Counting Restricted One-to-One Functions Under a More General Condition

Mary Joy R. Latayada ${ }^{1, *}$, Roberto R. Corcino ${ }^{2}$
${ }^{1}$ Department of Mathematics, Caraga State University, Butuan City, Philippines
${ }^{2}$ Department of Mathematics, Cebu Normal University, Cebu City, Philippines

Received: September 15, 2014 Accepted: Nov 25, 2014

Abstract

In this paper, we obtain some explicit and recurrence formulas in counting the number restricted one-to-one functions $\left.f\right|_{S}: N_{m} \longrightarrow N, S \subseteq N_{m}$ under certain conditions.

Key words: counting functions, recurrence relation, restricted one-to-one function, stirling numbers

1 Introduction

The study of counting functions was first considered by Cantor (Zehna and Johnson, 1972) when he attempted to give meaning to power of cardinal numbers. Cantor obtained that the number of possible functions from an m-set to an n-set is equal to n^{m} in which $(n)_{m}=n(n-1)(n-2) \ldots(n-m+1)$ of these are one-to-one functions. We can further obtained that, by making use of the classical Stirling numbers of the second kind $S(n, k)$, the number of onto functions is $n!S(m, n)$, see Chen and Kho (1992). Corcino et al. (2005) obtained that the number of restricted functions $\left.f\right|_{S}: N_{m} \longrightarrow N_{n}$ for all $S \subseteq N_{m}$ where $N_{m}=\{1,2, \ldots, m\}$ is equal to $(n+1)^{m}$. These restricted functions are the same as the restricted functions $\left.f\right|_{S}: N_{m} \longrightarrow N$ such that $f(a) \leq n \forall a \in S$.

Recently, Corcino et al. (2005) established some formulas in counting restricted functions $\left.f\right|_{S}: N_{m} \longrightarrow N, S \subseteq N_{m}$ under each of the following conditions:
(i) $f(a) \leq g(a), \forall a \in S$ where g is any nonnegative real-valued continuous

[^0]function.
(ii) $g_{1}(a) \leq f(a) \leq g_{2}(a), \forall a \in S$ where g_{1} and g_{2} are any two nonnegative real-valued continuous functions.

Under condition (i), with $\hat{\psi}_{i, m}=\bigcup_{S_{i} \subseteq N_{m}}\left\{\left.f\right|_{S_{i}}\right\}$, the following formulas were obtained.

$$
\begin{align*}
\left|\hat{\psi}_{i, m}\right| & =\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} \prod_{l=1}^{i}\left\lceil g\left(j_{l}\right)\right\rceil \tag{1}\\
\left|\hat{\psi}_{i, m+1}\right| & =\left|\hat{\psi}_{i, m}\right|+\lceil g(m+1)\rceil\left|\hat{\psi}_{i-1, m}\right| \tag{2}\\
\left|\hat{\psi}_{m}\right| & =\prod_{i=1}^{m}(1+\lceil g(i)\rceil), \quad \hat{\psi}_{m}=\bigcup_{i=0}^{m} \hat{\psi}_{i, m} . \tag{3}
\end{align*}
$$

While under condition (ii), with $\tilde{\psi}_{i, m}=\bigcup_{S_{i} \subseteq N_{m}}\left\{\left.f\right|_{S_{i}}\right\}$, the following formulas were obtained,

$$
\begin{aligned}
\left|\tilde{\psi}_{i, m}\right| & =\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} \prod_{l=1}^{i} \tilde{g}\left(j_{l}\right), \\
\left|\tilde{\psi}_{m}\right| & =\prod_{i=1}^{m}(1+\tilde{g}(i)) .
\end{aligned}
$$

where $\tilde{g}\left(j_{l}\right)=\left\lceil g_{2}\left(j_{l}\right)\right\rceil-\left\lfloor g_{1}\left(j_{l}\right)\right\rfloor+1$. Note that $\left|\hat{\psi}_{i, m}\right|$ and $\left|\tilde{\psi}_{i, m}\right|$ count the total number of restricted functions under conditions (i) and (ii), respectively.

In this paper, we count the number of restricted one-to-one functions under conditions (i) and (ii), however, the functions g and g_{1} must be increasing while g_{2} must be decreasing.

2 One-to-One Functions Under (i)

Let $\hat{Y}_{i, m}=\bigcup_{S_{i} \subseteq N_{m}}\left\{\left.f\right|_{S_{i}}\right\}$ where f is a one-to-one function from N_{m} to N such that $m \leq n$ and $f(a) \leq g(a), \forall a \in N_{m}$ for some nonnegative real-valued continuous function g which is increasing on the closed interval [1, m]. If $S_{i}=\left\{j_{1}, j_{2} \ldots j_{i}\right\}$ where $j_{1}<j_{2}<$ $\ldots<j_{i}$, then

$$
\left|\left\{\left.f\right|_{S_{i}}\right\}\right|=\prod\left(\left\lceil g\left(j_{l}\right)\right\rceil-l+1\right.
$$

where $\left\lceil g\left(j_{l}\right)\right\rceil$ is the greatest integer that is less than or equal to a real number $g\left(j_{l}\right)$. Thus, we have

$$
\left|\hat{Y}_{i, m}\right|=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} \prod_{l=1}^{i}\left(\left\lceil g\left(j_{l}\right)-l+1\right)\right.
$$

which is parallel to formula (1). To state this result formally, we have the following proposition.

Proposition 1. Let f be a one-to-one function from N_{m} to N such that $f(a) \leq g(a)$ $\forall a \in N_{m}$ for some nonnegative real-valued continuous function g which is increasing or constant on the closed interval $[1, m]$. Then the number $\left|\hat{Y}_{i}, m\right|$ of restricted one-to-one functions $\left.f\right|_{S_{i}}$ over all $S_{i} \subseteq N_{m}$ such that $\left|S_{i}\right|=i$ is given by

$$
\left|\hat{Y}_{i, m}\right|=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} \prod_{l=1}^{i}\left(\left\lceil g\left(j_{l}\right)\right\rceil-l+1\right)
$$

where $\left|\hat{Y}_{0}, m\right|=1,\left|\hat{Y}_{i}, m\right|=0$ when $i>m$.
Remarks. (1) When $g(a)=n, \forall a \in N_{m}$, we have

$$
\left|\hat{Y}_{i, m}\right|=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} \prod_{l=1}^{i}(\lceil n-l+1) .
$$

Since the number of terms of the sum is $\binom{m}{i}$,

$$
\left|\hat{Y}_{i, m}\right|=\binom{m}{i}(n)_{i}, \quad(n)_{i}=n(n-1)(n-2) \ldots(n-i+1) .
$$

This is the number of restricted one-to-one functions $\left.f\right|_{S_{i}}$ from N_{m} to N_{n} such that $\left|S_{i}\right|=i$.
(2) When $g(a)=a, \forall a \in N_{m}$, we have

$$
\left|\hat{Y}_{i, m}\right|=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} \prod_{l=1}^{i}\left(\left\lceil j_{l}-l+1\right) .\right.
$$

Parallel to (2), we have the following recurrence relation which is useful in computing the first values of $\left|\hat{Y}_{i, m}\right|$.

Proposition 2. The number $\left|\hat{Y}_{i}, m\right|$ satisfies the following recurrence relation

$$
\left|\hat{Y}_{i, m+1}\right|=\left|\hat{Y}_{i, m}\right|+(\lceil g(m+1)\rceil-i+1)\left|\hat{Y}_{i-1, m}\right|
$$

with initial condition $\left|\hat{Y}_{0,0}\right|=1,\left|\hat{Y}_{i, m}\right|=0$ for $i>m$ or $i<0$.
Proof. We know that $\left|\hat{Y}_{i, m+1}\right|$ counts the number of restricted one-to-one functions $\left.f\right|_{S_{i}}$ over all $S_{i} \subseteq N_{m+1}$. This can be done by considering the following cases:

1. Case 1. $m+1 \notin S_{i}$.

Under this case, the number of such restricted one-to-one functions $\left.f\right|_{S_{i}}$ over all $S_{i} \subseteq N_{m+1}$ is $\left|\hat{Y}_{i, m}\right|$.
2. Case 2. $m+1 \in S_{i}$.

In this case, we consider the following sequence of events:
(a) counting restricted functions $\left.f\right|_{S_{i}}$ over all $S_{i-1} \subseteq N_{m}$ which is equal to $\left|\hat{Y}_{i, m}\right|$.
(b) insert $m+1$ to every S_{i-1} and map $m+1$ to any of the natural number $1,2, \ldots,\lceil g(m+1)\rceil-i+1$. Since $m+1$ is the i th element of $S_{i}=S_{i-1} \cup\{m+1\}$, by Multiplication Principle (MP), the number of such restricted functions $\left.f\right|_{S_{i}}$ with $S_{i}=S_{i-1} \cup\{m+1\}$ is equal to $(\lceil g(m+1)\rceil-i+1)\left|\hat{Y}_{i-1, m}\right|$.

Thus, by Addition Principle (AP), we prove the proposition.

If we let $\hat{Y}_{m}=\bigcup_{i=1}^{m}\left|\hat{Y}_{i, m}\right|$ then $\left|\hat{Y}_{m}\right|=\sum_{i=1}^{m}\left|\hat{Y}_{i, m}\right|$. Using Proposition 2.2, we have

$$
\begin{aligned}
\left|\hat{Y}_{m}\right| & =\sum_{i=0}^{m}\left\{\left|\hat{Y}_{i, m-1}\right|+(\lceil g(m)\rceil-i+1)\left|\hat{Y}_{i-1, m-1}\right|\right\} \\
& =\sum_{i=0}^{m-1}\left|\hat{Y}_{i, m-1}\right|+\left(\lceil g(m)\rceil \sum_{i=0}^{m-1}\left|\hat{Y}_{i, m-1}\right|-\sum_{i=0}^{m} i\left|\hat{Y}_{i, m-1}\right|\right. \\
& =\left|\hat{Y}_{m-1}\right|(1+\lceil g(m)\rceil)-\sum_{i=0}^{m} i\left|\hat{Y}_{i, m-1}\right|
\end{aligned}
$$

When $m=1$,

$$
\left|\hat{Y}_{1}\right|=\left|\hat{Y}_{0}\right|(1+\lceil g(1)\rceil)-\sum_{i=0}^{0} i\left|\hat{Y}_{i, 0}\right|=(1+\lceil g(1)\rceil)-\sum_{i=0}^{0} i\left|\hat{Y}_{i, 0}\right| .
$$

When $m=2$,

$$
\begin{aligned}
\left|\hat{Y}_{2}\right| & =\left|\hat{Y}_{1}\right|(1+\lceil g(2)\rceil)-\sum_{i=0}^{1} i\left|\hat{Y}_{i, 1}\right| \\
& =(1+\lceil g(1)\rceil)(1+\lceil g(2)\rceil)-(1+\lceil g(1)\rceil) \sum_{i=0}^{0} i\left|\hat{Y}_{i, 0}\right|-\sum_{i=0}^{1} i \mid \hat{Y}_{i, 1} \\
& =\prod_{i=1}^{2}(1+\lceil g(i)\rceil)-\sum_{i=0}^{1}\left\{\prod_{l=j+1}^{1}(1+\lceil g(l+1)\rceil)\right\}\left\{\sum_{i=0}^{j} i \mid \hat{Y}_{i, j}\right\}
\end{aligned}
$$

When $m=3$,

$$
\begin{aligned}
&\left|\hat{Y}_{3}\right|=\left|\hat{Y}_{2}\right|(1+\lceil g(3)\rceil)-\sum_{i=0}^{2} i\left|\hat{Y}_{i, 2}\right| \\
&=(1+\lceil g(1)\rceil)(1+\lceil g(2)\rceil)(1+\lceil g(3)\rceil)-(1+\lceil g(2)\rceil)(1+\lceil g(3)\rceil) \sum_{i=0}^{0} i\left|\hat{Y}_{i, 0}\right| \\
&-(1+\lceil g(1)\rceil) \sum_{i=0}^{1} i\left|\hat{Y}_{i, 1} \sum_{i=0}^{2} i\right| \hat{Y}_{i, 2} \mid \\
&= \prod_{i=1}^{3}(1+\lceil g(i)\rceil)-\sum_{i=0}^{2}\left\{\prod_{l=j+1}^{2}(1+\lceil g(l+1)\rceil)\right\}\left\{\sum_{i=0}^{j} i \mid \hat{Y}_{i, j}\right\} \\
& \vdots \\
&\left|\hat{Y}_{m}\right|=\left|\hat{Y}_{m-1}\right|(1+\lceil g(m)\rceil)-\sum_{i=0}^{m-1} i\left|\hat{Y}_{i, m-1}\right| \\
&= \prod_{i=1}^{m}(1+\lceil g(i)\rceil)-\sum_{i=0}^{m-1}\left\{\prod_{l=j+1}^{m-1}(1+\lceil g(l+1)\rceil)\right\}\left\{\sum_{i=0}^{j} i \mid \hat{Y}_{i, j}\right\}
\end{aligned}
$$

where $\prod_{l=m}^{m-1}(1+\lceil g(l+1)\rceil)=1$. Note that \hat{Y}_{m} is the set of all restricted one-to-one functions $\left.f\right|_{S}$. Thus, $\left|\hat{Y}_{m}\right|$ is the total number of restricted one-to-one functions $\left.f\right|_{S}$.

Proposition 3. The total number $\left|\hat{Y}_{m}\right|$ of one-to-one restricted functions f from N_{m} to N such that $f(a) \leq g(a), \forall a \in N_{m}$ where g is any nonnegative real-valued continuous function which is increasing on $[1, m]$ is given by

$$
\left|\hat{Y}_{m}\right|=\prod_{i=1}^{m}(1+\lceil g(i)\rceil)-\sum_{i=0}^{m-1} \sum_{i=0}^{j} i\left|\hat{Y}_{i, j}\right| \prod_{l=j+1}^{m-1}(1+\lceil g(l+1)\rceil) .
$$

As a direct consequence of this proposition, we have the following corollary.
Corollary 1. The total number $\left|\hat{Y}_{m}^{c}\right|$ of restricted functions f from N_{m} to N which are not one-to-one such that $f(a) \leq g(a), \forall a \in N_{m}$ where g is any nonnegative real-valued continuous function which is increasing on $[1, m]$ is given by

$$
\left|\hat{Y}_{m}^{c}\right|=\sum_{i=0}^{m-1} \sum_{i=0}^{j} i \mid \hat{Y}_{i, j} \prod_{l=j+1}^{m-1}(1+\lceil g(l+1)\rceil) .
$$

Proof. Note that from (3) the total number $\left|\hat{\psi}_{m}\right|$ of restricted functions is given by

$$
\left|\hat{\psi}_{m}\right|=\prod_{i=1}^{m}(1+\lceil g(i)\rceil) .
$$

Hence, the total number $\left|\hat{Y}_{m}^{c}\right|$ of restricted functions which are not one-to-one is

$$
\left|\hat{Y}_{m}^{c}\right|=\prod_{i=0}^{m}(1+\lceil g(i)\rceil)-\left|\hat{Y}_{m}\right| .
$$

Applying Proposition 3, we prove the corollary.

3 One-to-One Functions Under (ii)

In this section, we count the number of restricted one-to-one functions $\left.f\right|_{S}: N_{m} \longrightarrow N$, $S \subseteq N_{m}$ under condition (ii). The following proposition gives an explicit formula for this number.

Proposition 4. Let f be a one-to-one function from N_{m} to N such that $g_{1}(a) \leq f(a) \leq$ $g_{2}(a), \forall a \in N_{m}$ where g_{1} and g_{2} are decreasing and, respectively, increasing nonnegative real-valued continuous functions on $[0, m]$. Then the number $\left|\tilde{Y}_{i, m}\right|$ of restricted one-to-one functions $\left.f\right|_{S_{i}}$ over all $S_{i} \subseteq N_{m}$ such that $\left|S_{i}\right|=i$ is given by

$$
\left|\tilde{Y}_{i, m}\right|=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} \prod_{l=1}^{i}\left(\tilde{g}\left(j_{l}\right)-l+1\right)
$$

where $\tilde{g}\left(j_{l}\right)=\left\lceil g_{2}\left(j_{l}\right)\right\rceil-\left\lfloor g_{1}\left(j_{l}\right)\right\rfloor+1$.
Proof. It can easily be seen that if $S_{i}=\left\{j_{1}, j_{2}, \ldots, j_{i}\right\}$ where $j_{1}<j_{2}<\ldots<j_{i}$, then to form a one-to-one function, j_{1} can be mapped to any of the $\left\lceil g_{2}\left(j_{1}\right)\right\rceil-\left\lfloor g_{1}\left(j_{1}\right)\right\rfloor+1$ natural numbers and j_{2} can be mapped to any of the $\left\lceil g_{2}\left(j_{2}\right)\right\rceil-\left\lfloor g_{1}\left(j_{2}\right)\right\rfloor$ natural numbers, and so on until j_{i} can be mapped to any of the $\left\lceil g_{2}\left(j_{i}\right)\right\rceil-\left\lfloor g_{1}\left(j_{i}\right)\right\rfloor-i+1$ natural numbers where $\left\lfloor g_{1}\left(j_{i}\right)\right\rfloor$ is the least integer greater than or equal to $g_{1}\left(j_{i}\right)$. Hence, the number of possible one-to-one functions that can be formed from S_{i} to N such that $g_{1}(a) \leq f(a) \leq g_{2}(a), \forall a \in N_{m}$ is

$$
\prod_{l=1}^{i}\left(\left\lceil g_{2}\left(j_{l}\right)\right\rceil-\left\lfloor g_{1}\left(j_{l}\right)\right\rfloor-l+1\right)
$$

Thus, with $\tilde{Y}_{i, m}=\bigcup_{S_{i} \subseteq N_{m}}\left\{f \mid S_{i}\right\}$, we have

$$
\left|\tilde{Y}_{i, m}\right|=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} \prod_{l=1}^{i}\left(\left\lceil g_{2}\left(j_{l}\right)\right\rceil-\left\lfloor g_{1}\left(j_{l}\right)\right\rfloor-l+1\right) .
$$

Now, using the same argument as in the proof of Proposition 2.2 , we can easily derive the following recurrence relation for $\tilde{Y}_{i, m}$.

Proposition 5. The number $\left|\tilde{Y}_{i, m}\right|$ satisfies the following recurrence relation

$$
\left|\tilde{Y}_{i, m+1}\right|=\left|\tilde{Y}_{i, m}\right|+(\tilde{g}(m+1)-i+1)\left|\tilde{Y}_{i-1, m}\right|
$$

with initial condition $\left|\tilde{Y}_{0,0}\right|=1,\left|\tilde{Y}_{i, m}\right|=0$ for $i>m$ or $i<0$.
By making use of Proposition 5 and following the same argument in the proof of Proposition 3, we obtain

$$
\left|\tilde{Y}_{m}\right|=\prod_{i=1}^{m}(1+\tilde{g}(i))-\sum_{i=0}^{m-1} \sum_{i=0}^{j} i\left|\tilde{Y}_{i, j}\right| \prod_{l=j+1}^{m-1}(1+\tilde{g}(l+1))
$$

where $\left|\tilde{Y}_{m}\right|$ is the total number of restricted one-to-one functions from N_{m} to N such that $g_{1}(a) \leq f(a) \leq g_{2}(a), \forall a \in N_{m}$. Thus, the total number of restricted functions which are not one-to-one is given by

$$
\left|\tilde{Y}_{m}^{c}\right|=\sum_{i=0}^{m-1} \sum_{i=0}^{j} i\left|\tilde{Y}_{i, j}\right| \prod_{l=j+1}^{m-1}(1+\tilde{g}(l+1)) .
$$

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Chen, C. C. and Kho, K. M. (1992). Principles and Techniques in Combinatorics. World Scientific Publishing Co. Pte. Ltd.

Corcino, R., Alquiza, M. and Caumeran, J. M. (2005). Counting Restricted Functions on the Formation of Points Having Integral Coordinates. Mindanao Forum. 19(1), 9-18.

Zehna, P. W. and Johnson, R. L. (1972). Elements of Set Theory. Allyn and Bacon, Inc., United States of America.

Copyright ©2015 M. R. Latayada, and R. R. Corcino. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^0]: * Corresponding Author

 Email:mj_regidor@yahoo.com

