
MODEL-BASED INTEGRATION TESTING TECHNIQUE USING FORMAL
FINITE STATE BEHAVIORAL MODELS FOR COMPONENT-BASED

SOFTWARE

ABUBAKAR ELSAFI ALI AHMED

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Computer Science)

Faculty of Computing
Universiti Teknologi Malaysia

AUGUST 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/231742264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iii

To my beloved parents, brothers and sisters who always support and encourage me in
the good times as well as the bad times



iv

ACKNOWLEDGEMENT

First and foremost, my praises and thanks to Almighty Allah (S.W.T), the
Most Gracious the Most Merciful, who gave me the health, strength, knowledge,
encouragement and patience to accomplish this research. May the peace and blessings
of Allah be upon our Prophet Mohammed (S.A.W).

I wish to express my deep gratitude to my supervisor Assoc. Prof. Dr. Dayang
Norhayati binti Abang Jawawi, Deputy Dean (Academic), Faculty of Computing,
Universiti Teknologi Malaysia (UTM) for her guidance to the right way and continuous
support which helped me to stay focused from the beginning to the end of the research
process. I would like to thank her because she has never been too busy to keep an eye
on my progress in spite of her numerous obligations. She has greatly helped me in a
lot of ways throughout this study. Again, I owe her my deepest thanks.

In addition, I am grateful to my colleagues at Embedded & Real-Time Software
Engineering Laboratory (EReTSEL) for the useful discussions, guidance, advice and
knowledge sharing in this field. Without their contribution, interest and guidance I
would not be able to complete this thesis.

I would like to mention my beloved parents, brothers and sisters who has
always believed in me and had always supported me during my stay in Malaysia
and eagerly await my arrival back home. Their prayers have always been a source
of inspiration and encouragement for me. I thank you all from the core of my heart
because your prayers and well wishes made it possible for me.

There is a common Arabic saying: "I am indebted forever to whoever teaches
me something, even if it is a single letter", so my thanks are due to everyone who
taught me something during my PhD study. Finally, my appreciation also goes to all
my friends here at UTM.



v

ABSTRACT

Many issues and challenges could be identified when considering integration
testing of Component-Based Software Systems (CBSS). Consequently, several
research have appeared in the literature, aimed at facilitating the integration testing of
CBSS. Unfortunately, they suffer from a number of drawbacks and limitations such as
difficulty of understanding and describing the behavior of integrated components, lack
of effective formalism for test information, difficulty of analyzing and validating the
integrated components, and exposing the components implementation by providing
semi-formal models. Hence, these problems have made it ineffective to test today’s
modern complex CBSS. To address these problems, a model-based approach such as
Model-Based Testing (MBT) tends to be a suitable mechanism and could be a potential
solution to be applied in the context of integration testing of CBSS. Accordingly, this
thesis presents a model-based integration testing technique for CBSS. Firstly, a method
to extract the formal finite state behavioral models of integrated software components
using Mealy machine models was developed. The extracted formal models were used
to detect faulty interactions (integration bugs) or compositional problems between
integrated components in the system. Based on the experimental results, the proposed
method had significant impact in reducing the number of output queries required to
extract the formal models of integrated software components and its performance was
50% better compared to the existing methods. Secondly, based on the extracted formal
models, an effective model-based integration testing technique (MITT) for CBSS was
developed. Finally, the effectiveness of the MITT was demonstrated by employing it
in the air gourmet and elevator case studies, using three evaluation parameters. The
experimental results showed that the MITT was effective and outperformed Shahbaz
technique on the air gourmet and elevator case studies. In terms of learned components
for air gourmet and elevator case studies respectively, the MITT results were better by
98.14% and 100%, output queries based on performance were 42.13% and 25.01%,
and error detection capabilities were 70.62% and 75% for each of the case study.



vi

ABSTRAK

Pelbagai isu dan cabaran dapat dikenal pasti apabila mempertimbangkan ujian
integrasi bagi Perisian Sistem Berasaskan Komponen (CBSS). Oleh yang demikian,
beberapa penyelidikan telah dilaksanakan dalam kajian lepas yang bertujuan untuk
memudahkan ujian integrasi bagi CBSS. Namun, kajian tersebut mengalami beberapa
kelemahan dan batasan seperti kesukaran dalam memahami dan menggambarkan
tingkah laku komponen bersepadu, kekurangan formalisme yang berkesan bagi ujian
maklumat, kesukaran dalam menganalisis dan mengesahkan komponen bersepadu, dan
pendedahan pelaksanaan komponen dengan menyediakan model separa formal. Oleh
itu, masalah ini telah membuatnya tidak berkesan untuk menguji kompleks CBSS
moden pada hari ini. Bagi menangani masalah tersebut, pendekatan berasaskan model
seperti Ujian Berasaskan Model (MBT) cenderung menjadi mekanisme yang sesuai
dan boleh menjadi penyelesaian yang berpotensi untuk digunakan dalam konteks ujian
integrasi CBSS. Sehubungan itu, kajian ini membentangkan teknik ujian integrasi
berasaskan model untuk CBSS. Pertama, satu kaedah untuk mengekstrak model
formal tingkah laku keadaan terhingga bagi integrasi komponen perisian bersepadu
menggunakan model mesin Mealy telah dibangunkan. Model formal yang diekstrak
digunakan untuk mengesan interaksi yang tidak berfungsi (kesilapan integrasi)
atau masalah komposisi antara komponen bersepadu dalam sistem. Berdasarkan
keputusan kajian, kaedah yang dicadangkan mempunyai kesan yang ketara dalam
mengurangkan bilangan pertanyaan keluaran yang diperlukan untuk mengekstrak
model rasmi komponen perisian bersepadu dan prestasinya adalah 50% lebih baik
berbanding dengan kaedah yang sedia ada. Kedua, berdasarkan model formal yang
telah diekstrak, teknik ujian integrasi berasaskan model (MITT) untuk CBSS telah
dibangunkan. Akhirnya, keberkesanan MITT ditunjukkan dengan menggunakannya
dalam kajian tempahan makanan dalam penerbangan dan kajian kes lif, menggunakan
tiga parameter penilaian. Keputusan kajian menunjukkan bahawa MITT berkesan dan
mengatasi teknik Shahbaz dalam kajian tempahan makanan dalam penerbangan dan
kajian kes lif. Dari segi komponen yang dikaji untuk kajian kes tempahan makanan
dalam penerbangan dan kajian kes lif, masing-masing, keputusan MITT adalah
lebih baik prestasinya sebanyak 98.14% dan 100%, permintaan keluaran berdasarkan
prestasi adalah 42.13% dan 25.01%, dan keupayaan pengesanan ralat adalah 70.62%
dan 75% bagi setiap kajian kes.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi
LIST OF APPENDICES xviii

1 INTRODUCTION 1
1.1 Overview 1
1.2 Research Motivation 4
1.3 Statements of the Problem 8
1.4 Research Questions 10
1.5 Research Goal 11
1.6 Research Objectives 11
1.7 Significance of the Study 12
1.8 Scope of the Study 12
1.9 Thesis Outline 13

2 LITERATURE REVIEW 15
2.1 Introduction 15
2.2 CBSS Testing Levels 15

2.2.1 Unit Testing 16
2.2.2 Integration Testing 17
2.2.3 System Testing 17
2.2.4 Comparison 18



viii

2.3 Integration Testing of CBSS 18
2.3.1 Significance of Integration Testing in

CBSD Life Cycle 19
2.3.2 Existing Approaches that Support In-

tegration Testing in CBSS and the
Classification 19
2.3.2.1 Built-in Testing Approach 20
2.3.2.2 Metadata Based Testing Ap-

proach 22
2.3.2.3 Testable Architecture Approach 24
2.3.2.4 Certification Strategy 26

2.3.3 Comparative Evaluation 29
2.3.3.1 The Evaluation Criteria 29
2.3.3.2 Comparative Evaluation

Remarks 30
2.3.4 Drawbacks and Limitations of the Exist-

ing Techniques 32
2.4 Related Works on Model-Based Integration Testing 33

2.4.1 MBIT Based on UML 33
2.4.2 MBIT Based on UTP 35

2.5 The Approach of Learning and Testing 36
2.5.1 Active Automata Learning 36

2.5.1.1 Overview of the Learning
Method L* 37

2.5.1.2 Adaptations of the Angluin’s
Method L* 38

2.5.1.3 The Mealy Machine Methods
LM

* and LM
+ 39

2.5.2 Applications and State-of-the-art Model
Inference Integration Testing 39

2.6 Overview of the Most Important Active Automata
Learning Tools 41
2.6.1 RALT 41
2.6.2 LearnLib 41
2.6.3 Libalf 42
2.6.4 Comparison 42

2.7 Learning Finite State Machine 43
2.8 Summary 44



ix

3 RESEARCH METHODOLOGY 45
3.1 Introduction 45
3.2 Research Process 45

3.2.1 Research Process (1): Design and
Implementation of the Proposed Model
Extraction Method 46
3.2.1.1 Step 1: Development 47
3.2.1.2 Step 2: Evaluation 48

3.2.2 Research Process (2): Design and Im-
plementation of the Proposed Integration
Testing Technique 48
3.2.2.1 Step 1: Development 49
3.2.2.2 Step 2: Evaluation 50

3.2.3 Research Process (3): Evaluation and
Comparison of the Proposed Integration
Testing Technique 50
3.2.3.1 Step 1: Checking the Effective-

ness of the Proposed Technique
Using Case Studies 50

3.2.3.2 Step 2: Conducting A Compar-
ative Analysis 51

3.3 Research Framework 52
3.4 Case Studies 56

3.4.1 Case Study 1: The HVAC Controller Case
Study 56

3.4.2 Case Study 2: The Edinburgh Concur-
rency Workbench Case Study 57

3.4.3 Case Study 3: The Air Gourmet Case
Study 57

3.4.4 Case study 4: The Elevator Case Study 58
3.4.5 Comparison of the Case Studies 58

3.5 Summary 60

4 A METHOD TO EXTRACTING THE FORMAL FI-
NITE STATE BEHAVIORAL MODEL 61
4.1 Introduction 61
4.2 Extracting the Mealy Machine Models 62

4.2.1 Preliminaries 62



x

4.2.2 The Proposed Mealy Models Extraction
Method LM

× 64
4.2.2.1 Observation Table in the Pro-

posed LM
× Method 67

4.2.2.2 Handling Counterexamples in
the Proposed LM

× Method 68
4.2.2.3 An Illustrative Example for

Learning with LM
× 69

4.2.2.4 Comparison Between LM
× and

LM
+ 71

4.3 Evaluation of the Proposed Method LM
× 72

4.3.1 Evaluating the Applicability of the Pro-
posed Method LM

× 73
4.3.1.1 Result of Extracting the HVAC

Controller Using LM
× 74

4.3.2 Evaluating the Performance of LM
×

Method Relative to Other Methods 76
4.3.2.1 Performance Metric 78
4.3.2.2 The Experimental Setting 78
4.3.2.3 The Experimental Results and

Discussion 80
4.4 Summary 85

5 THE PROPOSED MODEL-BASED INTEGRATION
TESTING TECHNIQUE 86
5.1 Introduction 86
5.2 Preliminaries 87

5.2.1 System Structure 87
5.2.2 Basic Definitions 88

5.3 The Proposed MITT in Details 89
5.3.1 The MITT Architecture 89
5.3.2 Detailed Description 92

5.3.2.1 C1: Inferring Approximated
Model of Each Component 92

5.3.2.2 C2: Construct and Analyze
Product 94

5.3.2.3 C3: Confirm or Relearning
Models 96

5.3.2.4 C4: Test Generation 97



xi

5.3.2.5 C5: Discrepancy Resolver 100
5.4 An Illustrative Example 101
5.5 Summary 107

6 EVALUATION AND COMPARISON OF MITT 109
6.1 Introduction 109
6.2 Effectiveness Evaluation Parameters 110
6.3 The First Case Study Experiment: The Air Gourmet

System 111
6.3.1 The Experimental Results 113

6.3.1.1 Learned Components 114
6.3.1.2 Output Queries 116
6.3.1.3 Error Detection Capability 118

6.4 The Second Case Study Experiment: The Elevator
System 120
6.4.1 The Experimental Results 121

6.4.1.1 Learned Components 122
6.4.1.2 Output Queries 124
6.4.1.3 Error Detection Capability 126

6.5 Discussion 128
6.6 Summary 130

7 CONCLUSION AND FUTURE WORK 131
7.1 Research Summary and Achievements 131
7.2 Summary of the Contributions of the Research 133
7.3 Future Work 135

7.3.1 Optimizing and Extending the LM
×

Method 135
7.3.2 Learning Other Types of Formal Models 135
7.3.3 Reducing the Complexity of Learning 136
7.3.4 Extending the MITT Technique 136
7.3.5 Experiments with Complex Systems 136

REFERENCES 137
Appendix A 153-156



xii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Comparing the main level of testing CBSS 18
2.2 Summary of the strengths and weaknesses of the existing

approaches 28
2.3 The criteria for evaluating existing techniques 29
2.4 Application of evaluation criteria to the existing integration

testing techniques for CBSS 31
2.5 Overview over the most important active learning tools 42
3.1 Research operational framework 55
3.2 The comparison of the case studies 59
4.1 Initial observation table 69
4.2 Model inference of Mealy machine in Figure 4.6 70
4.3 Comparison of LM

× and LM
+ 71

4.4 LM
× compared to LM

+ for learning HVAC controller
component 76

4.5 Experimental data of CWB examples 77
4.6 Results of learning models of CWB examples by the proposed

method LM
× compared to LM

+ method 81
4.7 Average and standard deviation for the number of output

queries of the proposed method LM
× with LM

+ and LM
*

methods 84
6.1 The experimental data of the air gourmet case study 113
6.2 Results of learning the air gourmet case study 115
6.3 Results of output queries for the air gourmet case study 116
6.4 Average and standard deviation for the number of output

queries of the air gourmet case study 118
6.5 Results of errors detected in the air gourmet case study 118
6.6 The experimental data of the elevator case study 121
6.7 Results of learning the elevator case study 122
6.8 Results of output queries for the elevator case study 124



xiii

6.9 Average and standard deviation for the number of output
queries of the elevator case study 126

6.10 Results of errors detected in the elevator case study 126
A.1 Initial observation table for Mealy inference of the HVAC

controller 153
A.2 The HVAC controller inference observation table after adding

the suffix T5 to SM 154
A.3 The HVAC controller inference observation table after adding

the suffix T25 to SM 155



xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Recognized problems 9
2.1 Levels of testing in CBSD life cycle (Rehman et al., 2007) 16
2.2 Classification of integration testing techniques of CBSS 20
2.3 Learning and testing approach (Shahbaz, 2008) 36
2.4 Components of the L* method (Czerny, 2014) 38
3.1 Research processes 46
3.2 The methodology for developing and evaluating the proposed

model extraction method LM
× 47

3.3 The methodology for developing and evaluating the proposed
integration testing technique MITT 49

3.4 Research framework 54
4.1 An example of Mealy machine 63
4.2 An example of DFA 63
4.3 Active learning approach 64
4.4 Flowchart of the proposed Mealy models extraction method

LM
× 65

4.5 Pseudo-code for the proposed Mealy models extraction
method LM

× 66
4.6 The method LM

+ (Shahbaz and Groz, 2014) 66
4.7 Pseudo-code for treating the CE 68
4.8 Treating the CE using Suffix1by1 68
4.9 Mealy machine 69
4.10 Global view of the HVAC system 73
4.11 Learning platform for RALT tool 75
4.12 Mealy machine model of HVAC controller component 75
4.13 Settings for learning CWB examples with RALT 78
4.14 Pseudo-code of the test driver 79
4.15 Pseudo-code of the oracle 80
4.16 Comparison results of the number of output queries of the

proposed method LM
× against LM

+ method 82



xv

4.17 Comparison results of the number of output queries of the
proposed method LM

× with LM
+ and LM

* methods 83
4.18 Reduction in number of output queries of the proposed

method LM
× against LM

+ and LM
* methods 85

5.1 The structure of system with n components 87
5.2 Architecture of the proposed MITT 91
5.3 The procedure for extracting the formal finite state behavioral

models of integrated software components 92
5.4 Constructing and analyzing product 94
5.5 Pseudo-code of the algorithm for generation of test cases in

H-Switch Cover criterion (De Souza et al., 2015) 97
5.6 Original Mealy machine model 98
5.7 Creation of the dual graph from the original Mealy machine

model 98
5.8 Balanced graph 99
5.9 An illustrative example of Mealy system CBS 101
5.10 The extracted Mealy machine model MA

(1) of component A 102
5.11 The extracted Mealy machine model MB

(1) of component B 102
5.12 The product of Mealy machine

∏(1) of component A and B 103
5.13 The relearned Mealy machine model MB

(2) of component B 104
5.14 The refined product of Mealy machine

∏(2) of component A

and B 105
5.15 The relearned Mealy machine model MA

(2) of component A 106
5.16 The refined product of Mealy machine

∏(3) of component A

and B 107
6.1 The air gourmet case study 112
6.2 Percentage comparison of learning the air gourmet case study 115
6.3 Comparison results of the output queries of the air gourmet

case study 117
6.4 Percentage comparison of errors detected in the air gourmet

case study 119
6.5 The elevator case study 120
6.6 Percentage comparison of learning the elevator case study 123
6.7 Comparison results of the output queries of the elevator case

study 125
6.8 Percentage comparison of errors detected in the elevator case

study 127



xvi

LIST OF ABBREVIATIONS

BIT – Built-in Testing

CBSD – Component-Based Software Development

CBSE – Component-Based Software Engineering

CE – Counterexamples

CBS – Component-Based Software

CBSS – Component-Based Software Systems

CD – Component Developer

CDT – Component Deployment Testing

COTS – Components-Off-The-Shelf

CUL – Component Under Learning

CU – Component User

C+ BIT – Component+ Built-in Testing

CIG – Component Interaction Graph

CWB – Edinburgh Concurrency Workbench

DPE – Date Parsing Exception

DFA – Deterministic Finite-state Automata

EFSM – Extended Finite State Machine

ERTS – Embedded Real-Time Systems

FSM – Finite State Machine

GOSD – Graph of Sequence Diagram

HVAC – Heating, Ventilation, & Air Conditioning

IAE – Illegal Input Exception

IIE – Invalid Input Exception

IT – Independent Tester

+



xvii

LTS – Labeled Transition Systems

MBT – Model-Based Testing

MBIT – Model-Based Integration Testing

NFA – Non-deterministic Finite Automata

NFE – Number Format Exception

NPE – Null Pointer Exception

OCL – Object Constraint Language

ONFSM – Observable Non-deterministic Finite State Machines

PFSM – Parameterized Finite State Machines

RF – Reduction Factor

RALT – Rich Automata Learning and Testing

SCT – Software Component Testing

STECC – Self-TEsting COTS Components

SUL – System Under Learning

SUT – System Under Test

TFM – Transaction Flow Model

UML – Unified Modeling Language

UTP – UML Testing Profile

UTL – Unable To Launch



xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Learning the HVAC controller component 153



CHAPTER 1

INTRODUCTION

1.1 Overview

Since the early 1990’s, software development community was encountering
various challenges and issues in developing software applications (Sneed, 2010).
Today’s modern software applications have become increasingly larger in scale and
inherited several complex characteristics (Chakraborty and Chaki, 2016; Ghazi et al.,
2015; Lity et al., 2015). Current software applications are composed of several sub-
systems, more complicated, evolve over time into different versions, exist in many
different variants, distributed amongst network and very critical (Di Ruscio et al.,
2014; Lochau et al., 2014; Tran et al., 2015). Consequently, this complex characteristic
makes the development of modern software systems very expensive (Guan and Offutt,
2015). At the same time, software production cost and time-to-market for developing
and delivering software applications need to be reduced due to the customer demands
and the current competition amongst software businesses or companies to meet market
demands (Kajtazovic et al., 2014; Muschevici et al., 2015). Hence, achieving the
goals of on-time delivery and quality becomes more challenging (Alégroth et al.,
2015; Kaur and Batolar, 2015; Meyerer and Hummel, 2014). On the other hand, as
today’s software applications become more and more complex over time in terms of
size, effort and cost, software quality accordingly have become increasingly important
(Elhag et al., 2013; Farjaminejad et al., 2014; Goeb and Lochmann, 2011). Given
these reasons, to cope with the challenges that are being faced by software community,
software engineers and developers try to look for innovative alternative approaches that
facilitate the development of current complex and very critical software applications
(Bui, 2005; Mahmood et al., 2015; Patel et al., 2012).

Consequently, software engineers and developers found that today’s large,
complex, high quality software applications could be efficiently developed partially



2

if not completely, by reusing and integrating pre-built, pre-tested, high-quality,
well-defined independent and “plug and play” sub-systems denoted by “software
components” that their operations have been previously tested as a part of successful
applications (Kaliraj et al., 2014; Siddiqui and Tyagi, 2016). This idea gave birth
to a very cost-effective, attractive, fast and efficient research branch in the area of
software engineering known as Component-Based Software Engineering (CBSE) (Le
and Pham, 2012; Tarawneh et al., 2011). Therefore, building a software applications
from prefabricated small pieces of software parts or components is seen as a solution to
these problems (Dimri, 2015; Kaur and Tomar, 2015). As a consequence, Component-
Based Software Systems (often referred as CBSS or CBS) have become a heart of most
modern software applications. It has been a common trend in system development
nowadays and the key benefits introduced by the CBSE approach (Pramsohler et al.,
2015; Shu-Fen et al., 2010). Hence, CBSE paradigm has introduced significant
changes in the development of current modern complex software applications thanks
to their solid advantages (Tiwari and Chakraborty, 2015; Tran et al., 2015).

CBSE approach has a great impact in the last few years in a wide variety of
application areas such as business applications, automotive and telecommunications,
distributed control applications, web-based applications, scientific applications,
medical and healthcare applications, and others, including several types of Embedded
Real-Time Systems (ERTS) (Guan and Offutt, 2015; Orso and Rothermel, 2014; Tao
et al., 2015; Zaki et al., 2015). These current software systems require to ensure high
degree of quality, reliability and security as well as safety. Therefore, any bug and
error in these applications can affect and do the serious damage to the economies,
businesses, environment as well as loss of lives. Hence, testing becomes one of
the important activities and a fundamental task of software engineering is linked
with the development effort of any software application with the purpose of finding
faults (Ahmed and Ibrahim, 2015; Elghondakly et al., 2016; Lachmann et al., 2015).
Unfortunately, testing today’s software applications in general is an expensive activity
in software development life cycle in terms of time and budget as well as other
resources (Bertolino, 2007; Mahmood, 2011).

Literature suggests that 30% to 60% of the development time of a software
product is dedicated to testing (Afzal et al., 2016; Brar and Kaur, 2015; Ellims
et al., 2006; Harman et al., 2015; Mohi-Aldeen et al., 2017). In spite of that, it is
a widely used methodology and essential stage used to evaluate the functionality of
software applications, increases the confidence of the developers in the reliability and
correctness of software when it will be released (Moiz, 2017). It also improves quality



3

of operation during deployment environment, by revealing errors and failures in order
to produce high-quality software applications, especially for systems being developed
by integrating prefabricated “plug and play” subsystems or software components.

Nowadays, integration of software components is a common trend and major
technique of modern software development (Castro and Francisco, 2013; Groz et al.,
2015). Therefore, in CBSE several components, often pre-built and third-party
components known as Components-Off-The-Shelf (COTS) coming from outside have
to be integrated together in order to build a CBSS, instead of developing the systems
from scratch (Andreou and Papatheocharous, 2016; Groz et al., 2008; Shahbaz and
Groz, 2014; Verma, 2012). In spite of the reality that a software component might
go through different levels of testing, unit testing still cannot ensure the behavior and
reliability of software component after integration in a new environment (Brohi and
Jabeen, 2012; Gupta, 2015; Mahmood et al., 2007). Therefore, the system developers
should check to ensure that the components developed separately should work properly
when integrated. Furthermore, to guarantee the correct functionality of the system,
a wide number of possible interactions between integrated software components in
the system may need to be tested (Guan and Offutt, 2015). Additionally, many
faults may not be obvious until integration and some complex behaviors can only be
observed when related components are integrated (Holling et al., 2016). Thus, testing
each component independently does not eliminate the need for integration testing.
Therefore, integration testing, which bridges component unit testing and component
system testing, plays an important role in the testing process of Component-Based
Software Development (CBSD) life cycle (Sirohi and Parashar, 2013).

In integration testing phase, the individual software components are assembled
and verified as a group to attain a high level of quality and reliability (Belli et al., 2009;
Khan and Nadeem, 2013). Moreover, integration testing is essential level of quality
assurance that minimizes the risk of the system not working effectively and efficiently,
and focuses on the prevention of integration bugs (Khan and Singh, 2012). Therefore,
it plays a substantial part in detecting faults during a CBSD life cycle (Mahmood,
2011). Approximately, 40% of the software errors are discovered and revealed during
integration testing (Kaur et al., 2011). On the other hand, integration testing of CBSS is
most time consuming and expensive part of the testing process in CBSD, and received
significantly little attention from practitioners and researchers in the field of software
engineering (Bai et al., 2001; Gao et al., 2003; Ning et al., 2013; Shashank et al., 2010;
Shukla and Marwala, 2012).



4

1.2 Research Motivation

When considering integration testing of CBSS; many issues and challenges
could be identified specially when considering integrated black-box software
components (Bertolino and Polini, 2003; Beydeda and Gruhn, 2003b; Khan et al.,
2011; Machado et al., 2007; Reza and Cheng, 2012). In most cases, the source
code, detailed documentations, design specifications, and formal models of integrated
components are missing or not available to the system designers, making system
integration and integration testing are very time consuming and more quite challenging
(Haser, 2015). The consequences of these challenges, several works have been
proposed during the last decade, aiming to facilitate integration testing of CBSS. Here
in the following sections the issues and challenges that are related to the scope of this
thesis directly or indirectly are summarized, and the efforts made by researchers to
tackle it.

The first challenge deals with a lack of information exchanged between
component producers and component consumers. Component developers and
component users need to exchange different types of information during the
development of the component itself and during the development of CBSS in
order to facilitates the testing process, and to develop high-quality and reliabe
CBSS. Unfortunately, unavailable information limits the capacity of both component
developers and component users or even the independent tester (third-party tester) to
test candidate components efficiently. Therefore, there is an effort made by several
researchers to aggregate valuable information to the component in order to facilitate
the integration testing activities at the component developers’ side and to minimize
as much as possible the dependence of component users and the independent tester
(third-party tester) on the information provided by the component providers.

In 1998, Liu and Richardson (1998) proposed a technique to capture
information related to the usage of the component inside source code snippets. In
1999, Harrold et al. (1999) initiated the idea of metadata by proposing a technique
for analyzing and testing CBSS from two perspectives of component providers and
component users. In 2001, Orso et al. (2001) suggested another category of summary
information to support component testing called component metadata. Component
users can then use the information provided by the metadata to test and analyze a
CBSS. Edwards (2001) proposed the reflective wrapper technique that analyzes the
best way to package specification and verification information of formally specified
components for distribution to component consumers. In 2003, Bertolino and Polini



5

(2003) proposed component deployment technique for component users to facilitate
the testing within a user’s target environment of a component independently developed.
Silva et al. (2009) presents a technique covered by a CASE tool integrated in the
development environment to support components integration testing aiming to reduce
the lack of information between component producers and component consumers.
In 2010, Naseer et al. (2010) presented a technique to use metadata technique for
CBS black box testing and developed a tool which takes <.dll> component. Brohi
and Jabeen (2012) proposed a technique that enhances component testability and
to facilities the integration testing by defining a uniform information flow in the
component life cycle.

Indeed, all the proposed previous related research that follows in this
category, however, don’t handle heterogeneous components and have an effect on the
implementation transparency of the component, which is an important characteristic in
software component.

Unavailability of the components source code, or internal workings (structure)
of the integrated components might not be accessed by a component users and the
independent tester (third-party tester) due to organizational or legal restriction, will
affect and reduce the controllability and testability of candidate components, and
hence the overall integration testing of CBSS. Consequently, a number of proposed
solutions provided by several researchers to equip a software components with a
specific testable architecture that permits component users and the independent tester
(third-party tester) to execute test cases easily in order to support self-testing and to
facilitate the integration testing process.

In 1999, Wang et al. (1999) proposed the idea of Built-in Testing approach
(BIT) to increase component testability. BIT based on the development of test
cases in component source code as additional member functions with the normal
member functions. Consequently, Atkinson and Grob (2002) presented an example of
BIT technique, called component+. It is related to contract testing in model-driven
component-based development. In the same year, Gao et al. (2002) proposed the
testable beans technique. The idea of BIT was extended by Mahmood (2011) to present
a component-based software integration testing technique to prioritize test cases and
identify integration test criteria using software complexity measures.

In 2001, Martins et al. (2001) has presented a technique for Self-testable
software component. The proposed technique is another example to add extra



6

information to software component intentionally to improve component testability by
integrating testing resources into it. Concat tool was developed to support the proposed
technique. In 2003, Beydeda and Gruhn (2003a) presented the Self-Testing COTS
Components (STECC) technique that augment components with functionality specific
to testing tools that is capable of conducting some or all activities of the component
user’s testing processes.

Accordingly, due to the unavailability of integrated software component source
code, and with the lack of component information, detailed documentations, complete
functional behavior descriptions and design specifications for analysis and testing the
systems of integrated components, specifically when one considers black-box software
components, existing integration testing techniques under this category has become
ineffective to handle and detect erroneous interactions of components during the
integration testing phase, and fail to test today’s modern complex CBSS. Additionally,
in most cases the formal models for analysis and testing the integrated components, and
which will help to understand their possible behaviors in the system are always missing
or not available to the system designers. Furthermore, there could be a large number of
possible interactions between integrated software components which are undesirable
and which could affect the function of each others, hence, these interactions may need
to be tested to ensure the correct functionality of the CBSS. As a result, some complex
behaviors are not observed until related components are integrated and many faults
may not be visible until integration, making integration testing very quite challenging
by the existing integration testing techniques and most time consuming task. Moreover,
this invisible behavior of a component can affect the behavior of the overall CBSS.

The Unified Modeling Language (UML) and its diagrams are commonly
used and gained wide acceptance amongst researchers to address the necessity for
additional information by appending some UML models with software components.
Accordingly, the techniques consist of UML models such as (Barisas et al., 2013;
Gallagher et al., 2006; Hartmann et al., 2000; Kaur et al., 2011; Machado et al.,
2007; Mussa and Khendek, 2012; Shang and Zhang, 2006; Wu et al., 2003; Zheng
and Bundell, 2008, 2007a,b) have been proposed in order to facilitate the integration
testing process at the component user side.

However, the drawbacks of UML based integration testing approach is that,
with the help of reverse engineering its possible to modify a component and
to access the component source code by using some UML reverse engineering
tools. Furthermore, these UML models is unrealistic because COTS evolve along



7

time to incorporate additional requirements, which quickly invalidates the original
project (Castro and Francisco, 2013). Moreover, the techniques consist of semi-
formal models such as UML models affecting the implementation transparency of
software components. Additionally, these semi-formal models is not sufficient for
the component users to understand its behavior completely, and it cannot be used
as input to the existing MBT approaches. Hence, the traditional techniques for
MBT approaches such as static analysis, program slicing, invariant detection, model
extraction, validation and verification also has become ineffective when one considers
systems of integrated black-box software components.

To conclude, despite several existing proposals, the existing works discussed in
this section of adding additional structure for reliable use of component applications,
and/or adding information with software components to facilitate the integration
testing process suffers from a number of drawbacks and limitations, leading to
ineffective testing and, ultimately, to poor software quality. These drawbacks and
limitations are very important and should be resolved. Hence, new solutions have
to be developed to cope with these drawbacks and limitations. The drawbacks and
limitations of the existing works that are directly related to the scope of this thesis are
highlighted here:

i. Difficulty of understanding and describing the behaviors of integrated
components, due to the frequent lack of information and/or implementation
details. Moreover, the formal models of integrated components that can be
used for analysis, testing and documentation, and which will help to understand
their possible behaviors in the system are always missing or not available to the
system designers.

ii. It is impossible to use it in some cases, for instance, when there is no formal
model to understand the possible behavior of the integrated components. A
key problem, however, is the construction of models that describe the intended
behavior of the integrated components in a system.

iii. Difficulty of analyzing and validating the integrated components, due to the
restricted access of components source code, detailed documentations is not
sufficient to solve details about its interaction with other components, absence of
components models to check the possible interaction between the components,
and other development information to the system designers.



8

iv. Lack of accurate and effective formalism for information representation (internal
structure of a component is generally unknown). Hence, how to query and
retrieve test information effectively has become the key problem while reusing
test information. Due to that, the interpretation of information is not clear due
to it is non-uniformity, hence requires understanding the representation prior to
interpreting the meaning.

v. Some techniques expose component implementation by providing semi-
formal models such as metadata, BIT, and UML models, allowing reverse
engineering to access the source code of software component, thus affecting
the implementation transparency of software components. Furthermore, the
implementation transparency property raises some difficulties when the CBSS
is to be tested. Moreover, these informal models cannot be used as input to
the existing Model-Based Testing (MBT) approaches, which is a new technique
which rely on explicit or accurate models for testing purposes, and aims to make
testing more effective and more efficient.

In view of the above background, and in order to address the important
challenges and limitations of the existing proposals, this thesis aimed at proposing
an integration testing technique for CBSS, by exploits the use of learning and testing
approach for integration testing of CBSS. Therefore, the proposed technique in this
thesis combining model learning and testing techniques for testing of a system of
integrated software components.

1.3 Statements of the Problem

Engineering high-quality CBSS is essential for the involved enterprises and
demands interest from both academia and industry. With the increasing complexity of
today’s modern CBSS, verification and validation techniques are becoming more and
more important. Therefore, integration testing has become a very essential activity
linked with the development effort of any software applications and most important
means to ensure the quality of today’s modern CBSS. Unfortunately, nowadays many
difficulties arise in integration testing of CBSS leads to new challenges, and it has
become a more and more complex task that significantly influenced by a number of
factors. Even so, integration testing of CBSS has been one of the open research area
that is rarely investigated and received significantly little attention from practitioners
and researchers in the field of software engineering, and remains comparatively



9

less well-solved. Therefore, it requires the support of tools, methodologies and
well established techniques to mitigate the challenges and limitations of the existing
works, and to support the development of high-quality CBSS. On the other hand,
understanding the behavior and testing the integrated software components is another
challenging task, due to the unavailability of their source code, updated specifications
or formal models. Moreover, obtaining the accurate formal models for existing
software components, which precisely describe the behavior of the integrated software
components is still an open and interesting problem.

The recognized problems of the integration testing of CBSS are presented
in Figure 1.1. However, by understanding the problem background which has been
discussed in the previous section, it can be concluded that continues efforts and further
works still required, and a new solution for improvement should be developed to
mitigate the above limitations and gaps left by past research works effectively in order
to enhance the development of today’s modern CBSS.

Figure 1.1: Recognized problems



10

The environment of a CBSS can be seen as a form of black-box (service
interface). Therefore, a model-based approaches such as MBT can be seen as potential
solution. Since MBT is a black-box approach, it tend itself to be suitable mechanism to
deal with CBSS problems. Accordingly, among the existing testing techniques, MBT
is a promising candidate to be applied in the context of integration testing of CBSS.
Despite the amount of literature on integration testing, model-based integration testing
techniques are quite limited (Dias Neto et al., 2007). MBT has become a common
trends which have added many values to the engineering of software projects. MBT
has more advantages, and can well support component integration testing. Besides the
automatic test case generation, another relevant characteristic for testing components
is the adoption of formal models and black-box testing strategy (Haser, 2015). Black-
box testing are appropriate for integration testing of CBSS because internal structures
of integrated software components are always missing or not available to the system
designers, the complexity of interactions and test harness can be abstracted, the
formality of the model contribute to more reliable tests. Furthermore, several benefits
such as (high level of automation, reducing cost and time for testing, high fault
detection rate and generating tests automatically) were obtained from the adequate
application of MBT to software systems.

1.4 Research Questions

This research intends to propose an integration testing technique for CBSS in
order to mitigate above mentioned problems. Despite the powerful features of MBT
approach, most existing techniques provide only limited support for integration testing.
This leads to the main research question to be answered in this study:

“How is it possible to use MBT to develop an effective model-based integration
testing technique for CBSS?”

To address the primary research question given above, it is further broken down
into sub-questions.

RQ1: How to understand the behavior of integrated software components in the
system?

RQ2: How to develop an effective integration testing technique for CBSS in
order to overcome the identified challenges?



11

RQ3: How to measure the effectiveness of the proposed technique?

1.5 Research Goal

This research work concentrates on the problem of testing the integrated
software components in the system in the missing of their formal behavioral models.
Given a set of black-box software components that are integrated in a system, the
first major goal of this study is to infer/extract the formal models which describes
the behaviors of integrated software components, by proposing a method to infer the
approximated finite state behavioral models in term of finite state machine (Mealy
machines), that represents the precise description of the intended behaviors of the
integrated components formally directly from the components, using the idea of active
learning approach. Then, the second major goal of the study is to propose an effective
model-based integration testing technique, which combines model learning and testing
techniques, to identify the faulty interaction between the integrated components in a
system based on the extracted formal models and with the help of learning and testing
approach.

1.6 Research Objectives

To achieve the goal, the following four objectives need to be undertaken with
the aim of finding answers to the research questions:

i. To propose a method that extracts the formal finite state behavioral models of
integrated software components using active learning approach and benchmark
the performance based on the number of output queries.

ii. To develop an effective integration testing technique for CBSS using the
extracted models and with the help of learning and testing approach.

iii. To demonstrate and measure the effectiveness of the proposed technique by
applying the proposed technique in the selected applications as case studies,
using three evaluation parameters, namely learned components, output queries,
and error detection capability.

iv. To evaluate and compare the proposed technique against Shahbaz technique
based on learned components, output queries, and error detection capability.



12

1.7 Significance of the Study

The significance of this study is to mitigate the limitations and gaps left by past
research works in integration testing of CBSS, by proposing an effective integration
testing technique of CBSS, which combines model learning and testing techniques for
testing of a system of integrated black-box software components. Thus, this thesis
exploits the use of learning and testing approach for integration testing of CBSS. The
study proposes solutions into two directions:

i. Reverse engineering: Understanding the behaviors of the integrated black-
box software components, by deriving (extracting) the formal models of the
components. In this study, the software components are learned in order to
extract their formal finite state behavioral models as Mealy machine models.

ii. Validation: Developing an effective model-based technique for integration
testing of CBSS. Thus, the integrated software components is tested and
analyzed using their learned formal models (Mealy machine models). In this
study, the use of components formal models will help in revealing compositional
problems or faulty interactions (integration bugs) between integrated software
components and general errors in the system.

1.8 Scope of the Study

The scope of this research work has been limited to the following aspects:

i. Integration testing: As discussed before in this chapter, in the CBSD life cycle,
three basic kinds of testing are needed in order to detect and reveal errors, namely
“unit testing (component testing), integration testing (deployment testing), and
finally system testing”. A brief description of this three levels of testing will
be introduced in the next chapter. However, this research is concerned only on
integration testing in the context of CBSS, and does not cover the other testing
levels. Thus, the issues related to other testing levels are not dealt with in this
study.

ii. Components are black boxes: The integrated components in the system may
have different levels of exposure depending upon how much information about
them is available. In literature, the terms black box, gray box and white box
are used with reference to different levels of closure of the component internal



13

essence. This study considers that all components are black boxes, i.e., their
functional specifications and implementation details are not available. However,
the basic set of input symbols that can be given to a component through it is
input interfaces are known, and for each input, the corresponding output of the
component can be observed through it is output interfaces.

iii. Modeling level: The component exhibits regular behaviors, i.e., the component
can be modeled as a finite state machine (Mealy machine). This study intends
to learn only the behaviors prescribed by the control structure of the finite state
model. Moreover, the study do not assume to know the upper bound on the
number of states in the components. Instead of hunting for exact learning, the
study aims to learn approximate models that are expressive enough to provide
powerful guidance for testing and to enhance the behavior understanding of the
integrated software components, and thus, of the system.

iv. Focus on functional aspects: This study focuses on behavior learning and
studying the interactions between the integrated components and their functional
aspects in the system. Therefore, the study are not dealing with other details, for
instance, security, timing, and performance issues in the system.

v. Case studies and their assumptions: The proposed research work in this thesis
has been validated using four different case studies that large enough to get some
interesting results. Therefore, different case studies from different domains have
been used in this research. Furthermore, in order to check the effectiveness of
the proposed technique and to compare its results with the existing proposal’s
results, the selected case studies are fully developed based on CBSD.

vi. Benchmarking with existing techniques: To the best of our knowledge,
Shahbaz and Groz (2014) is the only work found in the literature that uses
learning and testing approach for CBSS. Therefore, the technique proposed
by Shahbaz and Groz (2014) is the best and closest work to compare its
experimental results with the obtained experimental results of the proposed
technique in this thesis.

1.9 Thesis Outline

This thesis is organized in seven chapters. The structure of these chapters as
follows:



14

Chapter 2, Literature Review. This chapter is associated with literature review.
First, the chapter provides information about testing CBSS. Then, a comprehensive
review of integration testing of CBSS will be provided in details. Next, the
chapter presents a discussion on the related work on model-based integration testing.
Moreover, a detailed description of learning and testing approach will be provided.
Next, an overview of the most important active learning tools will be given. Learning
finite state machine will be highlighted also in this chapter.

Chapter 3, Research Methodology. This chapter explains comprehensively
the research methodology used in this thesis in order to show how the objectives are
achieved. This includes the research process and activities involved in each phase to
depicts the flow of research step by step, and the research framework to show the main
parts and components of the research. At last, the description and comparison of case
studies that will be used in this research will be provided in this chapter.

Chapter 4, A Method to Extracting the Formal Finite State Behavioral Model.
This chapter describes in details the proposed finite state behavioral model extraction
method. In addition, this chapter also explains and discusses the results related to the
experimental evaluation of the proposed method using case studies.

Chapter 5, The Proposed Model-based Integration Testing Technique. In this
chapter, an integration testing technique for testing the integrated black-box software
components in a system using approximated (partial) models of software components
is proposed. Precisely, this chapter presents the structure and development steps
of the proposed technique. The discussion includes all the necessary elements that
related to the proposed technique. An illustrative example will be used to clarify the
implementation of the proposed technique.

Chapter 6, Evaluation and Comparison of MITT. This chapter discusses
the results of evaluating and comparing the proposed technique with other current
techniques in order to explain the strengths and weaknesses related to the proposed
technique. Therefore, the chapter explains the evaluation of the proposed technique in
details. In particular, the experimental results are provided and discussed in details.

Chapter 7, Conclusion and Future Work. This chapter concludes the thesis by
highlighting the summary, achievements of research objectives covered in this thesis,
the contributions of research, and finally, the future work are elaborated.



REFERENCES

Abel, A. and Reineke, J. (2016). Gray-Box Learning of Serial Compositions of Mealy
Machines. In Rayadurgam, S. and Tkachuk, O. (Eds.) NASA Formal Methods:

8th International Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016,

Proceedings. (pp. 272–287). Cham: Springer International Publishing.

Afzal, W., Alone, S., Glocksien, K. and Torkar, R. (2016). Software test process
improvement approaches: A systematic literature review and an industrial case
study. Journal of Systems and Software. 111, 1–33.

Ahmed, M. and Ibrahim, R. (2015). A Comparative Study of Web Application
Testing and Mobile Application Testing. In Sulaiman, A. H., Othman, A. M.,
Othman, I. M. F., Rahim, A. Y. and Pee, C. N. (Eds.) Advanced Computer and

Communication Engineering Technology: Proceedings of the 1st International

Conference on Communication and Computer Engineering. (pp. 491–500). Cham:
Springer International Publishing.

Aichernig, B. K. and Tappler, M. (2017). Learning from Faults: Mutation Testing
in Active Automata Learning. In Barrett, C., Davies, M. and Kahsai, T. (Eds.)
NASA Formal Methods: 9th International Symposium, NFM 2017, Moffett Field,

CA, USA, May 16-18, 2017, Proceedings. (pp. 19–34). Cham: Springer International
Publishing.

Albeladi, K. S. and Qureshi, M. R. J. (2013). Improvement of Component Integration
Testing Technique. International Journal of Information Technology and Computer

Science (IJITCS). 5(8), 109–122.

Alégroth, E., Gao, Z., Oliveira, R. and Memon, A. (2015). Conceptualization and
evaluation of component-based testing unified with visual gui testing: an empirical
study. In Software Testing, Verification and Validation (ICST), 2015 IEEE 8th

International Conference on. 13-17 April 2015. Graz, Austria: IEEE, 1–10.

Alsaeedi, A. (2016). Improving Software Model Inference by Combining State Merging

and Markov Models. Ph.D. Thesis. University of Sheffield.

Alvaro, A., de Almeida, E. S. and de Lemos Meira, S. R. (2005). Software component
certification: a survey. In Software Engineering and Advanced Applications, 2005.



138

31st EUROMICRO Conference on. 30 Aug. - 3 Sept. 2005. Porto, Portugal: IEEE,
106–113.

Ammann, P. and Offutt, J. (2008). Introduction to software testing. Cambridge, United
Kingdom: Cambridge University Press.

Andreou, A. S. and Papatheocharous, E. (2016). Towards a CBSE Framework for
Enhancing Software Reuse: Matching Component Properties Using Semi-formal
Specifications and Ontologies. In Maciaszek, A. L. and Filipe, J. (Eds.) Evaluation

of Novel Approaches to Software Engineering: 10th International Conference,

ENASE 2015, Barcelona, Spain, April 29-30, 2015, Revised Selected Papers. (pp.
98–121). Cham: Springer International Publishing.

Angluin, D. (1987). Learning regular sets from queries and counterexamples.
Information and computation. 75(2), 87–106.

Atkinson, C. and Grob, H.-G. (2002). Built-in contract testing in model-driven,
component-based development. In Proceedings of the Workshop on Component-

Based Development Processes. April 2002. Austin, Texas USA, 1–15.

Bai, X., Tsai, W., Paul, R., Shen, T. and Li, B. (2001). Distributed end-to-end
testing management. In Enterprise Distributed Object Computing Conference,

2001. EDOC ’01. Proceedings. Fifth IEEE International. 4-7 Sept. 2001. Seattle,
Washington USA: IEEE, 140–151.

Barisas, D., Bareiša, E. and Packevičius, Š. (2013). Automated method for software
integration testing based on UML behavioral models. In Skersys, T., Butleris, R.
and Butkiene, R. (Eds.) Information and Software Technologies: 19th International

Conference, ICIST 2013, Kaunas, Lithuania, October 2013. Proceedings. (pp. 272–
284). Berlin, Heidelberg: Springer Berlin Heidelberg.

Basanieri, F., Bertolino, A. and Marchetti, E. (2002). The cow_suite approach to
planning and deriving test suites in UML projects. In Jézéquel, J.-M., Hussmann,
H. and Cook, S. (Eds.) UML 2002 — The Unified Modeling Language: Model

Engineering, Concepts, and Tools 5th International Conference Dresden, Germany,

September 30 – October 4, 2002 Proceedings. (pp. 383–397). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Belli, F. and Budnik, C. J. (2005). Towards self-testing of component-based software.
In Computer Software and Applications Conference, 2005. COMPSAC 2005. 29th

Annual International. 26-28 July 2005. Hong Kong, China: IEEE, 205–210.

Belli, F., Hollmann, A. and Padberg, S. (2009). Communication Sequence Graphs
for Mutation-Oriented Integration Testing. In Secure Software Integration and

Reliability Improvement, 2009. SSIRI 2009. Third IEEE International Conference



139

on. 8-10 July 2009. Shanghai, China: IEEE, 387–392.

Berg, T., Jonsson, B., Leucker, M. and Saksena, M. (2005). Insights to Angluin’s
learning. Electronic Notes in Theoretical Computer Science. 118, 3–18.

Bertolino, A. (2007). Software Testing Research: Achievements, Challenges, Dreams.
In Proceedings of the on Future of Software Engineering (FOSE ’07). 23-25 May
2007. Washington, DC, USA: IEEE, 85–103.

Bertolino, A., Marchetti, E. and Polini, A. (2003). Integration of "Components" to test
software components. Electronic Notes in Theoretical Computer Science. 82(6),
44–54.

Bertolino, A. and Polini, A. (2003). A framework for component deployment testing.
In Software Engineering, 2003. Proceedings. 25th International Conference on. 3-
10 May 2003. Portland, Oregon USA: IEEE, 221–231.

Beydeda, S. and Gruhn, V. (2003a). Merging components and testing tools: the
self-testing COTS components (STECC) strategy. In Euromicro Conference, 2003.

Proceedings. 29th. 1-6 Sept. 2003. Antalya, Turkey: IEEE, 107–114.

Beydeda, S. and Gruhn, V. (2003b). State of the art in testing components. In Quality

Software, 2003. Proceedings. Third International Conference on. 6-7 Nov. 2003.
IEEE, 146–153.

Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D. and Piegdon, D. R. (2010).
libalf: The automata learning framework. In Touili, T., Cook, B. and Jackson,
P. (Eds.) Computer Aided Verification: 22nd International Conference, CAV 2010,

Edinburgh, UK, July 15-19, 2010. Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 360–364.

Brar, H. K. and Kaur, P. J. (2015). Differentiating Integration Testing and unit
testing. In Computing for Sustainable Global Development (INDIACom), 2015 2nd

International Conference on. 11-13 March 2015. New Delhi, India: IEEE, 796 –
798.

Brohi, M. N. and Jabeen, F. (2012). A Metadata-based Framework for Object-Oriented
Component Testing. International Journal of Computer Applications. 41(15), 8–18.

Bui, B. (2005). An interface-based testing technique for component-based software

systems. Master’s Thesis. San Jose State University.

Cassel, S., Howar, F. and Jonsson, B. (2015). RALib: A LearnLib extension for
inferring EFSMs. In International Workshop on Design and Implementation of

Formal Tools and Systems (DIFTS). 26-27 Sept. 2015. Austin, Texas USA, 1–8.



140

Cassel, S., Howar, F., Jonsson, B. and Steffen, B. (2016). Active learning for extended
finite state machines. Formal Aspects of Computing. 28(2), 233–263.

Castro, L. M. and Francisco, M. A. (2013). A language-independent approach to
black-box testing using Erlang as test specification language. Journal of Systems

and Software. 86(12), 3109–3122.

Chakraborty, M. and Chaki, N. (2016). A New Framework for Configuration Man-
agement and Compliance Checking for Component-Based Software Development.
In Chaki, R., Cortesi, A., Saeed, K. and Chaki, N. (Eds.) Advanced Computing and

Systems for Security: Volume 2. (pp. 173–188). New Delhi, India: Springer India.

Cheesman, J. and Daniels, J. (2000). UML components: a simple process for specifying

component-based software. Addison-Wesley Longman Publishing Co., Inc.

Councill, W. T. (1999). Third-party testing and the quality of software components.
IEEE software. 16(4), 55–57.

Czerny, M. X. (2014). Learning-based software testing: Evaluation of Angluin’s

L* algorithm and adaptations in practice. Ph.D. Thesis. Karlsruhe Institute of
Technology.

Damiani, F., Faitelson, D., Gladisch, C. and Tyszberowicz, S. (2016). A novel model-
based testing approach for software product lines. Software & Systems Modeling,
1–29.

De Souza, É. F., De Santiago Júnior, V. A. and Vijaykumar, N. L. (2015). H-Switch
Cover: a new test criterion to generate test case from finite state machines. Software

Quality Journal. 24, 1–33.

Di Ruscio, D., Malavolta, I. and Pelliccione, P. (2014). The Role of Parts in the System
Behaviour. In Majzik, I. and Vieira, M. (Eds.) Software Engineering for Resilient

Systems: 6th International Workshop, SERENE 2014, Budapest, Hungary, October

15-16, 2014. Proceedings. (pp. 24–39). Cham: Springer International Publishing.

Dias Neto, A. C., Subramanyan, R., Vieira, M. and Travassos, G. H. (2007). A
survey on model-based testing approaches: a systematic review. In Proceedings

of the 1st ACM international workshop on Empirical assessment of software

engineering languages and technologies: held in conjunction with the 22nd

IEEE/ACM International Conference on Automated Software Engineering (ASE)

2007. 5 Nov. 2007. Atlanta, Georgia: ACM, 31–36.

Dimri, S. C. (2015). An Innovative Model of Software Quality Assurance for
Component-Based Software Systems. International Journal of Emerging Research

in Management & Technology. 4(7), 216–219.



141

Do Nascimento, N. M. and De Lucena, C. J. P. (2017). FIoT: An agent-based
framework for self-adaptive and self-organizing applications based on the Internet
of Things. Information Sciences. 378, 161–176.

Edwards, S. H. (2001). A framework for practical, automated black-box testing of
component-based software. Software Testing Verification & Reliability. 11(2), 97–
111.

El-Fakih, K., Groz, R., Irfan, M. N. and Shahbaz, M. (2010). Learning finite state
models of observable nondeterministic systems in a testing context. In 22nd IFIP

International Conference on Testing Software and Systems. 8-10 Nov. 2010. Natal,
Brazil, 97–102.

Elghondakly, R., Moussa, S. and Badr, N. (2016). A Comprehensive Study for
Software Testing and Test Cases Generation Paradigms. In Proceedings of the

International Conference on Internet of Things and Cloud Computing (ICC ’16).
22-23 March 2016. New York, NY, USA: ACM, 1–7.

Elhag, A. A., Elshaikh, M., Mohamed, R. and Babar, M. I. (2013). Problems
and future trends of software process improvement in some Sudanese software
organizations. In Computing, Electrical and Electronics Engineering (ICCEEE),

2013 International Conference on. 26-28 Aug. 2013. Khartoum, Sudan: IEEE,
263–268.

Ellims, M., Bridges, J. and Ince, D. C. (2006). The economics of unit testing. Empirical

Software Engineering. 11(1), 5–31.

Farjaminejad, F., Harounabadi, A., Mirabedini, S. J. et al. (2014). Modeling and
Evaluation of Performance and Reliability of Component-based Software Systems
using Formal Models. International Journal of Computer Applications Technology

and Research. 3(1), 73–78.

Fatima, F., Ali, S. and Ashraf, M. U. (2017). Risk Reduction Activities Identification
in Software Component Integration for Component Based Software Development
(CBSD). International Journal of Modern Education and Computer Science. 9(4),
19–31.

Gallagher, L., Offutt, J. and Cincotta, A. (2006). Integration testing of object-
oriented components using finite state machines. Software Testing, Verification and

Reliability. 16(4), 215–266.

Gao, J., Gupta, K., Gupta, S. and Shim, S. (2002). On building testable software
components. In Dean, J. and Gravel, A. (Eds.) COTS-Based Software Systems: First

International Conference, ICCBSS 2002 Orlando, FL, USA, February 4–6, 2002

Proceedings. (pp. 108–121). Berlin, Heidelberg: Springer Berlin Heidelberg.



142

Gao, J. Z., Tsao, J., Wu, Y. and Jacob, T. H.-S. (2003). Testing and Quality Assurance
for Component-Based Software, Artech House. Inc., Norwood, MA.

Ghazi, A. N., Petersen, K. and Börstler, J. (2015). Heterogeneous Systems Testing
Techniques: An Exploratory Survey. In Winkler, D., Biffl, S. and Bergsmann, J.
(Eds.) Software Quality. Software and Systems Quality in Distributed and Mobile

Environments: 7th International Conference, SWQD 2015, Vienna, Austria, January

20-23, 2015, Proceedings. (pp. 67–85). Cham: Springer International Publishing.

Goeb, A. and Lochmann, K. (2011). A software quality model for SOA. In
Proceedings of the 8th international workshop on Software quality. 5-9 Sept. 2011.
Szeged, Hungary: ACM, 18–25.

Groz, R., Li, K. and Petrenko, A. (2015). Integration testing of communicating systems
with unknown components. annals of telecommunications. 30(3-4), 107–125.

Groz, R., Li, K., Petrenko, A. and Shahbaz, M. (2008). Modular system verification by
inference, testing and reachability analysis. In Suzuki, K., Higashino, T., Ulrich, A.
and Hasegawa, T. (Eds.) Testing of Software and Communicating Systems: 20th IFIP

TC 6/WG 6.1 International Conference, TestCom 2008 8th International Workshop,

FATES 2008 Tokyo, Japan, June 10-13, 2008 Proceedings. (pp. 216–233). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Groz, R., Oriat, C. and Brémond, N. (2016). Inferring Non-resettable Mealy Machines
with n States. In Proceedings of The 13th International Conference on Grammatical

Inference. October 5-7, 2016. Delft, The Netherlands, 30–41.

Guan, J. and Offutt, J. (2015). A model-based testing technique for component-
based real-time embedded systems. In Software Testing, Verification and Validation

Workshops (ICSTW), 2015 IEEE Eighth International Conference on. 13-17 April
2015. Graz, Austria: IEEE, 1–10.

Gupta, N. (2015). Stepping Towards Component-Based Software Testing Through A
Contemporary Layout. International Journal of Computer Science & Engineering

Technology (IJCSET). 6(8), 504–508.

Harman, M., Jia, Y. and Zhang, Y. (2015). Achievements, open problems and
challenges for search based software testing. In Software Testing, Verification and

Validation (ICST), 2015 IEEE 8th International Conference on. 13-17 April 2015.
Graz, Austria: IEEE, 1–12.

Harrold, M. J., Liang, D. and Sinha, S. (1999). An approach to analyzing and
testing component-based systems. In First International ICSE Workshop on Testing

Distributed Component-Based Systems. 16 May 1999. Los Angeles, CA: ACM,
333–347.



143

Hartmann, J., Imoberdorf, C. and Meisinger, M. (2000). UML-Based Integration
Testing. In Proceedings of the 2000 ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’00). 22-25 Aug. 2000. Portland, Oregon:
ACM, 60–70.

Haser, F. (2015). Non-Intrusive Documentation-Driven Integration Testing. In
Software Testing, Verification and Validation (ICST), 2015 IEEE 8th International

Conference on. 13-17 April 2015. Graz, Austria: IEEE, 1–2.

Holling, D., Hofbauer, A., Pretschner, A. and Gemmar, M. (2016). Profiting from Unit
Tests for Integration Testing. In Software Testing, Verification and Validation (ICST),

2016 IEEE International Conference on. 11-15 April 2016. Chicago, Illinois, USA:
IEEE, 353–363.

Howar, F., Meinke, K. and Rausch, A. (2016). Learning Systems: Machine-
Learning in Software Products and Learning-Based Analysis of Software Systems.
In Margaria, T. and Steffen, B. (Eds.) Leveraging Applications of Formal

Methods, Verification and Validation: Discussion, Dissemination, Applications: 7th

International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14,

2016, Proceedings, Part II. (pp. 651–654). Cham: Springer International Publishing.

Hungar, H., Niese, O. and Steffen, B. (2003). Domain-specific optimization in
automata learning. In Hunt, W. A. and Somenzi, F. (Eds.) Computer Aided

Verification: 15th International Conference, CAV 2003, Boulder, CO, USA, July

8-12, 2003. Proceedings. (pp. 315–327). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Irfan, M. N., Oriat, C. and Groz, R. (2010). Angluin style finite state machine inference
with non-optimal counterexamples. In Proceedings of the First International

Workshop on Model Inference In Testing. 12-16 July 2010. Trento, Italy: ACM,
11–19.

Isberner, M. (2015). Foundations of active automata learning: an algorithmic

perspective. Ph.D. Thesis. Universität Dortmund.

Isberner, M., Howar, F. and Steffen, B. (2014). The TTT algorithm: A redundancy-free
approach to active automata learning. In Bonakdarpour, B. and Smolka, S. A. (Eds.)
Runtime Verification: 5th International Conference, RV 2014, Toronto, ON, Canada,

September 22-25, 2014. Proceedings. (pp. 307–322). Cham: Springer International
Publishing.

Isberner, M., Howar, F. and Steffen, B. (2015). The Open-Source LearnLib. In
Kroening, D. and Păsăreanu, S. C. (Eds.) Computer Aided Verification: 27th

International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,



144

Proceedings, Part I. (pp. 487–495). Cham: Springer International Publishing.

Jabeen, F. and Rehman, M. J. U. (2005). A framework for object oriented component
testing. In Emerging Technologies, 2005. Proceedings of the IEEE Symposium on.
17-18 Sept. 2005. Islamabad, Pakistan: IEEE, 451–460.

Kajtazovic, N., Preschern, C., Höller, A. and Kreiner, C. (2014). Towards pattern-
based reuse in safety-critical systems. In Proceedings of the 19th European

Conference on Pattern Languages of Programs. 9-13 July 2014. Irsee, Germany:
ACM, 1–15.

Kaliraj, S., Premkumar, N. and Bharathi, A. (2014). The Novel Life Cycle Model
for Component Based Software System Based on Architecture Quality Using KCW
Framework. International Journal of Information Technology and Computer Science

(IJITCS). 6(9), 74–79.

Kaur, E. J., RupinderPal and Kaur, E. K. (2011). A Systematic Approach For UML
Based Test-Generation For Integration Testing. International Journal of Research in

Engineering and Applied Sciences. 1(1), 58–69.

Kaur, J. and Tomar, P. (2015). Multi Objective Optimization Model using Preemptive
Goal Programming for Software Component Selection. International Journal of

Information Technology and Computer Science (IJITCS). 7(9), 31–37.

Kaur, P. and Batolar, N. (2015). A Review on Quality Assurance of Component-Based
Software System. IOSR Journal of Computer Engineering (IOSR-JCE). 17(3), 53–
57.

Kearns, M. J. and Vazirani, U. V. (1994). An introduction to computational learning

theory. Cambridge, Massachusetts, United States: MIT press.

Khalili, A., Narizzano, M. and Tacchella, A. (2016). Learning for Verification
in Embedded Systems: A Case Study. In Adorni, G., Cagnoni, S., Gori, M.
and Maratea, M. (Eds.) AI*IA 2016 Advances in Artificial Intelligence: XVth

International Conference of the Italian Association for Artificial Intelligence,

Genova, Italy, November 29 – December 1, 2016, Proceedings. (pp. 525–538).
Cham: Springer International Publishing.

Khan, I. A. and Singh, R. (2012). Quality Assurance And Integration Testing
Aspects In Web Based Applications. International Journal of Computer Science,

Engineering and Applications (IJCSEA). 2(3), 109–116.

Khan, S. and Nadeem, A. (2013). Automated Test Data Generation for Coupling Based
Integration Testing of Object Oriented Programs Using Evolutionary Approaches.
In Information Technology: New Generations (ITNG), 2013 Tenth International

Conference on. 15-17 April 2013. Las Vegas, NV: IEEE, 369–374.



145

Khan, U. A., Al-Bidewi, I. and Gupta, K. (2011). Challenges in Component Based
Software Engineering as the Technology of the Modern Era. International Journal

of Internet Computing (IJIC). 1(2), 67–72.

Lachmann, R., Lity, S., Lischke, S., Beddig, S., Schulze, S. and Schaefer, I. (2015).
Delta-oriented test case prioritization for integration testing of software product
lines. In Proceedings of the 19th International Conference on Software Product

Line. 20-24 July 2015. Nashville, TN USA: ACM, 81–90.

Le, B. C. and Pham, N. H. (2012). A Method for Generating Models of Black-
Box Components. In Knowledge and Systems Engineering (KSE), 2012 Fourth

International Conference on. 17-19 Aug. 2012. Danang, Vietnam: IEEE, 217–222.

Li, K., Groz, R. and Shahbaz, M. (2006). Integration testing of components
guided by incremental state machine learning. In Testing: Academic and

Industrial Conference-Practice And Research Techniques, 2006. TAIC PART 2006.

Proceedings. 29-31 Aug. 2006. Windsor, Canada: IEEE, 59–70.

Lity, S., Baller, H. and Schaefer, I. (2015). Towards incremental model slicing
for delta-oriented software product lines. In Software Analysis, Evolution and

Reengineering (SANER), 2015 IEEE 22nd International Conference on. 2-6 March
2015. Montreal, QC: IEEE, 530–534.

Liu, C. and Richardson, D. (1998). Software components with retrospectors. In
Proceedings of International Workshop on the Role of Software Architecture in

Testing and Analysis. July 1998. Marsala, Sicily, Italy, 63–68.

Lochau, M., Lity, S., Lachmann, R., Schaefer, I. and Goltz, U. (2014). Delta-
oriented model-based integration testing of large-scale systems. Journal of Systems

and Software. 91, 63–84.

Ma, Y.-S., Oh, S.-U., Bae, D.-H. and Kwon, Y.-R. (2001). Framework for third party
testing of component software. In Software Engineering Conference, 2001. APSEC

2001. Eighth Asia-Pacific. 4-7 Dec. 2001. Macau, China: IEEE, 431–434.

Machado, P. D. L., Figueiredo, J. C. A., Lima, E. F. A., Barbosa, A. E. V. and Lima,
H. S. (2007). Component-based integration testing from UML interaction diagrams.
In 2007 IEEE International Conference on Systems, Man and Cybernetics. 7-10
Oct. 2007. Montreal, Que.: IEEE, 2944–2951.

Mahmood, S. (2011). Towards Component-Based System Integration Testing
Framework. In Proceedings of the World Congress on Engineering (WCE 2011).
6-8 July 2011. London, U.K, 1231–1235.

Mahmood, S., Lai, R. and Kim, Y. (2007). Survey of component-based software
development. IET Software. 1(2), 57–66.



146

Mahmood, S., Niazi, M. and Hussain, A. (2015). Identifying the challenges
for managing component-based development in global software development:
Preliminary results. In Science and Information Conference (SAI). 28-30 July 2015.
London, UK: IEEE, 933–938.

Mariano, M. M., Souza, E. F., Endo, A. T. and Vijaykumar, N. L. (2016). A
comparative study of algorithms for generating switch cover test sets. In SBQS 2016:

15th Brazilian Symposium on Software Quality. October 24-26, 2016. Alagoas,
Brazil, 6–20.

Martins, E., Toyota, C. and Yanagawa, R. (2001). Constructing self-testable software
components. In Dependable Systems and Networks, 2001. DSN 2001. International

Conference on. 1-4 July 2001. Goteborg, Sweden: IEEE, 151–160.

Merten, M. (2013). Active automata learning for real life applications. Ph.D. Thesis.
Universität Dortmund.

Meyerer, F. and Hummel, O. (2014). Towards Plug-and-play for Component-based
Software Systems. In Proceedings of the 19th International Doctoral Symposium

on Components and Architecture. 27 June 2014. Marcq-en-Bareul, France: ACM,
25–30.

Mohi-Aldeen, S. M., Mohamad, R. and Deris, S. (2017). Automated path testing using
the negative selection algorithm. International Journal of Computational Vision and

Robotics. 7(1-2), 160–171.

Moiz, S. A. (2017). Uncertainty in Software Testing. In Mohanty, H., Mohanty, J. R.
and Balakrishnan, A. (Eds.) Trends in Software Testing. (pp. 67–87). Singapore:
Springer Singapore.

Momotko, M. and Zalewska, L. (2004). Component+ built-in testing a technology
for testing software components. Foundations of Computing and Decision Sciences.
29(1-2), 133–148.

Morris, J., Lee, G., Parker, K., Bundell, G. A. and Lam, C. P. (2001). Software
component certification. Computer. 34(9), 30–36.

Muschevici, R., Proença, J. and Clarke, D. (2015). Feature Nets: behavioural
modelling of software product lines. Software & Systems Modeling, 1–26.

Mussa, M. and Khendek, F. (2012). Towards a Model Based Approach for Integration
Testing. In Ober, I. and Ober, I. (Eds.) SDL 2011: Integrating System and Software

Modeling: 15th International SDL Forum Toulouse, France, July 5-7, 2011. Revised

Papers. (pp. 106–121). Berlin, Heidelberg: Springer Berlin Heidelberg.

Mussa, M. and Khendek, F. (2013). Merging Test Models. In 2013 18th International



147

Conference on Engineering of Complex Computer Systems (ICECCS). 17-19 July
2013. Singapore: IEEE, 167–170.

Naseer, F., Rehman, S. and Hussain, K. (2010). Using meta-data technique for
component based black box testing. In Emerging Technologies (ICET), 2010 6th

International Conference on. 18-19 Oct. 2010. Islamabad, Pakistan: IEEE, 276–
281.

Neumann, F. (2004). Expected runtimes of evolutionary algorithms for the Eulerian
cycle problem. In Evolutionary Computation, 2004. CEC2004. Congress on, vol. 1.
19-23 June 2004. Portland, OR, USA: IEEE, 904–910.

Neumann, F. (2008). Expected runtimes of evolutionary algorithms for the Eulerian
cycle problem. Computers & Operations Research. 35(9), 2750–2759.

Niese, O. (2003). An integrated approach to testing complex systems. Ph.D. Thesis.
Universität Dortmund.

Ning, G., Nakajima, S. and Pantel, M. (2013). Hidden Markov model based automated
fault localization for integration testing. In Software Engineering and Service

Science (ICSESS), 2013 4th IEEE International Conference on. 23-25 May 2013.
Beijing, China, 184–187.

Nycander, P. (2015). Learning-Based Testing of Microservices: An Exploratory Case

Study Using LBTest. Ph.D. Thesis. KTH Royal Institute of Technology.

Orso, A., Do, H., Rothermel, G., Harrold, M. J. and Rosenblum, D. S. (2007). Using
component metadata to regression test component-based software. Software Testing,

Verification and Reliability. 17(2), 61–94.

Orso, A., Jean, M. and Rosenblum, D. (2001). Component metadata for software
engineering tasks. In Emmerich, W. and Tai, S. (Eds.) Engineering Distributed

Objects: Second International Workshop,EDO 2000 Davis, CA, USA, November

2–3, 2000 Revised Papers. (pp. 129–144). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Orso, A. and Rothermel, G. (2014). Software Testing: A Research Travelogue (2000-
2014). In Proceedings of the on Future of Software Engineering (FOSE 2014). 31
May - 7 June 2014. Hyderabad, India: ACM, 117–132.

Pacharoen, W., Aoki, T., Bhattarakosol, P. and Surarerks, A. (2013). Active Learning
of Nondeterministic Finite State Machines. Mathematical Problems in Engineering.
2013, 1–11.

Patel, R., Chaudhari, N. and Pawar, M. (2012). Survey of Integrating Testing for
Component-based System. International Journal of Computer Applications. 57(18),



148

21–25.

Pramsohler, T., Schenk, S., Barthels, A. and Baumgarten, U. (2015). A layered
interface-adaptation architecture for distributed component-based systems. Future

Generation Computer Systems. 47, 113–126.

Qazi, A. M., Rauf, A. and Minhas, N. M. (2016). A Systematic Review of Use Cases
based Software Testing Techniques. International Journal of Software Engineering

and Its Applications. 10(11), 337–360.

Radhakrishna, A., Lewchenko, N., Meier, S., Mover, S., Sripada, K. C., Zufferey,
D., Chang, B.-Y. E. and Černỳ, P. (2017). Learning Asynchronous Typestates for
Android Classes. In Computer Aided Verification, 29th International Conference

(CAV 2017). January 24, 2017. Heidelberg, Germany: Springer-Verlag, 1–26.

Raffelt, H., Steffen, B. and Berg, T. (2005). Learnlib: A library for automata learning
and experimentation. In Baresi, L. and Heckel, R. (Eds.) Fundamental Approaches

to Software Engineering: 9th International Conference, FASE 2006, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS 2006,

Vienna, Austria, March 27-28, 2006. Proceedings. (pp. 62–71). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Raffelt, H., Steffen, B., Berg, T. and Margaria, T. (2009). LearnLib: a framework
for extrapolating behavioral models. International journal on software tools for

technology transfer. 11(5), 393–407.

Rehman, M. J. U., Jabeen, F., Bertolino, A. and Polini, A. (2007). Testing software
components for integration: a survey of issues and techniques. Software Testing

Verification & Reliability. 17(2), 95–133.

Reid, S. C. (2000). BS 7925-2: the software component testing standard. In Quality

Software, 2000. Proceedings. First Asia-Pacific Conference on. 30-31 Oct 2000.
Hong Kong, China: IEEE, 139–148.

Reza, H. and Cheng, L. (2012). Context-Based Testing of COTs Using Petri Nets.
In Information Technology: New Generations (ITNG), 2012 Ninth International

Conference on. 16-18 April 2012. Las Vegas, NV: IEEE, 572–577.

Rivest, R. L. and Schapire, R. E. (1993). Inference of finite automata using homing
sequences. Information and Computation. 103(2), 299–347.

Rösch, S., Ulewicz, S., Provost, J. and Vogel-Heuser, B. (2015). Review of Model-
Based Testing Approaches in Production Automation and Adjacent Domains -
Current Challenges and Research Gaps. Journal of Software Engineering and

Applications. 8(9), 499–519.



149

Sandin, E. V., Yassin, N. M. and Mohamad, R. (2017). Comparative Evaluation of
Automated Unit Testing Tool for PHP Framework. International Journal of Software

Engineering and Technology. 2(2), 7–11.

Schach, S. R. (2001). Object-Oriented and Classical Software Engineering. (5th ed.).
United States: McGraw-Hill Pub. Co.

Schieferdecker, I., Dai, Z. R., Grabowski, J. and Rennoch, A. (2003). The UML 2.0
testing profile and its relation to TTCN-3. In Hogrefe, D. and Wiles, A. (Eds.)
Testing of Communicating Systems: 15th IFIP International Conference, TestCom

2003, Sophia Antipolis, France, May 26–28, 2003 Proceedings. (pp. 79–94). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Schneidewind, N. (2009). Integrating testing with reliability. Software Testing,

Verification & Reliability. 19(3), 175–198.

Shahbaz, M. (2008). Reverse engineering enhanced state models of black box software

components to support integration testing. Ph.D. Thesis. Grenoble Institute of
Technology.

Shahbaz, M. and Groz, R. (2009). Inferring mealy machines. In Cavalcanti, A.
and Dams, D. R. (Eds.) FM 2009: Formal Methods: Second World Congress,

Eindhoven, The Netherlands, November 2-6, 2009. Proceedings. (pp. 207–222).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Shahbaz, M. and Groz, R. (2014). Analysis and testing of black-box component-based
systems by inferring partial models. Software Testing, Verification and Reliability.
24(4), 253–288.

Shahbaz, M., Li, K. and Groz, R. (2007). Learning Parameterized State Machine
Model for Integration Testing. In Computer Software and Applications Conference,

2007. COMPSAC 2007. 31st Annual International. 24-27 July 2007. Beijing, China:
IEEE, 755–760.

Shang, X. and Zhang, Y. (2006). Research of UML-based generating test case for
component integration testing. Computer Engineering. 32, 96–98.

Shashank, S., Chakka, P. and Kumar, D. (2010). A systematic literature survey of
integration testing in component-based software engineering. In Computer and

Communication Technology (ICCCT), 2010 International Conference on. 17-19
Sept. 2010. Allahabad, Uttar Pradesh: IEEE, 562–568.

Shu-Fen, L., Yi-Kun, Z., Jing, Z. and Wen-Yuan, X. (2010). Based on Markov Process
Method for Integration Testing. In The Third International Symposium on Electronic

Commerce and Security Workshops (ISECS 2010). 29-31 July 2010. Guangzhou,
China, 211–214.



150

Shukla, R. and Marwala, T. (2012). Component Based Software Development Using
Component Oriented Programming. In Kumar M., A., R., S. and Kumar, T. V. S.
(Eds.) Proceedings of International Conference on Advances in Computing. (pp.
1125–1133). New Delhi, India: Springer India.

Siddiqui, Z. A. and Tyagi, K. (2016). Application of fuzzy-MOORA method: Ranking
of components for reliability estimation of component-based software systems.
Decision Science Letters. 5(1), 169–188.

Silva, F. R. C., Almeida, E. S. and Meira, S. R. L. (2009). An Approach for Component
Testing and Its Empirical Validation. In Proceedings of the 2009 ACM Symposium

on Applied Computing (SAC ’09). 9-12 March 2009. Honolulu, Hawaii: ACM,
574–581.

Sirohi, N. and Parashar, A. (2013). Component Based System and Testing Techniques.
International Journal of Advanced Research in Computer and Communication

Engineering (IJARCCE). 2(6), 2378–2383.

Sneed, H. M. (2010). Testing Object-oriented Software Systems. In Proceedings of the

1st Workshop on Testing Object-Oriented Systems (ETOOS ’10). 21-25 June 2010.
Maribor, Slovenia: ACM, 161–165.

Stefanescu, A., Wendland, M.-F. and Wieczorek, S. (2010). Using the UML testing
profile for enterprise service choreographies. In Software Engineering and Advanced

Applications (SEAA), 2010 36th EUROMICRO Conference on. 1-3 Sept. 2010. Lille,
France: IEEE, 12–19.

Suman, R. R., Mall, R., Sukumaran, S. and Satpathy, M. (2010). Extracting State
Models for Black-Box Software Components. Journal of Object Technology. 9(3),
79–103.

Tao, C., Gao, J. and Li, B. (2015). A Model-Based Framework to Support Complexity
Analysis Service for Regression Testing of Component-Based Software. In Service-

Oriented System Engineering (SOSE), 2015 IEEE Symposium on. March 30 2015 -
April 3 2015. San Francisco Bay, CA: IEEE, 326–331.

Tarawneh, F., Baharom, F., Yahaya, J. H. and Ahmad, F. (2011). Evaluation and
selection COTS software process: the state of the art. International Journal of New

Computer Architectures and their Applications (IJNCAA). 1(2), 344–357.

Tiwari, A. and Chakraborty, P. S. (2015). Software Component Quality Characteristics
Model for Component Based Software Engineering. In Computational Intelligence

& Communication Technology (CICT), 2015 IEEE International Conference on. 13-
14 Feb. 2015. Ghaziabad, Uttar Pradesh: IEEE, 47–51.

Tiwari, U. K. and Kumar, S. (2017). Components integration-effect graph: a black



151

box testing and test case generation technique for component-based software.
International Journal of System Assurance Engineering and Management. 8(2),
393 – 407.

Tran, H.-V., Le, C.-L., Nguyen, Q.-T. and Ngoc Hung, P. (2015). An Efficient Method
for Automated Generating Models of Component-Based Software. In Nguyen, V.-
H., Le, A.-C. and Huynh, V.-N. (Eds.) Knowledge and Systems Engineering. (pp.
499–511). Cham: Springer International Publishing.

Utting, M., Pretschner, A. and Legeard, B. (2012). A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability. 22(5), 297–312.

Vaandrager, F. (2017). Model learning. Communications of the ACM. 60(2), 86–95.

Vale, T., Crnkovic, I., de Almeida, E. S., Neto, P. A. d. M. S., Cavalcanti, Y. C. and
de Lemos Meira, S. R. (2016). Twenty-eight years of component-based software
engineering. Journal of Systems and Software. 111, 128–148.

Verma, D. (2012). Component Testing Using Finite Automata. Indian Journal of

Computer Science and Engineering (IJCSE). 3(5), 658–666.

Voas, J. M. (1998). Certifying off-the-shelf software components. Computer. 31(6),
53–59.

Wang, Y., King, G. and Wickburg, H. (1999). A method for built-in tests in component-
based software maintenance. In Software Maintenance and Reengineering, 1999.

Proceedings of the Third European Conference on. 3-5 March 1999. Amsterdam,
The Netherlands: IEEE, 186–189.

Wu, Y., Chen, M. H. and Offutt, J. (2003). UML-based integration testing
for component-based software. In Erdogmus, H. and Weng, T. (Eds.) COTS-

Based Software Systems: Second International Conference, ICCBSS 2003 Ottawa,

Canada, February 10–12, 2003 Proceedings. (pp. 251–260). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Wu, Y., Pan, D. and Chen, M.-H. (2001). Techniques for testing component-based
software. In Engineering of Complex Computer Systems, 2001. Proceedings.

Seventh IEEE International Conference on. 11-13 June 2001. Skovde, Sweden:
IEEE, 222–232.

Xie, T. and Notkin, D. (2003). Exploiting synergy between testing and inferred partial
specifications. In In WODA, 2003 ICSE Workshop on Dynamic Analysis. 2 April
2003. Portland, Oregon, 17–21.

Zaki, M. Z., Jawawi, D. N. and Isa, M. A. (2015). Integrated MARTE-based Model
for Designing Component-Based Embedded Real-Time Software. International



152

Journal of Software Engineering and Its Applications. 9(3), 157–174.

Zheng, W. and Bundell, G. (2008). Test by Contract for UML-Based Software
Component Testing. In Computer Science and its Applications, 2008. CSA ’08.

International Symposium on. 13-15 Oct. 2008. Hobart, ACT: IEEE, 377–382.

Zheng, W. Q. and Bundell, G. (2007a). Model-based software component testing: A
UML-based approach. In 6th IEEE/ACIS International Conference on Computer

and Information Science, Proceedings. 11-13 July 2007. Melbourne, Qld.: IEEE,
891–898.

Zheng, W. Q. and Bundell, G. (2007b). A UML-based methodology for software
component testing. In IMECS 2007: International Multiconference of Engineers

and Computer Scientists. 21-23 March 2007. Hong Kong, China, 1177–1182.


	THESIS STATUS VALIDATION
	SUPERVISOR DECLARATION
	TITLE
	STUDENT DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT 
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	INTRODUCTION
	Overview
	Research Motivation
	Statements of the Problem
	Research Questions
	Research Goal
	Research Objectives
	Significance of the Study
	Scope of the Study
	Thesis Outline

	LITERATURE REVIEW
	Introduction
	CBSS Testing Levels
	Unit Testing
	Integration Testing
	System Testing 
	Comparison

	Integration Testing of CBSS
	Significance of Integration Testing in CBSD Life Cycle
	Existing Approaches that Support Integration Testing in CBSS and the Classification
	Built-in Testing Approach
	Metadata Based Testing Approach
	Testable Architecture Approach
	Certiﬁcation Strategy

	Comparative Evaluation
	The Evaluation Criteria
	Comparative Evaluation Remarks

	Drawbacks and Limitations of the Existing Techniques

	Related Works on Model-Based Integration Testing
	MBIT Based on UML
	MBIT Based on UTP

	The Approach of Learning and Testing
	Active Automata Learning
	Overview of the Learning Method L*
	Adaptations of the Angluin’s Method L*
	The Mealy Machine Methods LM* and LM+

	Applications and State-of-the-art Model Inference Integration Testing

	Overview of the Most Important Active Automata Learning Tools
	RALT
	LearnLib
	Libalf
	Comparison

	Learning Finite State Machine
	Summary

	RESEARCH METHODOLOGY
	Introduction
	Research Process
	Research Process (1): Design and Implementation of the Proposed Model Extraction Method
	Step 1: Development
	Step 2: Evaluation

	Research Process (2): Design and Implementation of the Proposed Integration Testing Technique
	Step 1: Development
	Step 2: Evaluation

	Research Process (3): Evaluation and Comparison of the Proposed Integration Testing Technique
	Step 1: Checking the Effectiveness of the Proposed Technique Using Case Studies
	Step 2: Conducting A Comparative Analysis


	Research Framework
	Case Studies
	Case Study 1: The HVAC Controller Case Study
	Case Study 2: The Edinburgh Concurrency Workbench Case Study
	Case Study 3: The Air Gourmet Case Study
	Case study 4: The Elevator Case Study
	Comparison of the Case Studies

	Summary

	A METHOD TO EXTRACTING THE FORMAL FINITE STATE BEHAVIORAL MODEL
	Introduction
	Extracting the Mealy Machine Models
	Preliminaries
	The Proposed Mealy Models Extraction Method LM×
	Observation Table in the Proposed LM× Method
	Handling Counterexamples in the Proposed LM× Method
	An Illustrative Example for Learning with LM×
	Comparison Between LM× and LM+


	Evaluation of the Proposed Method LM×
	Evaluating the Applicability of the Proposed Method LM×
	Result of Extracting the HVAC Controller Using LM×

	Evaluating the Performance of LM× Method Relative to Other Methods
	Performance Metric
	The Experimental Setting
	The Experimental Results and Discussion


	Summary

	THE PROPOSED MODEL-BASED INTEGRATION TESTING TECHNIQUE
	Introduction
	Preliminaries
	System Structure
	Basic Definitions 

	The Proposed MITT in Details
	The MITT Architecture
	Detailed Description
	C1: Inferring Approximated Model of Each Component
	C2: Construct and Analyze Product
	C3: Conﬁrm or Relearning Models
	C4: Test Generation
	C5: Discrepancy Resolver


	An Illustrative Example 
	Summary

	EVALUATION AND COMPARISON OF MITT
	Introduction
	Effectiveness Evaluation Parameters 
	The First Case Study Experiment: The Air Gourmet System
	The Experimental Results 
	Learned Components
	Output Queries
	Error Detection Capability


	The Second Case Study Experiment: The Elevator System
	The Experimental Results 
	Learned Components
	Output Queries
	Error Detection Capability


	Discussion
	Summary

	CONCLUSION AND FUTURE WORK
	Research Summary and Achievements
	Summary of the Contributions of the Research
	Future Work
	Optimizing and Extending the LM× Method
	Learning Other Types of Formal Models
	Reducing the Complexity of Learning
	Extending the MITT Technique
	Experiments with Complex Systems


	REFERENCES 
	APPENDIX A



