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Abstract

In the present thesis, a rigorous mathematical formulation of time-dependent density-

functional theory for lattice systems is derived, serving a formally exact approach

towards solving time-dependent many-particle Schrödinger problems. After introducing

the necessary mathematical foundations, a one-to-one mapping from external potentials

onto electronic densities obtained by solving the Schrödinger equation is introduced. Its

properties and the related Banach spaces of scalar potentials and electronic densities are

discussed in detail. It allows to precisely formulate the Kohn-Sham Iteration scheme,

mapping a given many-particle to an effective single-particle Schrödinger problem, both

generating the exact same density. Employing the Banach fixed point theorem, the

Kohn-Sham Iteration scheme is proven to be convergent depending on the chosen initial

density.

Zusammenfassung

In der hier vorliegenden Arbeit wird ein mathematisches Framework zeitabhängiger

Dichte-Funktional-Theorie für quantenmechanische Gitter-Systeme entwickelt. Dies

erlaubt einen formal exakten Ansatz für die Lösung der zugehörigen Vielteilchen-

Schrödinger-gleichung. Beginnend mit der Diskussion relevanter mathematischer Kon-

zepte, wird eine eins-zu-eins Abbildung zwischen externen Potentialen und zugehörigen,

sich aus der Lösung der Schrödingergleichung ergebenden elektronischen Dichten defi-

niert. Selbige, und die zugehörig betrachteten Banachräume externer Potentiale und

elektronischer Dichten werden im Hinblick auf die Einführung des sog. Kohn-Sham

Iterationsschemas näher untersucht. Das Schema ermöglicht, im Falle von Konver-

genz, ein gegebenes interagierendes Vielteilchen-Schrödingerproblem eindeutig auf ein,

die selbe Dichte generierendes effektives Einteilchen-Schrödingerproblem zurückzufüh-

ren. Unter Verwendung des Banach Fixpunkt Satzes zeigt sich, dass das Kohn-Sham

Iterationsschema, abhängig von der gewählten Anfangsdichte, konvergiert.
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Chapter 1

Introduction

The most difficult problem ... concerning the use of the language

arises in quantum physics. Here we have at first no simple

guide for correlating the mathematical symbols with concepts

of ordinary language; and the only thing we know from the

start is the fact that our common concepts cannot be applied

to the structure of the atoms.

Physics and Philosophy: The Revolution in Modern Science,

Werner Heisenberg

In modern physics, the underlying physical laws of non-relativistic phenomena on micro-

scopic scales are described using the language of Quantum mechanics. Its mathematical

formulation relies on the investigation of Cauchy problems on abstract Hilbert spaces [1,

2, 3], i.e. the Schrödinger equation [4]; ubiquitously appearing in various disciplines of

science including physics, chemistry, nanotechnology, and biology - only to name a few.

From a conceptual point of view, the Schrödinger equation encapsulates the interac-

tions between the constituents of the considered physical system, therefore allowing to

determine its physical observables as for instance the bounding energies of molecules,

band structures of solids, or even dynamical properties such as the absorption spectrum

of an atom. However, considering Schrödinger problems with a large amount of non-

decoupling degrees of freedom, i.e. a many-particle Schrödinger problem, calculating

exact solutions is not feasible in terms of precision and computational power due to an

exponentially increasing dimension of the considered abstract Hilbert space. This is

referred to as the exponential wall problem [5]. The main object of the present account
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is to establish reasonable approximations to many particle Schrödinger problems in

order to circumvent the exponential wall problem.

Regarding many-particle systems with Coulombic interaction, time-dependent density-

functional theory (TDDFT) is one of the most successful practical methods allowing

to describe dynamical electronic properties [6]. It consists of two major conceptual

contributions, in principal yielding an exact approach towards solving many-particle

Schrödinger problems.

The first conceptual cornerstone of TDDFT was formally justified by Runge and Gross,

proving the existence of a one-to-one correspondence between time-analytic external

potentials v and the related time-analytic densities n of the many-particle Schrödinger

problem [7]. Considering many-particle Schrödinger problems on lattices only, the

one-to-one correspondence was established by Farzanehpour and Tokatly for the less

restrictive assumption of time-continuous external potentials and in time twice continu-

ously differentiable densities [8]. Employing the one-to-one correspondence, all physical

observables can be rephrased as functionals of the related densities, commonly depend-

ing on three spacial degrees of freedom, hence allowing to circumvent the exponential

wall problem.

The second cornerstone is the existence of the Kohn-Sham system [7, 9], defined as the

unique non-interacting Schrödinger problem, generating the exact same density of an

arbitrary prescribed interacting Schrödinger problem. Both can be identified applying

iterative schemes, i.e. the Kohn-Sham iteration [10]. Commonly, several reasonable

arrpoximations are applied [6], allowing the scheme to converge. In general, however,

its mathematical foundations are still not well founded and a formal proof of concept is

still missing for Schrödinger problems on lattices.

The following thesis presents a rigorous mathematical formulation of a TDDFT

framework for lattice systems, i.e. time-dependent lattice density-functional theory

(TDLDFT), and presents a Banach fixed point prove of Kohn-Sham TDLDFT. In the

first chapter, the necessary mathematical prerequisites are discussed and a generalization

of the Arzela-Ascoli theorem to continuous function spaces of type C(I,RN) is presented

(Theorem 2.17). Within the ensuing chapter, a general N particle and M lattice sites

many-particle Schrödinger problem is introduced (Equation (3.2)). The many-particle

Schrödinger problem is solved formally, allowing to investigate the functional depen-
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dence of trajectories on external scalar potentials by means of the potential-trajectory

map (Definition 3.2). The results are used to introduce the potential-density map in

chapter 4 (Definition 4.1), similarly describing the functional dependence of the density

on the external scalar potential.

Chapter 4 is split into three parts. Firstly, the image of the potential-density map is

shown to be pre-compact (Corollary 4.4), employing the continuity equation and the

theorem of Arzela-Ascoli. Secondly, based on the force balance equation (Equation

(4.10)), the Existence theorem of TDLDFT is proved (Theorem 4.11) which states

the existence of the Kohn-Sham system restricted to some time of existence (Defini-

tion 4.10). The problems of a force balance equation approach towards an Existence

theorem are investigated (Section 4.3.2), proving the time of existence to converge to

zero for specifc potential configurations. Thirdly, a diffeomorphic mapping property

of the potential-density map is established (Theorem 4.14) allowing to introduce the

Kohn-Sham Iteration Scheme (Definition 5.3). Employing the diffeomorphic mapping

property of the potential-density map, the Kohn-Sham Iteration Scheme is shown to

converge using the Banach fixed point theorem (Theorem 5.4), proving the existence of

a Kohn-Sham approach towards TDLDFT. Concluding remarks on the time of existence

are given.

1.1 Remarks on notation

For convenience, the notion time-dependent density-functional theory is abbreviated by

TDDFT and Hartree atomic units will be used.

e = ~ = me = 1
4πε0

= 1

Throughout this thesis, common mathematical notation is used, however, to avoid

ambiguity special terminology is explained here.
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N Natural numbers, {1, 2, 3, ...}

R+ Real numbers excluding zero

Br(x) Open Ball with radius r and center point x

`2(d) Hilbert space of square-summable sequences

Ck(I,X) k-times continuously differentiable function space

B(X, Y ) Banach space of bounded linear operators

Eig(λ) Eigenspace to eigenvalue λ

σ(O) Spectrum of an operator O

f [x] Square brackets denote functional dependence

‖ · ‖X Norm of Banach space X

‖ · ‖2,∞ Supremum in time of the `2(d)-norm

‖ · ‖ Operator norm of the considered Banach space, usually

operator norm of `2(d)



Chapter 2

Mathematical Topoi

Within this chapter, the general mathematical concepts, forming the basis of this thesis,

are presented. We begin with a formal discussion of non-relativistic quantum mechanical

problems by introducing the Banach fixed point theorem and the Schrödinger equation.

Hereafter, differentiability on arbitrary Banach space is shown, allowing to state the

important inverse function theorem. We conclude with a generalization of the theorem

of Arzela-Ascoli to families of continuous functions mapping to arbitrary Euclidean

spaces equipped with the Euclidean norm.

2.1 Schrödinger dynamics

This section is dedicated to discuss the dynamics of non-relativistic quantum mechanical

problems for arbitrary separable Hilbert spaces (H, 〈·, ·〉H) described by the Schrödinger

equation. Starting with a review of the Banach fixed point theorem and Banach fixed

point theorem iteration, we are able to state the Schrödinger equation as a special case

of the abstract Cauchy problem on H and give conditions for the existence and the

uniqueness of solutions. We conclude with an introduction of evolution systems.

In the following, X denotes the Banach space
(
X, ‖ · ‖X

)
.

2.1.1 Banach contraction principle

Within a wide range of physical fields, the concept of fixed points is used to describe

several phenomena as equilibria or stability of dynamical systems that are usually

formulated by differential equations. Fixed-point schemes allow proving the existence

and uniqueness of solutions to these differential equations and are thus of high importance

6
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for physics. One of the most important results regarding the existence of fixed points

was found and established by Stefan Banach with the Banach contraction principle, i.e.

Banach fixed point theorem [StefanBanach].

Definition 2.1 Let f : X → X be a mapping.

1. An element x∗ ∈ X is called a fixed point of f if f(x∗) = x∗.

2. The map f is called a contraction if a non-negative real number L ∈ [0, 1) exists

such that ‖f(x)− f(y)‖X ≤ L ‖x− y‖X ∀x, y ∈ X.

According to Definition 2.1, a contraction f decreases the distance between two points

x, y ∈ X. A contraction f maps all points y ∈ Br(x) ⊂ X to a smaller ball BL·r(f(x))

with r ∈ R+. Iterative application of f to an inital set Br(x) hence results in a zero

sequence of recursively defined radii. This convergent behaviour results in the existence

of a fixed point. In the following, we formulate the above statement rigourously and

give sufficient conditions for fixed points to exist.

Theorem 2.2 (Banach fixed point theorem) [Pathak [11], Theorem 5.1]

Consider a contraction f : Y → Y on a closed subset Y ⊆ X. Then f admits a

unique fixed point. Moreover, the recursively defined sequence (xk)k∈N with elements

xk+1 ≡ f(xk1) converges for arbitrary initial values x0 ∈ Y to the fixed point. The above

iteration scheme is called Banach iteration scheme.

Next, we want to illustrate the Banach fixed point theorem and Banach iteration

by investigating the convergence of an algorithm to compute square roots, i.e. the

Babylonian method. In the subsequent example, we highlight the importance of both

the completeness of the considered set and the contraction property of the mapping.

Example 2.3 Consider the equation x2 − a = 0 for a ∈ R+. We want to find the

positive solution to this equation, i.e. the square root of a. By means of the following

contraction f , the above equation can be rewritten as a fixed point problem that allows

to apply the Banch fixed point theorem.
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f : [
√
a,∞) −→ [

√
a,∞)

x 7−→ 1
2

(
x+ a

x

)
It can be seen that f is a contraction with Lipschitz constant L = 1/2 as for arbitrary

x, y ∈ [
√
a,∞) the following inequality is satisfied.

|f(x)− f(y)| = 1
2

∣∣∣∣1− a

xy

∣∣∣∣ |x− y| ≤ 1
2 |x− y|

As f is defined on a closed subset [
√
a, b] of the complete space R the Banach fixed

point theorem can be applied. According to the Banach-iteration scheme the sequence(
f(xk−1)

)
k∈N

with initial value x0 = b converges to
√
a.

2.1.2 Evolution equations

Let the state space (H, 〈·, ·〉H) be an arbitrary separable Hilbert space with H(t) :

D(H(t)) ⊆ H → H being a linear self-adjoint map parametically dependend on t for

t ∈ [0, T ] with T ∈ R+. We define the Hamilton operator H to be the map t 7→ H(t)

and the homogeneous Schrödninger initial value problem as a special case of the abstract

Cauchy problem [12]. Since this describes the evolution of a quantum system it is called

evolution equation. In the following, we will also refer to this evolution equation by

Schrödinger problem.

idψ(t)
dt = H(t)ψ(t), ∀t ∈ [0, T ]

ψ(0) = ψ0 ∈ H
(2.1)

We assume that the domain of H(t) is equal to the full state space D(H(t)) = H. This

assumption is valid without limitations as we investigate finite dimensional state spaces

within this thesis.

The following theorem states the existence of solutions to the Schrödiner inital value

problem which are refered to as trajectories. It relies on the Banach fixed point

theorem and as the theorem is the foundation of this thesis, we present the proof in full

detail.
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Theorem 2.4 Consider H to be the Hamilton operator. The Schrödinger problem (2.1)

has a unique global, continuously differentiable trajectory ψ, i.e. ψ ∈ C1([0, T ],H) if the

function t 7→ H(t) is continuous in the operator norm.

Proof. This proof follows the idea of the Picard-Lindelöf theorem [12]. Consider X to

be the Banach space of continuous functions equipped with the supremum norm, i.e.

the function space
(
C([0, T ],H), ‖ · ‖H,∞

)
. Its norm is also denoted by ‖ · ‖X . Based on

the mild form of equation (2.1), we define the following map C.

C : X −→ X

ψ 7−→
(
t 7→ ψ0 − i

∫ t
0 H(τ)ψ(τ) dτ

)

The map C is well-defined since both u and t 7→ H(t) are continuous functions with

a compact domain [0, T ]. We take the supremum in time of the operator norm and

employ continuity of H, thus being bounded by M , i.e M ≡ ‖H‖ = maxt∈[0,T ] ‖H(t)‖.

In order to find a solution to the Schrödinger problem, we calculate

‖C(ψ)− C(φ)‖X ≤
∫ T

0
max
t∈[0,T ]

∥∥∥H(τ)
(
ψ(τ)− φ(τ)

)∥∥∥
H

dτ

≤M
∫ T

0
‖ψ − φ‖X dτ

≤M · T‖ψ − φ‖X .

Applying the map C twice results in

‖C2(ψ)− C2(φ)‖X ≤ max
t∈[0,T ]

∥∥∥∥∫ t

0
dτ2H(τ2)

∫ τ2

0
dτ1H(τ1)

(
ψ(τ)− φ(τ)

)∥∥∥∥
H

≤M2 · T
2

2 ‖ψ − φ‖X .

We estimate the second integral by M · τ2‖ψ − φ‖X and integrating over the time τ2

thus results in the fraction T 2/2. By principle of induction, this can be generalized to

‖Cn(ψ)− Cn(φ)‖X ≤Mn · T
n

n! ‖ψ − φ‖X .

Next, we choose N ∈ N such that MN · T
N

N ! < 1. Therefore, the map CN is a contraction

and by Banach iteration a unique fixed-pont Ψ exists, i.e. CN(Ψ) = Ψ. Applying C

yields CN+1(Ψ) = C(Ψ) or equivalently CN (C(Ψ)) = C(Ψ). By uniqueness of the fixed
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point, we can conclude C(Ψ) = Ψ, meaning that we also found a fixed point of C

satisfying the mild form of (2.1).

Ψ(t) = ψ0 − i
∫ t

0
H(τ)Ψ(τ) dτ, ∀t ∈ [0, T ] (2.2)

By Banach fixed point theorem, the fixed point lies in C([0, T ],H). Therefore, Ψ is a

continuous function, meaning that the first derivative of (2.2) exists. Differentiating Ψ

results in idΨ(t)
dt = H(t)Ψ(t) and therefore Ψ is also a solution to the initially stated

Schrödinger problem. It is unique in C([0, T ],H) since every solution to the Schrödinger

problem is also a solution to the mild form (2.2).

After solving the Schrödinger equation, we are able to introduce the concept of a time

evolution operator U(t, s). It describes the dynamics of a trajectory from a given initial

state ψ0.

Definition 2.5 Consider a Schrödinger problem (2.1) with the function t 7→ H(t) being

continuous in the operator norm. We define the time evolution operator as the

following bounded linear map

U(t, 0) : H −→ H

ψ0 7−→ U(t, 0)ψ0 = ψ(t)
(2.3)

where U(0)ψ0 maps to the unique solution of the Schrödinger problem with the initial

state ψ0 ∈ H.

Following its definition, the time evolution operator can be understood as a unique

solution to the following initial value problem.

i
dU(t, 0)

dt = H(t)U(t, 0), U(0, 0) = 1H, ∀t ∈ [0, T ]

As the Hamilton operator is self-adjoint, U(t, 0) is a unitary operator, making it a

bijective isometry preserving the norm of trajectories [13]. We generalize the time

evolution operator to general times 0 ≤ s ≤ t ≤ T , describing the time evolution

of a state to a given Schrödinger problem from time s to t. We introduce it as

U(t, s) = U(t, 0)U∗(s, 0) and identify the two parameter familiy of time evolution
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operators U(t, s) with an evolution system.

Definition 2.6 A two parameter family of unitary operators U(t, s) on H for times

0 ≤ s ≤ t ≤ T is called an evolution system on the Banach space H if the following

conditions are satisfied:

1. U(t, t) = 1X

2. U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤≤ t ≤ T

3. U(t, s)−1 = U∗(t, s) = U(s, t)

4. ∂tU(t, s) = −iH(t)U(t, s)

Having introduce the concept of a time evolution operator, we are able to introduce the

Heisenberg picture of linear operators acting on the state space H.

Definition 2.7 The Heisenberg picture of the operator O : H → H of a Schrödinger

problem (2.1) incorporates the time evolution of the Schrödinger problem and is defined

to be

Ô(t) ≡ U(t, 0)OU∗(t, 0) : H → H, ∀t ∈ [0, T ].

2.2 Differentiability on Banach spaces

Standard calculus and its notion of differentiability only applies to Banach spaces of

type RN . Within this section, we generalize this notion of differentiability to arbitrary

Banach spaces. Let
(
X, ‖ · ‖X

)
and

(
Y, ‖ · ‖Y

)
be Banach spaces and f : X → Y define

the map of investigation.



12 2.2 Differentiability on Banach spaces

2.2.1 Gâteaux and Fréchet differentiability

Definition 2.8 f is called to be Gâteaux differentiable at x0 ∈ X if the Gâteaux

derivative exists at x0. It is defined as the continuous and linear map

δGf [x0, ·] : X −→ Y

satisfying

lim
λ→0

∥∥∥∥∥f [x0 + λh]− f [x0]− λδGf [x0, h]
λ

∥∥∥∥∥
Y

= 0 (2.4)

for all h ∈ X and λ ∈ R. We equivalently denote the Gâteaux derivative by δGf [x0].

The Gâteaux derivative can be considered as a generalization of the directional derivative

in standard calculus. In contrast to the latter, the Gâteaux derivative is defined to be

linear in directions h ∈ X. By its definition, the limiting process is required to hold for

fixed direction h and thereby enables to compute the Gâteaux derivative by rewriting

equation (2.4) as follows.

δGf [x, h] = lim
λ→0

f [x+ λh]− f [x]
λ

Generalizing the concept of total differentiability to arbitrary Banach spaces results

in introducing the notion of Fréchet differentiability. In comparison to Gâteaux differ-

entiability, Fréchet differentiability requires the limiting process to hold for arbitrary

paths h→ 0 in X.

Definition 2.9 f is called to be Fréchet differentiable at x0 ∈ X if the Fréchet

derivative exists at x0. It is defined as the continuous and linear map

DFf [x0, ·] : X −→ Y

satisfying

lim
h→0

‖f [x0 + h]− f [x0]−DFf [x0, h]‖Y
‖h‖X

= 0

for all h ∈ X. We equivalently denote the Frèchet derivative by DFf [x0]. Suppose f is

Fréchet differentiable for all x ∈ U open and the map
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DFf : U −→ B(X, Y )

x 7−→ δFf [x, ·]

is continuous. Then f is continuously differentiable and we write f ∈ C1(U, Y ).

Fréchet differentiability is of great significance in functional analysis as it allows to prove

a diffeomorphic mapping property of f . A function f is defined to be a diffeomorphism

if f is bijective and both f and its inverse are continuously differentiable. The inverse

function theorem states sufficient conditions for f to define a diffeomorphism in an

open neighobourhood of one point of its domain.

Theorem 2.10 (Inverse function theorem) [Pathak [11], Theorem 3.14]

Consider U ⊆ X to be an open set of Y and f ∈ C1(U, Y ). Suppose x0 ∈ U such that

DFf [x0, ·] is an isomorphism. Then there exists a neighbourhood Ux ⊆ U of x and

Vx ⊆ Y of y = f(x0) such that f : Ux → Vx is a diffeomorphism with

DFf
−1[y, ·] = DFf [x0, ·]−1.

Further properties and rules of calculation for both partial and total differentiablity

of standard calculus can be generalized to both Gâteaux and Fréchet differentiability.

We are going to use those properties without further discussion. For a more rigorous

mathematical treatment see Blanchard-Brüning (2015) [14].

2.2.2 Equivalence of Gâteaux and Fréchet differentiability

In general it is easier to calculate the Gâteaux derivative. In consequence, we want to

state an important theorem showing under which conditions both Fréchet and Gâteaux

derivative are equivalent.

Theorem 2.11 [Blanchard-Brüning [14], Lemma 34.3]

Assume f to be Gâteaux differentiable at all points in an open neighbourhood U ⊆ X

of the point x0 ∈ X and x 7→ δGf [x, ·] ∈ B(X, Y ) to be continuous on U . Then f is

continuously differentiable, i.e. f ∈ C1(U, Y ), with
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δGf [x0, h] = DFf [x0, h], ∀h ∈ X.

We want to illustrate the difference of both Gâteaux and Fréchet differentiability in

more detail, highlighting the significance of Thereom 2.11. We state the following

example of a Gâteaux differentiable function that is not Fréchet differentiable.

Example 2.12 Let f be a function defined by

f : R2 −→ R

x 7−→ f(x) =


x

4
1x2√
x

6
1+x3

2
, x 6= (0, 0)

0 , x = (0, 0)

The function f is Gâteaux differentiable in x = 0 with Gâteaux derivative

δGf(0, h) = lim
λ→0

f(λh)
λ

= lim
λ→0

λ
h4

1h2√
λ3h6

1 + h3
2

= 0

for arbitrary h ∈ R2. Note that the function f is not continuous in x = 0 because the

zero sequence
(
xn = (n−1, n−2)

)
n∈N

lim
n→∞

f(xn) = 1
2 6= 0,

does not converge to zero. As Fréchet differentiability implies continuity, f cannot be

Fréchet differentiable in x = 0.
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2.3 Theorem of Arzela-Ascoli

Within this section, we prove the theorem of Arzela-Ascoli. It is a generalization of

the famous Heine–Borel theorem [15] to continuous function spaces of type C(X,RN)

equipped with the supremum norm. In the following, X denotes a metric space
(
X, dX

)
.

The Heine-Borel theorem only applies to finite dimensional vector spaces. It states

compactness of any subset of RN if and only if it is both closed and bounded. To

generalize the Heine-Borel o continuous function spaces of type C(X,RN), we first

remind ourselves of its generalization to arbitrary metric spaces X. For this purpose,

we introduce the notion of a totally bounded and precompact set X.

Definition 2.13 A metric space X is totally bounded if and only if for any ε ∈ R+

there exists a finite cover of X by open balls with radius ε.

Following its definition, any totally bounded set Y is bounded but not vice versa. To

illustrate this statement, we state two examples for sets being bounded but not toally

bounded.

Example 2.14 As a first example, note that the closed unit ball in an infinite di-

mensional Hilbert space cannot be totally bounded. We exemplify this statement by

considering the closed unit ball B1(0) of the Hilbert space `2 which is bounded but not

totally bounded. To prove the latter, we assume totally boundedness and proceed by

reductio ad absurdum. By totally boundedness, we can construct a finite open cover

C =
{
B1/4(x)

∣∣∣ x ∈ Y } consisting of balls B1(0) with center points Y = {x1, ..., xN}

and radius r = 1/4.

B1(0) ⊂
⋃
x∈Y

B1/4(x)

We consider a Hilbert basis {ei|i ∈ N} ⊂ `2. Note that the difference of two different

basis vectors is of norm
√

2, i.e ‖ei − ej‖2 =
√

2 for any i 6= j ∈ N such that each ball

B1/4(x) ∈ C contains at most one basis vector. This contradicts the assumption of

totally boundedness, as the Hilbert basis is countably infinite.

We conclude with an example of an infinite but bounded metric space X equipped with the

discrete metric dX . Because of the discrete metric, each point x ∈ X is isolated, meaning
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that there exists a neigbhourhood Br<1(x) of x that only contains x. In consequence,

any open cover of X by open balls with radius r < 1 necessarily requires the infinite set

X to be equalt to the set of center points, contradicting totally boundedness.

It is worth being noted that total boundedness is not equivalent to compactness. X

is compact if and only if every open cover of X has a finite cover whereas totally

boundedness demands for finite open cover by balls with radius ε. For compactness, it

is thus also necessary to require completeness, similar to the Heine-Borel theorem.

Lemma 2.15 [Blanchard-Brüning [14], Lemma 34.3]

A metric space X is compact if and only if it is complete and totally bounded.

We also remind ourselves of the notion of precompactness of a metric space X. A metric

space is defined to be precompact if and only if its closure X is compact. Employing

Lemma 2.15, any metric space is precompact if and only if totally bounded.

The hereafter stated theorem of Arzela-Ascoli is based on the generalization of the

Heine-Borel theorem where the considered metric space is identified with the Banach

space C(X,RN) equipped with the supremum norm. Employing continuity allows to

reformulate the condition of totally boundedness. The latter is shown to be replaced by

the notions of a set F ⊂ C(X,RN) being pointwise bounded and equicontinuous.

Definition 2.16 Let F ⊂ C(X,RN).

1. The family F is pointwise bounded if and only if supf∈F ‖f(x)‖ <∞ for all

x ∈ X. It is said to be equibounded if and only if supf∈F ‖f‖∞ <∞.

2. The family F is equicontinuous if and only if for every ε > 0 there exists a

δ > 0 such that ‖f(x)− f(y)‖ < ε for all f ∈ F and all x, y ∈ X with y ∈ Bδ(x).

The underlying idea for the proof of the Arzela-Ascoli theorem is inspired by Driver

(2004) [16]. Note, that we universalize the common formulation the Arzela-Ascoli

theorem for continuous function spaces C(X,R) to C(X,RN). We only prove the left

implication of the biconditional and safely skip the right implication. The reader is

referred to existing literature on the topic for more details [16].
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Theorem 2.17 (Arzela-Ascoli Theorem) Let X be a compact metric space and(
C(X,RN), ‖ · ‖∞

)
the Banach space of continuous functions from X to RN . Then the

family F ⊂ C(X,RN) is precompact, i.e. totally bounded if and only if F is pointwise

bounded and equicontinuous.

Proof. (⇐) We first note that any subset of a Banach space is a metric space if equipped

with the metric induced by the norm of the Banach space. Hence, we identify F with

the induced metric space and employ Lemma 2.15 to prove for precompactness. In case

of precompactness, we demand F ’s closure to be compact such that it is sufficient to

show that F is totally bounded. We start proving for equiboundedness as it allows to

conclude for F being totally bounded.

Consider an aribtrary ε > 0. Employing equicontinuity of F , there exists a δ > 0 such

that

‖f(y)− f(x)‖ < ε

for all f ∈ F and all x ∈ X with y ∈ Bδ(x). Thus any f is constant within to ε on

Bδ(x) for all x ∈ X. By compactness of X, we can always construct a finite open cover

CX =
{
Bδ(x)|x ∈ Z ⊂ X

}
of X, allowing for the following inequality.

sup
x∈X
‖f(x)‖ ≤ sup

x∈Z
‖f(x)‖+ ε, ∀f ∈ F .

We take the supremum over all f ∈ F and employ that F is pointwise bounded. As Z

is a finite subset of X, its supremum exists which results in equiboundedness with the

constant Mε ∈ R+.

sup
f∈F
‖f‖∞ ≤ sup

x∈Z
sup
f∈F
‖f(x)‖+ ε ≤Mε

Since we consider the Euclidean norm, any component of f ∈ F is also bounded by Mε,

i.e. fi ∈ [−Mε,Mε] for all i ∈ {1, ..., N}, allowing for all functions f to be approximated

by a finite amount of values with precision ε. To clarify this, we define the finite set of

possible values D

D =
{kε
N
|k ∈ Z

}N
∩ [−Mε,Mε]N

and introduce the finite valued functions φ : Z → D. The set of all functions φ is

denoted by DZ . We consider an arbitrary f ∈ F and a function φ ∈ DZ . The set of
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possible values D is defined such that we can always choose φ satisfying the relation

‖f(x)− φ(x)‖ < ε for all x ∈ Z. Employing euqicontinuity, we can deduce that f can

indeed be approximated by a function φ with precision ε.

‖f(y)− φ(x)‖ ≤ ‖f(y)− f(x)‖+ ‖f(x)− φ(x)‖ < 2ε, ∀x ∈ Z, y ∈ Bδ(x)

As f was arbitrary, we can choose at most |D| different functions φ to construct a finite

cover of F , i.e. F = ∪
φ∈DZFφ. Fφ is defined to be the subset of F that is approximated

by a φ ∈ DZ .

Fφ =
{
f ∈ F|‖f(y)− φ(x)‖ < ε,∀x ∈ Z, ∀y ∈ Bδ(x)

}

Finally we are able to construct a finite cover of F by open balls with radius 2ε. For a

φ ∈ DZ with Fφ 6= ∅, we can always choose an fφ ∈ Fφ such that

‖f − fφ‖∞ ≤ sup
y∈X
‖f(y)− φ(x)‖+ sup

y∈X
‖φ(x)− fφ(y)‖ < 2ε

for all x ∈ X and f ∈ Fφ. From this it follows that any f ∈ Fφ is element of B2ε(fφ),

meaning Fφ ⊂ B2ε(fφ). We conclude with

F =
⋃
φ∈DI
Fφ ⊂

⋃
φ∈DZ ,
Fφ 6=∅

B2ε(fφ),

which proves totally boundedness of F as ε was assumed to be arbitrary.



Chapter 3

The Many-Particle Problem on a

Lattice

In this section, we investigate the quantum dynamics of an interacting electronic many-

particle problem on a lattice. Starting with a motivation for quantum mechanics on

discrete Hilbert spaces, we introduce and discuss the Schrödinger problem of considera-

tion and formalize the functional dependence of trajectories and observables on scalar

potentials.

Quantum mechanics is commonly taught and discussed using continuous position

space, i.e. an infinite dimensional separable Hilbert space with specific boundary condi-

tions. This might lead to the problem of unbounded operators such as the kinetic energy

operator in free space. In order to circumvent problems of unboundedness we might

approximate position space by bounding and discretizing it. Even without problems of

unboundedness, discretizing space usually has its origin in numerics.

As an example, we consider a single particle in position space R3 described by the state

space of square-integrable functions L2(R3). We obtain a lattice system with M sites by

dividing a compact subset of the position space R3 into M small bins. We approximate

states ψ ∈ L2(R3) by its mean-values in those respective bins and identify them as

elements of the sequence space of square-summable functions ψ ∈ `2(M). Therefore,

any operator is bounded such as the kinetic energy operator which can be approximated

by the finite difference Laplacian [17]. Another example is given by a diluted solid with

large lattice spacing and tightly bounded electrons. Discarding all inner structure of

the atoms and orbitals allows to describe those localized electrons by means of a lattice

19
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Hamilton operator as done by the tight binding Hubbard model [18], also illustrating

the significance of lattice models. More generally speaking, lattice models are per se of

interest as from a conceptual point of view it is not yet understood whether space and

time are continuous or might have a different, maybe a discrete structure, following

recent considerations below and around the Planck scale [19].

3.1 The Schrödinger problem

We consider N electrons and a set of M lattice sites described by the index set

I = {r1, ..., rM} with no specific geometry. Both the number of electrons and sites are

assumed to be finite but arbitrarily large. The single particle Hilbert space H of an

electron is of finite dimension M representing each site and can be identified with the

Hilbert space `2(M) equipped with the standard inner product.

H ∼= `2(M), 〈x, y〉H =
M∑
i=1

x∗i yi ∀x, y ∈ `2(M)

We omit spin degrees of freedom as the Hamilton operator of interest is restricted to

Coulomb like interactions and acts as an identity operator on the Hilbert space of

possible spin configurations.1

To accommodate N electrons, we construct the N particle Hilbert space endowed with

the induced inner product of the single particle Hilbert space H

HN =
M⊗
i=1
H ∼= `2(d), 〈x, y〉 =

M∏
i=1
〈xi, yi〉H ∀x, y ∈ `2(d)

where the superscript denotes the associated component of the appropriate single

particle Hilbert space. By construction, the N particle Hilbert space HN is of dimension

d = N ·M . The standard orthonormal basis of `2(M) and `2(d) is defined to be

B = {ex}x∈I , BN = {ex}x∈IN . (3.1)

1The space of possible spin configurations for spin s = 1/2 particles is represented by C2. Thereof
the single particle Hilbert space can be identified with the state space H = `2(M)⊗ C2 equipped with
the inner product 〈x⊗ s1, y ⊗ s2〉H = 〈x, y〉

`
2(M) · 〈s1, s2〉C2 .
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We use the notation x = (x1, ..., xN). The basis vector ex, respectively ex, denotes an

electronic basis state occupying site x or sites x and we therefore write

ψ =
∑

x∈IN
ψ(x)ex =

∑
x1,...,xN∈I

ψ(x1, ..., xN)ex1,...,xN

for an arbitrary electronic N particle state ψ ∈ `2(d) with ψ(x1, ..., xN) ∈ C.

The Pauli exclusion principle demands a physical realised fermionic state to be anti-

symmetric under the interchange of spin and space variables. As we assume the quantum

mechanical system to act trivially on spin degrees of freedom, we choose without loss of

generality the spacial part of considered wave functions to transform anti-symmetric.

In consequence, we restrict the space of physical states to `2(d)A.2

`2(d) ⊃ `2(d)A =
{
ψ ∈

N∧
i=1

`2(M)
∣∣∣∣ ‖ψ‖2 = 1

}

Now we are able to state the Schrödinger problem (see Chapter 2.1.2).

idψ(t)
dt = H(t)ψ(t), ∀t ∈ [0, T ]

ψ(0) = ψ0 ∈ `2(d)A
(3.2)

We define the many-particle Hamilton operator H as the following linear self-adjoint

map depending parametrically on times in the time intervall [0, T ] with T ∈ R+.

H(t) : `2(d) −→ `2(d)

ψ 7−→
(
T + V (t) +W

)
ψ, ∀t ∈ [0, T ]

.

The operator V (t) denotes the scalar potential and W the many-particle interaction

and T the kintetic energy operator, also called hopping operator. In case of a lattice

system, we define the kinetic energy operator T as the operator consisting only out of

H(t)’s off-diagonal elements. It thus describes the transition rate of electrons changing

between different sites and we denote this rate from site xi ∈ I to site xj ∈ I by the

matrix element Txi,xj . Since T is a self-adjoint operator, the matrix elements have to

satisfy the relation T ∗xi,xj = Txj ,xi . From a physical point of view the matrix elements

could be identified with the overlap of Wannier orbitals [20].

2∧ denotes the wedge product.
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As in the continuous case, the scalar potential V (t) and many-particle interactionW are

defined to be real-multiplicative operators. The scalar potential V (t) can be identified

with the external potential landscape of the considered system. For a tupel of real

scalar potentials (v(x))x∈I , with potentials v(x) acting on each site x ∈ I, we define

V (t) as follows.3

V (t) = v(x, t) =
N∑
i=1

v(xi, t), ∀x ∈ IM ,∀t ∈ [0, T ] (3.3)

Within the Hubbard model, this external potential could be identified with a potential

generated by the atoms of the considered lattice within the Born-Oppenheimer approxi-

mation [20]. The operator W is a two particle operator that is modeling Coulomb like

interactions and thus only depends on the spacial distance of two electrons occupying

different sites. For two electrons occupying the same site, we set the action of W to

zero. Concluding, the Schrödinger problem is thus given by

i∂tψ(x1, ..., xN , t) =−
N∑
n=1

∑
yn∈I

Txn,ynψ(..., yn, ..., t)

+
N∑
n=1

v(xn, t)ψ(x1, ..., xN , t)

+
N∑
i>j

w(|xi − xj|)ψ(x1, ..., xN , t)

for an arbitrary initial state ψ(0) = ψ0 ∈ `2(d)A.

3.2 Trajectories and potentials

Within this section, we investigate the existence of solutions depending on the set of

possible scalar potentials entering the Schrödinger problem (3.2) and discuss the chosen

topology of our solution space.

By Theorem 2.4, solutions to the Schrödinger problem exist if both H(t) is bounded

and t 7→ H(t) is continuous in the operator norm. In case of (3.2), the operator H(t) is

a bounded linear map, i.e. H(t) ∈ B(`2(d)) for all t ∈ [0, T ] as any linear map defined

3 We define V (t) : `2(d)→ `2(d) by V (t)ex1,...,xN
=
∑N

i=1 v(xi, t)ex1,...,xN
for each ex1,...,xN

∈ BN .
We equivalently write V (t) =

∑N
i=1 v(xi, t).
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on a finite dimensional vector space is bounded. Also, the Hamilton operator H is

continuous in time since the expression

‖H(t)−H(t′)‖2 ≤
M∑
i=1
|v(ri, t)− v(ri, t′)|2,

limits to zero for all t′ ∈ [0, T ] and arbitrary sequences t → t′ in [0, T ] if we assume

continuous scalar potentials t 7→ v(ri, t) ∈ C([0, T ],R). We thus identify the scalar

potentials on the lattice with a corresponding vector v ∈ C([0, T ],RN) by setting

v = (v(r1), ..., v(rM))T .

Definition 3.1 The Banach space of scalar potentials V is defined to be

V =
(
C([0, T ],RM), ‖ · ‖2,∞

)
,

such that unique solutions to the Schrödinger problem (3.2) exist for all v ∈ V . The

Hamilton operator to a scalar potential v ∈ V is denoted by

H([v], t) = T + V ([v], t) +W, ∀t ∈ [0, T ].

To highlight the dependence on the multi-particle interaction operator W , we might

also write H[v,W ]. We denote the related Schrödinger problem with an initial state

ψ0 ∈ `2(d)A by S =
(
ψ0, v,W

)
.

We can now regard trajectories as functions of the scalar potential v as we keep T andW

fixed. To a given potential, the Hamilton operator H[v] generates an evolution system

describing the time evolution starting from an initial state ψ0. The resulting trajectory

will then be denoted as U [v]ψ0 : t 7→ U([v], t, 0)ψ0 where the operator U([v], t, 0) denotes

the time evolution operator for the assumed potential v ∈ V (Definition 2.5).
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Definition 3.2 Consider a Schrödinger problem S =
(
ψ0, v,W

)
with arbitrary scalar

potential v ∈ V . Its evolution system defines the potential-trajectory map for fixed

initial state ψ0 and multi-particle interaction operator W .

U [·]ψ0 : V −→ X

v 7−→ ψ[v] = U [v]ψ0

(3.4)

X is defined to be the space of continuous functions X =
(
C([0, T ], `2(d)), ‖ · ‖2,∞

)
equipped with the ‖ · ‖∞-norm, also denoted as trajectory space.

Within the rest of this section, we consider a Schrödinger problem S =
(
ψ0, v,W

)
and

characterize the potential-trajectory map in more detail. Using ψ[·], we can introduce

the notion of the so called one-particle density n([v], x, t). For a more detailed discussion

we refer to Chapter 4.

n([v], x, t) = N
∑

z∈IM−1

|ψ([v], x, z, t)|2, ∀x ∈ I,∀t ∈ [0, T ]

Employing this notion of a one-particle density, we prove for injectivity of the potential-

trajectory map ψ[·].

Theorem 3.3 A trajectory is uniquely defined by a potential v ∈ V if its one-particle

density n([v], x, t) is assumed to be non-zero for all lattice sites x ∈ I and times t ∈ [0, T ].

Proof. We assume ψ[v] = ψ[w] for v, w ∈ V and take the difference of both Schrödinger

equations, where we employ the equivalence of both trajectories. The potential difference

v − w is denoted by ∆v = v − w.

0 = V ([∆v], t)ψ([v], t), ∀t ∈ [0, T ]

We use the explicit basis representation of the trajectory ψ([v], t) and obtain the

equivalent condition for its coefficients.

N∑
i

∆v(xi, t)ψ([v],x, t) = 0, ∀x ∈ IN ,∀t ∈ [0, T ]
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We multiply by N and the complex conjugate of the considered state ψ∗([v],x, t). We

keep the first particle position x1 of the trajectory fixed while summing over its residual

degrees of freedom. The sum N
∑

z∈IM−1 |ψ([v], z, t)|2 is identified with the notion of

the one-particle density n([v], x1, t).

N∑
i=1

∆v(xi, t)n([v], x1, t) = 0, ∀x ∈ IN ,∀t ∈ [0, T ]

By assumption, n([v], x1, t) is non-zero for all x1 ∈ I and t ∈ [0, T ]. Dividing by

n([v], x1, t) and solving for ∆v(x1, t) thus results in

∆v(x1, t) = −
N∑
i=2

∆v(xi, t), ∀x ∈ IN ,∀t ∈ [0, T ]

such that the right hand side is constant with respect to x1. As x1 is assumed to be

arbitrary, this yields that any potential difference ∆v(xi, t) has to be a function in time,

i.e. ∆v(xi, t) = c(t). Substituting c(t) into the above equation yields c(t) = 0.

N∑
i=1

∆v(xi, t) =
N∑
i=1

c(t) = 0, ∀x ∈ IN , ∀t ∈ [0, T ]

We thus conclude ∆v = 0,i.e. v = w and thus the uniqueness of the trajectory ψ[v].

We conclude this section with a proof of Fréchet differentiability, starting with uniform

continuity, illustrating important proof ideas. We are following the idea of Penz (2016)

in Corollary 3.44 [13].

Lemma 3.4 The potential-trajectory map ψ[·] is uniformly continuous.

Proof. The potential-trajectory map ψ[·] = U [·]ψ0 is uniformly continuous if

‖U [v + h]ψ0 − U [v]ψ0‖2,∞ = sup
t∈[0,T ]

‖U([v + h], t, 0)ψ0 − U([v], t, 0)ψ0‖2

goes uniformly for all v ∈ V to zero for any zero sequence h → 0 in the V -topology.

The differences of both trajectories can be rearranged as an integral since U([v], t, s)

and U([v + h], t, s) belong to an evolution system (2.6). First, we use property (2.6.1)

of evolution systems to rewrite the difference as a product and second, we make use

of the fundamental theorem of calculus as the considered time evolution operators are



26 3.2 Trajectories and potentials

differentiable in time by property (2.5.4).

(
U([v + h], t, 0)− U([v], t, 0)

)
ψ0

= U([v + h], t, s)U([v], s, 0)
∣∣∣∣s=0

s=t
ψ0

= −
∫ t

0
∂sU([v + h], t, s)U([v], s, 0)ψ0 ds

= +i
∫ t

0
U([v + h], t, s)H([v + h], s)U([v], s, 0)− U([v + h], t, s)H([v], s)U([v], s, 0)ψ0 ds

= +i
∫ t

0
U([v + h], t, s)V ([h], s)U([v], s, 0)ψ0 ds

(3.5)

Next, we estimate the integrand in the `2(d)-topology using the unitarity of the time

evolution operator U([v + h], t, s).

‖U([v + h], t, s)V ([h], s)ψ([v], s)‖2
2 =

N∑
i=1
|h(xi, s)ψ([v], xi, s)|2 ≤ ‖h‖2

V .

We apply the norm of X Definition 3.2 and obtain

‖U [v + h]ψ0 − U [v]ψ0‖X ≤ sup
t∈[0,T ]

∫ t

0

∥∥∥V ([h], s)U([v], s, 0)ψ0

∥∥∥
2

ds

≤ T‖h‖V

Since h → 0 limits to zero in the V -topology, the difference ‖U [v + h]ψ0 − U [v]ψ0‖X
vanishes uniformly for all v ∈ V and therefore U [·]ψ0 is uniformly continuous.

Using uniform continuity, we are able to show continuous differentiability of ψ[·] in form

of Theorem 3.5. This is the main result of this chapter.

Theorem 3.5 The potential-trajectory map ψ[·] is continuously differentiable, i.e. ψ[·] ∈

C1(V,X) with Fréchet derivative DFψ[v, ·] : V → X defined by

DFψ[v, w] =
(
t 7→ −i

∫ t

0
U([v], t, s)V ([w], s)ψ([v], s) ds

)
, ∀t ∈ [0, T ].

Proof. The following proof employs Theorem 2.11. It is based on the idea that we

can obtain Fréchet differentiability of the potential-trajectory map Definition 3.2,

starting with the simpler notion of Gâteaux differentiability. We apply the definition
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of the Gâteaux derivative to the potential-trajectory map ψ[·] for arbitrary h ∈ X

and λ ∈ R (2.8). Following the calculations stated in Lemma 3.4 and performing the

same manipulations as in equation (3.5) yields the following equation for the Gâteaux

derivative with limk→∞ λk = 0 and λk ∈ R.

δGψ([v, h], t) = lim
k→∞

(
U([v + λh], t, 0)− U([v], t, 0)

)
ψ0

λk

= −i lim
k→∞

∫ t

0
U([v + λkh], t, s)V ([h], s)U([v], s, 0)ψ0 ds, ∀t ∈ [0, T ].

Next, we want to apply the dominated convergence theorem in order to interchange

the limit limk→∞ λk = 0 and the integral. We thereof define the sequence of functions

(f([v + λkh]t, s))k∈N with elements

f([v + λkh]t, s) = U([v + λkh], t, s)V ([h], s)ψ([v], s), ∀t, s ∈ [0, T ].

All f([v + λkh]t, s) are uniformly continuous in potentials by Lemma 3.4. Thus, the

sequence of functions is uniformly converging to U([v], t, s)V ([h], s)ψ([v], s). As all

s 7→ f([v + λkh]t, s) and the limit value s 7→ U([v], t, s)V ([h], s)ψ([v], s) are integrable,

we can apply the dominated convergence theorem.

δGψ([v, h], t) = −i
∫ t

0
U([v], t, s)V ([h], s)U([v], s, 0)ψ0 ds, ∀t ∈ [0, T ] (3.6)

In order to identify the map δGψ[v, ·] with the Gâteaux derivative, it has to be linear

and continuous. This is satisfied since V ([h]) is defined to be a multiplicative operator.

It also provides continuity as

‖δGψ[v, h+ w]− δGψ[v, w]‖X = sup
t∈[0,T ]

∥∥∥∥∫ t

0
U([v], t, s)V ([w], s)ψ([v], s) ds

∥∥∥∥
2

≤ T‖w‖V

limits to zero for any zero sequence w → 0 in the V -topology for arbitrary v ∈ V

Definition 3.1. The first rearrangement used linearity and the second followed the

estimation of equation (3.5). Thus δGψ[v, ·] is the Gâteaux derivative of ψ[·].

Now, we show the continuous differentiability of ψ[·] by employing Theorem 2.11. For this

purpose, we have to prove continuity of the Gâteaux derivative in scalar potentials v ∈ V

within the B(V,X)-topology, i.e the continuity of the map v 7→ δGψ[v, ·] ∈ B(V,X).
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Consider the difference

δGψ[v + h,w]− δGψ[v, w]

=
∫ t

0
dsU([v + h], t, s)V ([w], s)ψ([v + h], s)− U([v], t, s)V ([w], s)ψ([v], s)

=
∫ t

0

(
U([v + h], t)− U([v], t)

)
V ([w], s)U [v + h]ψ0

+ U([v], t)V ([w], s)
(
U [v]− U [v + h]

)
ψ0 ds

for arbitrary potentials w ∈ V . We estimate the difference of Gâteaux derivatives of

scalar potentials v, v + h ∈ V in the B(V,X)-topology. We make use of the notation

U([x], t, ·) to denote the map s 7→ U([x], t, s) for arbitrary potentials x ∈ V .

‖δGψ[v + h, ·]− δGψ[v, ·]‖

≤ sup
‖w‖V =1

∫ T

0
ds
∥∥∥(U([v + h], t, ·)− U([v], t, ·)

)
V [w]ψ[v + h]

∥∥∥
2,∞

+
∥∥∥U([v], t, ·)V [w]

(
ψ[v]− ψ[v + h]

)∥∥∥
2,∞

The difference vanishes as ‖h‖V limits to zero since both ψ[·] and U([·], t) which are

acting on a state ψ0 are continuous in the X-topology by Lemma 3.4. More explicitly,

consider the first term of the integrand. It can be estimated to be

∥∥∥(U([v + h], t, ·)− U([v], t, ·)
)
V [w]ψ[v + h]

∥∥∥
2,∞

≤ ‖V [w]‖ sup
‖ψ‖2=1

·
∥∥∥(U([v + h], t, ·)− U([v], t, ·)

)
ψ
∥∥∥

2,∞

≤ ‖V [w]‖ · ‖h‖2,∞

with ‖V [w]‖ being finite since the potential w is continuous in time. Similarly, the

second term vanishes for ‖h‖V → 0.

By Theorem 2.11, ψ[·] is continuously differentiable for all directions h ∈ V with Fréchet

derivative

DFψ[v, h] = δGψ[v, h] =
(
t 7→ −i

∫ t

0
U([v], t, s)V ([w], s)ψ([v], s) ds

)
, ∀t ∈ [0, T ].



Chapter 4

The Potential to Density Map

Within the previous chapter, we formally solved the many-particle Schrödinger problem

on a lattice and established the notion of a potential-trajectory map ψ[·] (Definition 3.2).

Here, we will use this result to discuss how the potential-trajectory map defines physical

quantities, for instance the density and current. We investigate this by introducing

the potential-density map n[·] describing the electron density of the considered many-

particle problem as a function of its scalar potential. Its image, i.e. the set of physical

densities, is proven to be precompact in the space of continuous functions C(X,RN)

with X denoting the trajectory space (Definition 3.2).

Hereafter, we state the existence of lattice TDDFT by proving the Existence theorem

(Theorem 4.11), i.e. the lattice analogue of the extended Runge-Gross theorem [21].

The Existence theorem states that any physical density of a Schrödinger problem can

be uniquely generated by any other auxiliary Schrödinger problem with different initial

state and multi-particle interaction, restricted to arbitrary small time scales. It also

ensures the invertibility of the potential-density map n[·] (Definition 4.1) and thus the

existence of its inverse, the density-potential map v[·].

4.1 The density

Throughout this section, we consider a Schrödinger problem S =
(
ψ0, v,W

)
(Definition

3.1). A trajectory of an evolution system to S defines the probability density function

x 7→ |ψ([v],x, t)|2 for all times t ∈ [0, T ] and lattice configurations x ∈ IN . It describes

the probability of finding particle one at position x1, particle two at position x2 and

so forth. Employing this notion, we can introduce the one-particle density n([v], x)

29
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for lattice site x ∈ I. It is defined to be the marginal distribution of the probability

density function.

n([v], x, t) = N
∑

z∈IN−1

|ψ([v], x, z, t)|2, ∀x ∈ I,∀t ∈ [0, T ]

Within the rest of this thesis, we mostly discuss evolution properties of the one-particle

density. Note, that its first and second time derivative are well-defined as the one-

particle density is twice continuously differentiable in time. For calculating its time

derivatives, it is suitable to express the one-particle density as an expectation value of

linear operators. Time derivatives can then be calculated by employing the Heisenberg

equation of motion, allowing to perform only purely algebraic operations in the form of

commutators. To take advantage of this algebraic approach, we introduce the following

linear operator Πi
x,y with i ∈ {1, ..., N}.

Πi
x,y : `2(d) −→ `2(d)

ψ 7−→ Πi
x,yψ = 1

`
2(M)i−1 ⊗ exe†y ⊗ 1

`
2(M)N−iψ

, ∀x, y ∈ I (4.1)

The operator Πi
x,y maps the subspace of the i-th particle Hilbert space Cey to Cex and

acts as an identity operator on the residual N − 1 single particle Hilbert spaces. For x

equals y, we obtain a projection operator denoted by Πi
x. It projects the i-th particle

component of any state ψ on the basis state ex. For convenience, we might also denote

the linear operator acting on the first particle Hilbert space just by Πx,y respectively

Πx. Employing the notion of Πx, we can rewrite the one-particle density as follows.

n([v], x, t) = N
∑

z∈IN−1

|ψ([v], x, z, t)|2 = N〈Πx〉ψ([v],t). (4.2)

To perform the last rearrangement, we identify the marginal distribution with the

expectation value of the projection operator Πx. We sum over all degrees of freedom,

while keeping the lattice site of the first particle fixed to x which results in a projection

on the basis state ex of the first single particle Hilbert space.

We generalize this notion of the one-particle density by means of the potential-density

map describing the dynamics of the one-particle density for all lattice sites simultane-

ously.
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Definition 4.1 Consider a Schrödinger problem S =
(
ψ0, v,W

)
with arbitrary scalar

potential v ∈ V (Definition 3.1). Its evolution system defines the potential-density

map for fixed initial state ψ0 and multi-particle interaction operator W .

n[·] : V −→ D

v 7−→ n[v] =
 n([v],r1)

...
n([v],rM )

 =

t 7→ N

 〈Πr1
〉ψ([v],t)

...
〈ΠrM 〉ψ([v],t)


 , ∀t ∈ [0, T ]

Its image n[V ] ⊂ D is the set of physical densities and D denotes the Banach space

of all possible densities

D =
(
C([0, T ],RM), ‖ · ‖2,∞

)
.

The potential-density map n[·] is defined by an inner product involving generalized

trajectories ψ[·] (Definition 3.2). Using the Cauchy-Schwarz inequality, continuous

differentiability of ψ[·] implies continuous differentiability of n[·], meaning n[·] ∈ C1(V,D).

Applying Theorem 2.11, we can calculate the Fréchet derivatives DFn[v, ·] by means of

the Gâteaux derivative (Definition 2.8). We consider an arbitrary site x ∈ I and time

t ∈ [0, T ], use the hermicity of the projector Πx and insert the Fréchet derivative of a

generalized trajectory DFψ[v, ·] (Theorem 3.5).

DFn([v, w], x, t) = lim
λ→0

N
〈Πx〉ψ([v+λw],t) − 〈Πx〉ψ([v],t)

λ

= 2N Re〈DFψ([v, w], t),Πxψ([v], t)〉

= −2N
∫ t

0
Im〈U([v], t, s)V ([w], s)ψ([v], s),Πxψ([v], t)〉 ds

Next, we employ the properties of time evolution systems (Definition 2.1.2) and make

use of the adjoint of U([v], t, s)V ([w], s)U([v], s, 0). We introduce the Heisenberg picture

of the operators V ([w], s) and Πx to the Schrödinger problem S (Definition 2.7) and

obtain the following form of the Fréchet derivative.

DFn([v, w], x, t) = −2N
∫ t

0
Im〈V̂ ([w], s, s)Π̂x(t)〉ψ0 ds

= iN
∫ t

0
〈[Π̂x(t), V̂ ([w], s, s)]〉ψ0 ds, ∀v, w ∈ V, ∀t ∈ [0, T ]



32 4.2 The continuity equation and the set of physical densities

Next, we rephrase the integral kernel. We employ the notion of projection operators (4.1)

and reformulate the scalar potential operator V̂ ([w], s, s) (see Definition 3.1, Equation

3.3).

V̂ ([w], s, s) =
∑
x∈I

N∑
j=1

w(x, s)Π̂j
x(s), ∀s ∈ [0, T ] (4.3)

Considering the Fréchet derivative of the full potential-density map n[·], we therefore

get the linear Volterra integral equation of the first kind [22]

DFn([v, w], t) =
∫ t

0
k([v], t, s)w(s) ds, ∀t ∈ [0, T ] (4.4)

with the twice continuously differentiable integral kernel k[v] : [0, T ]2 → B(RM). It is

defined by the matrix elements

k([v], t, s)x,y = iN
N∑
j=1
〈[Π̂x(t), Π̂j

y(s)]〉ψ0 , ∀t ∈ [0, T ],∀x, y ∈ I.

where we employed equation (4.3). Physical wise, the integral kernel k[v] can be

interpreted as a linear response kernel [23].

4.2 The continuity equation and the set of physical

densities

The existence of a non-interacting many-particle quantum system generating the same

density to a given interacting many-particle system is at the very heart of TDDFT

and a Kohn-Sham construction. In order to specify this connection, we like to char-

acterize the set of physical densities in more detail, starting with the continuity equation.

We consider a Schrödinger problem S =
(
ψ0, v,W

)
and investigate its one-particle

density for site x ∈ I, i.e. n([v], x) (Definitions 3.1, 4.1). Its first time derivative defines

the continuity equation of n([v], x) and is given by the Heisenberg equation of motion

for Πx. We employ that Πx commutes both with W and V (t) for all times t ∈ [0, T ]

and obtain

∂tn([v], x, t) = iN〈[T,Πx]〉ψ([v],t). (4.5)
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We only consider the parts of T with non trivial action on the first particle Hilbert

space, as the remaining action commutes with Πx. This results in the hereafter given

equation with ∑y,z∈I Ty,zΠy,z describing the action of T on the first particle Hilbert

space.

∂tn([v], x, t) = iN
∑
y,z∈I

Ty,z〈[Πy,z,Πx]〉ψ([v],t) = −2N
∑
y∈I

ImTy,x〈Πy,x〉ψ([v],t) (4.6)

Next, we introduce the important notion of the complex link current, allowing to

reformulate the continuity equation.

Definition 4.2 We define the hermitian complex link current by Q[v] : I2 →

C1([0, T ],C) with

Q([v], t)y,x = 2NTy,x〈Πy,x〉ψ([v],t), ∀t ∈ [0, T ].

where ψ[·] is the potential-trajectory map (Definition 3.2). The imaginary part of the

complex link current denotes the link current

J [v]y,x = ImQ[v]y,x ∀x, y ∈ I.

The matrix elements of the complex link current Q([v], t)y,x describe the correlation of

particle configurations 〈Πx,y〉ψ([v],t) for sites x, y ∈ I, weighted by the linking transition

rate Ty,x. It is therefore denoted as complex link current and its definition results in

the final form of n([v], x)’s continuity equation.

∂tn([v], x, t) = −
∑
y∈I

J([v], t)y,x (4.7)

The continuity equation thus relates the rate of change of the density to the sum of

all link currents pointing towards site x. It allows to limit the set of physical densities

in more detail. As opposed to a quantum system defined on a continuous state space,

continuity of scalar potentials, i.e. v ∈ V , is sufficient for physical densities being twice

continuously differentiable, meaning n[V ] ⊂ C2([0, T ],RN) ⊂ D. This is due to the

vanishing of the commutator [V,Πx] in the continuity equation (4.5) for a one-particle

density for arbitrary lattice site x ∈ I. Thus we can apply the Heisenberg equation
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of motion twice and by continuity of H[v] and ψ[v] in time, t 7→ ∂2
t n([v], x, t) is also

continuous.

∂2
t n([v], x, t) = iN∂t〈[T,Πx]〉ψ([v],t) = −N〈[H([v], t), [T,Πx]]〉ψ([v],t).

Moreover, it provides the boundedness of the first time derivative of the density which

is an inherent characteristic of discrete quantum mechanics which was discussed by

Farzanehpour and Tokatly (2012) [8]. Here, we present a formalized proof.

Theorem 4.3 The set of physical densities n[V ] is uniform Lipschitz continuous in

time with universal Lipschitz constant L = M3/2Jmax and maximal link current Jmax =

2N maxy,x∈I |Ty,x|.

Proof. Consider a density n[v] for an arbitrary scalar potential v ∈ V . Its one-particle

densities obey the continuity equation with Q[v] denoting the complex link current

(Definition 4.2).

∂tn([v], x, t) = −
∑
y∈I

J([v], t)y,x = −
∑
y∈I

ImQ([v], t)y,x, ∀x ∈ I,∀t ∈ [0, T ].

Any link current along a link can be estimated using the Cauchy-Schwarz inequality.

We employ the definition of a one-particle density (see Equation (4.2)) and that any

physical state is of norm one.

|J([v], t)y,x| ≤ |Q([v], t)y,x| = 2|Ty,x| · |N〈Πy,x〉ψ([v],t)|

≤ 2|Ty,x| · |N〈Πy〉ψ([v],t)| · |N〈Πx〉ψ([v],t)|

= 2|Ty,x|
√
n([v], y, t)n([v], x, t)

≤ Jmax

∀x ∈ I,∀t ∈ [0, T ]

The maximal link current is defined to be Jmax = 2N maxy,x∈I |Ty,x|. In consequence,

the continuity equation of a one-particle density can be estimated as follows,

|∂tn([v], x, t)| ≤MJmax, ∀x ∈ I,∀t ∈ [0, T ],

and the generalized mean-value theorem yields Lipschitz continuity for all elements of
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the set n[V ] with an overall Lipschitz constant L = M3/2Jmax. The pre factor of M3/2

is due to the used Euclidean norm of RM .

‖n([v], t)− n([v], t′)‖ ≤M3/2Jmax|t− t′|, ∀v ∈ V, ∀t, t′ ∈ [0, T ].

Following Theorem 4.3, the change in time of a physical density n ∈ n[V ] is always

bounded by the universal Lipschitz constant L. Physical-wise, this is based on the finite

energy spectrum of lattice systems because of the finite dimensional state space `2(d).

A change of a one-particle density is caused by a change of a trajectory component

transitioning from one basis state to another one. This transition corresponds to a

change in energy that is limited by the finite amount of hopping elements, i.e. the

linking transition rates Tx,y. By continuity of scalar potentials v ∈ V , the trajectory

cannot change its energy arbitrarily fast. In consequence, the change of a one-particle

density has to be bounded. This inherent characteristic of quantum mechanics on

discrete state spaces yields the following very important conclusion of precompactness

of n[V ] ⊂ D.

Corollary 4.4 The set of physical densities n[V ] is relatively compact in D.

Proof. To prove precompactness, we can apply the theorem of Arzela-Ascoli because the

set of physical densities n[V ] is a subset of the continuous function spaceN equipped with

the supremum norm. We therefore prove for equicontinuity and point-wise boundedness.

The first follows directly by Theorem 4.3. The latter is a direct consequence of the time

evolution being unitary, thus preserving the norm of any initial state. Any one-particle

density n([v], x, t) of a physical density can be estimated by |n([v], x, t)| = 〈Πx〉ψ0 ≤ 1

for all x ∈ I and t ∈ [0, T ]. This yields point-wise boundedness of the set n[V ].

sup
t∈[0,T ]

{
‖n([v], t)‖2

∣∣∣ ∀v ∈ V } ≤ N

In consequence, the theorem of Arzela-Ascoli can be applied, proving that n[V ] is

relatively compact in D.
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To conclude this section, we introduce the concept of v-representable densities. It is an

important generalization of the notion of physical densities. The latter are a special case

of a set of v-representable densities since they have the initial state ψ0 and multi-particle

interaction operator W fixed.

Definition 4.5 A density n ∈ N is called v-representable if and only if a Schrödinger

problem S =
(
ψ0, v,W

)
exists such that the potential-density map reproduces the exact

same density n = n[v].

A density n is denoted by non-interacting or interacting v-representable if and only

if the multi-particle interaction operator W is set to be zero or non-zero.

4.3 Existence of lattice TDDFT

We introduce the Existence theorem (Theorem 4.11), i.e. the lattice analogue of the

extended Runge-Gross theorem [21]. The Existence theorem states the existence of a

unique function that maps between two different Schrödinger problems - both generating

the same density which is restricted to arbitrary small time scales. It also implies

the invertibility of the potential-density map n[·] (Definition 4.1). We establish the

Existence theorem by introducing the force balance equation as one of the fundamental

equations of TDDFT, relating physical densities and corresponding scalar potentials.

This section refers to Farzanehpour and Tokatly (2012) and aims to point out possible

problems emerging for a Kohn-Sham construction [8]. Throughout this section we

consider a Schrödinger problem S =
(
ψ0, v,W

)
with an arbitrary scalar potential v ∈ V

(Definitions 3.1, 3.1).

We start with an investigation of the relation between densities and potentials. A

manifest connection of both notions can be obtained by differentiating the continuity

equation for an arbitrary one-particle density n([v], x) (4.7). The second derivative of

the one-particle density n([v], x) is denoted by the force balance equation.
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∂2
t n([v], x, t) = −

∑
y∈I

∂tJ([v], t)y,x

= 2N
∑
y∈I

ReTy,x〈[H([v], t),Πy,x]〉ψ([v],t)

= 2N
∑
y∈I

ReQ([v], t)y,x[v(y, t)− v(x, t)] + q([v], x, t)

(4.8)

First, we simply apply the Heisenberg equation of motion to the continuity equation

(4.7) and second, we calculate the commutator, performing similar manipulations as in

equation (4.6). Note, that the commutator of V (t) and Πy,x can be identified with the

real part of the complex link current Q([v], t)y,x times the difference of scalar potentials

on the respective sites v(y, t)−v(x, t) (Definition 4.2). This emphasizes a direct relation

between the link current and the force balance equation. We denote the residual

commutator [T +W,Πy,x] by q([v], x, t).

q([v], x, t) = −2N
∑
y∈I

ReTy,x
(
〈[T,Πy,x]〉ψ([v],t) + 〈[W,Πy,x]〉ψ([v],t)

)
(4.9)

Note that equation (4.8) is identified with a force balance equation because from a

physical point of view, the first derivative of the current can be interpreted as a force

acting on the electrons at lattice site x. In accordance with this, q([v], x, t) describes the

internal stress force of the Schrödinger problem [24]. Its first term denotes the lattice

analogue of a kinetic force F ([v], x, t)kin. It includes the forces related to kinetic effects

induced by the hopping rate and contains a symmetric second rank tensor T ([v], t)

which can be understood as the lattice analogue of the stress tensor of a non-interacting

quantum system [25].

F ([v], x, t)kin = −N
∑
y∈I

ReTy,x
(
〈[T,Πy,x]〉ψ([v],t)

)
= −N

∑
y∈I

T ([v], t)x,y

The second term of the internal stress force q([v], x, t) is of the same form as F ([v], x, t)kin

but with the kinetic energy operator T replaced by the multi-particle interaction operator

W . We thus, in analogy to F ([v], x, t)kin, identify it with the lattice analogue of the

forces related to the interaction effects between the electrons.
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F ([v], x, t)int = −N
∑
y∈I

ReTy,x
(
〈[W,Πy,x]〉ψ([v],t)

)
The remaining expression

F ([v], x, t)ext = 2
∑
y∈I

ReQ([v], t)y,x[v(y, t)− v(x, t)]

= 2
∑
y∈I

Re

Q([v], t)x,y − δx,y
∑
z∈I

Q([v], t)z,x

v(y, t)

corresponds to the external forces induced by the scalar potential [24]. We obtain the

second equality by rewriting the scalar potential v(x, t). We introduce an additional

sum with a Kronecker delta, i.e. v(x, t) = ∑
z∈I δx,zv(z, t) and interchange the indices z

and y. From a physical point of view, the real part of the complex link current can be

interpreted as the lattice analogue of the gradient of the scalar potential, in analogy to

the notion of a conservative force. Taking all this into account, equation (4.8) can be

rewritten as the following balance of forces,

∑
y∈I

∂tJ([v], t)y,x = F ([v], x, t)kin + F ([v], x, t)int + F ([v], x, t)ext,

illustrating its name as force balance equation.

For further investigations, we want to consider the force balance equation for all

componentes of a physical density n[v]. Therefore we rephrase it by introducing, similar

to the continuous case of TDDFT, the lattice Sturm-Liouville operator [8].

Definition 4.6 The lattice Sturm-Liouville operator is defined to be the map

K[v] : [0, T ]→ B(RM) given by a self-adjoint matrix with the following entries

K([v], t)x,y = 2 Re

Q([v], t)x,y − δx,y
∑
z∈I

Q([v], t)x,z

, ∀t ∈ [0, T ],∀x, y ∈ I

with the complex link current Q[v] (Definition 4.2). The lattice Sturm-Liouville operator

for a specific state ψ ∈ `2(d)A is denoted by the self-adjoint linear map K(φ) ∈ B(RM)

where the trajectory ψ[v] (Definition 3.2) in the complex link current is replaced by the
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state φ.

We insert the lattice Sturm-Liouville operator in the force balance equation (4.8) and

obtain its following representation for the Schrödinger problem S =
(
ψ0, v,W

)
with

arbitrary scalar potential v ∈ V .

K([v], t)v(t) = ∂2
t n([v], t)− q([v], t), ∀t ∈ [0, T ] (4.10)

From an intuitive point of view, the force balance equation seems to be suitable to

relate two different Schrödiner problems both generating the same density. This is

based on the force balance equation linearly depending on physical densities and on

the lattice Sturm-Liouville operator directly coupling to the scalar potential v. The

first allows to replace the physical density n[v] by an arbitrary density ñ[ṽ] of a second

auxiliary Schrödinger problem S̃ =
(
ψ̃0, ṽ, W̃

)
. The latter enables us to solve for the

scalar potential v by inverting the lattice Sturm-Liouville operator. In order for the

Schrödinger problem S to generate the exact same density ñ[ṽ], we have to uniquely

solve for the scalar potential v via the coupled system of equations

(i) K([v], t)v(t) = ∂2
t ñ([ṽ], t)− q([v], t),

(ii) idψ(t)
dt = H([v,W ], t)ψ(t),

∀t ∈ [0, T ]. (4.11)

Note, that the density itself enters equation (4.11, i) by means of its second derivative.

Thus, generating the exact same physical density ñ[ṽ] of Schrödinger problem S̃ requires

additional constraints on the given initial state ψ(0) = ψ0. The initial state ψ0 has to

be chosen such that the density of the Schrödinger problem S and its first derivative

match with the corresponding values of the density of the Schrödinger problem S̃. The

values of n(0) and ∂tn(0) to a given initial stated are denoted by the initial data I(ψ0).

Definition 4.7 The tupel I(ψ0) =
(
(n(0), ∂tn(0)

)
denotes the following initial data of

density and its first derivative fitting the initial state ψ0.

n(x, 0) = 〈Πx〉ψ0 , ∂tn(x, 0) = −2N
∑
y∈I

ImTy,x〈Πy,x〉ψ0 , ∀x ∈ I



40 4.3 Existence of lattice TDDFT

We consider the system of coupled equations (4.11) as a starting point for further

investigations. We stated the general idea of reducing the problem of relating two

Schrödinger problems generating the same density to a problem of unique solutions

to a system of coupled equations. There are different approaches to investigate this

problem. For instance, there exists a global fixed point approach by Ruggenthaler et

al. (2015) [10]. Within the hereafter section, we present a different approach. We

reformulate the considered system of coupled equations (4.11) as a non-linear differential

equation and employ the theorem of Picard-Lindelöf to prove for uniqueness [12].

4.3.1 The Existence theorem

The very beauty of the force balance equation is reasoned in the lattice Sturm-Liouville

operator, allowing for a Picard-Lindelöf theorem based approach of relating two

Schrödinger problems S =
(
ψ0, v,W

)
and S̃ =

(
ψ̃0, ṽ, W̃

)
. The general idea of

this approach is to construct the scalar potential v to the given density ñ[ṽ], henceforth

denoted by ñ, via a point-wise inversion in time of the lattice Sturm-Liouville operator

in equation (4.11, i). For this purpose, we restrict the state space `2(d)A to Ω ⊆ `2(d)A.

It is defined to be the subset of `2(d)A for which the lattice Sturm-Liouville operator is

guaranteed to be invertible (see Definition 4.9). We also replace ψ[v] in K[v] and q[v]

(Definition 4.6, Equation (4.9)) by arbitrary states ψ(t) within that subset and obtain

v([ñ], ψ(t), t) = K−1(ψ(t))
{
∂2
t ñ(t)− q(ψ(t))

}
, ∀t ∈ [0, T ]

Then we insert the resulting scalar potential v([ñ], ψ(t), t) into the Schrödinger problem

and obtain its related non-linear differential equation. It is denoted by non-linear

Schrödinger problem as the Hamilton operator both depends on the states ψ(t). Also

note that the non-linear Schrödinger problem depends on the density ñ itself.

idψ(t)
dt =

(
T + V ([ñ], ψ(t), t) +W

)
ψ(t),

ψ(0) = ψ0 ∈ Ω
(4.12)

Under the right conditions, the Picard-Lindelöf theorem states the existence of unique

solutions on the restricted subset Ω and thus the existence of the desired scalar potential

v. In the following, we are going to formulate this idea with more mathematical rigour,

starting with a discussion about the invertibility of the lattice Sturm-Liouville operator.
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We will show that the rank of the lattice Sturm-Liouville operator is at most M − 1.

Note that by Gauge symmetry every diagonal element of K(ψ) with ψ ∈ `2(d)A is the

negative sum of the related matrix row, meaning

K(ψ)x,x = −
∑

y 6=x,y∈I
K(ψ)x,y

such that any space constant vector c = ∑M
i=1 ei satisfies the equation

K(ψ)c = 0.

Thus, any space constant vector c is an element of K(ψ)’s kernel, i.e. dim kerK(ψ) ≥ 1.

This implies that the lattice Sturm-Liouville operator K(ψ) is not invertible on its

domain RM for any state. Equivalently, the algebraic multiplicity of the eigenvalue

λ = 0 is at least one. As we want to invert the lattice Sturm-Liouville operator, we only

consider vectors x ∈ RM being orthogonal to the space constant vector c = ∑M
i=1 ei,

meaning

x ∈ span({c})⊥ ≡
{
x ∈ RM |〈x, c〉 = 0

}
(4.13)

Therefore, we introduce the orthogonal projection P : RM → span({c})⊥ and its

right-inverse E : span({c})⊥ → RM and define the reduced lattice Sturm-Liouville

operator Kr(ψ) for ψ ∈ `2(d)A.

Kr(ψ) ≡ P ◦K(ψ) ◦ E : span({c})⊥ → span({c})⊥ (4.14)

Invertibility of K(ψ) is from this point on equivalent to the invertibility of the reduced

lattice Sturm-Liouville operator Kr(ψ). In case of the force balance equation, this

means to exclude the purely time-dependent space constant vectors from the space of

potentials V . This uniqueness modulo a time-dependent space constant is typical for

TDDFT. By gauge symmetry this shift corresponds to adding a complex phase to the

wave function that has no influence of the associated density.
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Definition 4.8 We define the Banach space of reduced potentials Vr = {v ∈ V | ∀t ∈

[0, T ] : 〈v(t), c〉 = 0} to be the orthogonal complement to the subspace spanned by all

space constant potentials equipped with the induced norm of V . Analogously, we define

Vr|τ to be the restricted Banach space of reduced potentials Vr where we restrict the time

domain of its underlying continuous functions to [0, τ ] ⊆ [0, T ].

The reduced lattice Sturm-Liouville operator Kr(ψ) is invertible if and only if it is of

full rank. The rank explicitly depends on the chosen state ψ ∈ `2(d)A and thus on the

state space itself. Accordingly, we restrict the state space to the subset of K-invertible

states Ω ⊆ `2(d)A. It is defined to be the set of states for which the reduced lattice

Sturm-Liouville operator is of full rank.

Definition 4.9 Define Ω ⊆ `2(d)A to be the subset of K-invertible states such that

rank(K(ψ)) = M − 1 or equivalently dim kerK(ψ) = 1 for ψ ∈ Ω.

Firstly, it is important to mention that the set of K-invertible states is non-empty. By

Farzanehpour and Tokatly (2012) it was shown that any groundstate of an arbitrary

Hamilton operator is element of Ω, allowing for the existence of solutions to Schrödinger

problems on Ω ⊆ `2(d)A [8].

Secondly, the set of K-invertible states Ω is independent of the considered homogeneous

Schrödinger inital value problem. It only depends on the kinetic energy operator T .

Employing the definition of the reduced lattice Sturm-Liouville operator (4.14), a state

ψ is element of Ω if and only if the the reduced lattice Sturm-Liouville operator is of

full rank.

ψ ∈ Ω↔ detKr(ψ) 6= 0 (4.15)

Note that the matrix elements of Kr are linear combinations of complex link currents

because Kr is defined via projections acting on K (Definition 4.6). As we replace

trajectories ψ[v] by ψ within the complex link current, Kr only depends on the kinetic

energy operator T . Thus, keeping T fixed for all considered physical systems and only

varying scalar potentials v ∈ Vr and multi-particle interaction operators W , the set of

K-invertible states Ω remains unchanged.

Finally note, by restricting the state space of the non-linear Schrödinger problem to Ω,

we change the domain of the Hamilton operator to domH = [0, T ] × Ω. This means
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that a maximal solution ψ to a given physical density ñ might only exist within a

restricted time interval of [0, T ]. This is the case if and only if the trajectory reaches

the boundary of Ω at some point in time. To ensure the existence of solutions on a

closed time interval, we introduce the time of existence.

Definition 4.10 Consider the non-linear Schrödinger problem (4.12) to a Schrödinger

problem S with physical density ñ. The time of existence τ ∗ñ ∈ (0, T ] defines the time

interval [0, τ ∗ñ] for which a solution of the non-linear Schrödinger problem exists.

Finally, we can sate the Existence theorem of TDDFT, i.e. the lattice analogue of

the well-known extended Runge-Gross theorem [21]. It enables to introduce a rigorous

formulation of a possible Kohn-Sham construction (see Chapter 5), which is at the very

heart of this thesis. We follow the proof idea of Farzanehpour and Tokatly (2012) [8].

Theorem 4.11 (Existence theorem) Let S̃ =
(
ψ̃0, ṽ, W̃

)
be a Schrödinger problem

with an initial state ψ̃0 ∈ Ω and scalar potential ṽ ∈ Vr. Its physical density ñ[ṽ] is

denoted by ñ. Consider the Schrödinger problem S =
(
ψ0, v,W

)
with arbitrary scalar

potential v ∈ Vr and initial state ψ0 ∈ Ω with the initial data I(ψ0) = I(ψ̃0). Then,

there exists a scalar potential v which is uniquely determined within times [0, τ ∗ñ] such

that n[v] generates the density ñ in the time interval [0, τ ∗ñ]. The time τ ∗ñ denotes the

time of existence of S to the density ñ.

Proof. We want to uniquely solve for the scalar potential v via the system of coupled

equations (4.11) involving the physical density ñ of S̃.

(i) K([v], t)v(t) = ∂2
t ñ(t)− q([v], t),

(ii) idψ(t)
dt = H([v,W ], t)ψ(t),

∀t ∈ [0, T ] (4.16)

For this purpose, we first restrict the state space to the set of K-invertible states Ω

(Definition 4.9). This guarantees point-wise invertibility of K([v], t) for all trajectories

with initial state ψ0 ∈ Ω. Next, we want to solve for the trajectories ψ[v] and invert the

lattice Sturm-Liouville operator K([v], t) in the force balance equation (4.16, i). This
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yields the scalar potential as a function of the physical density.

v([ñ], ψ, t) = K−1(ψ)
{
∂2
t ñ(t)− q(ψ, t)

}
, ∀t ∈ [0, T ] (4.17)

We insert the potential v([ñ], ψ, t) into the Cauchy problem (4.16, ii) and check for the

existence of solutions to the resulting non-linear Schrödinger problem on Ω.

idψ(t)
dt =

(
T + V ([ñ], ψ(t), t) +W

)
ψ(t),

ψ(0) = ψ0 ∈ Ω,
∀t ∈ [0, T ] (4.18)

By Farzanehpour and Tokatly (2012) it was shown that this non-linear Schrödinger

problem has a unique continuous solution ψ up to the time of existence τ ∗ñ [8]. Inserting

the related solution ψ into equation (4.17) yields the demanded continuous scalar

potential, i.e. the unique solution of the system of coupled equations (4.16) for a density

n. Note that we restricted the considered time interval as ψ is only defined up to its

time of existence τ ∗ñ (Definition 4.10).

v|τ∗ñ ≡ v([ñ], t) = K−1([ñ], t)
{
∂2
t n(t)− q([ñ], t)

}
, ∀t ∈ [0, τ ∗ñ]. (4.19)

As the scalar v|τ∗ñ is a unique solution, the difference of n[v|τ∗ñ ]’s and ñ’s force balance

equations is given by

∂2
t n([v|τ∗ñ ], t)− ∂2

t ñ(t) = 0, ∀t ∈ [0, τ ∗ñ].

Hence, both densities are equivalent as the initial data of both Schrödinger problems

(Definition 4.7) is assumed to be equivalent, i.e. I(ψ0) = I(ψ̃0). In consequence,

we define the scalar potential v to be any continuous continuation of v|τ∗ñ in the set

of reduced scalar potentials Vr such that the Schrödinger problem S =
(
ψ0, v,W

)
generates the physical density ñ of S̃ up to a time of existence τ ∗ñ.

The Existence theorem is of major importance for an introduction of a Kohn-Sham

construction (see Chapter 5). We can always choose the special case of a non-interacting

Schrödinger problem S̃, i.e. with vanishing multi-particle interaction operator W̃ . In

consequence, an arbitrary interacting Schrödinger problem S can be mapped to the
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non-interacting Schrödinger problem S̃ generating the exact same density up to some

time of existence. This means that we can always reduce the amount of complexity of

the initially stated Schrödinger problem as we switch from a system of N coupled to N

decoupled ordinary differential equations. For a more detailed discussion see Chapter 6.

We want to present another important consequence of the Existence theorem. It also

ensures the injectivity of the potential-density map n[·], i.e. lattice analogue of the

well-known Runge-Gross theorem [7].

Corollary 4.12 Consider a Schrödinger problem S =
(
ψ0, v,W

)
with fixed initial state

ψ0 ∈ Ω and arbitrary scalar potential v ∈ Vr. Then the potential-density map n[·] is

injective on

Vr|τ∗ =
{
v|τ∗n[v]

∣∣∣ v ∈ Vr}
which incorporates all scalar potentials v ∈ Vr with their time domain being restricted by

the time of existence τ ∗n[v]. The inverse of the potential-density map n[·]|Vr|τ∗ is denoted

by the density-potential map v[·].

Proof. The density to the considered Schrödinger problem S is denoted by n = n[v].

We employ the Existence theorem and set the Schrödinger problem S̃ to be equivalent

to S. Then, there exists a time of existence τ ∗n and a scalar potential

v|τ∗n ≡ v([n], t) = K−1([n], t)
{
∂2
t n(t)− q([n], t)

}
, ∀t ∈ [0, τ ∗n] (4.20)

that uniquely reproduces the density n, i.e. n([v|τ∗n ], t) = n(t) for times t ∈ [0, τ ∗n]. Note

that the above result is valid for any scalar potential v ∈ Vr as v was assumed to be

arbitrary. By uniqueness of v|τ∗n[v]
, we conclude injectivity of n[·] on Vr|τ∗ . We denote

its inverse by the density-potential map v[·] : n[Vr|τ∗ ]→ Vr|τ∗ with its action given by

equation (4.20).

It is important to note that both the Existence theorem (Theorem 4.11) and Corollary

4.12 employ different times of existence. Within the Existence theorem, we relate a

Schrödinger problem S to an auxiliary Schrödinger problem S̃. In consequence, the

stated time of existence τ ∗ñ of S depends on the physical density ñ of S̃. In case

of Corollary 4.12, we take the Schrödinger problem S as its own reference system,
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therefore τ ∗n can be identified with the existence time to its own physical densities. This

distinction is of major importance because the first allows to relate different Schrödinger

problems and the latter for injectivity. Employing both notions yields the following

corollary.

Corollary 4.13 Consider two Schrödinger problems S =
(
ψ0, v,W

)
and S̃ =

(
ψ̃0, ṽ, W̃

)
with arbitrary scalar potentials v, ṽ ∈ Vr and intitial states ψ0, ψ̃0 ∈ Ω with I(ψ0) = I(ψ̃0).

The related times of existence are denoted by τ ∗ and τ̃ ∗. We define the common time

of existence to a given scalar potential v,

τ ∗v ≡ min{τ ∗n[v], τ
∗
ñ[v], τ̃

∗
ñ[v], τ̃

∗
n[v]},

such that both potential-density maps n[·] and ñ[·] define a bijection on the set of scalar

potentials

V =
{
v|τ∗v | v ∈ Vr

}
with identical image D = n[V] = ñ[V], meaning that D is v-representable for both

Schrödinger problems S and S̃ (Definition 4.5).

Proof. First, note that both potential-density maps n[·] and ñ[·] are well-defined on the

domain of scalar potentials V as it consists of continuous functions defined on compact

time intervals [0, τ ∗v ] ⊆ [0, T ]. Next, note that the common time of existence τ ∗v is

bounded by the times of existence of both Schrödinger problems to its own physical

densities, i.e.

τ ∗n[v], τ̃
∗
ñ[v] ≥ τ ∗v , ∀v ∈ Vr.

We can therefore employ Corollary 4.12 and prove n[·] and ñ[·] to be injective on V.

To prove for n[V ] to be identical to ñ[V ], note that τ ∗v is also bounded by the maximal

time of existence of Schrödinger problem S̃ to any density of S and vice versa, i.e.

τ ∗ñ[v], τ̃
∗
n[v] ≥ τ ∗v , ∀v ∈ Vr.

By the Existence theorem, both Schrödinger problems create the exact same densities

which yields n[V ] = ñ[V ].
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4.3.2 The set of K-invertible states and the time of existence

Within this section, we investigate the relation of the time of existence and the set of

K-invertible states in more detail (Definitions 4.10, 4.9). We explicitly state necessary

conditions for the invertibility of the lattice Sturm-Liouville operator (Definition 4.6).

We proceed with an investigation of a common non-zero time of existence for all scalar

potentials (Definition 4.10) to a given initial state and multi-particle interaction operator

and discuss why neither the Existence theorem (Theorem 4.11) nor injectivity of the

potential-density map (Corollary 4.12) can be established for all densities being defined

on a uniform non-zero time domain.

The set of K-invertible states Ω is defined to be the set of states for which the lattice

Sturm-Liouville operator K(ψ) is of constant rank M − 1 or, respectively, the reduced

lattice Sturm-Liouville operator Kr(ψ) of full rank (see Equation (4.14)).

ψ ∈ Ω↔ detKr(ψ) 6= 0

By restricting the discussion to K-invertible states only, solutions to the related non-

linear Schrödinger might not be global, meaning that the time of existence is smaller

than T . The latter is caused by a lower rank of K(ψ) as a consequence of linear

dependence or vanishing of columns or rows. To investigate this issue in more detail,

we relate the lattice Sturm-Liouville operator and the continuity equation (4.7). The

first is defined to be the real part of a linear combination of the matrix elements of the

complex link current Q(ψ),

K(ψ)x,y = 2 Re

Q(ψ)x,y − δx,y
∑
z∈I

Q(ψ)x,z

, ∀x, y ∈ I,

whereas the link current J(ψ) of the continuity equation equals the imaginary part of

the complex link current (Definition 4.2). Note that we replace the trajectory ψ[v] in

J [v] by an arbitrary state ψ ∈ Ω and thus write J(ψ) instead of J [v]. We identify the

off-diagonal elements of both K(ψ) and J(ψ) by means of

K(ψ)x,y = ReQ(ψ)x,y, J(ψ)x,y = ImQ(ψ)x,y, x 6= y ∈ I
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We rewrite the matrix elements of the complex link current via its real and imaginary

part and take its squared norm, resulting in the following constraint on the matrix

elements of the lattice Sturm-Liouville operator.

|Q(ψ)x,y|2 = |J(ψ)x,y|2 + |K(ψ)x,y|2, x 6= y ∈ I (4.21)

By the above decomposition of the complex link current, we can deduce that K(ψ)x,y
is zero if and only if |Q(ψ)x,y| = |J(ψ)x,y|. With this in mind, consider a fixed site

x0 ∈ I and assume |Q(ψ)x0,y| = |J(ψ)x0,y| for all sites y 6= x0 ∈ I. As all ReQ(ψ)x0,y

are vanishing, the related diagonal matrix element K(ψ)x0,x0 is also calculated to be

zero.

K(ψ)x0,x0 = −2
∑
z 6=x0

ReQ(ψ)x0,z = 0

In consequence, a complete matrix row of K(ψ) is vanishing, meaning that the rank of

the lattice Sturm-Liouville operator is at most of M − 2. We thus conclude that a state

ψ is not an element of Ω if all off-diagonal link currents J(ψ)x0,y are of the same norm

as the complex link current Q(ψ)x0,y for all y 6= x0.

Another necessary condition for ψ to be element of Ω is the non-vanishing of its one-

particle densities. As we consider a specific state ψ, we replaced trajectories ψ[v] by

ψ and denote the one particle density by n(ψ, x) (see Equation (4.2)). If we assume

n(ψ, x) to be zero,

n(ψ, x) =
∑

z∈IM−1

|ψ(x, z)|2 = 〈Πx〉ψ = 0, (4.22)

implying ψ(x, z) to be zero for z ∈ IM−1. In consequence, the complex link current

Q(ψ)x,y vanishes for all y ∈ I,

Q(ψ)x,y = Tx,y〈Πx,y〉ψ = Tx,y
∑

z,z̃∈IM−1

ψ∗(x, z)ψ(y, z̃) = 0,

implying that the rank of K(ψ) has to be at most M − 2.

We want to state an example for the above discussion. It illustrates that a van-

ishing density component n(ψ, x) = 0 is not a sufficient condition for a state ψ to be

element of Ω. For this purpose, we consider the following example of a Schrödinger
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problem S =
(
ψ0, v,W

)
with an initial state ψ0 ∈ Ω and scalar potential v ∈ Vr

(Definition 4.8). We choose both ψ0 and v such that the time evolution of the given

initial state ψ0 ∈ Ω reaches the boundary of Ω by reason of its current being of the

same norm as the complex link current. The density is shown to be non-zero within

the whole time interval.

Suppose we are only considering a one particle problem and a two dimensional state

space, meaning N = 1 and M = 2 with state space `2(2) ∼= C2. The most general

Hamilton operator is of the form

H([v], t) = T + V ([v], t) =

v(1, t) T1,2

T ∗1,2 v(2, t)

 , ∀t ∈ [0, T ] (4.23)

with hopping rate T1,2 ∈ C and scalar potential v = v(1)e1 + v(2)e2 ∈ V = C([0, T ],R2)

(Definition 3.1). We consider the corresponding lattice Sturm-Liouville operator, reading

K([v], t) =

−K([v], t)1,2 K([v], t)1,2

K([v], t)1,2 −K([v], t)1,2

 , ∀t ∈ [0, T ] (4.24)

with K([v], t)1,2 = 2 ReT1,2〈Π1,2〉ψ([v],t). In agreement with the discussion of Section

4.3.1, the kernel of K([v], t) is at least one dimensional as two rows of K([v], t) are

linearly dependent such that the space constant vector c = e1 + e2 is an eigenvector

with eigenvalue zero. We thus identify the set of reduced potentials Vr by

Vr =
{(
−w
w

) ∣∣∣ w ∈ C([0, T ],R)
}

and set v(1, t) = −v(2, t) = t for all t ∈ [0, T ]. To choose the initial state ψ0, we first

characterize Ω ∈ C2 explicitly. The set of K-invertible states Ω is characterized by the

non-vanishing determinant of the reduced lattice Sturm-Liouville operator Kr(ψ) (see

Equation (4.14)). The operator is identified to be Kr(ψ) = −k(ψ)1,2 = 2 ReT1,2〈Π1,2〉ψ,

implying that

ψ ∈ Ω↔ ReT1,2〈Π1,2〉ψ 6= 0

To ensure ψ0 ∈ Ω, we choose the initial state ψ0 = (e1− e2)/
√

2, i.e. the ground-state of

H([v], 0). The resulting time evolution with fixed hopping rate T1,2 = 0.5 and maximal

time T = 5 is shown in Figure 4.1.
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Fig. 4.1: We consider a N = 1 particle, M = 2 site Schrödinger problem with the initial state
ψ0 = (e1 − e2)/

√
2 and Hamilton operator H[v] (4.23). The hopping rate is set to

be T = 0.5 and scalar potential v(1, t) = −v(2, t) = t for all t ∈ [0, 5].
(a) Time evolution of the density n([v], 1) and n([v], 2) on site one and two.
(b) Time evolution of the real and imaginary part of the complex link current Q[v]1,2,
i.e. K[v]1,2 and J [v]1,2.

Plot (a) presents the time evolution of the electron density for lattice site one and

two, i.e. n([v], 1) and n([v], 2) and plot (b) the related matrix element of the lattice

Sturm-Liouville operator K[v]1,2 and the current J [v]1,2. Considering plot (a), both

densities are non-zero within the considered time interval. The electron density n([v], 1)

decreases within the first moments of time, as the potential acting on site one increases

linearly starting with small values. With increasing time, the hopping rate T1,2 gets

small compared to the spectrum of H([v], t), i.e. |T1,2/ε| � 1 for all energies ε ∈ σ(H).

The kinetic energy operator therefore acts as a small perturbation to the scalar potential

V ([v], t). In consequence, the trajectory oscillates with a decreasing amplitude around

a linear combination of the eigenvectors of V ([v], t). Note that the magnitude of
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occupation of each site severely depends on the hopping rate T1,2. As long as the

hopping is of the same magnitude as the energy spectrum, the effective amount of

electrons is increasing on site two due to its lower potential compared to site one.

By the continuity equation, the current J [v]1,2 reaches its local maximum for any

inflection point of n([v], 1) and n([v], 2). In agreement with equation (4.21) the matrix

element of the lattice Sturm-Liouville operator turns zero. In consequence, the trajectory

ψ[v] reaches the boundary of Ω such that the time of existence τ ∗n has to be necessarily

smaller than T = 5 and is τ ∗n = 1.308 for the given potential v.

4.3.3 The uniform time of existence

Consider a Schrödinger problem S with fixed initial state ψ0 ∈ Ω (Definition 4.9) and

multi-particle interaction operator W . We keep its scalar potential v ∈ Vr (Definition

4.8) arbitrary and investigate the possibility of a common non-zero time scale of existence,

i.e. the uniform time of existence

τmin ≡ inf
v∈Vr

{
τ ∗n[v]

}
> 0, (4.25)

employing both necessary conditions derived within the last section. Following the

discussion of the one-particle density (see Equation (4.2)), a state ψ is element of the

K-invertible states Ω if all one-particle density components are non-zero (see Equation

(4.2)). As the initial state ψ0 ∈ Ω fixes the initial density (Definition 4.7), all one-

particle density components are ensured to be non-zero for t = 0. By uniform Lipschitz

continuity of the set of physical densities (Theorem 4.3), the absolute value of any

one-particle density can change in time at most with the Lipschitz constant MJmax

|∂tn([v], x, t)| ≤MJmax, ∀x ∈ I,∀t ∈ [0, T ]

such that the n([v], x) cannot vanish arbitrarily fast. In consequence, a vanishing of a

one-particle density does not imply τmin = 0.

Note that a non-vanishing one-particle density is only a necessary condition for ψ to

be element of Ω. The rank of the lattice Sturm-Liouville operator also decreases if all

link currents pointing towards a specific site are of the same norm as the complex link

current (see Equation (4.21)). This is illustrated in the example presented in Figure 4.1.
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Following its discussion, we find that the oscillation frequency of K[v]1,2 increases in

time as the potential difference on site one and two is increasing. With higher oscillation

frequency, the distance of consecutive roots of K[v]1,2 decreases which suggests that

the time of existence τ ∗n[v] to a given Schrödinger problem also decreases with growing

potential differences. In consequence, the related common time scale of existence τ

might turn zero. To present this argument with more mathematical rigour, we consider

the Schrödinger problem S =
(
ψ0, λv,W

)
with scalar potential v ∈ Vr scaled by factor

λ ∈ R+. We assume all components of the scalar potential to be non-zero and to

pairwise differ from each other. Its Hamilton operator is given by

H([λv], t) = λV ([v], t) + T +W, ∀t ∈ [0, T ].

The idea is to take the limit of λ→∞ such that potential differences get arbitrarily

large and by the above discussion, the time of existence should tend to zero. To solve

the Schrödinger problem for λ→∞, we first determine the eigensystem of the Hamilton

operator and then solve the Schrödinger equation in the eigenbasis. For this purpose,

we multiply the Hamilton operator by λ−1 and obtain

λ−1H([λv], t) = V ([v], t) + λ−1(T +W ), ∀t ∈ [0, T ].

The spectrum of λ−1H([λv], t) is just the rescaled spectrum of H([λv], t) , i.e.

σ
(
λ−1H([λv], t)

)
= λ−1σ

(
H([λv], t)

)
, t ∈ [0, T ]

with identical eigenvectors. Therefore, we can equivalently calculate the eigensystem of

the rescaled Hamilton operator and multiply the resulting spectrum by λ.

To solve for the eigensystem of λ−1H([λv], t), we employ perturbation theory in λ−1.

We consider the scalar potential V ([v], t) to be the unperturbed operator and calculate

perturbations to its eigensystem. Note that V ([v], t) is a multiplicative operator and

thus diagonal in the spatial basis BN with eigenvalues v(x, t) for x ∈ IM (see Equations

(3.1), (3.3)).

V ([v], t) = v(x, t) =
N∑
i=1

v(xi, t), ∀x ∈ IM ,∀t ∈ [0, T ]
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Regardless of degeneracy in its spectrum, we can apply non-degenerate perturbation

theory. To clarify this, consider an eigenvector of an arbitrary eigenspace of V ([v], t),

i.e. ex ∈ Eig
(
v(x, t)

)
. As V ([v], t) is a multiplicative operator, any state is multiplied

by the sum of the scalar potentials acting on each site, meaning that any permutation

of the lattice sites of ex is also an eigenvector. In consequence, all perturbations of

different eigenvectors ex, ey ∈ Eig
(
v(z, t)

)
to the same eigenstate v(z, t) for arbitrary

z ∈ IM vanish,

〈ex, (T +W )ey〉 = 0, ∀t ∈ [0, T ]

as the hopping operator T only connects states with one site difference.

Keeping this in mind, we apply non-degenerate perturbation theory to λ−1H([λv], t)

and multiply the resulting spectrum by λ to obtain the eigensystem of the initially

stated Hamilton operator H([λv], t). The matrix element 〈ex,Wey〉 is denoted by Wx,y.

ẽx = ex + λ−1 ∑
ey /∈Eig(v(x,t))

〈ey, (T +W )ex〉
v(y, t)− v(x, t) ex +O(λ−2)

ṽ(x, t) = λv(x, t) +Wx,x +O(λ−1)
, ∀x ∈ IM ,∀t ∈ [0, T ]

For λ � 1 and within the context of perturbation theory, we identify the Hamilton

operator to be H([λv], t) = V ([ṽ], t) and solve the related Schrödinger problem S which

yields the trajectory

ψ([λv], t) = ei
∫ t

0 V ([ṽ],s) dsψ0, ∀t ∈ [0, T ].

Finally, we can calculate the matrix elements of the lattice Sturm-Lioville operator and

determine its rank for each point in time. Following the discussion of the last section,

the rank of the lattice Sturm-Liouville operator is at most of M −2 if a complete matrix

row is vanishing for a point in time t0 ∈ [0, T ] (see Equation (4.21)). This means that

the related state ψ([λv], t0) is not an element of Ω (Definition 4.9). Therefore the time

t0 states an upper bound for the time of existence τ ∗n[λv] (Definition 4.10), such that that

we have to prove the existence of a t0 ∈ [0, T ] and show that it turns zero for λ→∞.

For this purpose, we consider the matrix elements of the reduced lattice Sturm-Liouville

operator for a fixed site x0 ∈ I. Inserting the trajectory into the definition of the matrix
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elements (Definition 4.6) yields

K([λv], t)x0,y = Re ξ(x0, y)ei
∫ t

0 [ṽ(x0,s)−ṽ(y,s)] ds

= |ξ(x0, y)|Re eiφ(x0,y)+i
∫ t

0 [ṽ(x0,s)−ṽ(y,s)] ds
, ∀y 6= x0 ∈ I,∀t ∈ [0, T ].

Note that wee abbreviate 2Tx0,y

(∑
x∈IM−1 ψ∗0(x0,x)ψ∗0(y,x)

)
by ξ(x0, y) and employ

the Euler representation of ξ(x0, y) = |ξ(x0, y)|Re eiφ(x0,y) to obtain the second equality.

Next, we assume the non-trivial case of ξ(x0, y) being non-zero and solve for the roots

of K[λv]x0,y. In order for K[λv]x0,y to vanish, the real part of the exponential has to

turn zero which means that the phase of the exponential has to be an odd-numbered

multiplicative of π.

(2n+ 1) π =
∫ t

0
[ṽ(x0, s)− ṽ(y, s)] ds+ φ(x0, y)

= λ
∫ t

0
[v(x0, s)− v(y, s)] ds+ t · [Wx0,x0 −Wy,y] + φ(x0, y)

, ∀y 6= x0 ∈ I.

(4.26)

Taking the limit λ→∞, K[λv]x0,y takes its n-th root arbitrarily fast as we assumed

all components of the scalar potential pairwise differ from each other. Note, since the

scalar potential v was assumed to be element of Vr, we can choose M − 1 components

of v independently. By the above equation, it is thus always possible to choose a scalar

potential v such that all matrix elements vanish simultaneously. In consequence, we

found an arbitrary small bound on the time of existence, rigorously explaining the

before discussed result of large scalar potentials differences leading to a arbitrary small

times of existence. As we cannot extend the Existence theorem (Theorem 4.11), we

conclude that the uniform time of existence turns out to be zero

τmin = inf
v∈Vr

{
τ ∗n[v]

}
= 0. (4.27)

We illustrate the above discussion for an auxiliary Schrödinger problem with N = 2

particles and M = 2 lattice sites, i.e we consider a Schrödinger problem with the state

space `2(4) ∼= C4 (see Equation (2.1.2)). We choose a common real hopping parameter

Tx,y = 0.5 for all sites x, y ∈ I and set the matrix elements of the multi-particle

interaction operator W to be w1,1 = w2,2 = 1 and w2,1 = 0. The scalar potential
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is assumed to be v = v(1)e1 − v(1)e2 ∈ Vr (Definition 4.8) with the non-zero scalar

potential v(1, t) = t+ 1 for all t in [0, T ]. Then, the resulting Hamilton operator is of

the form

H([λv], t) = 2λv(1, t)


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

+ 0.5


2 1 1 0

1 0 0 1

1 0 0 1

0 1 1 2

, ∀t ∈ [0, T ]. (4.28)

As we have chosen the same amount of lattice sites as in the previous example (see

Equation ()4.24)), the lattice Sturm-Liouville operator similarly reads

K([λv], t) =

−K([λv], t)1,2 K([λv], t)1,2

K([λv], t)1,2 −K([λv], t)1,2

 , ∀t ∈ [0, T ]

with K([λv], t)1,2 = 2 ReT1,2〈Π1,2〉ψ([λv],t). We choose the initial state to be ψ0 =

1/2(e1− e2− e3 + e4) which is an element of Ω because ψ0 is the eigenstate to the lowest

eigenvalue of the kinetic energy operator T (see Equation (4.15)). The resulting time

evolution of the Schrödinger problem matrix element is presented in Figure 4.2.

Plot (a) presents the time evolution of the rescaled electron density for lattice site one

n([v], 1) and the related matrix element of the lattice Sturm-Liouville operator K[v]1,2
and the current J [v]1,2. Compared to the non-interacting Schrödinger system presented

in Figure 4.1, we find differences for all three observables within the first moments of

time. This is due to the added multi-particle interaction operator W as its contribution

breaks the symmetry of the scalar potential. For later times, its contribution is not of the

same order as the scalar potential such that the system evolves like the non-interacting

system. Note that K[v]1,2 takes its first root at t0 = 1.92, meaning that the time of

existence τ ∗n[v] is bounded by 1.92.

We take this as a reference value and compare it to the presented roots of K[λv]1,2 for

different values of λ = 200, 300, 400, 500 in plot (b). As expected, the values of the first

root of K[λv]1,2 decreases with increasing values of λ; for instance, the root of λ = 400

is three orders of magnitude smaller than t0.



56 4.3 Existence of lattice TDDFT

(a)
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Fig. 4.2: We consider a N = 2 particle, M = 2 site Schrödinger problem with the initial state
ψ0 = 1/2(e1 − e2 − e3 + e4) and Hamilton operator H[λv] (4.28).
(a) Time evolution of the rescaled density 0.5 · n([v], 1) on site one and the the real
and imaginary part of the complex link current Q[v]1,2, i.e. k[v]1,2 and J [v]1,2 for
λ = 1.
(b) Time evolution of the real part of k[λv]1,2 for different values of λ.

For λ→∞ the value of the first root indeed tends to zero. This result is in full agreement

with the result of perturbation theory. We calculate the perturbed eigenvalues up to

first order of λ−1,

−ṽ(2, t) = ṽ(1) = λv(1, t) + 1, ∀t ∈ [0, T ],

and employ Equation (4.26) to obtain the condition for the first root t̃0,λ

π = λ ·
(
t̃20,λ + 2t̃0,λ

)
+ 2t̃0,λ (4.29)

which predicts the roots with high precision for increasing λ illustrated in Figure 4.3. It
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depicts the roots t0,λ of the exact Schrödinger problem and the approximated roots t̃0,λ
as a function of λ. The latter is proportional to λ−1 and proves high agreement with

the exact roots. For instance, take λ = 500, the relative difference of the actual root

and the approximated root t̃0,500 is of order 10−4. In agreement with our expectations,

taking the limit λ→∞ yields a time of existence converging to zero.

200 400 600 800 1000

0.002

0.004

0.006

0.008

0.010

λ

t

0,λ

t0,λ

Fig. 4.3: We consider a N = 2 particle, M = 2 site Schrödinger problem with the initial state
ψ0 = 1/2(e1 − e2 − e3 + e4) and Hamilton operator H[λv] (4.28). The approximated
roots t̃0,λ of K[v]1,2 are depicted as a function of λ (Equation (4.29)) and compared
with the exact roots t0,λ of K[v]1,2.

4.4 Potential to density diffeomorphism

Within this section, we discuss the diffeomorphic mapping property of the potential-

density map n[·]. We consider a Schrödinger problem S =
(
ψ0, v,W

)
with initial state

ψ0 ∈ Ω (Definition 4.9) and arbitrary scalar potential v ∈ Vr (Definition 4.8). We

employ the Inverse function theorem (Theorem 2.10) and investigate the invertibility of

the Fréchet derivative DFn[v, ·]. The latter is rephrased as a linear Volterra integral

equation of the second kind [22]. Invertibility is proven by applying the Banach fixed

point theorem which allows for a diffeomorphic mapping property.

The Fréchet derivative DFn[v, ·] of the potential-density map was derived in Section

4.1. We identified DFn[v, ·] by a linear integral operator, describing the following linear
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Volterra integral equation of first kind (4.4) [22].

DFn([v, h], t) =
∫ t

0
k([v], t, s)h(s) ds, ∀v, h ∈ Vr,∀t ∈ [0, T ]

Its integral kernel k[v] : [0, T ]2 → B(RM ) is twice continuously differentiable and defined

by the matrix elements

k([v], t, s)x,y = iN
N∑
j=1
〈[Π̂x(t), Π̂j

y(s)]〉ψ0 , ∀t ∈ [0, T ],∀x, y ∈ I.

with Πx and Πy given in the Heisenberg picture of S (Definition 2.7). By taking

DFn[v, ·]’s second derivative, we reformulate the Fréchet derivative as a Volterra integral

equation of second kind. Note, that the integral kernel k([v], t, s) vanishes for equal

times s = t, as both projectors Πx and Πj
y commute for all x, y ∈ I and j ∈ {1, ...,M}.

∂2
tDFn([v, h], t) = ∂tk([v], t, s)

∣∣∣
s=t

h(t) +
∫ t

0
∂2
t k([v], t, s)h(s) ds, t ∈ [0, T ]. (4.30)

Applying the Heisenberg equation of motion enables to calculate the first derivative of

the integral kernel, i.e. ∂tk([v], t, s)
∣∣∣
s=t

. The first equality is due to the commutator

[H,Πx] reducing to [T,Πx]. For the second equality note that the commutator [T,Πx]

only acts non-trivially on the first particle Hilbert space such that all [T,Πx] and Πj
y

commute for j > 1.

∂tk([v], t, s)x,y
∣∣∣
s=t

= −N
N∑
j=1
〈[[T,Πx],Πj

y]〉ψ([v],t)

= −N〈[[T,Πx],Πy]〉ψ([v],t)

We insert the basis representation of T and perform analogous manipulations as

presented in equation (4.6) which yields the second equality.

∂tk([v], t, s)x,y
∣∣∣
s=t

= −N〈[[T,Πx],Πy]〉ψ([v],t) = −2iN
∑
z∈I
〈[ImTz,xΠz,x,Πy]〉ψ([v],t)

The residual commutator is rearranged, using its anti-symmetric property and the

self-adjoindness of Πx.
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[ImTz,xΠz,x,Πy] = [Tz,xΠz,x,Πy] + [Πy, Tz,xΠz,x]†

2i
= −iRe[Tz,xΠz,x,Πy]

We substitute the commutator [ImTz,xΠz,x,Πy] and identify the components of the

complex link current Q[v] (Definition 4.2), showing that ∂tk([v], t, s)
∣∣∣
s=t

equals the

lattice Sturm-Liouville operator K([v], t) (Definition 4.6).

∂tk([v], t, s)x,y
∣∣∣
s=t

= −2N Re

∑
z∈I

Tz,x〈[Πz,x,Πy]〉ψ([v],t)


= −2N Re

∑
z∈I

Tz,x
(
δxy〈Πz,y〉ψ([v],t) − δy,z〈Πy,x〉ψ([v],t)

)
= 2 Re

Q([v], t)x,y − δx,y
∑
z∈I

Q([v], t)x,z


= K([v], t)x,y

(4.31)

The equivalence of both notions is a result of n[·]’s continuous differentiability and the

twice continuous differentiability of the related physical densities n[v] in time. Inserting

the lattice Sturm-Liouville operator in equation (4.30) results in

∂2
tDFn([v, h], t) = K([v], t)h(t) +

∫ t

0
∂2
t k([v], t, s)h(s) ds, t ∈ [0, T ]. (4.32)

The Fréchet derivative DFn[v, ·] is injective if and only if equation (4.32) has a unique

solution h. This is reasoned in the initial data I(ψ0) stating unique integration constants

for ∂2
tDFn[v, h] uniquely specifying DFn[v, h]. Its uniqueness can be proven by inverting

the lattice Sturm-Liouville operator K([v], t) in equation (4.32). It results in a fixed

point type equation which allows to apply the Banach fixed point theorem.

h(t) = K−1([v], t)
{
∂2
tDFn([v, h], t)+

∫ t

0
∂2
t k([v], t, s)h(s) ds

}
, ∀t ∈ [0, τ ∗n[v]] (4.33)

Note, that the potential h is well-defined up to its time of existence t ∈ [0, τ ∗n[v]] because

of K([v], t) only being invertible within [0, τ ∗n[v]]. This is a direct consequence of the

Existence thoerem and Corollary 4.12. However, equation (4.33) being well-defined,

is not a sufficient condition for the existence of an unique fixed point. To ensure the
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latter, we have to guarantee that equation (4.33) defines a contraction on some Banach

space. Therefore we introduce the restricted Banach space of reduced potentials Vr|τv
(Definition 4.8) with τv ∈ (0, τ ∗n[v]] being the restricted time of existence. We prove that

there exists some τv such that equation (4.33) defines a contraction Gv on Vr|τv . Note

that we replaced DFn[v, h] with DFn ∈ ImDFn[v, ·].

Gv : Vr|τv −→ Vr|τv
h 7−→

(
t 7→ K−1([v], t)

{
∂2
tDFn+

∫ t
0 ∂

2
t k([v], t, s)h(s) ds

}) (4.34)

The map is well-defined by continuity of both functions (t, s) 7→ ∂2
t k([v], t, s) and

t 7→ K−1([v], t). The latter is due to the inverse lattice Sturm-Liouville operator

being a rational function in trajectories which was proven by Farzanehpour and Tokatly

(2012) [8]. If the map Gv is a contraction, invertibility of DFn[v, ·] on Vr|τv is guaranteed

and we can conclude a diffeomorphic mapping property of the density potential map by

employing the Inverse function theorem.

Theorem 4.14 (Diffeomorphism theorem) Let S =
(
ψ0, v,W

)
be a Schrödinger

problem with fixed initial state ψ0 ∈ Ω and arbitrary scalar potential v ∈ Vr|τv (Definition

4.8) for some restricted time of existence τv ∈ [0, τ ∗n[v]]. The potential-density map

n[·]|Uv defines a diffeomorpism on an open neighbourhood Uv ⊂ Vr|τv of v if we choose

the restricted time of existence to be

τv = min
{
τ ∗n[v], inf

t,s∈[0,τ∗n[v]]

(
2 ·
∥∥∥K−1([v], t)

∥∥∥ ·∥∥∥∂2
t k([v], t, s)

∥∥∥)−1}
. (4.35)

Proof. The underlying proof idea is to employ the Inverse function theorem. The

potential-density map is continuously differentiable on Vr|τv (Definition 4.8), i.e. n[·] ∈

C1(Vr|τv , N) (see Section 4.1) such that we need to prove for invertibility of its Fréchet

derivative DFn[v, ·]. We thus consider the map Gv (4.34) and prove it to be a contraction

for some restricted maximal time of exsitence τv ∈ (0, τ ∗n[v]].

Gv : Vr|τv −→ Vr|τv
h 7−→

(
t 7→ K−1([v], t)

{
∂2
tDFn+

∫ t
0 ∂

2
t k([v], t, s)h(s) ds

}) (4.36)

Consider arbitrary scalar potentials g, h ∈ Vr|τv . We take the difference of Gv[g] and
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Gv[h] within the V -topology (Definition 4.8) and obtain

‖Gv[g]−Gv[h]‖2,∞ ≤ τv sup
t,s∈[0,τv ]

∥∥∥K−1([v], t)∂2
t k([v], t, s)

(
g(s)− h(s)

)∥∥∥
2

≤ τv sup
t,s∈[0,τ∗n[v]]

∥∥∥K−1([v], t)
∥∥∥∥∥∥∂2

t k([v], t, s)
∥∥∥ ‖g − h‖2,∞.

Both t 7→ ‖K−1([v], t)‖ and (t, s) 7→ ‖∂2
t k([v], t, s)‖ are continuous functions with a

compact domain and thus take their maximum. Therefore, we can always choose a

τv ∈ [0, τ ∗n[v]] that satisfies

τv = min
{
τ ∗n[v], inf

t,s∈[0,τ∗n[v]]

(
2 ·
∥∥∥K−1([v], t)

∥∥∥∥∥∥∂2
t k([v], t, s)

∥∥∥)−1}
. (4.37)

such that G is Lipschitz and thus a contraction with L = 1/2. Applying the Banach

fixed point theorem provides a unique fixed point of Gv, i.e. Gv(h∗) = h∗ for h∗ ∈ Vr|τv
to a given DFn ∈ ImDFn[v, ·].

h∗(t) = K−1([v], t)
{
∂2
tDFn(t) +

∫ t

0
∂2
t k([v], t, s)h(s) ds

}
, ∀t ∈ [0, τ ∗n[v]] (4.38)

We uniquely solve for DFn by employing the initial data I(ψ0) which allows to fix

the integration constants. Hence, the Fréchet derivative DFn[v, ·] is injecitve. As

n[·]|Vr|τv is continuously differentiable, the inverse function theorem can be applied. It

yields the existence of an open neighbourhood Uv ⊂ Vr|τv of v for which n[·]|Uv is a

diffeomorphism.

Note that the Diffeomorphism theorem imposes an additional constraint on the consid-

ered time domain of scalar potentials. Originally, a Schrödinger problem was defined on

a time interval [0, T ], implying that scalar potentials v are continuous functions with

time domain [0, T ], i.e. v ∈ V (Definition 3.1). Having introduced the Existence theorem

(Theorem 4.11), we had to restrict the domain of both potentials and densities to a

time of existence which ensured the existence of solutions to the non-linear Schrödinger

equation. In case of the Diffemorphism theorem, a diffeomorphic mapping property

can only be guaranteed if we introduce another time scale, i.e. the restricted time of

existence τv ∈ [0, τ ∗n[v]]. By now it is not clear if τv is non-zero for all considered scalar

potential v. Hence, we investigate its relation to the set of K-invertible states in more

detail (Definition 4.9) and state a lower bound on the restricted time of existence.
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Corollary 4.15 Let S =
(
ψ0, v,W

)
be a Schrödinger problem with fixed initial state

ψ0 ∈ Ω and arbitrary scalar potential v ∈ Vr. We assume the kinetic energy operator T

to be non-zero, then the restricted time of existence τv (see Theorem 4.14) is non-zero

and bounded from below,

τv ≥ min
{
τ ∗n[v], inf

t∈[0,τ∗n[v]]
‖H([v], t)‖−1 · λmin[v]

4dN‖T‖

}
> 0, (4.39)

with the minimal absolute value of all possible eigenvalues of the reduced lattice Sturm-

Liouville operator

λmin[v] = inf
t∈[0,τ∗n[v]]

min
{
|λ| : λ ∈ σ (Kr([v], t))

}
.

Proof. The restricted time of existence (4.35) is defined to be

τv = min
{
τ ∗n[v], inf

t,s∈[0,τ∗n[v]]

(
2 ·
∥∥∥K−1([v], t)

∥∥∥ ·∥∥∥∂2
t k([v], t, s)

∥∥∥)−1}
. (4.40)

As τ ∗n[v] is shown to be non-zero (Theorem 4.11), we only consider the non-trivial case

of the restricted time of existence τv being smaller than τ ∗n[v], meaning we only have to

investigate

inf
t,s∈[0,τ∗n[v]]

(
2 ·
∥∥∥K−1([v], t)

∥∥∥ ·∥∥∥∂2
t k([v], t, s)

∥∥∥)−1
(4.41)

to determine τv’s lower bound. We split this question into two parts. Firstly, we

estimate the operator norm of the inverse lattice Sturm-Liouville operator K−1([v], t)

and secondly, discuss the second time derivative of the integral kernel ∂2
t k([v], t, s) of

the Fréchet derivative DFn[v, ·] (see Equation (4.4)).

The operator norm of the inverse lattice Sturm-Liouville operatorK−1([v], t) is calculated

to be

‖K−1([v], t)‖ = sup
y∈span({c})⊥

‖K−1([v], t)y‖2 · ‖y‖
−1
2

= sup
x∈span({c})⊥,‖x‖=1

‖K([v], t)x‖−1
2

= min
{
|λ| : λ ∈ σ (Kr([v], t))

}−1

Firstly, we substitute the definition of the operator norm. Note that the lattice Sturm-

Liouville operator is only defined for vectors y ∈ RM being orthogonal to the space
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constant vector c = ∑M
i=1 ei, meaning y ∈ span({c})⊥ (see Equation (4.13), Definition

4.9). Secondly, we employ bijectivity of the lattice Sturm-Liouville operator and

substitute y for K([v], t)x with x ∈ {c}⊥. Making use of its linearity, we rescale x to be

of norm one and obtain the second equality. To obtain the last equality, we use that the

lattice Sturm-Liouville operator is defined by a self-adjoint matrix and diagonalizable

(Definition 4.6). Therefore, the supreme of the inverse equals the smallest norm of

all eigenvalues of the spectrum of the reduced lattice Sturm-Liouville operator as we

restricted x to be element of span({c})⊥.

Taking the infimum in time of ‖K−1([v], t)‖−1 finally yields the minimal eigenvalue of

the lattice Sturm-Liouville operator in time

λmin[v] ≡ inf
t∈[0,τ∗n[v]]

‖K−1([v], t)‖−1

= inf
t∈[0,τ∗n[v]]

min
{
|λ| : λ ∈ σ (Kr([v], t))

}
> 0.

(4.42)

Note that λmin[v] is non-zero as we consider the scalar potential v ∈ Vr only up to the

time of existence such that the reduced lattice Sturm-Liouville operator is of full rank,

i.e. its kernel is trivial.

Next, we calculate the explicit form of the intergral kernel ∂2
t k([v], t, s) (see Equa-

tion (4.4)) by employing the Heisenberg equation of motion twice. The operators are

transformed in the Heisenberg picture of the Schrödinger problem S (Definition 2.7).

∂2
t k([v], t, s)x,y = N

N∑
j=1
〈[[Ĥ([v], t), [T̂ (t), Π̂x(t)]], Π̂j

y(s)]〉ψ0 , ∀x, y ∈ I

We consider its absolute value and use the Cauchy-Schwarz inequality. We rewrite

the commutators as a difference of operators and employ that the operator norm is

sub-multiplicative.

|∂2
t k([v], t, s)x,y| ≤ N

N∑
j=1

∥∥∥[[Ĥ([v], t, t), [T̂ (t), Π̂x(t)]], Π̂j
y(s)]

∥∥∥
≤ 8N2‖T‖ · ‖H([v], t)‖

∀x, y ∈ I (4.43)

Therefore, we estimate the operator norm of ∂2
t k([v], t, s) by M times the largest matrix
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element (4.43) such that the infimum of the inverse of the operator norm in time reads

inf
t,s∈[0,τ∗n[v]]

∥∥∥∂2
t k([v], t, s)

∥∥∥−1
≥ inf

t∈[0,τ∗n[v]]

(
8dN‖T‖ · ‖H([v], t)‖

)−1
> 0. (4.44)

Equation (4.44) is non-zero as we assume ‖T‖ 6= 0 and by continuity of the scalar

potential t 7→ ‖H([v], t)‖, the infimum of ‖H([v], t)‖ is bounded. Finally, we can

estimate Equation (4.41) by substituting λmin[v] (4.42) and the above equation (4.44)

which yields

τv ≥ inf
t∈[0,τ∗n[v]]

‖H([v], t)‖−1 · λmin[v]
4dN‖T‖

We obtain the desired result by inserting this lower bound into the definition of the

restricted time of existence (4.35)

τv ≥ min
{
τ ∗n[v], inf

t∈[0,τ∗n[v]]
‖H([v], t)‖−1 · λmin[v]

4dN‖T‖

}
> 0.

By Corollary 4.15, we can always find a non-zero restricted time of existence τv ∈ [0, τ ∗n[v]]

such that the potential-density map defines a diffeomorphism on an open neighbourhood

Uv ⊂ Vr|τv of v. Note that the lower bound also varies with the scalar potential v as it

again depends on the v. We investigate the dependence on the scalar potential in more

detail, considering

inf
t∈[0,τ∗n[µv]]

‖H([µv], t)‖−1 · λmin[v]
4dN‖T‖ (4.45)

for a non-zero scalar potential v ∈ Vr scaled by the factor µ ∈ R+. Firstly, we estimate

the inverse of the operator norm of the Hamilton operator

‖H([µv], t)‖ = ‖T + V ([µv], t) +W‖ ≤ µ‖v‖2,∞ + ‖T +W‖

and secondly, we substitute it back into Equation (4.45) which yields

(4.44) ≥ inf
t∈[0,τ∗n[µv]]

(
µ‖v‖2,∞ + ‖T +W‖

)−1
· λmin[µv]‖T‖

4dN

Note that the lattice Sturm-Liouville operator is bounded, implying its eigenvalues

to be bounded. Taking the limit µ → ∞ therefore results in the above equation to

converge to zero which is in full agreement with the discussion on the uniform time of
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existence in Section 4.3.3.



Chapter 5

The Kohn-Sham Iteration Scheme

In the previous chapter, we established the potential-density map n[·] (Definition 4.1)

and proved the existence of lattice TDDFT in terms of the Existence theorem. Within

this chapter, we employ these results and introduce the Kohn-Sham approach towards

lattice TDDFT. Using the Existence theorem, we introduce the Kohn-Sham system,

i.e. a non-interacting, thus effectively single particle Schrödinger problem generating

the same density as an interacting Schrödinger problem up to the common time of

existence (Corollary 4.13). We establish the Kohn-Sham potential map (Definition 5.2)

and the Kohn-Sham Iteration scheme (Definition 5.3), allowing to iteratively calculate

the actual density of a prescribed interacting Schrödinger problem. Employing the

Diffeomorphism theorem, we prove the Kohn-Sham Iteration Scheme to converge using

a Banach fixed point approach and discuss emerging difficulties.

Given an arbitrary interacting Schrödinger problem, we are interested in finding its

physical density. Therefore, we have to solve the related many-particle problem of

N particles and M sites, meaning a system of N coupled M dimensional ordinary

differential equations. With increasing particles and sites, the amount of complexity

within the system increases exponentially, not allowing for accurate numerical solutions.

The Existence theorem yields a conceptual solution to this problem. It allows to relate

the interacting with a non-interacting Schrödinger problem, i.e. a system of N decoupled

M dimensional ordinary differential equations - the Kohn-Sham system.

66
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Definition 5.1 Consider an interacting Schrödinger problem Sint =
(
ψ0, vint,W

)
with

initial state ψ0 ∈ Ω and scalar potential vint ∈ Vr (Definitions 4.9, 4.8). Its physical

density n[vint] is denoted by nint (Definition 4.1). The Kohn-Sham system is defined

to be the non-interacting Schrödinger problem SKS =
(
φ0, vKS, 0

)
with initial state

φ0 ∈ Ω and the Kohn-Sham potential vKS ∈ V (Corollary 4.13), which generates

the same density nint as the Schrödinger problem Sint in a time interval [0, τ ] ⊆ [0, τ ∗vint ].

The time τ ∗vint denotes the common time of existence of Sint and SKS.

Note that the Kohn-Sham system is guaranteed to exist, no matter which interacting

Schrödinger problem is considered. We can always choose an initial state φ0 of the

Kohn-Sham system SKS such that its initial data is identical to the initial data of the

interacting Schrödinger problem Sint, i.e. I(φ0) = I(ψ0) (Definition 4.7). Then, by

Corollary 4.13, the interacting density nint is v-representable (Definition 4.5) for both

Sint and SKS if we restrict its time domain to [0, τ ∗vint]. Moreover, any restriction of

its time domain to [0, τ ] ⊆ [0, τ ∗vint] is also Sint and SKS v-representable, guaranteeing

the existence of a Kohn-Sham system. We refer to v-representability of Sint and

any other non-interacting Schrödinger problem by interacting and non-interacting v-

representability (Definition 4.5).

Despite knowing about the existence of a Kohn-Sham system, it is not yet clear how to

determine it. Simplifying the interacting Schrödinger problem to the Kohn-Sham system

comes at the expense of an unknown Kohn-Sham potential non-trivially depending

on the interacting density nint. In practice, its dependence is unknown as we cannot

employ the Existence theorem to determine the Kohn-Sham potential due to increasing

complexity of the non-linear Schrödinger equation with increasing N and M (see

Equation (4.12)). However to determine a Kohn-Sham system is still possible if we

introduce the Kohn-Sham potential map.

The idea of the Kohn-Sham potential map is to consider a non-interacting, thus

effectively single particle Schrödinger problem Ss =
(
φ0, vs, 0

)
with arbitrary scalar

potential vs ∈ Vr and initial state φ0 ∈ Ω with identical initial data as the prescribed

interacting Schrödinger problem Sint. We want to determine vs such that it equals the

Kohn-Sham potential of the interacting Schrödinger problem. Therefore, we relate both

the interacting and non-interacting Schrödinger problem via their density-potential

maps which allows to prove the non-interacting Schrödinger problem to be identical to
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desired Kohn-Sham system for the interacting density, i.e.

Ss = SKS.

In practice, this approach is applicable as several approximations can be made. Within

this thesis, we do not discuss these approximations and the reader is referred to existing

literature on the topic for more details [26]. Instead, we solely consider the exact

Kohn-Sham potential map and employ it for a construction of an exact Kohn-Sham

Iteration scheme. Note, we first introduce an auxiliary map, the extended Kohn-Sham

potential map, to define the Kohn-Sham potential map, allowing to show that its image

equals the set of scalar potentials V. The latter is shown to be necessary in order to

establish the Kohn-Sham Iteration (Definition 5.3).

Definition 5.2 Let Sint =
(
ψ0, vint,W

)
be an interacting Schrödinger problem with

initial state ψ0 ∈ Ω and scalar potential vint ∈ Vr. Consider a non-interacting, effective

single particle Schrödinger problem Ss with arbitrary scalar potential vs ∈ Vr and initial

state φ0 ∈ Ω with initial data I(ψ0) = I(φ0) (Definition 4.7). The potential-density

maps of Sint and Ss are denoted by n[·] and ns[·] (Definition 4.1). The extended

Kohn-Sham potential map ṽKS[·] : D → Vr is defined to be

ṽKS([n], t) =


vint(t)− v([n], t) + vs([n], t), t ∈ [0, τ ∗v[n]]

vint(t)− v([n], τ ∗v[n]) + vs([n], τ ∗v[n]), t ∈ (τ ∗v[n], T ]

where D denotes the set of interacting and non-interacting v-representable densities

and τ ∗v[n] the common time of existence to the scalar potential v[n] (see Corollary 4.13).

Then, we define the Kohn-Sham potential map vKS[·] : D → V to be the restriction

of the extended Kohn-Sham potential map to its common time of existence τ ∗ṽKS[n].

vKS([n], t) = ṽKS([n], t), ∀t ∈ [0, τ ∗ṽKS[n]]

For the extended Kohn-Sham potential map to be well-defined, we employ Corollary 4.13.

It yields the invertibility of both potential-density maps n[·] and ns[·] on the domain

V with the interacting and non-interacting v-representable image D. In consequence,

both v[·] and vs[·] are well-defined for densities n ∈ D, returning scalar potentials v ∈ V
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which demands the time domain of the first sub-function to be restricted to [0, τ ∗v[n]].

The second sub-function corresponds to its continuous continuation on the full time

domain [0, T ] by the interacting potential vint.

We employ the extended Kohn-Sham potential map to define the actual Kohn-Sham

potential map. For a given density n ∈ D, we define the Kohn-Sham potential map

vKS[n] to equal ṽKS[n] with its time domain being restricted up to its common time of

existence, i.e. [0, τ ∗ṽKS[n]]. By restricting the time domain to its own common time of

existence, vKS[n] is an element of the set of scalar potentials V (see Corollary 4.13),

meaning that the image of the Kohn-Sham potential map equals V. The latter is of

major importance for the Kohn-Sham Iteration and will be discussed in more detail

(see Equation 5.2).

Next we want to check if the Kohn-Sham potential maps allows to determine the actual

Kohn-Sham system. We therefore calculate the Kohn-Sham potential map for the

interacting density nint. Note, by invertibility of v[·] that the interacting potentials

vint(t) and v([nint], t) are equivalent, meaning that we identify its common time of

existence τ ∗ṽKS[nint] by τ ∗vint . As both interacting potentials are cancelling, the Kohn-Sham

potential map reads

vKS([nint], t) = vs([nint], t), ∀t ∈ [0, τ ∗vint ].

It remains to prove the corresponding non-interacting Schrödinger problem Ss =(
φ0, vKS[nint], 0

)
to be the Kohn-Sham system, requiring the density to reproduce the

prescribed density nint in a time interval [0, τ ] ⊆ [0, τ ∗vint ]. We solve for the density by

applying the density-potential map ns[·] and employ invertibility of ns[·] on its domain

D.

ns
(
vs([nint], t)

)
= nint(t), ∀t ∈ [0, τ ∗vint ]

As the Schrödinger problem S =
(
φ0, vKS[nint], 0

)
is shown to reproduce the prescribed

density nint within the time interval [0, τ ∗vint ], we identify vKS[nint] with the Kohn-Sham

potential vKS and Ss with the Kohn-Sham system SKS.

We consider the Kohn-Sham potential to be the starting point for further investi-

gations of a Kohn-Sham system. Following the above calculation, we note that the

construction of the Kohn-Sham potential map relies on the difference of the actual pre-
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scriped vint and the calculated density-potential map v[·] of the interacting Schrödinger

problem to a given density n ∈ D.

vint(t)− v([n], t), ∀t ∈ [0, τ ∗v[n]] (5.1)

If the difference vanishes, the non-interacting Schrödinger problem Ss =
(
φ0, vKS[nint], 0

)
equals the desired Kohn-Sham system, which is satisfied for n = nint. By continuity of

the potential-density map (see Diffeomorphism Theorem), we expect the difference in

Equation (5.1) to be small for densities only slightly differing from the actual interacting

density. Therefore, decreasing difference in densities might imply convergence of the

non-interacting Schrödinger problem to the actual Kohn-Sham system. We follow this

approach, trying to establish a contractive iteration scheme - the Kohn-Sham Iteration

scheme. We first present its general idea, safely skipping mathematical details.

As a starting point, we consider the prescriped interacting Schrödinger problem Sint =(
ψ0, vint,W

)
and non-interacting Schrödinger problem Ss with initial state φ0 and initial

data I(φ0) = I(ψ0). Firstly, we choose an arbitrary density n0 ∈ D and calculate the

related scalar potentials of the non-interacting Schrödinger and interacting Schrödinger

problem, i.e. vs[n0] and v[n0]. Secondly, we insert the results into the Kohn-Sham

potential map, solving the non-interacting Schrödinger problem
(
φ0, vKS[n0], 0

)
for

the corresponding non-interacting density denoted by n1. It is important to note

that the image of the Kohn-Sham potential map is identical to V (Definition 5.2).

Therefore, the calculated non-interacting density is again interacting and non-interacting

v-representable, analogous to the density n0.

n1 = ns ◦ vKS[n0] ∈ D (5.2)

Being an element of D, we can apply the Kohn-Sham potential map to n1 and repeat

the exact same procedure as before to obtain n2 and so forth, defining an iterative

sequence of densities - the Kohn-Sham Iteration which is illustrated in Figure 5.1.
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𝑛𝑖

𝑣𝑠[𝑛𝑖] 𝑣[𝑛𝑖]

𝑣𝐾𝑆 𝑛𝑖
= 𝑣𝑖𝑛𝑡 − 𝑣 𝑛𝑖 + 𝑣𝑠 𝑛𝑖

interacting:

𝑛𝑖+1 ≡ 𝑛𝑠 ∘ 𝑣𝐾𝑆 𝑛𝑖

(𝜓0, 𝑣𝑠 𝑛𝑖 ,W)

non-
interacting:

(𝜙0, 𝑣𝑠[𝑛𝑖], 0)

non-
interacting:

(𝜙0, 𝑣𝐾𝑆[𝑛𝑖], 0)

Fig. 5.1: The Kohn-Sham Iteration scheme for a prescribed interacting Schrödinger problem
Sint =

(
ψ0, vint,W

)
with initial state ψ0 ∈ Ω and scalar potential vint ∈ Vr. We

consider the non-interacting Schrödinger problem Ss with arbitrary scalar potential
vs ∈ Vr and initial state φ0 ∈ Ω with initial data I(φ0) = I(ψ0). The initial density
n0 is assumed to be arbitrary in D.

Within the following section, we want to investigate the possibility of convergence of the

Kohn-Sham Iteration to the interacting density of Sint. This requires a more rigorous

mathematical treatment and an exact definition of the previous described Kohn-Sham

Iteration scheme.

Definition 5.3 (Kohn-Sham Iteration) Let Sint =
(
ψ0, vint,W

)
be an interacting

Schrödinger problem with initial state ψ0 ∈ Ω and scalar potential vint ∈ Vr. Consider

a non-interacting Schrödinger problem Ss with arbitrary scalar potential vS ∈ Vr and

initial state φ0 ∈ Ω with initial data I(ψ0) = I(φ0). We define the map

Φ : D −→ D

n 7−→ Φ[n] = ns ◦ vKS[n]

where vKS[n] denotes the Kohn-Sham potential map (Definition 5.2). The map Φ defines

the Kohn-Sham Iteration scheme which corresponds to the recursively defined

sequence (nk)k∈N with elements nk+1 ≡ Φ[nk] for arbitrary initial values n0 ∈ D.
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Following its definition, the Kohn-Sham Iteration scheme equals exactly the definition

of the Banach Iteration Scheme (see Theorem 2.2). Hence, we can investigate its

convergence applying the Banach fixed point theorem and prove for Φ to admit a unique

fixed point. For now, we assume that Φ admits a unique fixed point, i.e. n∗ ∈ D

such that Φ[n∗] = n∗. Then, the fixed point can be shown to equal the density of

the interacting Schrödinger problem within a non-zero time domain. Without loss of

generality, we assume the common time of existence τ ∗ṽKS[n∗] to be bounded by τ ∗v[n∗],

meaning

vKS([n∗], t) = vint(t)− v([n∗], t) + vs([n∗], t), ∀t ∈ [0, τ ∗ṽKS[n∗]].

Employing the fixed point property yields

vKS([n∗], t) = vint(t)− v([n∗], t) + vs ◦ Φ[n∗](t)

= vint(t)− v([n∗], t) + vs ◦ ns ◦ vKS[n∗](t)

= vint(t)− v([n∗], t) + vKS([n∗], t)

, ∀t ∈ [0, τ ∗ṽKS[n∗]]

which proves the equivalence of the interacting potential vint and the calculated inter-

acting density-potential map v[n∗] within the time interval [0, τ ∗ṽKS[n∗]]. Applying the

potential-density map produces the desired result, i.e.

nint(t) = n∗(t), ∀t ∈ [0, τ ∗ṽKS[n∗]]. (5.3)

Hence, instead of proving convergence to the density of the interacting Schrödinger

problem, we can prove the existence of a unique fixed point of the map Φ.

5.1 A Banach fixed point approach towards conver-

gence

Within this section, we present a sufficient condition for the convergence of the Kohn-

Sham Iteration scheme to the density of a prescribed interacting Schrödinger problem

(Definition 5.3). It demands the initial density to be chosen such that it is contained

within a compact neighbourhood N of the interacting density on which the map Φ

defines a diffeomorphism.



5.1 A Banach fixed point approach towards convergence 73

To prove the Kohn-Sham Iteration Scheme to converge, we follow the discussion of

the last Section and investigate the map Φ to admit a unique fixed point employing

the Banach fixed point theorem (Theorem 2.2). The main idea is to utilize the results

about the density-potential map discussed in Chapter 4. Employing the Diffeomorphism

Theorem (Theorem 4.14), we prove Φ to define a diffeomorphism on a proper compact

subset of the Banach space

N ⊂
(
C([0, τ],RM), ‖ · ‖2,∞

)

for some non-zero time τ ∈ (0, T ]. Next, we employ both the diffeomorphic mapping

property and pre-compactness of physical densities (Corollary 4.4) to establish a

contractive mapping, i.e. there exists a L ∈ [0, 1) such that

‖Φ[n]− Φ[ñ]‖2,∞ ≤ L‖n− ñ‖2,∞, ∀n, ñ ∈ N

Then, applying the Banach fixed-point theorem yields the desired result of the existence

of a unique fixed point. This approach faces the issue that the existence of a unique

fixed-point depends on the chosen initial density n0 which we are going to discuss in

more detail.

Theorem 5.4 (Kohn-Sham theorem) Consider the interacting Schrödinger problem

Sint with scalar potential vint ∈ Vr (Definition 4.8) and initial state ψ0 ∈ Ω (Definition

4.9). There exists a non-trivial time domain [0, τ ] ⊆ [0, T ] of the interacting density nint

for which Φ (Definition 5.3) defines a diffeomorphism on a compact convex neighbourhood

N of nint,

N ⊂
(
C([0, τ ],RM), ‖ · ‖2,∞

)
,

ensuring convergence of the Kohn-Sham Iteration Scheme for any initial density n0 ∈ N .

Proof. Throughout this proof, the non-interacting Schrödinger problem is chosen to

be S =
(
φ0, v, 0

)
with arbitrary scalar potential v ∈ Vr (Definition 4.8) and initial

state φ0 ∈ Ω with I(ψ0) = I(φ0) (Definition 4.7). We first consider the interacting and

non-interacting potential-density maps n[·] and ns[·]. Employing the Diffeomorphism

theorem (Theorem 4.14), both n[·] and ns[·] define a diffeomorphism on some open
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neighbourhood

Uvint ⊂
(
C([0, τ ],RM), ‖ · ‖2,∞

)
for some non-zero time τ . It is bounded by the minimum of n[·]’s and ns[·]’s restricted

times of existence and the common time of existence of Sint and S =
(
φ0, vint, 0

)
.

τ ≤ min{τvint , τ̃vint , τ
∗
vint}

Choosing the minimum of both restricted times of existence ensures both n[·] and ns[·]

to define diffeomorphisms on Uvint (see Diffeomorphism theorem). Also including the

common time of existence τ ∗vint allows to employ Corollary 4.13 such that both n[·] and

ns[·] generate the exact same image, i.e. identical sets of physical densities

n[Uvint ] = ns[Uvint ] ⊂
(
C([0, τ ],RM), ‖ · ‖2,∞

)
. (5.4)

Note that Φ is defined to be the composition of potential-density maps such that it

also defines a diffeomorphism on any subset of n[Uvint ]. We wisely choose some convex

closed subset N ⊂ n[Uvint ].

Φ : N −→ N

n 7−→ ns ◦ vKS[n]

As we defined the set of physical densities n[Uvint] to be a subset of the continuous

function space C([0, τ ],RM ) equipped with the supremum norm, we can employ Corollary

4.4. It states the pre-compactness of the set of physical densities n[Uvint], implying

compactness of the closed subset N .

It is left to prove that Φ defines a contraction. For this purpose, we consider the

difference of two arbitrary densities n, ñ ∈ N . As Φ defines a diffeomorphism, we can

employ the fundamental theorem of calculus and rewrite the difference using the Fréchet

derivative of Φ. The convex combination of n and ñ is denoted by nλ ≡ ñ+ λ(n− ñ).

Φ[n]− Φ[ñ] =
∫ 1

0
DFΦ[nλ, n− ñ]dλ

Next, we apply the ‖ · ‖2,∞-norm. Firstly, we employ linearity of the Fréchet derivative.

Secondly, we estimate the integral, taking the supremum over all considered densities
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N .

‖Φ[n]− Φ[ñ]‖2,∞ ≤ ‖n− ñ‖2,∞

∫ 1

0
‖DFΦ[nλ]‖ dλ

≤ ‖n− ñ‖2,∞ · sup
n∈N
‖DFΦ[n]‖

(5.5)

Identifying supn∈N ‖DFΦ[n]‖ with the desired Lipschitz-constant L, it only remains

to prove it to be smaller than one. Therefore, we investigate the Fréchet derivative in

more detail. We first note that Φ is a composite function of ns[·] and vKS[·] allowing to

estimate its Fréchet derivative applying the chain rule. Next, we insert the definition of

the Fréchet derivative of the potential-density map ns[·] (see Equation (4.4)). Taking

the supremum in time of its operator norm yields the second inequality.

sup
n∈N
‖DFΦ[n]‖ ≤ sup

n∈N
‖(DFns)[vKS[n]]‖ · ‖DFvKS[n]‖

≤ τ · sup
n∈N
‖k[vKS[n]]‖ · ‖DFvKS[n]‖

(5.6)

Both n 7→ ‖k[vKS[n]]‖ and n 7→ ‖DFvKS[n]‖ are continuous functions on a compact

domain N and thus the supremum is a maximum. In consequence, we can always

assume the non-zero time τ ≤ min{τvint , τ̃vint , τ
∗
vint} to be choosen such that Equation

(5.6) is bounded by 1/2. Substituting this estimate into Equation (5.5) yields the desired

contraction propperty of Φ with contraction constant L = 1/2.

‖Φ[n]− Φ[ñ]‖2,∞ ≤ 1/2‖n− ñ‖2,∞, ∀n, ñ ∈ N

We apply the Banach fixed point theorem (Theorem 2.2) which proves the existence of

a unique fixed point n∗ ∈ N of Φ, i.e. Φ[n∗] = n∗ and we conclude that the Kohn-Sham

Iteration Scheme converges to the interacting density if we assume the initial density to

be element of the compact subset N .

This result is of major importance as it provides a rigorous formulation of a Kohn-

Sham approach towards TDDFT. We want to conclude with some final remarks on the

introduced set N .
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5.2 Concluding remarks: The time of existence re-

visited

That doesn’t mean anything. Maybe it

was yesterday.

The Stranger, Albert Camus

According to the Kohn-Sham theorem (Theorem 5.4), the Kohn-Sham Sham Iteration

scheme (Definition 5.3) converges to the density of the prescribed interacting Schrödinger

problem if the initial density n0 is chosen to be in N .

However, for initial densities n0 ∈ D\N , convergence to the interacting density is not

quite clear yet. Even if the related Kohn-Sham Iteration scheme converges in some cases,

we cannot guarantee for the limit point to be the interacting density as Φ might not

define a contraction on the whole set D (Definition 5.3). Therefore, it is worth giving a

rough estimate on the size of N ⊂ n[Uint] ⊂ C([0, T ],RM), assessing the likelyhood of

the initial density n0 to be chosen in practice such that n0 ∈ N .

For simplicity of the discussion, we choose N to be - without loss of generality -

contained in an open ball Br[nint] of the neighbourhood n[Uvint ] with radius r and center

point nint. Requiring the initial density n0 ∈ N thus equivalently reads

n0 ∈ N ⊂ Br[nint] ≡
{
n ∈ C([0, τ ],RM)

∣∣∣ ‖n− nint‖2,∞ ≤ r
}
,

meaning that the difference of n0 and nint in the ‖ · ‖2,∞-norm is limited by the radius

r. Then, following the Diffeomorphism theorem (Theorem 4.14), the size of the ball

Br[nint] is determined using the Inverse function theorem (Theorem 2.10). By the

Inverse function theorem, we expect the radius r to be large for small values of the

Fréchet derivative ‖DFΦ[n]‖ around nint and vice versa. From a physical point of view,

we therefore expect the sufficient condition of n0 ∈ N to be only quite restrictive for

strongly changing potential-density landscapes as the radius of Br[nint] might be small.

Then, it is not unlikely that in practice the chosen initial density n0 is chosen such that

n0 ∈ D\N .
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This is a fundamental problem within the here taken approach of establishing Kohn-

Sham TDDFT for lattice systems by inverting the lattice Sturm-Liouville operator in

the force balance equation (Definition 4.6, Equation (4.10)). It necessitates to restrict

the time domain of both potentials and densities to their time of existence (Definition

4.10). In turn, it is not possible to establish a common non-zero time-domain as we find

the uniform time of existence to be zero (see Equation (4.27)). Provided the existence of

a common non-zero time domain which is right-bounded by the infimum of all possible

restricted times of existence (Theorem 4.14), the potential-density map would define

a diffeomorphism on V |r (Definition 4.8) employing both the Diffeomorphism and

Existence theorem (Theorem 4.11). This enables to choose the compact set N to be

equivalent to the set of physical densities N = n[V |r] (Definition 4.1). In consequence,

any initial density n0 would serve for a convergent Kohn-Sham Iteration scheme.

For future investigations, it would therefore be fruitful to investigate the following: first,

the initial dependence of the convergence of the Kohn-Sham Iteration scheme; but also,

second, the possibility of establishing Kohn-Sham TDDFT for lattice systems, using

approaches not involving explicit inversion of the lattice Sturm-Liouville operator as

done by van Leeuwen [27].
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