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Abstract

The hardware and software advances of Graphics
Processing Units (GPUs) have favored the develop-
ment of GPGPU (General-Purpose Computation on
GPUs) and its adoption in many scientific, engineer-
ing, and industrial areas. Thus, GPUs are increasingly
being introduced in high-performance computing sys-
tems as well as in datacenters. On the other hand,
virtualization technologies are also receiving rising
interest in these domains, because of their many ben-
efits on acquisition and maintenance savings. There
are currently several works on GPU virtualization.
However, there is no standard solution allowing ac-
cess to GPGPU capabilities from virtual machine
environments like, e.g., VMware, Xen, VirtualBox, or
KVM. Such lack of a standard solution is delaying the
integration of GPGPU into these domains.

In this paper, we propose a first step towards a
general and open source approach for using GPGPU
features within VMs. In particular, we describe the use
of rCUDA, a GPGPU (General-Purpose Computation
on GPUs) virtualization framework, to permit the exe-
cution of GPU-accelerated applications within virtual
machines (VMs), thus enabling GPGPU capabilities
on any virtualized environment. Our experiments with
rCUDA in the context of KVM and VirtualBox on a
system equipped with two NVIDIA GeForce 9800 GX2
cards illustrate the overhead introduced by the rCUDA
middleware and prove the feasibility and scalability of
this general virtualizing solution. Experimental results
show that the overhead is proportional to the dataset
size, while the scalability is similar to that of the native
environment.

1. Introduction

Many-core specialized processors and accelerators
and, in particular, graphics processors (GPUs), are
experiencing increased adoption as an appealing way
of reducing the time-to-solution in areas as diverse
as finance [1], chemical physics [2], computational
fluid dynamics [3], computational algebra [4], image
analysis [5], and many others. These hardware accel-
erators offer a large amount of processing elements
with reduced cache memories and high processor-to-
memory bandwidth, so that applications featuring a
high rate of computations per data item can attain high
performance. In addition, as GPU technology targets
the gaming market, these devices present a relatively
high performance/cost ratio, resulting in an interesting
option for HPC (high performance computing).

On the other hand, virtualization technologies are
currently widely deployed, as their use yields important
benefits such as resource sharing, process isolation,
and reduced management costs. Thus, it is straight-
forward that the usage of virtual machines (VMs) in
HPC is an active area of research [6]. VMs provide an
improved approach to increase resource utilization in
HPC clusters, as several different customers may share
a single computing node with the illusion that they own
their entire machine in an exclusive way. Security is
ensured by the virtualization layer, which additionally
may provide other services, such as migrating a VM
from one node to another if required, for example.

Processes running in a VM may also require the
services of a GPU in order to accelerate part of their
computations. However, the real GPU does not directly
belong to the VM, but it should be attached, in some
way, to it. To do so, the GPGPU capabilities should
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be exposed to the VMs in such a way that they can
make use of the real GPU. However, although there
is currently some work on the virtualization of the
graphics application programming interfaces (APIs) of
GPUs (e.g., [7]), those efforts are not directly useful
to expose GPGPU features to virtualized environments.
The main cause is that both uses of GPUs are com-
pletely different and, therefore, advances in one of
them do not translate in progress in the other. The
reason for this is that current GPUs lack a standard
low-level interface —unlike other devices such as
storage and network controllers— and, therefore, their
use for graphics purposes is approached by employing
high-level standard interfaces such as Direct3D [7] or
OpenGL [8], while using them for GPGPU requires
APIs like OpenCL [9] or NVIDIA CUDA (Compute
Unified Device Architecture) [10]. GPGPU-oriented
APIs significantly differ from their graphics-processing
oriented counterparts (OpenGL and Direct3D), as the
former have to deal with general-purpose computing
issues, while the latter are mainly concerned with
graphics-related features such as object interposition,
flickering, or graphics redirection. On the other hand,
the few efforts done up to now to expose CUDA
capabilities to VMs [11], [12], [13] (1) are incomplete
prototypes, (2) make use of obsolete versions of the
GPGPU API, (3) are not general solutions, as they
target a particular virtual machine monitor (VMM)
environment, or (4) employ inefficient communication
protocols between the front-end and back-end compo-
nents of their middleware.

In this paper, we move a step forward in the vir-
tualization of GPUs for their use as GPGPU accel-
erators by VMs. We propose using an open source,
VMM-independent, and communication-efficient way
of exposing GPGPU capabilities to VMs featuring a
recent GPGPU API version. Our work addresses the
virtualization of the CUDA Runtime API, a widely
used API to perform general computations over the
latest NVIDIA GPUs. By using our proposal, GPGPU
features of CUDA compatible GPUs are available to
processes running in any VM. In particular, we employ
a framework initially intended to enable remote use
of the CUDA Runtime API. This framework named
rCUDA [14], was initially designed to use TCP sockets
to communicate a GPU-accelerated process running
in a computer not having a GPU with a remote
host providing GPGPU services, thus providing the
accelerated process with the illusion of directly us-
ing a GPU. Therefore, this framework is suitable for
distributed-memory environments. Note however that
although the primary goal of rCUDA was providing a
way to reduce the number of GPU-based accelerators

in a cluster, which leads to savings in acquisition,
energy, maintenance, and cooling costs, in this paper
we extend the applicability of the rCUDA framework
to also cover a wide spectrum of GPGPU in virtualized
environments, exposing CUDA capabilities to VMs
running in a CUDA-enabled computer. More specifi-
cally, we explore the benefits of using rCUDA in VMs,
ranging from a single VM instance to multiple VMs
concurrently running in the same server, equipped with
a small number of accelerators. To do this, we analyze
the execution of a set of CUDA SDK examples on
a platform composed of 8 general-purpose cores and
two NVIDIA cards providing a total of 4 GPUs. The
results obtained with the Kernel-based Virtual Machine
(KVM) and Oracle’s VirtualBox Open Source Edition
(VB-OSE) VMMs using rCUDA are additionally com-
pared with those of the native environment. Although
our solution is also valid for the VMware Server
solution, we cannot disclose the results due to licensing
policies. To the best of our knowledge, this is the first
paper analyzing rCUDA usage for VMs, as previous
papers focused on cluster environments.

The rest of the paper is organized as follows: in Sec-
tion 2 we introduce some general background related
with our contribution. In Section 3, we describe the
architecture of rCUDA, while Section 4 provides infor-
mation about its usage in VM environments. Section 5
presents the results of the experimental evaluation.
Finally, Section 6 summarizes the conclusions of this
work.

2. Background on CUDA Virtualization

In addition to rCUDA, which will be described in
the following section, there are other approaches that
pursue the virtualization of the CUDA Runtime API for
VMs: vCUDA [13], GViM [12], and gVirtuS [11]. All
solutions feature a distributed middleware comprised
of two parts: the front-end and the back-end. The
frond-end middleware is installed on the VM, while
the back-end counterpart, with direct access to the
acceleration hardware, is run by the host operating
system (OS) — the one executing the VMM.

vCUDA [13] implements an unspecified subset of
the CUDA Runtime version 1.1. It employs XML-
RPC for the application level communications, which
makes the solution portable across different VMMs
but, as the experiments in [13] show, the time spent
in the encoding/decoding steps of the communication
protocol causes a considerable negative impact on the
overall performance of the solution.

On the other hand, GViM [12] uses Xen-specific
mechanisms for the communication between both



middleware actors, including shared memory buffers,
which enhance the communications between user and
administrative domains, at the expense of losing VMM
independence. In addition, this solution, based also in
CUDA 1.1, does not seem to implement the whole
Runtime API.

Finally, gVirtuS [11] (version 01-beta1) is a tool
with a purpose similar to rCUDA. This version seems
to only cover a subset of the Runtime API v2.3 (e.g.:
it lacks 20 out of the 37 functions of the memory
management module of this API version).

In this paper, we propose using rCUDA, a
production-ready framework to run CUDA applica-
tions from VMs, based in a recent CUDA API ver-
sion (currently 3.1). This middleware makes use of
a customized communications protocol and is VMM-
independent, thus addressing the main drawbacks of
previous works.

3. The rCUDA Framework

rCUDA is intended to provide access to GPUs
installed in remote nodes. Hence, this framework offers
HPC clusters a way of reducing the total number of
GPUs in the system or, alternatively, to significantly
accelerate the computations of a traditional cluster by
adding a reduced number of accelerators. In other
words, in the former case, by slightly increasing the
execution time of the applications that make use of
GPUs to accelerate parts of their code, considerable
savings can be achieved in energy consumption, main-
tenance, space, and cooling. On the other hand, when
adding a few accelerators to a cluster, rCUDA brings
the possibility of significantly reducing the execution
time of suitable applications with a small impact on
the system energy consumption.

As in the case of the software presented in the
previous section, the rCUDA framework is split into
two major software modules, as depicted in Fig. 1:

• The client middleware consists of a collection of
wrappers which replace the NVIDIA CUDA Run-
time (provided by NVIDIA as a shared library) in
the client computer (not having a GPU). These
wrappers are in charge of forwarding the API
calls from the applications requesting acceleration
services to the server middleware, and retrieving
the results back, providing applications with the
illusion of direct access to a physical GPU.

• The server middleware runs as a service on the
computer owning the GPU. It receives, interprets,
and executes the API calls from the clients, em-
ploying a different process to serve each remote

Figure 1. Outline of the rCUDA architecture.

Figure 2. rCUDA communications protocol exam-
ple — (1) initialization, (2) memory allocation on
the GPU, (3) memory transfer of the input data
from CPU to GPU, (4) kernel execution, (5) mem-
ory transfer of the results from GPU to CPU,
(6) GPU memory release, and (7) socket closing
and server process finalization.

execution over an independent GPU context, thus
attaining GPU multiplexing.

Communication between rCUDA clients and servers
is performed using TCP sockets through the network
available in the cluster. It also implements a cus-
tomized application-level protocol to efficiently com-
municate client and server middleware. Fig. 2 shows
an example of the protocol implemented by rCUDA,
based on a generic kernel call which uses one data set
as input and produces a dataset output, such as the 1D
FFT (1-dimensional Fast Fourier Transform).

rCUDA 2.0 —the most recent version at the moment
of the writing of this paper— targets the Linux OS.
It implements the CUDA Runtime API version 3.1,
excluding OpenGL and Direct3D interoperability, as
graphics-oriented capabilities are not of interest in this



environment. One drawback of rCUDA is that it lacks
support for theC for CUDA extensions, as the CUDA
Runtime library comprises some hidden and undocu-
mented support functions, as reported by the vCUDA
developers in [13]1. As the rCUDA architecture fea-
tures separate memory maps for the client and server
middleware, the calls to these hidden functions cannot
be blindly forwarded to the server (e.g., consider that
pointers to the local CPU memory map might be
involved in those functions; in this case, the memory
pointed at the server would not contain the right data).
We are currently working on solving this limitation.

Although there are other GPGPU APIs such as the
CUDA Driver API or OpenCL (with the advantage that
the latter is a completely open specification), rCUDA
focuses on the most widely used: the CUDA Runtime.
These alternatives might be explored in the future
employing tools similar to rCUDA for these APIs, such
as VCL [15] for OpenCL.

Another interesting use of rCUDA is for educational
purposes, as it can also be used in academic envi-
ronments, by providing a way of sharing a remote
access to a few GPUs to dozens of students. This
usage would report significant economic savings to
educational institutions, while the slightly increased
execution time is not a concern in this context.

Note that the NVIDIA CUDA Runtime Library
also allows CUDA executions on computers with no
CUDA-compatible devices by means of the Device
Emulation Mode, as GPU kernels are executed by
the CPU emulating the many-core architecture of the
GPU. Therefore, this facility could also be used for
educational purposes. However, the resulting overhead
is often unbearable for complete executions (indeed,
this feature is intended for debugging purposes instead
of a replacement of a physical accelerator).

Readers can find additional details about the rCUDA
architecture and the possibilities it offers in [14],
a more detailed description of the implementation
with a discussion on energy consumption implications
in [16], and a network-dependent performance predic-
tion model in [17].

4. rCUDA on Virtual Machines

rCUDA was initially designed to provide access
to GPGPU features to computers not owning a GPU
by accessing remote computers equipped with that

1. The gVirtuS software is supposed to support these undoc-
umented functions. However, when looking at the corresponding
source code, the following advise is found: “Routines not found
in the cuda’s header files. KEEP THEM WITH CARE”.

Figure 3. rCUDA on a VMM environment.

hardware, as explained in the previous section. How-
ever, we propose to additionally use this framework
to access GPUs from VMs. In this case, from the
point of view of the rCUDA architecture, the VMs
are considered nodes without a physical GPU, and the
host OS is that acting as a GPGPU server. Hence, the
client middleware of rCUDA is installed on the guest
OS (that executed by a VM), as a replacement of the
NVIDIA Runtime library, while the rCUDA server is
executed on the host OS.

When used with VMs, the communication protocol
in rCUDA will make use of the virtual network device
to communicate the front-end and back-end middle-
ware shown in Fig. 1. Therefore, the network has to
be configured in a way that both the VM and the host
OS can address IP packets to each other. Fig. 3 shows
the diagram of Fig. 1 modified to reflect its usage
in VM environments. We were able to successfully
test the current implementation of rCUDA in KVM,
VB-OSE, and VMware Server virtualization solutions.
However, we were unable to run it in the current
release of the Xen Hypervisor (3.4.3), as we could
not gain access to a recent NVIDIA GPU driver that
worked properly under the modified kernel for the
administrative domain, with the ultimate reason being
that this driver is not designed to support the Xen
environment.

With rCUDA, multiple VMs running in the same
physical computer can make concurrent use of all
CUDA-compatible devices installed on the computer
(as long as there is enough memory on the devices
to be allocated by the different applications). Further-
more, although not addressed in this paper, rCUDA
also allows the usage of a GPU located in a different
physical computer. Effectively, rCUDA also features
complete independence of the physical location of the
GPU, as it may be located in a remote node instead of
the local computer. In this case, the client middleware
in the VM would forward the API call coming from
the application through the virtual network to the host
OS, which would route the IP datagrams containing



the CUDA request through the real network interface
towards the remote computer owning the GPU, where
the rCUDA server middleware would be reached. That
server middleware would forward the request to the
real GPU. Obviously, the latency of the CUDA calls
would increase due to the longer path between client
and server. Nevertheless, as stated in [17], an increased
latency is not expected to critically impact the perfor-
mance of applications using rCUDA, as usually only
a few relatively small-sized CUDA remote calls are
needed, while those involving memory transfers are
expected to be sufficiently large to hide latency. With-
out such a middleware enabling GPGPU capabilities,
applications running inside VMs have the only choice
to make use of the CPU to perform their computations.

In the following section, we provide an in-depth
analysis of the use of rCUDA to enable GPGPU
capabilities within VMs. We believe our proposal is the
first work describing a VMM-independent production-
ready CUDA solution for VMs.

5. Experimental Evaluation

In this section, we conduct a collection of ex-
periments in order to evaluate the performance of
the rCUDA framework on a VMM environment. The
target system consists of two Quad-core Intel Xeon
E5410 processors running at 2.33 GHz with 8 GB of
main memory. An OpenSuse Linux distribution with
kernel version 2.6.31 is run at both host and guest
sides. The GPGPU capabilities are provided by two
NVIDIA GeForce 9800 GX2 cards featuring a total of
4 NVIDIA G92 GPUs; the driver version is 190.53.

We selected two Open Source VMMs for the perfor-
mance analysis: KVM (userspaceqemu-kvm v0.12.3)
and VB-OSE 3.1.6, with their respective VMs config-
ured to make use of para-virtualized network devices.
In addition, for load isolation purposes, each VM was
configured to make use of only one processor core.

All benchmarks employed in our evaluation are part
of the CUDA SDK. From the 67 benchmarks in the
suite, we selected 10 representative SDK benchmarks
of varying computation loads and data sizes, which use
different CUDA features (see Table 1). A description of
each benchmark can be found in the documentation of
the SDK package [18]. The benchmarks were executed
with the default options, other than setting the target
device. In addition, benchmarks requiring OpenGL
capabilities for their default executions (BT, BF, and
ID) were executed with the-qatest argument, in
order to perform a “quick auto test”, which does not
make use of the graphics-oriented API. In this case,
computations are made without graphically displaying

Table 1. SDK Benchmarks in our experiments

SDK name Acronym Data transfers
alignedTypes AT 413.26 MB
asyncAPI AA 128.00 MB
bicubicTexture BT 4.25 MB
BlackScholes BS 76.29 MB
boxFilter BF 5.00 MB
clock CLK 2.50 KB
convolutionSeparable CS 36.00 MB
fastWalshTransform FWT 64.00 MB
imageDenoising ID 2.49 MB
matrixMul MM 79.00 KB

the data. To make the original benchmark code com-
patible with rCUDA, which does not support theC
for CUDA extensions, the pieces of code using these
extensions were rewritten using the plain C API (only
a 7% of the total effective source lines of code required
being modified).

The execution times reported in the next experiments
are the minimum from 5 executions, in order to avoid
eventual network and CPU noise. They reflect the
elapsed time experienced by the users, that is, from
the start of the execution of the application till the
end of it, including operations such as standard I/O.
The experiments are presented in this section in two
different groups. First, those concerning one VM are
presented. Later, we introduce experiments involving
several VMs being concurrently executed in our test-
bed.

5.1. Single Virtual Machine

We first analyze the performance of the CUDA
SDK benchmarks running in a VM using rCUDA,
and compare their execution times with those of a
native environment —i.e., using the regular CUDA
Runtime library in a non-virtualized environment. The
results of this experiment are reported in Fig. 4. In
addition, Table 2 compares the results of the native and
virtualized environments using the real accelerator with
those obtained using the NVIDIA Device Emulation
Mode (see Section 3). It would also be interesting
including in Table 2 data on execution timings for a
version of the benchmarks that makes only use of the
CPU, apart from those of the Device Emulation Mode.
However, as it is difficult to find optimized algorithms
for CPUs performing the same operations as all of our
benchmarks, and those included in the SDK package
are often naive versions, we cannot present such a
comparison. Nevertheless, it is not strictly required for
understanding the experiments presented and, addition-
ally, the convenience of using virtualized remote GPUs
instead of the local CPU was previously discussed [14].



Table 2. Execution times (in seconds and normalized) on the different environments

Bench.
Native

rCUDA CUDA emulation
KVM VB-OSE KVM VB-OSE

Time Time Norm. Time Norm. Time Norm. Time Norm.
AT 6.71 10.27 1.53 40.68 6.06 477.61 71.18 580.45 86.50
AA 0.28 1.55 5.54 7.32 26.14 33.08 118.14 42.37 151.32
BT 0.35 0.53 1.51 0.77 2.20 11.06 31.60 14.87 42.49
BS 2.07 3.33 1.61 6.35 3.07 731.96 353.60 876.16 423.27
BF 0.36 0.60 1.67 0.89 2.47 0.83 2.30 0.97 2.69
CLK 0.17 0.28 1.65 0.33 1.94 0.63 3.71 1.04 6.12
CS 0.75 1.55 2.07 3.14 4.19 308.13 410.84 388.25 517.67
FWT 3.04 4.31 1.42 7.31 2.40 780.20 256.64 1019.61 335.40
ID 0.30 0.46 1.53 0.60 2.00 93.77 325.90 102.84 342.80
MM 0.18 0.30 1.67 0.34 1.89 0.62 3.44 0.86 4.78

Figure 4. Native vs. KVM and VB-OSE. Normal-
ized times annotated.

Results show that, for the evaluated benchmarks,
the combination of KVM + rCUDA performs much
better than VB-OSE + rCUDA. The reason for these
differences will probably mostly lay on the way each
VMM manages the virtual I/O. However, as the focus
of the paper is analyzing the feasibility of using GPUs
in VMs and not the discussion of a performance com-
parison between VMMs, (in other words, the analysis
of the specifics of different VMMs is out of the scope
of this work), we will not pursue further the causes of
this difference. Hereafter, for simplicity and brevity,
the results for VB-OSE are not further discussed,
as compared with those of KVM they report similar
behavior but at a higher scale.

Table 2 shows that the execution times of the
benchmarks running in the VM employing the phys-
ical accelerator by means of rCUDA are up to two
orders of magnitude lower than those of the bench-
marks in the emulation mode. Indeed, the performance
of KVM + rCUDA is close to that of the native
executions. Therefore, even though the combination
KVM + rCUDA pays the penalty for a non-optimized

host-guest communication, using this general approach
is feasible. Unfortunately, we cannot compare the
overhead of the rCUDA-based solution with that of
solutions based in prior middleware such as GViM or
vCUDA because (1) GViM and vCUDA software are
not publicly available, (2) in their associated papers,
CUDA 1.1 was used instead of the more recent version
3.1 rCUDA uses, and (3) both used the Xen virtual
platform2. On the other hand, we already mentioned
that, unfortunately, we could not get the public version
of gVirtuS working in our test-bed. For reference
purposes, executions up to 5.28 times slower using
vCUDA with respect to those on a native environment
can be extracted from [13], up to 1.25 in the case
of GViM in [12], and up to 7.12 and 2.98 for gVir-
tuS [11] when using TCP-based and VMM-dependent
communications, respectively. Nevertheless, as previ-
ously stated, rCUDA aims at attaining a performance
somewhere between those prior prototypes with the
advantage of featuring VMM independence.

Fig. 5 specifies the time required by network trans-
fers, thus illustrating that the overhead of KVM +
rCUDA mostly originates in the network. Network
transfer times have been measured as the addition
of the times spent in data sending in both server
and client middleware sides of rCUDA. A conclusion
from this experiment is that a shared-memory scheme
for communications may improve the performance at
the expense of losing VMM independence. However,
losing VMM independence would lead to a significant
reduction in the flexibility provided by rCUDA, which
is the main benefit of this package. Therefore, in
the rest of this section we will analyze the exact
causes for the overhead introduced by virtual network
transfers in order to assess if they can be improved
while maintaining VMM independence. As mentioned

2. NVIDIA GPU drivers supporting up to version 1.1 of CUDA
worked on the Xen dom0, but this is no longer the case for more
recent versions like those used by us.
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before, we will focus this analysis for the KVM VMM.
Fig. 6 relates the dataset size of each benchmark

with the network transfer time, identifying the different
overheads caused by network communications shown
in Fig. 5. Note, however, that as the AA benchmark
performs asynchronous memory transfers, which might
be overlapped with CPU and GPU computations, the
time spent in network communications might not be
proportional to the global overhead introduced by
those; therefore, the data corresponding to this bench-
mark is not included in the figure and skipped during
the rest of this section. As shown in the figure, the
time spent in network communications seems to be
proportional to the data size of the problem, as other
transfers related with the application-level communi-
cation protocol become negligible for “large” datasets.
Nevertheless, as the points for CLK, MM, ID, BT,
and BF in Fig. 6 are so close to the axis origins that
they cannot be clearly distinguished, Fig. 7 provides a
zoom of the plot area for those points. As can be seen,
the points in that figure evidence a significantly lower
network throughput than AT, CS, FWT, or BS (i.e.,
those farther from the origin of coordinates). In order
to analyze the reason for this lower throughput, we
determined the degree of utilization of the bandwidth
of the virtual network. To do so, we analyzed the aver-
age transfer rates of the memory transfer operations for
each of the benchmarks. Additionally, a simple ping-
pong test revealed a peak transfer rate between KVM
VMs and the host OS of 126 MB/s. The results of this
analysis are shown in Table 3, illustrating that in some
cases the experienced average transfer rate (TR) was
much lower than this value.

The bandwidth for the smallest data sizes shown
in Table 3 may be far from the theoretical peak of
the network due to the intrinsics of the TCP protocol.
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That is, the cause for these low transfer rates may be
related with the size of the memory transfer operations
of each benchmark and the configuration of the TCP
transmission window. Inspecting the source code we
determined that data transfers are performed in chunks
of sizes between 2 KB and 32 MB. Numbers in Table 3
reveal that the benchmarks that transfer data in chunks
smaller than 1 MB yield specially low average transfer
rates (below 50% of the peak). To confirm the rela-
tionship between the low bandwidth and the intrinsics
of TCP, we next compare the results of the ping-pong
test for data payload sizes up to 1 MB with the average
transfer rates obtained in our executions. Fig. 8 shows
that the transfer rates obtained by the ping-pong test
vary from 16 to a maximum of 119 MB/s. However,
as illustrated in the figure, the average throughputs for



Table 3. Average transfer rate (TR) obtained for each benchmark

AT BT BS BF CLK CS FWT ID MM
Data (MB) 413.26 4.25 76.29 5.00 2 · 10

−3 36.00 64.00 2.49 0.08
Time (s) 3.53 0.08 0.88 0.12 4 · 10

−4 0.47 0.75 0.06 0.01
TR (MB/s) 117.19 52.44 86.61 42.93 6.17 76.55 84.82 44.21 6.91
Transfers 13 4 5 5 1 2 2 5 3
Chunk 32 MB 1 MB 15 MB 1 MB 2 KB 18 MB 32 MB 512 KB 15-40 KB
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Figure 8. Peak transfer rate (TR) of the virtual
network, ping-pong test results, and minimum ob-
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the benchmarks measured in our experiments are still
below those obtained with this simple test. Therefore,
the reason may be that the TCP layer protocol is based
on a transmission window size which is progressively
—but not immediately— adapted to the amount of
transferred data. To assess the impact of this phe-
nomenon in our experiments, we performed a careful
analysis of the time employed by each memory transfer
operation. In Fig. 9, we show the transfer times for 4
consecutive and identical memory transfers of one of
the benchmarks. As expected, the figure reveals that
the transfer of the first large packet takes significantly
longer time than the following transfers of the same
size, which require times close to those of the ping-
pong test, as the TCP transfer window is progressively
being increased to reach the appropriate size for that
data payload. Therefore, the low average transfer rates
shown in Table 3 are quite confidently explained by the
transport layer protocol particularities regarding how
the window in the transmitter side is managed by TCP.
This window management also explains the network
overhead shown in Fig. 5.

The network analysis presented above reveals that,
in order to obtain faster network transmissions, on the
one hand memory transfer operations should involve as
much data as possible and, on the other hand, the initial

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4

T
im

e 
(µ

s)

Transfer number

ID benchmark
Ping-pong

Figure 9. Experienced times in 4 consecutive
transfers for the ID benchmark vs. those obtained
from the ping-pong test for that data size.

TCP window size should be increased. One proposal
for future work in rCUDA is to try to artificially
open the transmission window when the TCP connec-
tion between the client and the server is established.
However, as the maximum effective transfer rate of
the virtual network is 126 MB/s, when compared to
native solutions, where memory transfers directly use
the PCI Express (PCIe) bus (with an effective transfer
rate around 5.5 GB/s in our tests over a PCIe v2.0 x16),
the overhead when performing GPGPU over a VM
using a virtual network will never be reduced below a
minimum value. In this regard, the experiments show
that despite the increase of the throughput with large
data transfers from VMs, the overhead of transferring
large amounts of data is higher than the benefits
obtained with the higher throughput, and proportional
to the dataset size. In general, this overhead could be
reduced with improved support for the virtual network
device provided by VMM developers.

5.2. Multiple Virtual Machines

To measure the usability of a highly loaded system
using rCUDA, we performed some scalability tests
running up to eight VMs on the target platform,
making use of the 4 GPUs of the computer via rCUDA.
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Figure 10. Concurrently running the benchmarks
on multiple KVM VMs and GPUs.

The results were compared with those corresponding
to concurrent executions in a native environment.

Fig. 10 shows the results employing from one to
eight KVM VMs. The GPUs used by each VM are
distributed in a round-robin fashion as the required
number increases. Thus, as soon as 5 or more con-
current VMs are run, the GPUs become a shared
resource. The results show a smooth degradation in
performance up to 4 VMs, as the different instances are
only competing for the network channel and the PCIe
bus; from five to eight VMs, the overhead introduced
is more evident, as the GPUs also become a shared
resource. For instance, for the AT sample, the most
time-consuming benchmark in the set, the overhead
when executed in four VMs is 14.7%, raising to 71.4%
when the eight VMs are used.

On the other hand, the native concurrent tests,
shown in Fig. 11 —where the different GPUs of the
system are used following the same policy as in the
prior case— present scalability results similar to those
obtained in the VM environment. For reference, the AT
sample overhead when running 4 concurrent instances
is 8.9%, reaching 105.9% for 8 instances as, similarly
to the VM environment, there is a competition for the
PCIe bus up to 4 instances, while there is an additional
competition for the GPU resources starting from 5
concurrent instances.

Interestingly, in our case studies we noticed better
scalability in rCUDA than in the native environment.
As extracted from Fig. 5, CPU and GPU computation
time, in addition to that of the data transfers across the
PCIe bus, present no major differences in native and
KVM tests. Instead, the difference in time between
both environments is mostly caused by the network
transfers.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8

T
im

e 
(s

)

Number of concurrent instances of the benchmark

AT
AA
BT
BS
BF

CLK
CS

FWT
ID

MM

Figure 11. Concurrently running several bench-
marks on the native environment.

6. Conclusions

The rCUDA framework enables remote CUDA Run-
time API calls, thus enabling an application making
use of a CUDA-compatible accelerator to be run on
a host without a physical GPU. Thus, this framework
can offer GPGPU acceleration to applications running
either in a remote host, or similarly in a VM, where
no direct access to the hardware of the computer is
provided.

In this paper, we have reported a variety of exper-
imental performance results based on a set of CUDA
SDK benchmarks, showing that the rCUDA frame-
work employing TCP/IP sockets for communications
between its front-end and back-end components can
deliver CUDA-based acceleration support to multiple
VMs running in the same physical server equipped
with several GPUs. In addition, the experiments re-
ported an acceptable overhead —compared with na-
tive executions— for most applications ready to be
run in a virtualized environment. Our tests revealed
a good level of scalability, thus demonstrating that
this solution can be run in a productive system with
concurrent VMs in execution. In summary, our results
state that it is possible to provide GPGPU capabilities
with reasonable overheads to processes running in a
VM, while keeping VMM independence.

For future work, we are planning to explore new
communication protocols for rCUDA in order to re-
duce overhead in a VM scenario. For instance, reli-
able datagram sockets (RDS) could offer faster com-
munications while maintaining VMM independence.
Once having equipped rCUDA with a fast and reliable
VMM-independent communications library, additional
VMM-dependent mechanisms will be evaluated.



Further Information

For further details on rCUDA, visit its web pages:

• http://www.gap.upv.es/rCUDA
• http://www.hpca.uji.es/rCUDA

Information about how to obtain a copy of rCUDA can
be found there.
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