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RESUMO

Neste trabalho nós estudamos uma equação do tipo Navier-

Stokes que modela o fluxo de um fluido viscoso, homogêneo e

incompressível num meio poroso granular (não consolidado) .Usando

argumentos do tipo ponto fixo obtemos condições para a existência de

solução em espaços de Hólder.

ABSTRACT

In this work we study a Navier-Stokes type equation which

models lhe flow of a viscous, homogeneous and incompressible fluid in a

isotropic granular (non consolidated) porous media. Using point fixed type

arguments we obtain conditions for existence of solution for the equation in

Hólder's spaces.
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1 INTRODUCTION

In this work we will show results of existence of solution for the

following system which represents the flow of a fluid in a granulated porus

media, for example, if we put water in a box of sand, the water will flow

through the sand with the action of gravity.

pu, + p.V( ~ )- uSu + -vp + /lF(n" ~ png , in Q,

divu = 0, in Qr (1)

u(X,o) = ° , \iXE Q

u(X,t) = °, \itE (O,T) \ixE JQ

Here QT = Qx (O, T), Q C IR"; d=2,3 is a bounded domain. u(x,t)

denotes the velocity of the fluid. p(x,t) is hydrostatic pressure at point x and

instant t. For reasons of uniqueness in this paper we will suppose that in each

instant of time the pressure has average zero, that is,

f p(x, t )1x = 0, \it E [O,T]. f.1 is viscosity of fluid. P is density of fluid,
o
here, without lost of generality in the case of homogeneous fluids, we have

supposed constant equal to one. n(x,t) is the porosity of granular porus

media, that is, the volume of empty space divided by the total volume of a

portion of Q in the neighborhood of x. The variation of porosity varies from

zero to one. When the porosity becomes null then porous media is solid and

it can be excluded from the drain region, and when porosity becomes one in a

certain sub region this mean that there is no granular material, and the flow is

free. In this way we can always suppose 0< n(x, t) ~ 1. F represents the

frictional effects introduced by the presence of the porous environment. We

will suppose that F satisfies limF(z)=O and limF(z)=oo which is
z ...• 1 : •..• 0

consistent wiht the meaning of F. 9 is an external force field.
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d au
~u = (~U, , ... ,~Ud) and (U· 'Vu); = 2> j --' , i = 1,2, ... ,d (2)

j=' a Xj

Essentially, the system above comes from the classical Navier-

Stokes equations, considering the new elements in the problem (porosity and

friction) and making average integrais in small volumes. Then, the variables u

and pare macroscopic averages of real velocity and pressure of fluid

particles. For details see [4].

Our main result was obtained supposing that the porosity is a function of the

pressure, which is more realistic and essentially is the following result:

If g=g,+'V\{',n(x,t)=n,,+8j(p(X,t))where 0<n,,<1, 8 isa

positive constant taken small (in a certain sense), g, E HA (QT ),

\{' E H'+A (QT ) and f is a adequate function then exist solution (u, p) of

(1) in which pEH'+A(QT},UE(H2+A(QT))'" Here Hk+A(QT)'
k E IN is a Hõlder's space of k + Â. order (see preliminaries in section

2). With p and u satisfying IIp - 'f'II'+A < R and IIuII2+A < R where

8 > O , R> O and IIg, liA should be sufficiently small and

J.1C,F(n,,)< n". Here C, is the constant of Solonnikov's Theorem of

existence and uniqueness (see preliminaries bellow).

The existence of solutions will be gotten by means of an

adaptation of Schauder's fixed point Theorem.
The solution was searched at Hõlder's spaces because, until

now, the estimates in Sobolev's spaces are not sufficient to control the

nonlinear terms in the pressure, more precisely, for the velocity we get

adequate compact immersions but for the pressure we do not.
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Like in classical Navier-Stokes equations it's possible to obtain

a result of uniqueness, but with more restriction at the smallness of the data

above.

The work is organized in the following way:

In section 2 we recall Hõlder's spaces and write down some basic results (the

principal of them is an existence and uniqueness Solonnikov's theorem). We

state our two basic theorems and prove one lemma which will be used in

section 3.and in section 3 we will prove the existence theorem. Like is usual

in PDE problems, we will denote by C a generic, positive constant depending

only on Q and the data of the problem.

2 PRELlMINARIES ANO RESUL TS

Qc IR"Let be an open and

ÀE IR , 0< À :::;1,m E {O,1,2, ... }

We define:

H 11I+ À (Q)= ~:Q --7/R which are e 11I (Q)with IIullH'''+À(Q) < oo}
where

The spaces above are well known and one reference about this

is [1].

The spaces below are, somewhat, generalizations of ordinary

Hõlder's spaces:

Let ÀE IR, 0< À :::;1,m E {O,1,2, ... } and following the

notation used in [4] we define:
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where
/li

IluIIH~"'+A(Qr)= L supID~u(x,t~+ LsupID,kU(X,t~+
aS2/11 Q k=1 Qr

~ [ID~U(X,t)-D~U(y,t~ ID~U(X,t)-D~U(X'S~J+ L.,; sup À +sup À +
a=2/11 X -.'.I Ix - yl X.I ..' It - sI2

ID;"u(x, t)- D;"u(y, f ~ Itr» (x, t)- D;"u(x, S~
+sup À +sup À

.\.\.1 Ix - yl .LI..' If - sI2

{
u:Qx[O, T] -7 IR where uC f)E c' (n)Vt E [O,T ]and}

H1+À (Q )= _
T U(X,)E C" [O,T]V X E Q with IluIIH'+A{QI) < 00

where

~ I a ( ~ ~ ID~u(x,t)-D~u(y,t~IluIIH'+A(Qr) = L.,; sup D, u x, f ~ + L.,; sup À

aSI Q zz=l .r.v.) Ix - yl
~ ID~u(x,t)-D~u(x,s~

+ L.,; sup À

a=1 .LI.., It - sl2
For lhe sake of simplicily we will

and

IluIIH1+A (Qr) = Ilulll+À
because from context will be clear lhe use of one or

anolher norm.
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For functions with vectorial values, like u = (u I , ... ,u,,) we

say u is a Hôlder's space function of order m + À. if

form like in Navier-Stokes standard theory and we will not make different

notations for scalar or vectorial functions for m + À. norms.

Another important property of these spaces is:

Ilu . vll
i
+À s eU ~lullj+À IlvIIj+À ; Vu, V E Hj+À (n) (ar Hj+À (QT)) (4)

where, in the case of functions defined over n we have j E IN , and in the

case of functions defined over we have

j = 1or j = 2m, with mE IN.
We have the following results of immersion for the Hi:ilder's

spaces:

Theorem 1: Let m be a non negative integer and n be a

bounded open of IR", dE IN, T > O and O < V < À. ~ 1. Then the

following immersions are continuous and compact

(i)HIII+À (n)~ e11I(n)
(ü)HIII+À (n)~HIII+v (n)
(üi)H2111+À (QT)~ e 211I011I(Q;)
(iv )H2111+À (QT ) ~ H2111+À

(v)H'+À (QT)~ el.o (Q;)
The demonstrations of (i) and (ii) can be found in [1] and the

proofs of (iii) to (v) are quite similar making use of Arzela-Ascoli's Theorem.
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The notation e 111.11 (Q;") means functions which are C" in

space variables and e" at time variables. Here m and n are integers not

negatives.
Let's recall the following spaces from classical Navier-Stokes

theory (see Teman [6] and Solonnikov [5])

J,(Q)= {UE (U(Q)) :uit "Oanddivu =o}

G,Jn) = ~ E (u (n))' .u = V<I>}

Observe that J2(n)= H and G2(n) = H1-. We have

L" (n) = J" (n )EBG"(n) and this define continuous projections

P, and Pc (with norm depending only on n and q ), Indicating
I1 Ii

p:L2(n)~ H we have for f E (L2 (n))" n (L" (n))" that

P, (/}=P(j) This induce continuous projection from
</

L" (O, T, (L" (n))" )into L" (O, T, J 'I (n)) defined by

P, (uXx, t)= P, (u(, t)Xx). In the context of Hólder's spaces we have
11 lf

similar things:

r: (Q)= {u E (H"'" (Q))' .u Alo "Oand divu =o}

GI11
+
Ã (n)= ~E (HI11

+
Ã (n))" :u = V<I>}

HI11+Ã (n) __J I11+Ã (n)ffi GI11+Ã (n),l..!, ~,/; W ~,/; which define continuous projections

into J'"+À (n)andGI11
+À (n).
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Due the regularity at (J Q and because Q is bounded we have

PJ (f)= P(j) for f E (e (Q))" n (HIII+À (Q))".
'I

P at ~HIII+À (Qr ))"continuous projection ~

This induce

defined by

P [u Xx, t) = (Pu(, t )Xx). With this definition P commute with %t

operator and then P((HIII
+À (Qr ))" )c (H 11I+À (Qr))" and we have, for

each t, P (uX, t)E ]'"+À (Q) and

(5)

where C = C(Q, m, Â). More details can be found [7].

The following theorem due to Solonnikov [5] will be very important for our

arguments:

Theorem 2: Let Q C IRei be a bounded domain with

(J Q E H2+À (Q) (that is (J Q can be locally mapped by a function

H
2

+À (Q) class), VoE (H
2

+
À (Q))" and f E (H

À (Qr))" satisfying the

following conditions: P(f)E (HÀ (Qr ))" ; divv; == O; Vil lao == O and

P(j(x,O)+ ,ullvJx)) = O, VX E (JQ.

Then the problem:

pv, - ué» + Vp = f in Qr
divv = O, in Qr
v(x,O)= v()(x), VXE Q

v(x,t)=O, VtE (O,T)VXE (JQ
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V E ~H2+'\ (Qr ))dhas a unique solution (v,p) where ~ and

11vII2+..\+ IIV pll'\ ~ C1 ~Ifll'\ + IIp} (j t + IIVIi 112+..\)+
C2 maxlv(x,t ~

Q,
(7)

The constants C1 and C2 do not depend on T

Observatíon 1: The reason of hypothesis (6) is for a consistency condition.

Observation 2: The result in [5] is somewhat more general than that stated

above. The equation considered in [5] is

pv, -,u~v+a(x,t)v+ .I.:=lak(X,t) :v +Vp=f(x,t) where a
«»,

and ak are certain given matrices. Here we consider a == ak == O .

Observatíon 3: Using of Close Graph Theorem we have:

SlIplv(x, t ~ ~ Cllft .
Q,

Observatíon 4: With the hypothesis that pressure has average zero, that is,

f p(x, t )dx = O , \jt E [O, T] then we have (by the mean value Theorem of
o

calculus) that SlIplp(x, f ~ ~ SlIplV p(x, t ~ in this way p E H'+'\ (Qr).
Q, Q,

From of this observations, and by (5) we can rewrite (7) in the

following form:

Here C does not depend on T.

The following theorem is the basic result obtained in the theory.
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Theorem 3 (existence of solution): Lei Q C IR" be a bounded domain

wilh a Q E H2+À
, VoE (H2+À (Q))". Lei f: IR --7 IR be a local

Lipschilz funclion wilh derivalive also local Lipschilz salisfying f (O) = O . Lei

F : (0,1) --7 IR a local Lipschilz funclion salisfying lirnF(z)= O and
~->I

salisfying g I (x,O) = O, VX E Q and g 2 = V\fI wilh \fi E H'Ü (QT ) and

Ia \fi (x,O )dx = O. Then for 8> O, R> O and Ilg111" sufticienlly small

wilh flC,F(n,J<n", lhe problem (1) wilh n=n" +8f(p) has a

solulion (u, p)E (H2
+

À (QT ))" X H'+À (QT)

IIp - \fI111+À < R and p(x,O) = \fi (x,O ).

wilh

Observation 1: Only for physical reasons we consider lhe dimension 10 be 2

or 3. The argumenl is slill valid in higher dimensions.

Observation 2: The condilion fl C, F (n" ) < n; lell us Ihal exisl a basic

porosily ,~ for which Vn" > n we have flC,F(n,,)< n". A possible

interpretation for Ihis is : We guaranlee lhe exislence of solulion when lhe

porosily is close 10 one (when lhe equalion is close 10 pure Navier-Slokes

equalion, n=1).

Observation 3: We define a funclion f: Q --7 IR 10 be local Lipschilz in

lhe sense Ihal for every open sei Q) C Q wilh Q) strictly conlained in n we

have fi a Lipschilz funclion.
(V
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The following lemma will be useful to demonstrate the above

theorem, more precisely, to get uniform limitations for the aproximations of u

and p.

Lemma 1: Given 8 > O, R> O,0< n; < 1, f : IR -7 IR a local Lipschitz

function with derivative also local Lipschitz satisfying f (O) = O and

F : (0,1) -7 IR a local Lipschitz function satisfying lirnF (z) = O and
z-->I

lirnF(z)= 00 and g E HÀ (Q1')' Then for Ilulll+À< R and
z-->o

IIp - -t., < R we have:

i)IIf(p ~IÀ< CllpllÀ

ii)11/(p~IÀ <1/(O~+c(R+II\fll,+J
iü)IIF(n" + 8f(p)t < F(no)+ 8C(R + II\fll'+À)
ivvn; + 8f(p(x,t)) "2 ~ ;\f(X,t)E Q1' if,

n
and only if, 8 :::;2C(R +'II\fll'+À )

v)If ». +8f(p)"2~then 1 () :::;C+8 c(R+II\fll ,)
2 no+8fp À 1+"

vi)II(no +8 f(p ))gt :::;l10llgt +8 C(R+II\fll
'
+À )Igt

vii)IIf(p)V(p-\ft :::;RC(R+II\fll,+J

vÜi)IIF(n() +õIí» ))ut :::;F(n() )R+8Rc(R+II\fll'+À)
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where

o ~ i ~ 3 and 2 ~ j ~ 5 .

Demonstration 01 Lemma 1:

i)The proof 01 the 1irst item is the tollowinq:

If IIp - -í., < R then Ip(x, t ~ < R + IlqJll'+À now

Ilf(
\11 = If( ()\I If(p(x,t ))- f(p(y,t)~

P ~ À sup P x.t ~+ sup À

Qr .r.v.r Ix - yl
If(p(x,t ))- f(p(x,s )~

+sup À

x.t .s It - Sl2
Ip(x,t)- p(y,t ~

~ CR.'I' suplp(X,t~+CR.'I' sup À

Qr x.r.1 Ix - yl
Ip(x, t)- p(x, s~

+ CR.'I' sup À

x.t .s It - Sl2
~ CIIPilÀ s C(R + IIqJtJ

ii)The demonstration is very similar to (i).

iii) Making similar counts like in (i) we obtain:

IIF(n() + 8f(p )~IÀ- F(n()) ~ IIF(n() + 8f(p ))- F(n() ~IÀ
~ 8C(R + IlqJll'+À )
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iv)The demonstration of fourth item is the following:

no + 8 f(p) ~ no - 8lf(p ~ ~ no - 811f(p ~IÀ ~ no - 811pllÀ ~

~ no - 8C(R + II\}IIIJ+À)~ '~

n
if, and only if, 8:::; 2C(R + 'íl\}lll J+À)

v)To demonstrate the fifth item, we only have to develop the À -norm of

( )
and use item (i):

no +8f p
v)To demonstrate the fifth item, we only have to develop the À -norm of

( )
and use item (i):

n; +8f p

1 1
= sup +

no + 8f(p) À o, no + 8f(p)
1 1

no + 8f(p(x,t)) no + 8 f(p(y,t ))
sup À +
.v.v.r Ix- yl

1 1
no +8f(p(x,t)) n" +8f(p(x,s))

+ sup À

si.s It-sl2
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<C+~ If(p(x,t))-f(p(y,t)~ +
- usup "-

x.LI Ix - ylln" + 8 f(p(x,t )~In"+ 8 f(p(y,t)~
~ If(p(x,t))- f(p(x,s)~
usup ;.

x.t.s It-sI2111" +8f(p(x,t)~II1" +8f(p(x,s)~

Ip(x,t)- p(y,t~ Ip(x,t)- p(x,s~
~ C +8 Csup ;. +8 Csup À ~

.r..r.1 Ix - yl .1.1..\ It - Sl2
~ C+8 C(R+II\fIlI+;.)

vi) The demonstration 01sixth item is analogous to the above:

II(n" +8 f(p ))gll;. ~ n"llgll;. +81If(p )gll;. ~ 11"llgll;.+8CllpIUgll;. ~
~ n"llgll;. +8 C(R+II\ftJlgll;.
In the second inequality we use the hypothesis about f, and in the last we use

the hypothesis about p.

vii)To obtain the inequality 01 seventh item, we use (4) and the hypothesis

about f and p.

viii)To demonstrate the inequality 01 eighth item, we also use (4) and the

hypothesis about F and p.

ix)And finally, the ninth item is demonstrated by the lollowing way:
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In the right side, the first dot means the product in (2), and the

second is the canonical inner product in IR" .
The first term of the right side is bounded above in the following way:

Now we use items (i) and (ii) above and the hypothesis about u to conclude:

~ R2C(c + 8cIIPilÀ)~ R 2C(1 + 8 (R +11lJ'III+À))
The second one becomes:

u .v( t } < CI/u112 v( 1 J
n,,+8f(p) À - À n,,+8f(p) À

= Cllul12 8 {(p )v(p)
À n" +8f(p) À

(9)

Now using the hypothesis about u, p and j: (i) and (ii) we obtain:

In this way we have proved (ix).

3 THE EXISTENCE THEOREM

The general idea of the demonstration is the following:

We will construct sequences

Pm E H1
+

À (QT }, Um E (H2
+

À (QT))" defined recursively in the way that we

can use Theorem 2. And we will obtain uniform limitation of sequences
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HI
+

À (QT )and (H2
+

À (QT ))" respectively. Using compacity results in

Hólder's spaces we will obtain convergent subsequences to solution of

problem( 1).

The sequences are recursively defined in the following way:

UI E (H+À (QT)1' with condition UI (x,O) = °VXE W
PI E H+À (QT ) with condition PI (x,O) = \fi (x,O) VX E Q

Assuming that PIII_I E HI+À(QT},UIII_I E (HI+À(QT))" are known we

obtain UIII and PIII satisfying:

();;" - ll/lulII +V(no (PIII - \fi)) = (no +8 f(PIII-I ))gl

- 8f(PIII-I )V(PIII_I - \fI)-

- IlF(no + 8 f(PIII-I ))ulll-I - UIII_I .V(n + ;1-( )], in QT
() PIII-I

(10)

with:

{

diVUIIl = 0, in QT
uJX,o)= 0, VXE Q

uJx,t)=O, VtE (O,T) VXE ()Q

This form of definition the sequences is motivated by

Solonnikov's Theorem (Theorem 2) which guarantee the existence of

sequences.

Observation: Observe that condition (6) of Theorem 2 is satisfied, because if

ulll_I and PIIl-I satisfy PIII_I (X,o) = \fI(x,O) then PIII will satisfy the

same thing.

The demonstration is the following:
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The equation linking PIII and PIII_I is the following:

aaU
;" -1l!1ulII + V(n" (PIII - \}'))= (n" +8 j(PIII_1 ))gl

- 8 j(PIII_JV(PIII_1 - \}')-

-IlF(n" + 8j(PIII_1 ))ulll-I - UIII_1 'V(n + ;f( )),in QT
() Pm-I

Taking t = O we obtain:

a u'a~,O) -1l!1ulII (x,O)+ V(n" (PIII (x,O)- \}'(x,O ))) =

- 8j(PIII_1 (x,O ))V(PIII_I (x,O)- \}'(x,O))

Because g I (e.o) = o and UIII_1(x,O) = o. Now, in agreement with [3] at

page 280, lhe inilial pressure is given by:

{

!1(n" (PIII(x,O)- \}'(x~O ))) = div(- 8 j(PIII_1 (x,O ))V(PIII_I (x,O)- \}'(x,O ))~

a (n,,(pjx,02- \}'(x,O ))) = (_ 8 j(PIII_1 (x,O ))V(PIII_I (x,O)- \}'(x,O ))). N
aN

Then, if PIII_I (x,O) = \}'(x,O) we obtain lhe syslem:

{

!1(n" (PIII (x,O)- \}'(x,O ))) = O; VXE Q

a (n)pJx,O)-\}'(x,O))) =O'VXE ar!
--> 'aN

Then PIII (x,o)- \}'(x,O)= C, but with the assumptions PIII and \}' have

average integral zero in r! we oblain that C = °.
By this way, we can continue the ileration to obtain ulII+1' because the

condition (6) is salisfied.
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Continuing with the demonstration of Theorem 3 we can,

therefore, use estimative (8) in (10) obtained:

IIUIIII12+À+ Iln" (PIII - \f)III+À ::; q(n" + 8 f(PIII-1 ))g It
+ 8 Cllf(PIII_1 )V(PIII_I - \ft (11)

+ ,uCIIF(n" + 8 f(PIII-1 )),tlll-IIIÀ + C UIII_1V(n + ;j~( )J
" PIII-I À

We suppose now that IlulII-1112+À< R and IlplII-1 - \f111+À< R and we will

estimate, using the Lemma 1, the right side of (11). In this way, we obtain

similar uniform limitations for IIU/I,1I2+Àand IlplII-1 - \f111+À •

Then (11) becomes:

Ilu1II1I2+À+llnJplII-\f)III+À ::;CnJg,IIÀ +8C(R+II\ftJlg,IIÀ +
+ 8 RC(R + 11\fIII+À)+ Rp CF(n,,)+ 8 RC(R + 11\fIII+À)+ C L (8 iRj),

i.j

where Os i ::;3 and 2 ::; j ::;5.

Now dividing both sides of inequation above by n" and denoting by K the

right side we obtain:

Therefore if pCF(n,,) < n; we can choose Ilg It ' 8 and R small enough

for that K j < R .
jn"

In this way we can guarantee that:
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IIUlIIlll+À < R and IlplII - \f'111+À< R; VmE IN (12)

Due to (12) and using Theorem 1, we have

PIII, -7 P in CI.O(QT) (13)

ulII, -7 U in Cl
.
1 (QT) (14)

for subsequences of PIII and ulII; in order to simplify notations we will still

denote them by PIII and ulII'

Let pass to the limit the parts of (10):

aU s«. ()a)--III -7-mC" QT dueto(14).at at
b)/1ulII -7 /1u in C" (QT )due to (14).

c) V(n" (PIII - \f'))-7 V(n" (p - \f'))in C" (QT )due to (13).

d) f(PIII-' ) -7 f(p )in C" (QT )due to (13) and because f is a local
Lipschitz function.

e)F(n" + 8 f(plII-J) -7F(n" + 8 f(p ))in C" (QT) because

f(PIII-') -7 f(p )in
C" (QT )and F is a local Lipschitz function.

f)UIII,.V( ulII_1 J-7U'V( U JinC"(QT)
- n,,+8f(PIII_') n,,+8f(p)

because
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UIII_I . VUIII_I +U
8f( ) 11I-1n; + PIII_I

U· Vu CO(Q )Now, the first part, converges to ( ) in T due to (14) and
no +8f P

(d) above and for the second part, we observe that:

U .v( 1 } =-u .8/(PIII-I)V(PIII-I)U
11I-1 n + 8f( ) 11I-1 11I-1 ( 8f( ))2 11I-1o PIII-I no + PIII_I

Furthermore / (p 11I_1) -7 t (p) in C" (Qr ) due to (13) and because /

is a local Lipschitz function. Then we have:

8/ (PIII_I )V(PIII_I) ~ 8/ (p )V(p) . CO (Q )
U . U +r ll : um

/11-) (, 8f( ))2 11I-1 ( 8f( ))2 T
1.0 + P/ll-I no + p

Taking the limit, m -700, in the equation (10) turns to:

~~ - uõu + V(nJp - \1')) = (no + 8f(p ))gl - 8f(p )V(p - \1')

- .uF(no +8f(p))u-

-u.v( u ( )}inQT
11" +8f P

That is, the equation of problem (1) with the initial and contour condition is
satisfied.

Observation: The same results are still valid in Q X (0,00 ), because the

constant C in (8) do not depend on T, and to take the limit we use an
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argument like Cantor's diagonal approach to conclude that the equation is

satisfied in any compact set in Q x (0,00 ) .

4 CONCLUSION

In this work we have showed conditions and a analytical

method to solve a difficult equation which models the flow of an

incompresible, homogeneous fluid in a granulated porous media and the

general conclusion is if the external force field 9 is small (in the appropriated

H6lder's norm) then we can get a small solution (u, p) in the appropriated

norms in H6lder's spaces) for the equation.
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