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The Beta-Weibull Distribution on the Lattice of Integers

Abstract

In this paper, a discrete analog of the beta-Weibull distribution is studied. This new

distribution contains several discrete distributions as special sub-models. Some dis-

tributional and moment properties of the discrete beta-Weibull distribution as well

as its order statistics are discussed. We will show that the hazard rate function of the

new model can be increasing, decreasing, bathtub-shaped and upside-down bathtub.

Estimation of the parameters is illustrated and the model with a real data set is also

examined.

Keywords: Beta-Weibull distribution, Discrete beta generalized exponential distri-

bution, Discrete Weibull distribution, Exponentiated discrete Weibull distribution,

Hazard rate function.

1 Introduction

Eugene et al. (2002) introduced a general class of distributions generated from the logit

of a beta random variable with cumulative distribution function (cdf)

F (x; a, b,θ) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
ta−1(1− t)b−1dt, x ∈ R, (1)

where a > 0 and b > 0 are two parameters whose role is to control the skewness and tail

weight, θ is the parameter vector of the absolutely continuous cdf G, Iy(a, b) =
By(a,b)
B(a,b)

is the incomplete beta function ratio and By(a, b) =
∫ y
0 ta−1(1 − t)b−1dt denotes the

incomplete beta function. In recent years, the class of beta-G (BG) distributions has

received much attention in the literature. For instance, Cordeiro et al. (2013a) and Singla

et al. (2012) considered the beta exponentiated (generalized) Weibull distribution and

investigated its properties and application. Cordeiro and Lemonte (2011a) and (2011b)

studied the beta Laplace and beta-half-Cauchy distributions, respectively. Morais et al.

(2013) considered the beta generalized logistic distribution and investigated some of its

important properties and features. Cordeiro et al. (2013b) introduced the beta generalized

Rayleigh distribution and considered its applications to lifetime data. Cordeiro et al.

(2013c) and Bidram et al. (2013) introduced the beta Weibull-geometric distribution.
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Beta generalized Pareto distribution of Mahmoudi (2011), beta Lomax distribution of

Lemonte and Cordeiro (2013), beta modified Weibull distribution of Silva et al. (2010)

and beta log-normal distribution of Castellares et al. (2013) are other researches in this

regard.

Recently, constructing discrete counterparts of known continuous distributions in order

to study new discrete distributions has received much attention in the literature. Lisman

and van Zuylen (1972) proposed and Kemp (1997) studied the discrete normal distribution

which is characterized by maximum entropy for specified mean and variance. Roy (2003)

introduced another discrete analog of normal distribution. Inusah and Kozubowski (2006)

and Kozubowski and Inusah (2006) introduced Laplace and skew-Laplace distributions

on the lattice of integers, respectively. Krishna and Pundir (2007) introduced discrete

Maxwell distribution. Krishna and Pundir (2009) introduced discrete Burr distribution

and studied a special case of the distribution which led to perform the discrete Pareto

distribution. Gómez-Déniz and Calderin-Ojeda (2011) considered the discrete Lindley dis-

tribution and investigated some properties and applications of the model. Chakraborty

and Chakravarty (2012) studied discrete gamma distributions and discussed estimation of

the parameters. Nekoukhou et al. (2013a) studied the discrete beta exponential (DBE)

distribution and illustrated that the hazard rate function of this discrete analogue of the

beta exponential distribution of Nadarajah and Kotz (2006) is monotone. Moreover, Hus-

sain and Ahmad (2014) and Chakraborty and Chakravarty (2014) introduced the discrete

inverse Rayleigh and discrete Gumbel distributions, respectively. Specially, Nekoukhou

and Bidram (2015a) introduced a class of discrete BG distributions on the set of integers

Z = {0,±1,±2, ...} emerges as

f(y; a, b,θ) = P (Y = y) = IG(y+1)(a, b)− IG(y)(a, b).

The last authors investigated that the above probability mass function (pmf) can be

expressed as

f(y; a, b,θ) =

∞
∑

i=0

ωi(a, b)[{G(y + 1)}a+i − {G(y)}a+i], (2)

where

ωi(a, b) =
Γ(a+ b)(−1)i

Γ(a)Γ(b− i)(a + i)i!
.

The cdf of a discrete BG distribution is also given by

F (y; a, b,θ) =
∞
∑

i=0

ωi(a, b){G(�y� + 1)}a+i, y ∈ R, (3)

where �.� denotes the integer function.

2

1 Introduction
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Nekoukhou and Bidram (2015a) introduced the discrete beta generalized exponential

(DBGE) distribution by inserting the cdf of the generalized exponential (GE) distribution

of Gupta and Kundu (1999) into Equation (2). Indeed, they studied a discrete analog of

the beta generalized exponential distribution of Barreto-Souza et al. (2010).

Here, we attempt to introduce a discrete analog of the beta-Weibull (BW) distribution

as an another member of the discrete BG family of distributions. This is so because

discrete random variables can also be encountered frequently for many different practical

reasons. For example, in lifetime modeling, field failures are often collected and reported

daily, weekly, and so forth. Systems often operate in cycles and the experimenter observes

the number of cycles successfully completed prior to failure (cf. Lee and Cha, 2015).

We will see that an important characteristic of the new discrete distribution is that

its hazard rate function can be decreasing, increasing, bathtub-shaped and upside-down

bathtub depending on its parameters values. Hence, this discrete analog of the beta-

Weibull distribution can be considered as a flexible model in practical problems. In

addition, the new discrete model contains several discrete distributions as special sub-

models.

Rest of the paper is organized as follows: Section 2, introduces the discrete beta-Weibull

(DBW) distribution. Some important features and properties of the new distribution such

as the probability mass and cumulative distribution functions are discussed. In addition,

the mean and variance of the new model are illustrated. We consider the behavior of

the hazard rate function and show that the new distribution exhibits bathtub, upside-

down bathtub, and monotonically increasing or decreasing hazard rates. Some special

sub-models of the new distribution are given and the infinite divisibility of the distribuion

in question is discussed. The cdf and pmf of the order statistics of DBW distributions are

obtained. The estimation process of the parameters is discussed and a kind of simulated

example is provided. Additionally, the stress-strength parameter is illustrated and the

new model with a real data set is also examined. Finally, some concluding remarks are

given in Section 3.

2 The DBW distribution and its properties

Here, we construct a discrete analog of the BW distribution by inserting the following cdf

of the Weibull distribution,

F (y;α, β) = 1− e−βyα , y > 0, (4)
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distribution. Gómez-Déniz and Calderin-Ojeda (2011) considered the discrete Lindley dis-

tribution and investigated some properties and applications of the model. Chakraborty

and Chakravarty (2012) studied discrete gamma distributions and discussed estimation of

the parameters. Nekoukhou et al. (2013a) studied the discrete beta exponential (DBE)

distribution and illustrated that the hazard rate function of this discrete analogue of the

beta exponential distribution of Nadarajah and Kotz (2006) is monotone. Moreover, Hus-

sain and Ahmad (2014) and Chakraborty and Chakravarty (2014) introduced the discrete

inverse Rayleigh and discrete Gumbel distributions, respectively. Specially, Nekoukhou

and Bidram (2015a) introduced a class of discrete BG distributions on the set of integers

Z = {0,±1,±2, ...} emerges as

f(y; a, b,θ) = P (Y = y) = IG(y+1)(a, b)− IG(y)(a, b).

The last authors investigated that the above probability mass function (pmf) can be

expressed as

f(y; a, b,θ) =

∞
∑

i=0

ωi(a, b)[{G(y + 1)}a+i − {G(y)}a+i], (2)

where

ωi(a, b) =
Γ(a+ b)(−1)i

Γ(a)Γ(b− i)(a + i)i!
.

The cdf of a discrete BG distribution is also given by

F (y; a, b,θ) =
∞
∑

i=0

ωi(a, b){G(�y� + 1)}a+i, y ∈ R, (3)

where �.� denotes the integer function.

2



Ciência e Natura v.39 n.1, 2017, p. 40 – 58 43

Nekoukhou and Bidram (2015a) introduced the discrete beta generalized exponential

(DBGE) distribution by inserting the cdf of the generalized exponential (GE) distribution

of Gupta and Kundu (1999) into Equation (2). Indeed, they studied a discrete analog of

the beta generalized exponential distribution of Barreto-Souza et al. (2010).

Here, we attempt to introduce a discrete analog of the beta-Weibull (BW) distribution

as an another member of the discrete BG family of distributions. This is so because

discrete random variables can also be encountered frequently for many different practical

reasons. For example, in lifetime modeling, field failures are often collected and reported

daily, weekly, and so forth. Systems often operate in cycles and the experimenter observes

the number of cycles successfully completed prior to failure (cf. Lee and Cha, 2015).

We will see that an important characteristic of the new discrete distribution is that

its hazard rate function can be decreasing, increasing, bathtub-shaped and upside-down

bathtub depending on its parameters values. Hence, this discrete analog of the beta-

Weibull distribution can be considered as a flexible model in practical problems. In

addition, the new discrete model contains several discrete distributions as special sub-

models.

Rest of the paper is organized as follows: Section 2, introduces the discrete beta-Weibull

(DBW) distribution. Some important features and properties of the new distribution such

as the probability mass and cumulative distribution functions are discussed. In addition,

the mean and variance of the new model are illustrated. We consider the behavior of

the hazard rate function and show that the new distribution exhibits bathtub, upside-

down bathtub, and monotonically increasing or decreasing hazard rates. Some special

sub-models of the new distribution are given and the infinite divisibility of the distribuion

in question is discussed. The cdf and pmf of the order statistics of DBW distributions are

obtained. The estimation process of the parameters is discussed and a kind of simulated

example is provided. Additionally, the stress-strength parameter is illustrated and the

new model with a real data set is also examined. Finally, some concluding remarks are

given in Section 3.

2 The DBW distribution and its properties

Here, we construct a discrete analog of the BW distribution by inserting the following cdf

of the Weibull distribution,

F (y;α, β) = 1− e−βyα , y > 0, (4)

3

where α > 0 and β > 0 are the shape and scale parameters, respectively, into Equation

(2). Consequently, the pmf of a DBW distribution for y ∈ N0 = {0, 1, 2, ...} is given by

fDBW (y; a, b, α, p) =

∞
∑

i=0

ωi(a, b)

{

[

1− e−β(y+1)α
]a+i

−
[

1− e−βyα
]a+i

}

=

∞
∑

i=0

ωi(a, b)

{

(

1− p(y+1)α
)a+i

−
(

1− py
α)a+i

}

, (5)

where a > 0, b > 0, α > 0 and 0 < p = e−β < 1 are the model parameters.

For integer values of b, the sum in Equation (5) is finite and stops at b−1; see Nekoukhou

and Bidram (2015a).

The pmf given by Equation (5) defines the DBW distribution and it will be denoted by

DBW(a, b, α, p) in the rest of the paper.

It is interesting to note that the pmf of a DBW distribution is a linear combination

of the pmf of three-parameter exponentiated discrete Weibull (EDW) probability mass

functions, introduced by Nekoukhou and Bidram (2015b). An EDW(p, α, γ) distribution

with pmf

fEDW (y; p, α, γ) = {1 − p(y+1)α}γ − {1− py
α}γ (6)

=
∞
∑

j=1

(−1)j+1

(

γ

j

)

{pjyα − pj(y+1)α}, (7)

where
(

γ
j

)

= Γ(γ+1)
Γ(γ+1−j)j! , is indeed a generalization of the discrete Weibull (DW) distribu-

tion of Nakagawa and Osaki (1975). For integer γ > 0, the sum in Eq. (7) stops at γ.

Therefore, we have the following representation for the pmf of a DBW distribution

fDBW (y; a, b, α, p) =

∞
∑

i=0

ωi(a, b)fEDW (y; p, α, a + i).

The pmf of the DBW distribution can also be written as a linear combination of the

DW pmfs as follows

fDBW (y; a, b, α, p) =

∞
∑

i=0

∞
∑

j=1

ωi(a, b)(−1)j+1

(

a+ i

j

)

{

pjy
α − pj(y+1)α

}

.

For integer values of a,
∑∞

j=1 should be replaced by
∑a+i

j=1 in the above equation. Figure

1 indicates the behavior of DBW pmfs for some values of their parameters.

Using Equation (3), the cdf of a DBW distribution is

FDBW (y; a, b, α, p) =
∞
∑

i=0

ωi(a, b)FEDW (y; p, α, a + i), y ≥ 0,

where FEDW denotes the cdf of EDW(p, α, a + i) distributions. Hence, we have

FDBW (y; a, b, α, p) =

∞
∑

i=0

ωi(a, b)
(

1− p(�y�+1)α
)a+i

, y ≥ 0. (8)

4

2 The DHW distribution and its properties
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Figure 1: Pmfs of DBW distributions for some selected parameters values.

It is interesting to note that the probability density function of a BW distribution,

in the continuous case, is also a linear combination of the exponentiated Weibull (EW)

density functions introduced by Mudholkar et al. (1995).

The survival and hazard rate functions of a random variable Y following a DBW(a, b, α, p)

distribution are given, respectively, by

FDBW (y; a, b, α, p) = 1−
∞
∑

i=0

ωi(a, b)
(

1− p(�y�+1)α
)a+i

, y ≥ 0

and

hDBW (y; a, b, α, p) =

∑∞
i=0 ωi(a, b)

{

(

1− p(y+1)α
)a+i −

(

1− py
α)a+i

}

1−∑∞
i=0 ωi(a, b)

(

1− p(y+1)α
)a+i

, y ∈ N0.

As mentioned before, for an integer b > 0,
∑∞

i=0 should be replaced by
∑b−1

i=0 in the

above relations. Figure 2 illustrates the hazard rate function behavior of DBW distri-

bution for different values of its parameters. As we see from Figure 2, the hazard rate

function can be decreasing, increasing, bathtub-shaped and upside-down bathtub de-

pending on its parameters values. The mean and variance of a random variable Y ∼
DBW(a, b, α, p) are given by

E(Y ) =

∞
∑

i=0

∞
∑

j=1

∞
∑

y=0

ωi(a, b)(−1)j+1

(

a+ i

j

)

pj(y+1)α

5

where α > 0 and β > 0 are the shape and scale parameters, respectively, into Equation

(2). Consequently, the pmf of a DBW distribution for y ∈ N0 = {0, 1, 2, ...} is given by

fDBW (y; a, b, α, p) =

∞
∑

i=0

ωi(a, b)

{

[

1− e−β(y+1)α
]a+i

−
[

1− e−βyα
]a+i

}

=

∞
∑

i=0

ωi(a, b)

{

(

1− p(y+1)α
)a+i

−
(

1− py
α)a+i

}

, (5)

where a > 0, b > 0, α > 0 and 0 < p = e−β < 1 are the model parameters.

For integer values of b, the sum in Equation (5) is finite and stops at b−1; see Nekoukhou

and Bidram (2015a).

The pmf given by Equation (5) defines the DBW distribution and it will be denoted by

DBW(a, b, α, p) in the rest of the paper.

It is interesting to note that the pmf of a DBW distribution is a linear combination

of the pmf of three-parameter exponentiated discrete Weibull (EDW) probability mass

functions, introduced by Nekoukhou and Bidram (2015b). An EDW(p, α, γ) distribution

with pmf

fEDW (y; p, α, γ) = {1 − p(y+1)α}γ − {1− py
α}γ (6)

=
∞
∑

j=1

(−1)j+1

(

γ

j

)

{pjyα − pj(y+1)α}, (7)

where
(

γ
j

)

= Γ(γ+1)
Γ(γ+1−j)j! , is indeed a generalization of the discrete Weibull (DW) distribu-

tion of Nakagawa and Osaki (1975). For integer γ > 0, the sum in Eq. (7) stops at γ.

Therefore, we have the following representation for the pmf of a DBW distribution

fDBW (y; a, b, α, p) =

∞
∑

i=0

ωi(a, b)fEDW (y; p, α, a + i).

The pmf of the DBW distribution can also be written as a linear combination of the

DW pmfs as follows

fDBW (y; a, b, α, p) =

∞
∑

i=0

∞
∑

j=1

ωi(a, b)(−1)j+1

(

a+ i

j

)

{

pjy
α − pj(y+1)α

}

.

For integer values of a,
∑∞

j=1 should be replaced by
∑a+i

j=1 in the above equation. Figure

1 indicates the behavior of DBW pmfs for some values of their parameters.

Using Equation (3), the cdf of a DBW distribution is

FDBW (y; a, b, α, p) =
∞
∑

i=0

ωi(a, b)FEDW (y; p, α, a + i), y ≥ 0,

where FEDW denotes the cdf of EDW(p, α, a + i) distributions. Hence, we have

FDBW (y; a, b, α, p) =

∞
∑

i=0

ωi(a, b)
(

1− p(�y�+1)α
)a+i

, y ≥ 0. (8)

4



Ciência e Natura v.39 n.1, 2017, p. 40 – 58 45

−5 0 5 10 15 20
0

1

2

(a,b,α,p)=(0.5,0.5,0.5,0.25)

−5 0 5 10 15 20
0

5
x 10−3 (a,b,α,p)=(1.5,0.5,0.5,0.95)

−5 0 5 10 15 20
0

5
(a,b,α,p)=(1.5,1.5,0.5,0.25)

0 1 2 3 4 5 6 7 8 91011
0

10

20
(a,b,α,p)=(0.5,0.5,2.5,0.95)

−20 0 20 40 60
0

0.2

0.4
(a,b,α,p)=(1.5,0.5,1.5,0.95)

0 1 2 3 4
0

500

(a,b,α,p)=(1.5,1.5,1.5,0.25)

0 1 2 3 4 5 6 7 8 910111213
0

0.1

0.2
(a,b,α,p)=(0.5,0.5,1.5,0.95)

−5 0 5 10 15 20
0

0.5

(a,b,α,p)=(0.5,1.5,1.5,0.95)

0 1 2 3 4 5 6 7 8 910
0

50

(a,b,α,p)=(0.1,1,2,0.8)

0 1 2 3 4 5 6 7 8 910111213
0

5

(a,b,α,p)=(1.5,0.5,1.5,0.5)

0 1 2 3 4 5 6 7 8 910111213
0

0.05

0.1
(a,b,α,p)=(5,1,0.4,0.5)

−5 0 5 10 15 20
0

0.1

0.2
(a,b,α,p)=(2.5,1,0.6,0.6)

Figure 2: Hazard rate function plots of DBW distributions for selected parameters values.
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creases) with p (α) . In addition, DBW models are appropriate for modeling both over-

and under-dispersed data since, in these models, the variance can be larger or smaller

than the mean which is not the case with some standard classical discrete distributions.

Hence, the parameters of the underlying distribution can be adjusted to suit most data
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Figure 1: Pmfs of DBW distributions for some selected parameters values.

It is interesting to note that the probability density function of a BW distribution,

in the continuous case, is also a linear combination of the exponentiated Weibull (EW)

density functions introduced by Mudholkar et al. (1995).

The survival and hazard rate functions of a random variable Y following a DBW(a, b, α, p)

distribution are given, respectively, by

FDBW (y; a, b, α, p) = 1−
∞
∑

i=0

ωi(a, b)
(

1− p(�y�+1)α
)a+i

, y ≥ 0

and
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∑∞
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)a+i −
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1− py
α)a+i

}
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1− p(y+1)α
)a+i

, y ∈ N0.

As mentioned before, for an integer b > 0,
∑∞

i=0 should be replaced by
∑b−1

i=0 in the

above relations. Figure 2 illustrates the hazard rate function behavior of DBW distri-

bution for different values of its parameters. As we see from Figure 2, the hazard rate

function can be decreasing, increasing, bathtub-shaped and upside-down bathtub de-
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(a, b)=(0.5, 0.5) (a, b)=(1, 0.5)

α/p 0.25 0.5 0.75 0.25 0.5 0.75

0.25 23.188 (8.362) 52.462 (2.195) 62.282 (2.792) 36.225 (1.265) 79.860 (3.173) 82.865 (3.666)

0.75 0.992 (4.770) 2.921 (31.963) 10.203 (3.399) 1.527 (6.653) 4.436 (43.432) 15.317 (4.563)

1.00 0.654 (1.504) 1.609 (6.509) 4.390 (39.165) 1.000 (2.000) 2.414 (8.243) 6.464 (48.249)

1.50 0.443 (0.513) 0.909 (1.396) 1.950 (4.703) 0.672 (0.638) 1.339 (1.586) 2.792 (5.041)

2.00 0.374 (0.319) 0.692 (0.663) 1.309 (1.629) 0.564 (0.379) 1.005 (0.696) 1.837 (1.573)

(a, b)=(0.5, 1) (a, b)=(1, 1)

α/p 0.25 0.5 0.75 0.25 0.5 0.75

0.25 2.825 (551.06) 18.896 (6770.39) 51.307 (21750.07) 5.565 (1084.30) 36.225 (12651.13) 86.221 (34959.01)

0.75 0.225 (0.524) 0.832 (3.964) 3.275 (44.252) 0.430 (0.936) 1.527 (6.654) 5.807 (71.559)

1.00 0.176 (0.257) 0.555 (1.278) 1.744 (80.208) 0.33 (0.44) 1.00 (2.00) 3.00 (12.00)

1.50 0.144 (0.145) 0.382 (0.451) 0.955 (1.615) 0.271 (0.240) 0.672 (0.638) 1.579 (2.025)

2.00 0.136 (0.121) 0.326 (0.287) 0.717 (0.736) 0.254 (0.197) 0.564 (0.379) 1.152 (0.824)

(a, b)=(1, 1.5) (a, b)=(1.5, 1)

α/p 0.25 0.5 0.75 0.25 0.5 0.75

0.25 1.137 (92.564) 13.999 (3849.40) 68.405 (26493.12) 8.225 (1601.25) 52.170 (17799.51) 109.152 (43419.63)

0.75 0.168 (0.266) 0.755 (2.152) 3.206 (24.087) 0.615 (1.263) 2.117 (8.555) 7.849 (90.211)

1.00 0.143 (0.163) 0.547 (0.846) 1.853 (5.288) 0.474 (0.579) 1.364 (2.417) 3.955 (13.994)

1.50 0.128 (0.117) 0.411 (0.367) 1.093 (1.191) 0.3813 (0.230) 0.897 (0.703) 2.014 (2.098)

2.00 0.125 (0.110) 0.369 (0.264) 0.849 (0.573) 0.356 (0.241) 0.742 (0.388) 1.436 (0.784)

(a, b)=(2, 3) (a, b)=(3, 2)

α/p 0.25 0.5 0.75 0.25 0.5 0.75

0.25 0.144 (1.469) 3.954 (329.859) 60.163 (19166.1) 1.599 (59.660) 25.245 (5336.32) 143.491 (48960.12)

0.75 0.054 (0.060) 0.450 (0.664) 2.347 (7.463) 0.324 (0.379) 1.454 (2.567) 5.798 (26.273)

1.00 0.052 (0.051) 0.371 (0.370) 1.530 (2.163) 0.285 (0.253) 1.057 (0.973) 3.265 (5.207)

1.50 0.051 (0.048) 0.323 (0.239) 1.012 (0.627) 0.264 (0.199) 0.790 (0.379) 1.829 (0.958)

2.00 0.051 (0.048) 0.313 (0.217) 0.836 (0.336) 0.262 (0.193) 0.709 (0.249) 1.358 (0.395)

Table 1: Mean (Variance) of DBW(a, b, α, p) for different values of parameters.

(1) If b = 1, then the DBW(a, b, α, p) distribution reduces to the EDW(p, α, a) distribu-

tion of Nekoukhou and Bidram (2015b).

(2) If a = b = 1, then the DBW(a, b, α, p) distribution reduces to the DW(p, α) distribu-

tion of Nakagawa and Osaki (1975).

(3) If α = b = 1, then the DBW(a, b, α, p) distribution reduces to the discrete gener-

alized exponential distribution of a second type, DGE2(a, p) which was introduced by

Nekoukhou et al. (2013).

(4) If a = b = α = 1, then the geometric distribution is obtained from the DBW(a, b, α, p)

distribution.

(5) If α = 1, then the DBW(a, b, α, p) distribution reduces to the discrete beta ex-

ponential distribution, DBE(a, b, p). This discrete version of the beta-exponential (BE)

distribution, of Nadarajah and Kotz (2006), was introduced for the first time by Nek-

oukhou and Bidram (2015a) as a special case of the DBGE distribution. It must be

mentioned that, recently, Nekoukhou et al. (2015) studied another discrete analog of the

BE distribution using the relation

Py =
f(y)

∑∞
t=1 f(t)

, y = 1, 2, ... ,

where f is the probability density function of the BE distribution. However, these two

discrete analogs of the BE distribution have different structures.

(6) If α = 2 and b = 1, then the DBW(a, b, α, p) distribution reduces to the generalized
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Figure 2: Hazard rate function plots of DBW distributions for selected parameters values.
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discrete Rayleigh distribution, GDR(a, p), which introduced for the first time by Nek-

oukhou and Bidram (2015b).

(7) If α = 2 and a = b = 1, then the discrete Rayleigh distribution of Roy (2004) is

obtained.

(8) If α = 2, then the DBW(a, b, α, p) distribution reduces to the discrete beta-Rayleigh

distribution, DBR(a, b, p), studied by Nekoukhou (2015).

2.2 Infinite divisibility

Let us we make the following note in regards to the famous structural property of infinite

divisibility of the new distribution in question. Such a characteristic has a close relation

to the Central Limit Theorem and waiting time distributions. Thus, it is a desirable

question in modeling to know whether a given distribution is infinitely divisible or not.

To settle this question, we recall that according to Steutel and van Harn (2004, pp. 56),

if px, x ∈ N0, is infinitely divisible, then px ≤ e−1 for all x ∈ N. However, e.g., in a

DBW(2.5, 1.75, 1.75, 0.85) distribution we see that p2 = 0.371 > e−1 = 0.367. Therefore,

in general, DBW(a, b, α, p) distributions are not infinitely divisible. In addition, since

the classes of self-decomposable and stable distributions, in their discrete concepts, are

subclasses of infinitely divisible distributions, we conclude that a DBW distribution can

be neither self-decomposable nor stable in general.

2.3 Order statistics

Order statistics are the most fundamental tools in non-parametric statistics and inference.

They enter the problems of estimation and hypothesis testing in a variety of ways.

Nekoukhou and Bidram (2015a) obtained some general relations for the pmf and cdf

of order statistics of the DBGE distribution. In the present section, we establish such

relations for order statistics of the DBW distribution. More precisely, let Fi(y; a, b, α, p)

and fi(y; a, b, α, p) be the cdf and pmf of the i-th order statistic of a random sample of

size n drawn from a DBW(a, b, α, p) distribution. One can show that the cdf of i-th order

statistic is of the form

Fi(y; a, b, α, p) =
n
∑

k=i

n−k
∑

j=0

∞
∑

m1=0

∞
∑

m2=0

...
∞
∑

mk+j=0

δk,jFEDW (y; p, α, a(k + j) +

k+j
∑

r=1

mr), (9)

where

δk,j =

(n
k

)(n−k
j

)

(−1)j+
∑k+j

r=1 mr{Γ(a+ b)}k+j

{Γ(a)}k+j
∏k+j

r=1 Γ(b−mr)mr!(a+mr)
.

It should be noted that for integer b > 0 the infinite sums in Equation (9) stop at

b − 1; see Nekoukhou and Bidram (2015a). As we see, the cdf of i-th order statistic of

8

(a, b)=(0.5, 0.5) (a, b)=(1, 0.5)

α/p 0.25 0.5 0.75 0.25 0.5 0.75

0.25 23.188 (8.362) 52.462 (2.195) 62.282 (2.792) 36.225 (1.265) 79.860 (3.173) 82.865 (3.666)

0.75 0.992 (4.770) 2.921 (31.963) 10.203 (3.399) 1.527 (6.653) 4.436 (43.432) 15.317 (4.563)

1.00 0.654 (1.504) 1.609 (6.509) 4.390 (39.165) 1.000 (2.000) 2.414 (8.243) 6.464 (48.249)

1.50 0.443 (0.513) 0.909 (1.396) 1.950 (4.703) 0.672 (0.638) 1.339 (1.586) 2.792 (5.041)

2.00 0.374 (0.319) 0.692 (0.663) 1.309 (1.629) 0.564 (0.379) 1.005 (0.696) 1.837 (1.573)

(a, b)=(0.5, 1) (a, b)=(1, 1)

α/p 0.25 0.5 0.75 0.25 0.5 0.75

0.25 2.825 (551.06) 18.896 (6770.39) 51.307 (21750.07) 5.565 (1084.30) 36.225 (12651.13) 86.221 (34959.01)

0.75 0.225 (0.524) 0.832 (3.964) 3.275 (44.252) 0.430 (0.936) 1.527 (6.654) 5.807 (71.559)

1.00 0.176 (0.257) 0.555 (1.278) 1.744 (80.208) 0.33 (0.44) 1.00 (2.00) 3.00 (12.00)

1.50 0.144 (0.145) 0.382 (0.451) 0.955 (1.615) 0.271 (0.240) 0.672 (0.638) 1.579 (2.025)

2.00 0.136 (0.121) 0.326 (0.287) 0.717 (0.736) 0.254 (0.197) 0.564 (0.379) 1.152 (0.824)

(a, b)=(1, 1.5) (a, b)=(1.5, 1)

α/p 0.25 0.5 0.75 0.25 0.5 0.75

0.25 1.137 (92.564) 13.999 (3849.40) 68.405 (26493.12) 8.225 (1601.25) 52.170 (17799.51) 109.152 (43419.63)

0.75 0.168 (0.266) 0.755 (2.152) 3.206 (24.087) 0.615 (1.263) 2.117 (8.555) 7.849 (90.211)

1.00 0.143 (0.163) 0.547 (0.846) 1.853 (5.288) 0.474 (0.579) 1.364 (2.417) 3.955 (13.994)

1.50 0.128 (0.117) 0.411 (0.367) 1.093 (1.191) 0.3813 (0.230) 0.897 (0.703) 2.014 (2.098)

2.00 0.125 (0.110) 0.369 (0.264) 0.849 (0.573) 0.356 (0.241) 0.742 (0.388) 1.436 (0.784)

(a, b)=(2, 3) (a, b)=(3, 2)

α/p 0.25 0.5 0.75 0.25 0.5 0.75

0.25 0.144 (1.469) 3.954 (329.859) 60.163 (19166.1) 1.599 (59.660) 25.245 (5336.32) 143.491 (48960.12)

0.75 0.054 (0.060) 0.450 (0.664) 2.347 (7.463) 0.324 (0.379) 1.454 (2.567) 5.798 (26.273)

1.00 0.052 (0.051) 0.371 (0.370) 1.530 (2.163) 0.285 (0.253) 1.057 (0.973) 3.265 (5.207)

1.50 0.051 (0.048) 0.323 (0.239) 1.012 (0.627) 0.264 (0.199) 0.790 (0.379) 1.829 (0.958)

2.00 0.051 (0.048) 0.313 (0.217) 0.836 (0.336) 0.262 (0.193) 0.709 (0.249) 1.358 (0.395)

Table 1: Mean (Variance) of DBW(a, b, α, p) for different values of parameters.

(1) If b = 1, then the DBW(a, b, α, p) distribution reduces to the EDW(p, α, a) distribu-

tion of Nekoukhou and Bidram (2015b).

(2) If a = b = 1, then the DBW(a, b, α, p) distribution reduces to the DW(p, α) distribu-

tion of Nakagawa and Osaki (1975).

(3) If α = b = 1, then the DBW(a, b, α, p) distribution reduces to the discrete gener-

alized exponential distribution of a second type, DGE2(a, p) which was introduced by

Nekoukhou et al. (2013).

(4) If a = b = α = 1, then the geometric distribution is obtained from the DBW(a, b, α, p)

distribution.

(5) If α = 1, then the DBW(a, b, α, p) distribution reduces to the discrete beta ex-

ponential distribution, DBE(a, b, p). This discrete version of the beta-exponential (BE)

distribution, of Nadarajah and Kotz (2006), was introduced for the first time by Nek-

oukhou and Bidram (2015a) as a special case of the DBGE distribution. It must be

mentioned that, recently, Nekoukhou et al. (2015) studied another discrete analog of the

BE distribution using the relation

Py =
f(y)

∑∞
t=1 f(t)

, y = 1, 2, ... ,

where f is the probability density function of the BE distribution. However, these two

discrete analogs of the BE distribution have different structures.

(6) If α = 2 and b = 1, then the DBW(a, b, α, p) distribution reduces to the generalized

7
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a DBW(a, b, α, p) distribution is an infinite linear combination of EDW(p, α, a(k + j) +
∑k+j

r=1 mr) distribution functions. In particular, when b = 1, one can show that Equation

(9) reduces to the cdf of i-th order statistic of an EDW(p, α, a) distribution.

The corresponding pmf of i-th order statistic, fi(y) = Fi(y) − Fi(y − 1) for an integer

value of y, is also given by

fi(y; a, b, α, p) =
n
∑

k=i

n−k
∑

j=0

∞
∑

m1=0

∞
∑

m2=0

...
∞
∑

mk+j=0

δk,jfEDW (y; p, α, a(k + j) +

k+j
∑

r=1

mr),

where fEDW denotes the pmf of an EDW distribution given by (6)-(7). In view of the

fact that fi(y; a, b, α, p) is an infinite linear combination of EDW(p, α, a(k+j)+
∑k+j

r=1 mr)

pmfs, we may obtain some properties of order statistics, such as their moments, from the

corresponding EDW distributions.

2.4 Estimation

Let Y be a random variable from the DBW distribution and θ = (a, b, α, p)T be the

parameters vector. The likelihood function for a single observation y is given by

�(θ) =

∞
∑

i=0

ωi(a, b)

{

(

1− p(y+1)α
)a+i

−
(

1− py
α)a+i

}

. (10)

The first derivatives of the likelihood function with respect to the components of θ are

given by

∂�

∂a
=

∑∞
i=0 ωi(a, b)

(

ψ(a+ b)− ψ(a)− 1

a+ i

){

(

1− p(y+1)α
)a+i

−
(

1− py
α)a+i

}

+ ωi(a, b)

{

(

1− p(y+1)α
)a+i

ln
(

1− p(y+1)α
)

−
(

1− py
α)a+i

ln
(

1− py
α)
}

,

∂�

∂b
=

∞
∑

i=0

ωi(a, b) (ψ(a+ b)− ψ(b− i))

{

(

1− p(y+1)α
)a+i

−
(

1− py
α)a+i

}

,

∂�

∂α
=

∑∞
i=0 ωi(a, b)(a + i) ln p{

(

1− py
α)a+i−1

py
α
yα ln y

−
(

1− p(y+1)α
)a+i−1

p(y+1)α(y + 1)α ln(y + 1)}

and

∂�

∂p
=

∞
∑

i=0

ωi(a, b)(a + i)

{

(

1− py
α)a+i−1

py
α−1yα −

(

1− p(y+1)α
)a+i−1

p(y+1)α−1(y + 1)α
}

,

where ψ(.) is the well-known digamma function.
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discrete Rayleigh distribution, GDR(a, p), which introduced for the first time by Nek-

oukhou and Bidram (2015b).

(7) If α = 2 and a = b = 1, then the discrete Rayleigh distribution of Roy (2004) is

obtained.

(8) If α = 2, then the DBW(a, b, α, p) distribution reduces to the discrete beta-Rayleigh

distribution, DBR(a, b, p), studied by Nekoukhou (2015).

2.2 Infinite divisibility

Let us we make the following note in regards to the famous structural property of infinite

divisibility of the new distribution in question. Such a characteristic has a close relation

to the Central Limit Theorem and waiting time distributions. Thus, it is a desirable

question in modeling to know whether a given distribution is infinitely divisible or not.

To settle this question, we recall that according to Steutel and van Harn (2004, pp. 56),

if px, x ∈ N0, is infinitely divisible, then px ≤ e−1 for all x ∈ N. However, e.g., in a

DBW(2.5, 1.75, 1.75, 0.85) distribution we see that p2 = 0.371 > e−1 = 0.367. Therefore,

in general, DBW(a, b, α, p) distributions are not infinitely divisible. In addition, since

the classes of self-decomposable and stable distributions, in their discrete concepts, are

subclasses of infinitely divisible distributions, we conclude that a DBW distribution can

be neither self-decomposable nor stable in general.

2.3 Order statistics

Order statistics are the most fundamental tools in non-parametric statistics and inference.

They enter the problems of estimation and hypothesis testing in a variety of ways.

Nekoukhou and Bidram (2015a) obtained some general relations for the pmf and cdf

of order statistics of the DBGE distribution. In the present section, we establish such

relations for order statistics of the DBW distribution. More precisely, let Fi(y; a, b, α, p)

and fi(y; a, b, α, p) be the cdf and pmf of the i-th order statistic of a random sample of

size n drawn from a DBW(a, b, α, p) distribution. One can show that the cdf of i-th order

statistic is of the form

Fi(y; a, b, α, p) =
n
∑

k=i

n−k
∑

j=0

∞
∑

m1=0

∞
∑

m2=0

...
∞
∑

mk+j=0

δk,jFEDW (y; p, α, a(k + j) +

k+j
∑

r=1

mr), (9)

where

δk,j =

(n
k

)(n−k
j

)

(−1)j+
∑k+j

r=1 mr{Γ(a+ b)}k+j

{Γ(a)}k+j
∏k+j

r=1 Γ(b−mr)mr!(a+mr)
.

It should be noted that for integer b > 0 the infinite sums in Equation (9) stop at

b − 1; see Nekoukhou and Bidram (2015a). As we see, the cdf of i-th order statistic of

8
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Now, let y1, y2, ..., yn be n observations of a random sample drawn from a DBW(a, b, α, p)

distribution. The total likelihood function is obtained by �n(θ) =
∏n

k=1 �k(θ), where �k(θ);

k = 1, 2, ..., n, is given by Equation (10). The maximum likelihood estimate (MLE) of θ,

say θ̂, is obtained by solving the nonlinear equation

Un = (∂�n/∂a, ∂�n/∂b, ∂�n/∂α, ∂�n/∂p)
T = 0,

using a numerical method.

The Fisher information matrix is given by

I(θ) = [Iθi,θj ]4×4; i, j = 1, 2, 3, 4,

whose components can be calculated, numerically, by the relation

Iθi,θj = E(− ∂2�

∂θi∂θj
); i, j = 1, 2, 3, 4.

The total Fisher information matrix is given by In(θ) = nI(θ) which can be approxi-

mated by

In(θ̂) ≈ [− ∂2�n
∂θi∂θj

|θ=θ̂]4×4 i, j = 1, 2, 3, 4,

and, therefore, under conditions given in Ferguson (1996), θ̂ has an asymptotic normal dis-

tribution as N4(θ, In(θ̂)
−1), or equivalently, In(θ̂)

1/2(θ̂−θ)T has a multivariate standard

normal distribution. Asymptotic normal distributions are usually used for constructing

approximate confidence intervals, confidence regions, and testing hypotheses of the pa-

rameters. For example, an asymptotic confidence interval with confidence coefficient 1−γ

for parameters θj; j = 1, 2, 3, 4, is computed by (θ̂j ± z1−γ/2

√

Iθ̂j ,θ̂j ), where Iθ̂j ,θ̂j is the j-

th diagonal element of In(θ̂)
−1 and z1−γ/2 is (1−γ/2)-th quantile of the standard normal

distribution.

2.5 A simulated example

It is evident that if V is a beta random variable with parameters a and b, then the cdf

of the random variable X = G−1(V ) coincides with cdf (1). Hence, for a Weibull random

variable with cdf (4), we have

X =

(

− 1

β
log(1− V )

)
1
α

,

which helps to generate data from a BW distribution. Thus, we can consider �X� in order

to generate data from a DBW(a, b, α, p) distribution. Table 2 presents the maximum

likelihood estimates of θ = (a, b, α, p)T of a DBW distribution and also contains their

10

a DBW(a, b, α, p) distribution is an infinite linear combination of EDW(p, α, a(k + j) +
∑k+j

r=1 mr) distribution functions. In particular, when b = 1, one can show that Equation

(9) reduces to the cdf of i-th order statistic of an EDW(p, α, a) distribution.

The corresponding pmf of i-th order statistic, fi(y) = Fi(y) − Fi(y − 1) for an integer

value of y, is also given by

fi(y; a, b, α, p) =
n
∑

k=i

n−k
∑

j=0

∞
∑

m1=0

∞
∑

m2=0

...
∞
∑

mk+j=0

δk,jfEDW (y; p, α, a(k + j) +

k+j
∑

r=1

mr),

where fEDW denotes the pmf of an EDW distribution given by (6)-(7). In view of the

fact that fi(y; a, b, α, p) is an infinite linear combination of EDW(p, α, a(k+j)+
∑k+j

r=1 mr)

pmfs, we may obtain some properties of order statistics, such as their moments, from the

corresponding EDW distributions.

2.4 Estimation

Let Y be a random variable from the DBW distribution and θ = (a, b, α, p)T be the

parameters vector. The likelihood function for a single observation y is given by

�(θ) =

∞
∑

i=0

ωi(a, b)

{

(

1− p(y+1)α
)a+i

−
(

1− py
α)a+i

}

. (10)

The first derivatives of the likelihood function with respect to the components of θ are

given by

∂�

∂a
=

∑∞
i=0 ωi(a, b)

(

ψ(a+ b)− ψ(a)− 1

a+ i

){

(

1− p(y+1)α
)a+i

−
(

1− py
α)a+i

}

+ ωi(a, b)

{

(

1− p(y+1)α
)a+i

ln
(

1− p(y+1)α
)

−
(

1− py
α)a+i

ln
(

1− py
α)
}

,

∂�

∂b
=

∞
∑

i=0

ωi(a, b) (ψ(a+ b)− ψ(b− i))

{

(

1− p(y+1)α
)a+i

−
(

1− py
α)a+i

}

,

∂�

∂α
=

∑∞
i=0 ωi(a, b)(a + i) ln p{

(

1− py
α)a+i−1

py
α
yα ln y

−
(

1− p(y+1)α
)a+i−1

p(y+1)α(y + 1)α ln(y + 1)}

and

∂�

∂p
=

∞
∑

i=0

ωi(a, b)(a + i)

{

(

1− py
α)a+i−1

py
α−1yα −

(

1− p(y+1)α
)a+i−1

p(y+1)α−1(y + 1)α
}

,

where ψ(.) is the well-known digamma function.
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standard errors for the sample sizes n = 100, 200, 500 and 1000 as a simulated example.

Standard errors are obtained by means of the asymptotic covariance matrix of the MLEs

of DBW parameters when the Newton-Raphson procedure converges in, e.g., MATLAB

software.

n â b̂ α̂ p̂ ŜE(â) ŜE(b̂) ŜE(α̂) ŜE(p̂)

(a, b, α, p) = (1, 2, 0.5, 0.25)

25 0.8316 1.6723 0.2813 0.2022 0.8324 0.8716 1.5297 0.4879

100 0.8623 1.6211 0.2987 0.1912 0.7898 0.6373 1.2382 0.2666

200 0.8214 1.5732 0.4142 0.2323 0.5575 0.5161 0.9875 0.1252

500 0.9550 1.8879 0.5465 0.2412 0.2242 0.2333 0.4979 0.0822

1000 0.9773 1.9412 0.5150 0.2510 0.1012 0.1161 0.2242 0.0374

(a, b, α, p) = (2, 3, 1.5, 0.5)

25 1.6404 2.7012 1.3145 0.4320 0.8954 0.7882 1.2122 0.4958

100 1.8363 2.8474 1.1887 0.4447 0.7191 0.5464 0.9925 0.2112

200 1.9612 2.8997 1.7012 0.4923 0.4362 0.2838 0.8131 0.1573

500 2.0484 2.9721 1.4954 0.5102 0.2545 0.1828 0.5012 0.0685

1000 1.9954 3.0050 1.5076 0.5101 0.1131 0.1124 0.2112 0.0207

(a, b, α, p) = (2, 2, 3, 0.75)

25 1.7971 2.2631 2.6982 0.8175 0.7813 0.6993 0.9011 0.3984

100 1.8892 2.3547 3.4455 0.7323 0.5373 0.3897 0.7725 0.2837

200 1.9232 1.8099 2.9202 0.7042 0.2333 0.2259 0.5541 0.1276

500 1.9777 2.1176 3.1138 0.7507 0.1921 0.1611 0.2721 0.0784

1000 2.0074 2.1031 2.9973 0.7575 0.1043 0.1108 0.1112 0.0314

Table 2: MLEs and standard errors of the DBW parameters.

Figure 3 is plotted for more values of sample sizes and for (a, b, α, p) = (1, 2, 0.5, 0.25)

to show how the four standard errors vary with respect to n. As we see, the standard

errors for each parameter decrease to zero as n → ∞.

2.6 Stress-strength parameter

The stress-strength parameter R = P (X > Y ) is a measure of component reliability and

its estimation problem when X and Y are independent and follow a specified common

distribution has been discussed widely in the literature. Suppose that the random variable

X is the strength of a component which is subjected to a random stress Y . Estimation

of R when X and Y are independent and identically distributed following a well-known

distribution has been considered in the literature; see Kotz et al. (2003).
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distribution. The total likelihood function is obtained by �n(θ) =
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k=1 �k(θ), where �k(θ);
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The total Fisher information matrix is given by In(θ) = nI(θ) which can be approxi-

mated by
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and, therefore, under conditions given in Ferguson (1996), θ̂ has an asymptotic normal dis-
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−1), or equivalently, In(θ̂)
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th diagonal element of In(θ̂)
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It is evident that if V is a beta random variable with parameters a and b, then the cdf

of the random variable X = G−1(V ) coincides with cdf (1). Hence, for a Weibull random

variable with cdf (4), we have

X =

(

− 1

β
log(1− V )

)
1
α

,

which helps to generate data from a BW distribution. Thus, we can consider �X� in order

to generate data from a DBW(a, b, α, p) distribution. Table 2 presents the maximum

likelihood estimates of θ = (a, b, α, p)T of a DBW distribution and also contains their
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standard errors for the sample sizes n = 100, 200, 500 and 1000 as a simulated example.

Standard errors are obtained by means of the asymptotic covariance matrix of the MLEs

of DBW parameters when the Newton-Raphson procedure converges in, e.g., MATLAB
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errors for each parameter decrease to zero as n → ∞.
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The stress-strength parameter R = P (X > Y ) is a measure of component reliability and

its estimation problem when X and Y are independent and follow a specified common

distribution has been discussed widely in the literature. Suppose that the random variable

X is the strength of a component which is subjected to a random stress Y . Estimation

of R when X and Y are independent and identically distributed following a well-known

distribution has been considered in the literature; see Kotz et al. (2003).
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Figure 3: Standard errors of the MLEs of (a, b, α, p) = (1, 2, 0.5, 0.25) for n=50, 100, 150, ..., 1000.

Sometimes, data may be discrete by nature, for example, the number of events oc-

curring in a certain spatial or temporal interval. When discrete data are derived from

discretization, instead of numerical measurements on X and Y , they are presented in a

form of ordered categories.

Here, we consider the estimation of R in a DBW model, in view of the fact that a

relatively small amount of work is devoted to discrete or categorical data.

The stress-strength parameter, in discrete case, is defined as

R = P (X > Y ) =

∞
∑

x=0

fX(x)FY (x),

where fX and FY denote the pmf and cdf of the independent discrete random vari-

ables X and Y , respectively. Now, let X ∼ DBW(θ1) and Y ∼ DBW(θ2), where

θ1 = (a1, b1, α, p)
T and θ2 = (a2, b2, α, p)

T . Using Equations (5) and (8), we obtain

R =

∞
∑

i=0

∞
∑

j=0

wi(a1, b1)wj(a2, b2)

∞
∑

x=0

{

(1− p(x+1)α)(a1+i) − (1− px
α

)(a1+i)
}

(1− p(x+1)α)(a2+j). (11)

Now, assume that x1, x2, ..., xn and y1, y2, ..., ym are independent observations from

X ∼ DBW(θ1) and Y ∼ DBW(θ2), respectively. The total likelihood function is �R(θ
∗) =

�n(θ1)�m(θ2), where θ∗ = (θ1,θ2). The score vector is given by

UR(θ
∗) = (∂�R/∂a1, ∂�R/∂a2, ∂�R/∂b1, ∂�R/∂b2, ∂�R/∂α, ∂�R/∂p),
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to show how the four standard errors vary with respect to n. As we see, the standard

errors for each parameter decrease to zero as n → ∞.

2.6 Stress-strength parameter

The stress-strength parameter R = P (X > Y ) is a measure of component reliability and

its estimation problem when X and Y are independent and follow a specified common

distribution has been discussed widely in the literature. Suppose that the random variable

X is the strength of a component which is subjected to a random stress Y . Estimation

of R when X and Y are independent and identically distributed following a well-known

distribution has been considered in the literature; see Kotz et al. (2003).
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Figure 3: Standard errors of the MLEs of (a, b, α, p) = (1, 2, 0.5, 0.25) for n=50, 100, 150, ..., 1000.

Sometimes, data may be discrete by nature, for example, the number of events oc-

curring in a certain spatial or temporal interval. When discrete data are derived from

discretization, instead of numerical measurements on X and Y , they are presented in a

form of ordered categories.

Here, we consider the estimation of R in a DBW model, in view of the fact that a

relatively small amount of work is devoted to discrete or categorical data.

The stress-strength parameter, in discrete case, is defined as

R = P (X > Y ) =

∞
∑

x=0

fX(x)FY (x),

where fX and FY denote the pmf and cdf of the independent discrete random vari-

ables X and Y , respectively. Now, let X ∼ DBW(θ1) and Y ∼ DBW(θ2), where

θ1 = (a1, b1, α, p)
T and θ2 = (a2, b2, α, p)

T . Using Equations (5) and (8), we obtain

R =

∞
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Now, assume that x1, x2, ..., xn and y1, y2, ..., ym are independent observations from

X ∼ DBW(θ1) and Y ∼ DBW(θ2), respectively. The total likelihood function is �R(θ
∗) =

�n(θ1)�m(θ2), where θ∗ = (θ1,θ2). The score vector is given by
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and the MLE of θ∗, say θ̂∗, may be attained from the nonlinear equation UR(θ̂
∗) = 0.

Thus, by inserting the MLEs in Equation (11) the stress-strength parameter R will be

estimated.

2.7 Application

In this section, the DBW distribution will be examined for the fish catch data, given by

Kemp (1992). These data have been displayed in Table 3. Gómez-Déniz (2010) used these

data in order to study its generalization of the geometric distribution.

Numbers 0 1 2 3 4 5 6 7 8

Frequency 1 2 11 20 29 23 10 3 1

Table 3: Fish catch data

Here, we compare the capacity of the DBW model with some of its rival models in

discrete data modeling which are notified briefly in the sequence.

(1) Discrete Weibull distribution of Nakagawa and Osaki (1975), with pmf

f(y; p, α) = (1− p(y+1)α)− (1− py
α
),

which is a special case of the EDW distribution, when γ = 1.

(2) Discrete generalized exponential distribution of a second type, DGE2(γ, p), of Nek-

oukhou et al. (2013) with pmf

f(y; p, γ) = {1− p(y+1)}γ − {1− py}γ ,

which can be considered as another special case of the EDW distribution, by choosing

α = 1.

(3) If α = 2, then the pmf of EDW(p, α, γ) distribution reduces to

f(y; p, γ) = {1− p(y+1)2}γ − {1 − py
2}γ

=
∞
∑

j=1

(−1)j+1

(

γ

j

)

pjy
2
(1− pj(2y+1)),

which defines the generalized discrete Rayleigh distribution, GDR(γ, p), studied by Nek-

oukhou and Bidran (2015b).

(4) The pmf of a discrete beta generalized exponential (DBGE) distribution proposed by

Nekoukhou and Bidram (2015a), with parameters a > 0, b > 0, α > 0 and 0 < p < 1, is

13
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Figure 3: Standard errors of the MLEs of (a, b, α, p) = (1, 2, 0.5, 0.25) for n=50, 100, 150, ..., 1000.
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(2) Discrete generalized exponential distribution of a second type, DGE2(γ, p), of Nek-

oukhou et al. (2013) with pmf

f(y; p, γ) = {1− p(y+1)}γ − {1− py}γ ,

which can be considered as another special case of the EDW distribution, by choosing

α = 1.

(3) If α = 2, then the pmf of EDW(p, α, γ) distribution reduces to

f(y; p, γ) = {1− p(y+1)2}γ − {1 − py
2}γ

=
∞
∑

j=1

(−1)j+1

(

γ

j

)

pjy
2
(1− pj(2y+1)),

which defines the generalized discrete Rayleigh distribution, GDR(γ, p), studied by Nek-

oukhou and Bidran (2015b).

(4) The pmf of a discrete beta generalized exponential (DBGE) distribution proposed by

Nekoukhou and Bidram (2015a), with parameters a > 0, b > 0, α > 0 and 0 < p < 1, is
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of the form

f(y; a, b, α, p) =

∞
∑

i=0

ωi(a, b){(1 − py+1)α(a+i) − (1− py)α(a+i)}

=

∞
∑

i=0

ωi(a, b)

∞
∑

j=1

(−1)j+1

(

α(a+ i)

j

)

pjy(1− pj), (12)

where y ∈ N0 = {0, 1, 2, ...}. The above pmf is in fact a linear combination of the

probability mass functions of the DGE2 distributions.

A discrete double generalized exponential (DDGE) distribution of Nekoukhou and

Bidram (2015a) is a special case of the DBGE distribution, when a = 1. Moreover, a

discrete beta-exponential (DBE) distribution of Nekoukhou and Bidram (2015a) is an-

other sub-model of DBGE distribution, when α = 1.

(5) The discrete beta-Rayleigh distribution, DBR(a, b, p), as mentioned in the present

paper, is the same as that of DBW(a, b, 2, p) distribution.

The maximum likelihood method is used to obtain the estimates of the parameters of

the proposed new distribution. Comparing the DBW model is performed by using the

Akaike information criterion (AIC) and Kolmogrov-Smirnov (K-S) test statistic. It must

be mentioned that the parameters have been estimated by means of all data (here n=100),

and the estimated model is written as

f̂DBW (y; â, b̂, α̂, p̂) =
∞
∑

i=0

ωi(â, b̂)

{

[

1− e−β̂(y+1)α̂
]â+i

−
[

1− e−β̂yα̂
]â+i

}

,

for y = 0, 1, 2, 3, 4, 5, 6, 7, 8. In order to calculate the AIC values, for example for the

DBW model, we have

�(â, b̂, α̂, p̂) = log

9
∏

i=1

̂P (Y = yi) = log ̂P (Y = 0) + log ̂P (Y = 1) + ...+ log ̂P (Y = 8)

= −21.9043,

and hence

AIC = 2× 4− 2× �(â, b̂, α̂, p̂) = 2× 4− 2× (−21.9043) = 51.8085.

Table 4 indicates the fitting computations which consists of the MLEs, AICs and the

values of K-S test statistic determined by the fitting models.

According to the AICs and the values of K-S test statistic in Table 4, it seems that

the DBW model gives a satisfactory fit for these real data. Figures 4 and 5 indicate the

fitted models and corresponding probability-probability (p-p) plots of the fitted models,

respectively. As we see, the figures also confirm goodness of fit of the DBW model.

The likelihood ratio (LR) method is used to test the null hypotheses H0: DBE, H0:

DBR, H0: EDW, H0: GDR, H0: DGE2 and H0: DW versus the alternative hypothesis
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Models MLEs AIC K-S statistic

DBW (â, b̂, α̂, p̂) = (1.8864, 1.1613, 1.4321, 0.8835) 51.8085 0.1629

ŜE(â, b̂, α̂, p̂) = (0.3284, 0.2686, 0.4212, 0.4508)

DBGE (â, b̂, α̂, p̂) = (1.3680, 1.5326, 1.3720, 0.8877) 56.9167 0.3786

ŜE(â, b̂, α̂, p̂) = (0.4112, 0.3113, 0.4456, 0.3618)

DBR (â, b̂, p̂) = (1.5364, 1.3781, 0.9523) 52.7182 0.3021

ŜE(â, b̂, p̂) = (0.3981, 0.4536, 0.3343)

EDW (α̂, γ̂, p̂) = (2.7425, 1.5681, 0.9833) 59.6494 0.2908

ŜE(α̂, γ̂, p̂) = (0.2819, 0.4336, 0.3871)

GDR (γ̂, p̂) = (2.8033, 0.9249) 58.5595 0.4135

ŜE(γ̂, p̂) = (0.2777, 0.3029)

DBE (â, b̂, p̂) = (1.5431, 1.1241, 0.9231) 62.6518 0.6031

ŜE(â, b̂, p̂) = (0.3642, 0.3713, 0.2873)

DDGE (b̂, α̂, p̂) = (1.7213, 0.9431, 0.9463) 55.5464 0.4702

ŜE(b̂, α̂, p̂) = (0.3091, 0.3227, 0.3335)

DGE2 (â, p̂) = (13.7229, 0.4969) 62.1244 0.2565

ŜE(â, p̂) = (0.1978, 0.1793)

DW (α̂, p̂) = (3.5792, 0.9969) 57.4555 0.2960

ŜE(α̂, p̂) = (0.2011, 0.1834)

Table 4: Results for fish catch data.

H1: DBW. The values of LR test statistic and their corresponding p-values for the data

set are given in Table 5.

According to the results, we see that the null hypotheses are rejected in favor of the

alternative hypothesis at the usual significance level.

One can construct approximate confidence intervals for the parameters of the DBW

model. Indeed, such confidence intervals are attained by means of the asymptotic co-

variance matrix of the MLEs of DBW parameters when the Newton-Raphson procedure

converges. For instance, 95% asymptotic confidence intervals for DBW parameters are

calculated as a ∈ (1.8864 ± 0.6437), b ∈ (1.1613 ± 0.5264), α ∈ (1.4321 ± 0.8255) and

p ∈ (0.8835 ± 0.1273).

In view of the fact that the above confidence intervals are finite, we can conclude that

the parameters of the distribution in question are identifiable; see Raue et al. (2009).
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According to the results, we see that the null hypotheses are rejected in favor of the

alternative hypothesis at the usual significance level.

One can construct approximate confidence intervals for the parameters of the DBW

model. Indeed, such confidence intervals are attained by means of the asymptotic co-

variance matrix of the MLEs of DBW parameters when the Newton-Raphson procedure

converges. For instance, 95% asymptotic confidence intervals for DBW parameters are

calculated as a ∈ (1.8864 ± 0.6437), b ∈ (1.1613 ± 0.5264), α ∈ (1.4321 ± 0.8255) and

p ∈ (0.8835 ± 0.1273).

In view of the fact that the above confidence intervals are finite, we can conclude that

the parameters of the distribution in question are identifiable; see Raue et al. (2009).
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H0 H1 LR value p-value

DBE (α = 1) DBW (α �= 1) 12.8433 3.38 × 10−4 (< 0.01)

DBR (α = 2) DBW (α �= 2) 2.9096 0.0881 (< 0.10)

EDW (b = 1) DBW (b �= 1) 9.8408 0.0017 (< 0.01)

GDR (α = 2, b = 1) DBW (α �= 2, b �= 1) 10.7510 0.0010 (< 0.01)

DGE2 (α = 1, b = 1) DBW (α �= 1, b �= 1) 14.3158 7.78 × 10−4 (< 0.01)

DW (a = 1, b = 1) DBW (a �= 1, b �= 1) 9.6470 0.0080 (< 0.01)

Table 5: LR test for fish catch data.
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Figure 4: The fitted models for fish catch data.

3 Conclusions

We introduced a new discrete distribution, called discrete beta-Weibull (DBW) distribu-

tion, motivated by the fact that it provides greater flexibility in order to analyze various

discrete data. Indeed, the DBW distribution is appropriate for modeling both over and

under-dispersed data and its hazard rate function can be bathtub-shaped, unimodal, in-

creasing and decreasing. That is, DBW distributions can be used as improved models for

analyzing failure data in the discrete case.

In this paper we have developed mainly the classical inference. It will be interesting

to develop the Bayesian inference also and compare their performances. Moreover, here

have considered univariate model, it is important to see how it can be generalized to the
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Figure 5: The p-p plots of fitted models for fish catch data.

bivariate and even multivariate case. More work is needed along these directions.
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