 2015). These current software systems require to ensure high
degree of quality, reliability and security as well as safety. Therefore, any bug and
error in these applications can affect and do the serious damage to the economies,
businesses, environment as well as loss of lives. Hence, testing becomes one of
the important activities and a fundamental task of software engineering is linked
with the development effort of any software application with the purpose of finding
faults (Ahmed and Ibrahim, 2015; Elghondakly et al., 2016; Lachmann et al., 2015).
Unfortunately, testing today’s software applications in general is an expensive activity
in software development life cycle in terms of time and budget as well as other
resources (Bertolino, 2007; Mahmood, 2011).

Literature suggests that 30% to 60% of the development time of a software
product is dedicated to testing (Afzal et al., 2016; Brar and Kaur, 2015; Ellims
et al., 2006; Harman et al., 2015; Mohi-Aldeen et al., 2017). In spite of that, it is
a widely used methodology and essential stage used to evaluate the functionality of
software applications, increases the confidence of the developers in the reliability and
correctness of software when it will be released (Moiz, 2017). It also improves quality
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of operation during deployment environment, by revealing errors and failures in order
to produce high-quality software applications, especially for systems being developed
by integrating prefabricated “plug and play” subsystems or software components.

Nowadays, integration of software components is a common trend and major
technique of modern software development (Castro and Francisco, 2013; Groz et al.,
2015). Therefore, in CBSE several components, often pre-built and third-party
components known as Components-Off-The-Shelf (COTS) coming from outside have
to be integrated together in order to build a CBSS, instead of developing the systems
from scratch (Andreou and Papatheocharous, 2016; Groz et al., 2008; Shahbaz and
Groz, 2014; Verma, 2012). In spite of the reality that a software component might
go through different levels of testing, unit testing still cannot ensure the behavior and
reliability of software component after integration in a new environment (Brohi and
Jabeen, 2012; Gupta, 2015; Mahmood et al., 2007). Therefore, the system developers
should check to ensure that the components developed separately should work properly
when integrated. Furthermore, to guarantee the correct functionality of the system,
a wide number of possible interactions between integrated software components in
the system may need to be tested (Guan and Offutt, 2015). Additionally, many
faults may not be obvious until integration and some complex behaviors can only be
observed when related components are integrated (Holling et al., 2016). Thus, testing
each component independently does not eliminate the need for integration testing.
Therefore, integration testing, which bridges component unit testing and component
system testing, plays an important role in the testing process of Component-Based
Software Development (CBSD) life cycle (Sirohi and Parashar, 2013).

In integration testing phase, the individual software components are assembled
and verified as a group to attain a high level of quality and reliability (Belli et al., 2009;
Khan and Nadeem, 2013). Moreover, integration testing is essential level of quality
assurance that minimizes the risk of the system not working effectively and efficiently,
and focuses on the prevention of integration bugs (Khan and Singh, 2012). Therefore,
it plays a substantial part in detecting faults during a CBSD life cycle (Mahmood,
2011). Approximately, 40% of the software errors are discovered and revealed during
integration testing (Kaur et al., 2011). On the other hand, integration testing of CBSS is
most time consuming and expensive part of the testing process in CBSD, and received
significantly little attention from practitioners and researchers in the field of software
engineering (Bai et al., 2001; Gao et al., 2003; Ning et al., 2013; Shashank et al., 2010;
Shukla and Marwala, 2012).
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1.2 Research Motivation

When considering integration testing of CBSS; many issues and challenges
could be identified specially when considering integrated black-box software
components (Bertolino and Polini, 2003; Beydeda and Gruhn, 2003b; Khan et al.,
2011; Machado et al., 2007; Reza and Cheng, 2012). In most cases, the source
code, detailed documentations, design specifications, and formal models of integrated
components are missing or not available to the system designers, making system
integration and integration testing are very time consuming and more quite challenging
(Haser, 2015). The consequences of these challenges, several works have been
proposed during the last decade, aiming to facilitate integration testing of CBSS. Here
in the following sections the issues and challenges that are related to the scope of this
thesis directly or indirectly are summarized, and the efforts made by researchers to
tackle it.

The first challenge deals with a lack of information exchanged between
component producers and component consumers. Component developers and
component users need to exchange different types of information during the
development of the component itself and during the development of CBSS in
order to facilitates the testing process, and to develop high-quality and reliabe
CBSS. Unfortunately, unavailable information limits the capacity of both component
developers and component users or even the independent tester (third-party tester) to
test candidate components efficiently. Therefore, there is an effort made by several
researchers to aggregate valuable information to the component in order to facilitate
the integration testing activities at the component developers’ side and to minimize
as much as possible the dependence of component users and the independent tester
(third-party tester) on the information provided by the component providers.

In 1998, Liu and Richardson (1998) proposed a technique to capture
information related to the usage of the component inside source code snippets. In
1999, Harrold et al. (1999) initiated the idea of metadata by proposing a technique
for analyzing and testing CBSS from two perspectives of component providers and
component users. In 2001, Orso et al. (2001) suggested another category of summary
information to support component testing called component metadata. Component
users can then use the information provided by the metadata to test and analyze a
CBSS. Edwards (2001) proposed the reflective wrapper technique that analyzes the
best way to package specification and verification information of formally specified
components for distribution to component consumers. In 2003, Bertolino and Polini
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(2003) proposed component deployment technique for component users to facilitate
the testing within a user’s target environment of a component independently developed.
Silva et al. (2009) presents a technique covered by a CASE tool integrated in the
development environment to support components integration testing aiming to reduce
the lack of information between component producers and component consumers.
In 2010, Naseer et al. (2010) presented a technique to use metadata technique for
CBS black box testing and developed a tool which takes <.dll> component. Brohi
and Jabeen (2012) proposed a technique that enhances component testability and
to facilities the integration testing by defining a uniform information flow in the
component life cycle.

Indeed, all the proposed previous related research that follows in this
category, however, don’t handle heterogeneous components and have an effect on the
implementation transparency of the component, which is an important characteristic in
software component.

Unavailability of the components source code, or internal workings (structure)
of the integrated components might not be accessed by a component users and the
independent tester (third-party tester) due to organizational or legal restriction, will
affect and reduce the controllability and testability of candidate components, and
hence the overall integration testing of CBSS. Consequently, a number of proposed
solutions provided by several researchers to equip a software components with a
specific testable architecture that permits component users and the independent tester
(third-party tester) to execute test cases easily in order to support self-testing and to
facilitate the integration testing process.

In 1999, Wang et al. (1999) proposed the idea of Built-in Testing approach
(BIT) to increase component testability. BIT based on the development of test
cases in component source code as additional member functions with the normal
member functions. Consequently, Atkinson and Grob (2002) presented an example of
BIT technique, called component+. It is related to contract testing in model-driven
component-based development. In the same year, Gao et al. (2002) proposed the
testable beans technique. The idea of BIT was extended by Mahmood (2011) to present
a component-based software integration testing technique to prioritize test cases and
identify integration test criteria using software complexity measures.

In 2001, Martins et al. (2001) has presented a technique for Self-testable
software component. The proposed technique is another example to add extra
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information to software component intentionally to improve component testability by
integrating testing resources into it. Concat tool was developed to support the proposed
technique. In 2003, Beydeda and Gruhn (2003a) presented the Self-Testing COTS
Components (STECC) technique that augment components with functionality specific
to testing tools that is capable of conducting some or all activities of the component
user’s testing processes.

Accordingly, due to the unavailability of integrated software component source
code, and with the lack of component information, detailed documentations, complete
functional behavior descriptions and design specifications for analysis and testing the
systems of integrated components, specifically when one considers black-box software
components, existing integration testing techniques under this category has become
ineffective to handle and detect erroneous interactions of components during the
integration testing phase, and fail to test today’s modern complex CBSS. Additionally,
in most cases the formal models for analysis and testing the integrated components, and
which will help to understand their possible behaviors in the system are always missing
or not available to the system designers. Furthermore, there could be a large number of
possible interactions between integrated software components which are undesirable
and which could affect the function of each others, hence, these interactions may need
to be tested to ensure the correct functionality of the CBSS. As a result, some complex
behaviors are not observed until related components are integrated and many faults
may not be visible until integration, making integration testing very quite challenging
by the existing integration testing techniques and most time consuming task. Moreover,
this invisible behavior of a component can affect the behavior of the overall CBSS.

The Unified Modeling Language (UML) and its diagrams are commonly
used and gained wide acceptance amongst researchers to address the necessity for
additional information by appending some UML models with software components.
Accordingly, the techniques consist of UML models such as (Barisas et al., 2013;
Gallagher et al., 2006; Hartmann et al., 2000; Kaur et al., 2011; Machado et al.,
2007; Mussa and Khendek, 2012; Shang and Zhang, 2006; Wu et al., 2003; Zheng
and Bundell, 2008, 2007a,b) have been proposed in order to facilitate the integration
testing process at the component user side.

However, the drawbacks of UML based integration testing approach is that,
with the help of reverse engineering its possible to modify a component and
to access the component source code by using some UML reverse engineering
tools. Furthermore, these UML models is unrealistic because COTS evolve along
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time to incorporate additional requirements, which quickly invalidates the original
project (Castro and Francisco, 2013). Moreover, the techniques consist of semi-
formal models such as UML models affecting the implementation transparency of
software components. Additionally, these semi-formal models is not sufficient for
the component users to understand its behavior completely, and it cannot be used
as input to the existing MBT approaches. Hence, the traditional techniques for
MBT approaches such as static analysis, program slicing, invariant detection, model
extraction, validation and verification also has become ineffective when one considers
systems of integrated black-box software components.

To conclude, despite several existing proposals, the existing works discussed in
this section of adding additional structure for reliable use of component applications,
and/or adding information with software components to facilitate the integration
testing process suffers from a number of drawbacks and limitations, leading to
ineffective testing and, ultimately, to poor software quality. These drawbacks and
limitations are very important and should be resolved. Hence, new solutions have
to be developed to cope with these drawbacks and limitations. The drawbacks and
limitations of the existing works that are directly related to the scope of this thesis are
highlighted here:

i. Difficulty of understanding and describing the behaviors of integrated
components, due to the frequent lack of information and/or implementation
details. Moreover, the formal models of integrated components that can be
used for analysis, testing and documentation, and which will help to understand
their possible behaviors in the system are always missing or not available to the
system designers.

ii. It is impossible to use it in some cases, for instance, when there is no formal
model to understand the possible behavior of the integrated components. A
key problem, however, is the construction of models that describe the intended
behavior of the integrated components in a system.

iii. Difficulty of analyzing and validating the integrated components, due to the
restricted access of components source code, detailed documentations is not
sufficient to solve details about its interaction with other components, absence of
components models to check the possible interaction between the components,
and other development information to the system designers.
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iv. Lack of accurate and effective formalism for information representation (internal
structure of a component is generally unknown). Hence, how to query and
retrieve test information effectively has become the key problem while reusing
test information. Due to that, the interpretation of information is not clear due
to it is non-uniformity, hence requires understanding the representation prior to
interpreting the meaning.

v. Some techniques expose component implementation by providing semi-
formal models such as metadata, BIT, and UML models, allowing reverse
engineering to access the source code of software component, thus affecting
the implementation transparency of software components. Furthermore, the
implementation transparency property raises some difficulties when the CBSS
is to be tested. Moreover, these informal models cannot be used as input to
the existing Model-Based Testing (MBT) approaches, which is a new technique
which rely on explicit or accurate models for testing purposes, and aims to make
testing more effective and more efficient.

In view of the above background, and in order to address the important
challenges and limitations of the existing proposals, this thesis aimed at proposing
an integration testing technique for CBSS, by exploits the use of learning and testing
approach for integration testing of CBSS. Therefore, the proposed technique in this
thesis combining model learning and testing techniques for testing of a system of
integrated software components.

1.3 Statements of the Problem

Engineering high-quality CBSS is essential for the involved enterprises and
demands interest from both academia and industry. With the increasing complexity of
today’s modern CBSS, verification and validation techniques are becoming more and
more important. Therefore, integration testing has become a very essential activity
linked with the development effort of any software applications and most important
means to ensure the quality of today’s modern CBSS. Unfortunately, nowadays many
difficulties arise in integration testing of CBSS leads to new challenges, and it has
become a more and more complex task that significantly influenced by a number of
factors. Even so, integration testing of CBSS has been one of the open research area
that is rarely investigated and received significantly little attention from practitioners
and researchers in the field of software engineering, and remains comparatively
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less well-solved. Therefore, it requires the support of tools, methodologies and
well established techniques to mitigate the challenges and limitations of the existing
works, and to support the development of high-quality CBSS. On the other hand,
understanding the behavior and testing the integrated software components is another
challenging task, due to the unavailability of their source code, updated specifications
or formal models. Moreover, obtaining the accurate formal models for existing
software components, which precisely describe the behavior of the integrated software
components is still an open and interesting problem.

The recognized problems of the integration testing of CBSS are presented
in Figure 1.1. However, by understanding the problem background which has been
discussed in the previous section, it can be concluded that continues efforts and further
works still required, and a new solution for improvement should be developed to
mitigate the above limitations and gaps left by past research works effectively in order
to enhance the development of today’s modern CBSS.

Figure 1.1: Recognized problems
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The environment of a CBSS can be seen as a form of black-box (service
interface). Therefore, a model-based approaches such as MBT can be seen as potential
solution. Since MBT is a black-box approach, it tend itself to be suitable mechanism to
deal with CBSS problems. Accordingly, among the existing testing techniques, MBT
is a promising candidate to be applied in the context of integration testing of CBSS.
Despite the amount of literature on integration testing, model-based integration testing
techniques are quite limited (Dias Neto et al., 2007). MBT has become a common
trends which have added many values to the engineering of software projects. MBT
has more advantages, and can well support component integration testing. Besides the
automatic test case generation, another relevant characteristic for testing components
is the adoption of formal models and black-box testing strategy (Haser, 2015). Black-
box testing are appropriate for integration testing of CBSS because internal structures
of integrated software components are always missing or not available to the system
designers, the complexity of interactions and test harness can be abstracted, the
formality of the model contribute to more reliable tests. Furthermore, several benefits
such as (high level of automation, reducing cost and time for testing, high fault
detection rate and generating tests automatically) were obtained from the adequate
application of MBT to software systems.

1.4 Research Questions

This research intends to propose an integration testing technique for CBSS in
order to mitigate above mentioned problems. Despite the powerful features of MBT
approach, most existing techniques provide only limited support for integration testing.
This leads to the main research question to be answered in this study:

“How is it possible to use MBT to develop an effective model-based integration
testing technique for CBSS?”

To address the primary research question given above, it is further broken down
into sub-questions.

RQ1: How to understand the behavior of integrated software components in the
system?

RQ2: How to develop an effective integration testing technique for CBSS in
order to overcome the identified challenges?
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RQ3: How to measure the effectiveness of the proposed technique?

1.5 Research Goal

This research work concentrates on the problem of testing the integrated
software components in the system in the missing of their formal behavioral models.
Given a set of black-box software components that are integrated in a system, the
first major goal of this study is to infer/extract the formal models which describes
the behaviors of integrated software components, by proposing a method to infer the
approximated finite state behavioral models in term of finite state machine (Mealy
machines), that represents the precise description of the intended behaviors of the
integrated components formally directly from the components, using the idea of active
learning approach. Then, the second major goal of the study is to propose an effective
model-based integration testing technique, which combines model learning and testing
techniques, to identify the faulty interaction between the integrated components in a
system based on the extracted formal models and with the help of learning and testing
approach.

1.6 Research Objectives

To achieve the goal, the following four objectives need to be undertaken with
the aim of finding answers to the research questions:

i. To propose a method that extracts the formal finite state behavioral models of
integrated software components using active learning approach and benchmark
the performance based on the number of output queries.

ii. To develop an effective integration testing technique for CBSS using the
extracted models and with the help of learning and testing approach.

iii. To demonstrate and measure the effectiveness of the proposed technique by
applying the proposed technique in the selected applications as case studies,
using three evaluation parameters, namely learned components, output queries,
and error detection capability.

iv. To evaluate and compare the proposed technique against Shahbaz technique
based on learned components, output queries, and error detection capability.
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1.7 Significance of the Study

The significance of this study is to mitigate the limitations and gaps left by past
research works in integration testing of CBSS, by proposing an effective integration
testing technique of CBSS, which combines model learning and testing techniques for
testing of a system of integrated black-box software components. Thus, this thesis
exploits the use of learning and testing approach for integration testing of CBSS. The
study proposes solutions into two directions:

i. Reverse engineering: Understanding the behaviors of the integrated black-
box software components, by deriving (extracting) the formal models of the
components. In this study, the software components are learned in order to
extract their formal finite state behavioral models as Mealy machine models.

ii. Validation: Developing an effective model-based technique for integration
testing of CBSS. Thus, the integrated software components is tested and
analyzed using their learned formal models (Mealy machine models). In this
study, the use of components formal models will help in revealing compositional
problems or faulty interactions (integration bugs) between integrated software
components and general errors in the system.

1.8 Scope of the Study

The scope of this research work has been limited to the following aspects:

i. Integration testing: As discussed before in this chapter, in the CBSD life cycle,
three basic kinds of testing are needed in order to detect and reveal errors, namely
“unit testing (component testing), integration testing (deployment testing), and
finally system testing”. A brief description of this three levels of testing will
be introduced in the next chapter. However, this research is concerned only on
integration testing in the context of CBSS, and does not cover the other testing
levels. Thus, the issues related to other testing levels are not dealt with in this
study.

ii. Components are black boxes: The integrated components in the system may
have different levels of exposure depending upon how much information about
them is available. In literature, the terms black box, gray box and white box
are used with reference to different levels of closure of the component internal
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essence. This study considers that all components are black boxes, i.e., their
functional specifications and implementation details are not available. However,
the basic set of input symbols that can be given to a component through it is
input interfaces are known, and for each input, the corresponding output of the
component can be observed through it is output interfaces.

iii. Modeling level: The component exhibits regular behaviors, i.e., the component
can be modeled as a finite state machine (Mealy machine). This study intends
to learn only the behaviors prescribed by the control structure of the finite state
model. Moreover, the study do not assume to know the upper bound on the
number of states in the components. Instead of hunting for exact learning, the
study aims to learn approximate models that are expressive enough to provide
powerful guidance for testing and to enhance the behavior understanding of the
integrated software components, and thus, of the system.

iv. Focus on functional aspects: This study focuses on behavior learning and
studying the interactions between the integrated components and their functional
aspects in the system. Therefore, the study are not dealing with other details, for
instance, security, timing, and performance issues in the system.

v. Case studies and their assumptions: The proposed research work in this thesis
has been validated using four different case studies that large enough to get some
interesting results. Therefore, different case studies from different domains have
been used in this research. Furthermore, in order to check the effectiveness of
the proposed technique and to compare its results with the existing proposal’s
results, the selected case studies are fully developed based on CBSD.

vi. Benchmarking with existing techniques: To the best of our knowledge,
Shahbaz and Groz (2014) is the only work found in the literature that uses
learning and testing approach for CBSS. Therefore, the technique proposed
by Shahbaz and Groz (2014) is the best and closest work to compare its
experimental results with the obtained experimental results of the proposed
technique in this thesis.

1.9 Thesis Outline

This thesis is organized in seven chapters. The structure of these chapters as
follows:
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Chapter 2, Literature Review. This chapter is associated with literature review.
First, the chapter provides information about testing CBSS. Then, a comprehensive
review of integration testing of CBSS will be provided in details. Next, the
chapter presents a discussion on the related work on model-based integration testing.
Moreover, a detailed description of learning and testing approach will be provided.
Next, an overview of the most important active learning tools will be given. Learning
finite state machine will be highlighted also in this chapter.

Chapter 3, Research Methodology. This chapter explains comprehensively
the research methodology used in this thesis in order to show how the objectives are
achieved. This includes the research process and activities involved in each phase to
depicts the flow of research step by step, and the research framework to show the main
parts and components of the research. At last, the description and comparison of case
studies that will be used in this research will be provided in this chapter.

Chapter 4, A Method to Extracting the Formal Finite State Behavioral Model.
This chapter describes in details the proposed finite state behavioral model extraction
method. In addition, this chapter also explains and discusses the results related to the
experimental evaluation of the proposed method using case studies.

Chapter 5, The Proposed Model-based Integration Testing Technique. In this
chapter, an integration testing technique for testing the integrated black-box software
components in a system using approximated (partial) models of software components
is proposed. Precisely, this chapter presents the structure and development steps
of the proposed technique. The discussion includes all the necessary elements that
related to the proposed technique. An illustrative example will be used to clarify the
implementation of the proposed technique.

Chapter 6, Evaluation and Comparison of MITT. This chapter discusses
the results of evaluating and comparing the proposed technique with other current
techniques in order to explain the strengths and weaknesses related to the proposed
technique. Therefore, the chapter explains the evaluation of the proposed technique in
details. In particular, the experimental results are provided and discussed in details.

Chapter 7, Conclusion and Future Work. This chapter concludes the thesis by
highlighting the summary, achievements of research objectives covered in this thesis,
the contributions of research, and finally, the future work are elaborated.
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