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Abstract. Biological data repositories were often data islands with unharmo-
nized formats, models, and protocols. Their integration evolved along the years
and sharing data in multi-tenant infrastructures is a reality now. In this article,
we illustrate this evolution by presenting real-world cases from the bioinformat-
ics area and collect the best practices and current trends that future solutions
should observe from these examples. Finally, we situate the platform being cre-
ated by the BiobankCloud project in the scenario of integrating biological data.

1. Introduction
Biological data repositories started by collecting and providing small public DNA se-
quences and related data to improve the scientific knowledge on genomics. However,
they were isolated from each other and often overlapped. Their integration evolved along
the years and several paradigm changes took place. For instance, the advent of the Next
Generation Sequencing (NGS) reduced the costs of DNA sequencing exponentially in the
recent years, which is increasing at the same pace the amount of data to be managed and
stored [Marx 2013]. Sequencing the whole genome of a human being currently costs less
than $1000, and the prices are expected to continue falling. Biological data repositories
became responsible for storing also whole genomes instead of only small sequences.

Biobanks are repositories that store biological physical samples originally (e.g., in
cryopreservation facilities), and are also becoming responsible for storing data about these
samples. The availability of large sample collections accelerates medical breakthroughs,
and researchers aim to analyze genomes from whole populations instead of from a few
individuals [Muilu et al. 2007]. Fetching all genomes of interest to a private infrastruc-
ture (i.e., data shipping) before processing them is each time more impractical. Function
shipping (i.e., sending the program to where data resides) is an efficient alternative.

In this article, we review the basic concepts of data integration (§2) and illustrate
the evolution of integrating biological data repositories by presenting real-world cases
from the bioinformatics area (§3). Additionally, we collect the best practices and current
trends that future solutions should observe and learn from these examples (§4) and situate
the platform being developed by the EU-funded BiobankCloud1 project in the scenario of
integrating biological data (§5).

2. Data Integration
Data integration roughly consists in providing a unified view and access of multiple
data sets to users [Lenzerini 2002]. More specifically, it aims at (1) finding reliable

1http://biobankcloud.eu/
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sources and pulling the needed information from the databases designed for this pur-
pose and (2) understanding the power of data at large when many data sources are avail-
able [Brazhnik and Jones 2007]. Data from multiple sources can be heterogeneous, with
different structure, formats, models, protocols, semantics, etc.

There are diverse integration approaches that consider the different ways to
provide a global view of data. Earliest surveys [Hernandez and Kambhampati 2004,
Stein 2003] defined three main models for data integration: data warehouse, mediator-
based, and navigational integration. Another survey [Louie et al. 2007] separated
mediator-based integration from federated databases and included a category for peer
data management systems. Finally, a more recent survey [Mayer 2009] presented 9 cate-
gories of data integration, being those three (warehouse, mediator, and navigational) the
main known data integration models, and considered other two (loosely coupled and se-
mantic web) also noteworthy. Figure 1 contains a comparison on these five methods with
an unintegrated scenario.

In the unintegrated case (Fig. 1(a)), clients must know the location of all data
sources, query each one of them, and correlate the resulting data from each query to
obtain the answer. Data sources do not exchange information in this scenario, which can
lead to problems, such as, heterogeneous answers (unharmonized data), heterogeneous
semantics, and duplicated answers.

The first data integration model considered in this article is the data ware-
house (Fig. 1(b)) [Hernandez and Kambhampati 2004, Stein 2003, Louie et al. 2007,
Mayer 2009]. This method retrieves, harmonizes, and stores data from multiple remote
sources into a local central storage. A client needs to issue only one query to the data
warehouse to receive an harmonized, deduplicated answer. This system does not rely
on the network to access data during a query, since it previously fetched all data to the
local storage—the dashed arrows marked with an R in Fig. 1(b). Furthermore, it avoids
network bottlenecks, slow response times, and occasional unavailability of remote data
sources. Queries can easily be optimized in execution time since there is only one local
data repository. It also allows users to filter, validate, modify, and annotate data obtained
from multiple sources. The main problems of this model are the cost of maintaining such
system and the possible lack of freshness when accessing out-of-date information stored
locally. Due to this second issue, warehouses need to regularly check the underlying
sources for new or updated data to reflect them on the local copy.

The second data integration model we analyze is the mediator-based
(Fig. 1(c)) [Hernandez and Kambhampati 2004, Stein 2003, Louie et al. 2007]. This
method considers the existence of a mediator that maps each client query into a set of
specific queries for the underlying sources at runtime and aggregate the replies in a single
answer to the client. The main advantages of this model are that it does not need a large
centralized storage system (it has a lower maintenance cost than warehouses) and the data
is always up-to-date (it does not need the synchronization step as the previous model).
The disadvantages are that it relies on the network to access data on-demand (the overall
performance is equals to the slowest source) and optimizing queries for all external data
sources is difficult. Federated databases [Louie et al. 2007, Mayer 2009] are a smooth
case of mediator-based model since data sources collaborate among themselves.
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Figure 1. Comparison of an unintegrated scenario with five integration methods.

The navigational integration (Fig. 1(d)) [Hernandez and Kambhampati 2004,
Stein 2003, Mayer 2009] provides interactions between users and pages similarly to a
point-and-click web navigation. It is also known as link-based integration and relies in
cross-references between services to allow users to navigate from one page to another in a
different service. Workflows running over this method redirects the output of one service
to the input of the service responsible for the subsequent workflow step. User queries are
translated to path expressions that result in reaching pages containing the desired informa-
tion and is only reachable through this particular path. Each data source is a set of pages
with interconnections among them and specific entry-points. The main disadvantages of
this method are the risks of ambiguous answers, broken links, and the fact that the onus
of integration and interpretation is on the user side [Stein 2003].

The loosely coupled method (Fig. 1(e)) [Louie et al. 2007, Mayer 2009] inte-
grates data from multiple sources using the minimal amount of knowledge as possible
about each one of them. This method is also known as integration by peer management
systems and normally uses flexible file formats such as XML or JSON. Each network con-
tains a minimal mediated schema that represents its semantic knowledge. New sources
entering in the network are mapped to provide information using this mediated schema.
Internal modifications on each source are reflected in this mapping, making them still
compliant with the mediated schema. Loosely coupled systems normally use a minimal-
istic approach to integrate diverse databases by mapping to only basic data types and
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using only modest adaptations of existing web resources. A client issues requests to any
network member, which are forwarded to other peers that will aggregate information to
create the final answers.

The integration method based on semantic web (Fig. 1(f)) [Sheth 1999,
Mayer 2009] allows the integration of semantically related information, regardless of dis-
tribution and heterogeneity. Clients issue queries to end points (e.g., a SPARQL engine)
that launch queries to databases through languages for data representation (e.g., RDF—
Resource Description Framework). The usage of languages for data representation al-
lows the integration of very different data sources, for instance a web-server, a relational
database, and a file server. RDF describes data in triplets containing: the subject (re-
source identifier), the predicate (an attribute name), and the object (the attribute value).
The answer to each request from clients can contain diverse types of data representing the
object, from simple numbers or ontology terms to unstructured data files. Linking data
received from queries is one of the most important steps when integrating data through
semantic web, because it is when complementary data are correlated to make sense for
several applications.

3. Real-World Cases of Data Integration in Bioinformatics

There are several initiatives that aim to present an integrated view, at the metadata level,
of samples available in several biobanks [Norlin et al. 2012, Müller et al. 2015]. In this
section, we discuss the approaches in use to integrate real-world biological repositories at
the data level.

We present one of the first integration initiatives for public DNA sequences (§3.1);
an initiative to integrate biobanks from a country (§3.2); an initiative to integrate biobanks
from a continent (§3.3); cases that integrate repositories with similar missions (§3.4);
virtual biobanks (§3.5); and cloud-based initiatives for biological data integration (§3.6).

3.1. INSDC: A Pioneer in Integrating Public DNA Sequences

The INSDC—International Nucleotide Sequence Database Collaboration (http://
www.insdc.org/) is a joint effort to collect and provide a globally compre-
hensive compilation of public domain nucleotide sequences and associated meta-
data [Cochrane et al. 2011]. Three organizations lead this initiative for more than three
decades: the DNA Data Bank of Japan (DDBJ), the National Center for Biotechnology
Information (NCBI), and the European Bioinformatics Institute (EBI).

When submitting a sequence to this system, a researcher must send the sequence
to only one of the INSDC partners, which will be the authority for this sequence and will
reserve a new accession number in the shared accessioning system. The three partners
synchronize their databases daily by forwarding all new, modified, or removed entries to
the other partners. As a consequence, INSDC can be seen as a geographically replicated
repository deployed in three federated databases, since the data model and relationships
among entities are exactly the same in all partners.

There is no need for a specific shared database or file system since INSDC re-
lies on the universal accessioning name space and on a mutually understood presentation
format for each type of data. The concurrency control is done through the shared acces-
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sioning system at the allocation time. However, duplicated entries are not detected if the
same sequence is submitted to more than one partner.

INSDC provides versioning of the entire database by allowing users to down-
load it through the Sequence Version Archive service (http://www.ebi.ac.uk/
cgi-bin/sva/sva.pl) and by scripts for updating local instances daily. Finally, the
infrastructure allows an entry to be removed from their database, however it does not pro-
vide guarantees that the entry will disappear from everywhere, since other people may
already have downloaded local copies from the database. The main limitation of INSDC
is that it does not deal with private sequences: everything submitted and manipulated by
the system is considered to be public.

3.2. UK Biobank: Integrating Biobanks from a Country

The UK Biobank (http://www.ukbiobank.ac.uk/) is a collaborative research
project to recruit and follow longitudinally the health of 500 000 volunteers aged between
40–69 years from the UK [Ollier et al. 2005]. Collected physical samples are transported
to a central site for processing and are stored on two geographically separate cryopreser-
vation facilities. This infrastructure also stores the data sets associated with such physical
samples. The data in UK Biobank is divided into three main categories: protected, man-
aged, and open resources. The first contains participants’ health data (including DNA)
and medical records, the second one contains non-sensitive material that still needs to be
protected for scientific and ethical reasons, and the latter can be freely available. DNA
is sequenced from stored blood samples by a private company and returned to the UK
Biobank.

Integration between entities occurs at the sample level since physical samples are
sent to a central biobank right after their collection. There is also a central data repository
that stores all data sets locally. Additionally, UK Biobank use a data warehouse model
to integrate its local data with other national health systems. Researchers propose studies
to obtain access to data, which must be approved by a council. There are costs involving
this access, from proposal analysis fees to separated values for accessing only data or data
and physical samples.

3.3. BBMRI and ELIXIR: Integrating Biobanks from a Continent

The BBMRI—Biobanking and Biomolecular Research Infrastructure (http://
bbmri.eu/) is a pan-European research infrastructure aiming to improve the accessi-
bility and interoperability of the existing collections of biological samples from different
European populations. The preparatory phase of this project ended in 2011 with a joint
knowledge about 311 European biobanks and more than 1.8 million DNA samples.

The next phase is the BBMRI-ERIC (European Research Infrastructure Consor-
tium), which integrates all these resources into a hub-and-spoke [Muilu et al. 2007] net-
work properly embedded into the European scientific, ethical, legal, and societal frame-
works. The hub-and-spoke model consists in creating or choosing a central resource and
connecting all others to it instead of creating one connection between each resource pair.
BBMRI-ERIC intends to create a network of hub-and-spoke instances, by choosing major
nodes as hubs in behalf of a region or a country, and local biobanks acting as end nodes
(spokes). A researcher sends queries to one of the global portals that is connected to all
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hubs, and consequently to all spokes. Each hub receives the query and forwards it to the
end nodes of its responsibility. Each spoke provides the local biobank service that returns
the result of those issued queries over the local database. Hubs aggregate these answers
and present a final, integrated answer in the global portal. An integration prototype is
already implemented in test-instances of existing biobanks.

ELIXIR (http://www.elixir-europe.org/) is an European project that
aims to build and operate a sustainable infrastructure for biological information in Europe.
It intends to support life-science research and its translation to medicine and environment,
bio-industries and society [Crosswell and Thornton 2012]. Information gathered on data
access and user requirements was central in designing ELIXIR as a distributed infras-
tructure with a central hub. The hub is connected to ELIXIR nodes (spokes) hosted at
centers of excellence in universities and institutions across Europe. ELIXIR is expected
to integrate access and data from 12 research infrastructures being funded by European
Commission, including the BBMRI.

3.4. GenomEUtwin: Integrating Biobanks with Similar Missions
The GenomEUtwin [Litton et al. 2003, Muilu et al. 2007] is an international collabora-
tion between eight repositories providing information about more than 600 000 human
twins pairs. They propose the TwinNET, a federation of local data warehouses, combined
with a global mediator that provides transparent access to them through database instances
and the use of DiscoveryLink. The IBM DiscoveryLink is a database middleware that ex-
tracts data from multiple sources in response to a single query [Haas et al. 2001]. This
system’s architecture is also a hub-and-spoke, where the hub is the integration node and
spokes are data-provisioning centers. Connections between hub and spokes are made
using VPN tunnels, which are initiated from the spokes. Each spoke (data provider) con-
tains a local data warehouse, which is fed with harmonized data from local production
databases and LIMS—Laboratory Information Management System. Data is translated
and transferred into this data warehouse (called TwinMart) located in a demilitarized zone
within each spoke of TwinNET. Each subject receives a unique GenomEUtwin identifier
and twins share portions of it. All databases and data sets maintained under the TwinNET
are anonymous, where the only allowed identification is the GenomEUtwin identifier.

Some advantages of this model are the opportunity for query optimization and the
transparent access to data. One major weakness of this approach is the enormous amount
of money that must be invested before information can be queried and retrieved. Other
problem is that partners must increase the maintenance cost of their local infrastructures
since they need to control one more component, the TwinMart (a local data warehouse).

3.5. COMMIT: Integrating Classical Biobanks in Virtual Biobanks
A virtual biobank is a repository that provides data obtained by means of characterization
and sequencing from samples stored in classical biobanks. The COMMIT project
(http://www.amolf.nl/research/bims/research-activities/
e-biobanking/) is a virtual tissue biobank that provides access to digital information
about physical samples, which are harder to manipulate. In the specific case of COMMIT,
the digital information are data and image sets obtained from mass spectrometry and
tissue microarray experiments. These data sets are an important input to proteomics
workloads, for instance, the discovery of amino acids composing a protein and the
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validation of protein folding predictions. Additionally, the physical samples are breast
cancer sections collected from medical institutions integrating COMMIT’s partners.
The fact that these samples are extracted from specific cases or diseases characterizes
this initiative also as an example of integration of biobanks with similar missions. The
infrastructure comprises a central repository for physical and digital samples in one
project partner. Data is accessible from exterior through a web portal, after researchers
being authorized through formal bureaucrat agreement protocols. The COMMIT
project provide a workflow based management system and distributed processing
resources. One may consider the goal of this project similar to the idea of storing
and providing genome sequencing files (the raw input format for many bioinformatics
workflows) instead of sequencing the entire genome each time one wants to execute an
experiment [Verissimo and Bessani 2013].

3.6. Cloud-Based Initiatives: DNAnexus, BaseSpace, and Galaxy

This section analyzes three cloud-based solutions for storing and processing bio-
logical data: DNAnexus (https://dnanexus.com/), BaseSpace (https://
basespace.illumina.com/), and Galaxy (http://galaxyproject.org/).
We group these systems together because they are similar to each other: they are im-
plemented in (mostly public) cloud-infrastructures and assume users can create a virtual
infrastructure to store and process their data. Notice there is a change of paradigm here.
Instead of downloading data sets, working on them locally, and producing new data sets
to be inserted in shared infrastructures (e.g., UK Biobank or INSDC), these cloud infras-
tructures promote storing the data in the public cloud, and processing also there close
to the data [Marx 2013]. This is done by using high-level tools (e.g., operated by web
interfaces) or the usual tools deployed in cloud virtual machines.

DNAnexus is a startup that provides a cloud-based platform for genomic en-
terprises to expand their local infrastructures. It is an API-based infrastructure and a
workflow-based tool. The entire solution is deployed over the Amazon Web Services
(AWS). DNAnexus addresses some security concerns during data transfer and storage,
namely: encrypted communication and storage, accountability, and two-factor authenti-
cation.

BaseSpace is a product from Illumina that allows their clients to directly connect
their sequencing machines with the cloud. The idea is to avoid the need of a local IT
infrastructure at the client side to store and analyze genomic data. A noteworthy aspect
of BaseSpace is to provide an ecosystem in which third-party developers can create new
tools for BaseSpace users, in a similar way to what is provided by Amazon in its market
place. The BaseSpace also addresses some security concerns during data transfer and
storage, namely: encrypted communication and storage and accountability.

Galaxy is an open-source software package that provides three possible us-
ages: a free web-based service, a public cloud deployment, and a private cloud deploy-
ment [Goecks et al. 2010]. Such flexibility is a consequence from the fact that Galaxy
is not a company or a cloud-based service, and is a software package to be deployed in
physical or virtual machines. In the public cloud-based deployment, Galaxy provides a
wizard for installing it on Amazon EC2 from AWS. A possible security threat is that
users must provide their AWS credentials to deploy a cluster through the wizard. An
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advantage of creating your own cluster is that you can increase or reduce the number of
computing instances running your installation, as well as persistently terminate and re-
launch the cluster. This solution is based on an Infrastructure-as-a-Service scenario since
users determine how many resources are allocated to run their workloads.

Additionally, one may customize Galaxy to create its own instance. An example is
the e-BioGrid project (http://www.e-biogrid.nl/), which supports life-science
research through the preparation and maintenance of computing environments running
over the BigGrid. The BigGrid is a national computing infrastructure created to support
the execution of research experiments from Netherlands. Other countries also have simi-
lar infrastructures, for instance, the Grid’5000 (http://www.grid5000.fr/) from
France. The main contribution of e-BioGrid project is that they provide specific comput-
ing environments that are functional by default for predefined experiments and studies.
The custom Galaxy running over BigGrid is an example of these environments.

Comparison. Table 1 presents a comparison among the three cloud-based systems dis-
cussed in this section. The focus of these services is on providing a complete platform for
managing and analyzing sequencing data rather than data integration. All three solutions
are deployed in Amazon AWS, which means that they rely on a single point of failure and
are not immune to vendor lock-in issues due to raises on prices or changes in policies.
The table also includes a column about Amazon AWS for the sake of comparison with a
public cloud provider.

Table 1. Comparison of the three cloud initiatives for storing and analyzing
biological sequences when deployed in Amazon AWS.

BaseSpace DNAnexus Galaxy Amazon AWS
Goal Cloud-based platform Cloud-based platform Cloud-based platform Cloud provider
Type Product by Illumina Startup company Academic project Service
Filosophy Proprietary Proprietary Open-source Hybrid
Public cloud provider Amazon AWS Amazon AWS Amazon AWS —
Storage cost 1 TB Free $37.5/month Same as AWS $30/month

10 TB $1500/month $375/month Same as AWS $295.5/month
Processing cost (min-max) Depend on the tool $0.19 – $5.06/hour Same as AWS $0.013 – $5.52/hour
Predefined workloads Yes Yes Yes —
Custom scripts/workloads Yes Yes Yes Yes
Share data/workloads Yes Yes Yes Yes

By analyzing this table, we can infer that using BaseSpace and DNAnexus have a
cost increase (e.g., 407% and 26.9% for storage) when compared with deploying bioin-
formatics tools directly on Amazon AWS or using Galaxy. However, most end-users of
sequence analysis are biologists and biochemists who normally do not have enough ex-
pertise to build such infrastructure directly.

The table also shows that all infrastructures are quite flexible in supporting cus-
tom workloads, scripts, and data sharing. In this sense, these systems are leading the
migration of computing to where data is [Marx 2013] and avoiding expensive local IT
infrastructures. One of the main advantages of cloud-based solutions is that there is no
need for a manual and time-consuming data-transfer step each time a workload is exe-
cuted. After uploading the data to the cloud once, it is already up in there, accessible
from anywhere.
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4. Best Practices and Current Trends
Table 2 presents the main characteristics of the initiatives we discussed in the previous
sections. More specifically, we compare the integration method employed in these sys-
tems (see Section 3), how the stored data can be accessed, if the managed data sets are
public, private, or controlled, and if dependability measurements are employed in these
systems.

Table 2. Comparison of the integration initiatives discussed in this article.
Initiative Integration Method Accessibility Data Sets Dependability
INSDC Data warehouse Web Public∗ 3 replicas
UK Biobank Data warehouse Web Private In-site
BBMRI and ELIXIR Mediator-based Web Public In-site
GenoEUtwin Mediator-based Web Private In-site
COMMIT Data warehouse Web Private In-site
Cloud-based initiatives Data warehouse Web + API Controlled∗∗ AWS-based

∗ Data sets can be kept private temporarily until a paper publication. ∗∗ Even private data sets are accessible to the cloud provider.

This table shows that all initiatives employ the data warehouse approach ot the me-
diator approach. All in all, some interesting trends were observable through the analysis
of these systems. An integrated system for attributing accessioning numbers is very im-
portant, but at this point it appears there is no evolved protection against duplicate entries,
sequences, or individuals. All systems make their data sets available through web portals,
that can be either freely accessible (e.g., if the data is public) or implement authentication
and access control mechanisms to give access to certain data sets only to authorized users.

All mediator-based systems devise dependability mechanisms only in the end
points (in-site). INSDC replicates all data in three globally distributed replicas, while
UK Biobank uses two facilities to store only physical samples. Cloud-based solutions
rely on the transparent replication and recovery mechanisms offered by the AWS. All
cloud-based solutions focus on approaching computation to where data is located, which
can bring dramatic performance improvements since data sets upload, download, and even
normalization can be avoided.

5. A Hybrid Approach in the BionankCloud PaaS
Function shipping reduces the execution time of processing large quantities of data by
approximating the computation to where data resides. On the other hand, accessing and
fetching data from several sources accelerates medical breakthroughs by increasing the
diversity of the processed sample collection. Balancing the levels of data and function
shipping is a challenge in processing distributed big data, and is a key element in the
Platform-as-a-Service (PaaS) being developed by the EU-funded BiobankCloud project.

The BiobankCloud PaaS is an open-source platform on top of Apache YARN that
can be deployed in any private infrastructure (e.g., a biobank) for the secure storage, shar-
ing, and parallel processing of genomic data [Bessani et al. 2015]. It integrates the data
warehouse and mediator-based integration models, as well as provides data and func-
tion shipping to its users. The platform computes data available in a single cluster (i.e.,
a data warehouse), and allows function shipping through a scalable scientific workflow
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engine [Bux et al. 2015] and a workflow description language [Brandt et al. 2015]. Ad-
ditionally, the platform can lookup and fetch data from other biobanks automatically on
execution time (i.e., a mediator).

Since the to-be-stored data can be huge, the platform allows biobanks to extrapo-
late their capacity by securely storing data in a cloud-of-clouds [Bessani et al. 2013]. The
BiobankCloud PaaS is the first solution for biological data that uses multiple clouds to
securely store private data in these multi-tenant infrastructures. It is secure and reliable
because data is encrypted before its transfer and no single cloud stores the whole data set
due to a secret sharing scheme used in our platform.

Most components of the BiobankCloud platform were already implemented and
the current task force is focused on integrating them [Bessani et al. 2015]. Future work
encompasses adding mechanisms for improved privacy-protection [Cogo et al. 2015] and
compression of biological data [Alves et al. 2015] to strengthen the overall security and
efficiency of the system.

6. Conclusion
In this article, we reviewed the basic concepts of data integration and presented the state-
of-the-art in integrating biological data repositories through examples of initiatives from
the bioinformatics area. We compiled the best practices and current trends that future
solutions should observe and learn from the presented initiatives. Finally, we situated
the BiobankCloud PaaS in the scenario of integrating biological data. More details on
this platform can be found on the project’s website and in a recently published joint pa-
per [Bessani et al. 2015].
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