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Abstract 

Shortest path routing is generally known as a kind of routing widely availed in computer networks nowadays. Although advantageous 

algorithms exist for finding the shortest path, however alternative methods may have their own supremacy. In this paper, para llel genetic 

algorithm for finding the shortest path routing is resorted to. In order to improve the computation time in this routing algorithm and to 

distribute the load balance between the processors as well, Fine-Grained parallel GA model is opted for. The proposed algorithm was 

simulated on Wraparound Mesh network topologies in different sizes. To this end, several experiments were anchored to identify the most 

influential parameters such as Migration rate, Mutation rate, and Crossover rate. The simulation result shows that best result of mutation 

rate is: about 0.02 and 0.03, and migration rate for transmission to the neighbor’s node is 3 of the best chromosomes. This study has already 

shown that through using performance-based GA which uses fine-grained parallel algorithms, timing germane shortest path routing can be 

improved. 

Keywords: Parallel Genetic Algorithm, Fine-Grained, Genetic Algorithms, Parallel Communication Topology, Shortest 

path routing. 
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1 Introduction 

outing in computer network essentially 

refers to finding a route from source node 

all way through to the destination node. 

According to the network, there is a probability 

that there might be more than one route to be 

take  (Cherkassky, Goldberg, & Radzik, 1996). 

The task of routing algorithms is originally to 

come up with the shortest path among the 

existing routes. Nowadays in computer network 

realm, usually the shortest path routing 

algorithms, better known as Dijkstra and 

Bellman-Ford are rather used  (J. F. Kurose, K. 

W. Ross, 2010). Although the extant algorithms 

for the shortest path routing have been well 

established, yet, researchers continue trying to 

find an alternative method to end up with 

alternative shortest paths. These alternative 

methods are usually AI techniques such as 

(Yussof, Razali, & See, 2011): genetic algorithms, 

neural networks, particle swarm optimization, 

ant colony optimization, simulated annealing 

algorithm, and A* search algorithm. Genetic 

Algorithms (GA) as the most well-known 

evolutionary algorithm (Ashlock, 2006) is in fact 

a multi-purpose search and optimization 

algorithm inspired by the theory of natural 

selection and genetics  (Goldberg, 1989). Genetic 

algorithms using encoded chromosomes try to 

bring forth a solution for this problem. Each 

chromosome is composed of several genes. The 

solution for the problem is provided based on 

group chromosome that represents a population 

per se. For each iteration in the algorithm, one or 

more genetic operations on population of 

chromosome are executed such as: crossover and 

mutation which altogether these results of 

genetic operation make up the next generation of 

solutions. This process continues until a solution 

is found or rather a terminate condition occurs. 

The main idea of GA is that population 

chromosome tends to converge slowly toward 

good response. Outline genetic algorithm is 

shown in Figure 1. 

One of the latest proposed algorithms for 

shortest path routing based on GA is proposed 

by Salman and colleagues, in which coarse-

grained parallel model are implemented upon 

Waxman and Mesh network. In this article fine-

grained parallel model in order for optimal use 

and load balancing distribution among 

processors are resorted to. In fact, in this paper a 

fine-grained parallel genetic algorithm using 

neighborhood techniques for shortest path 

routing problem is provided. Main goal of this 

paper is to improve computation time by 

running parallel GA. The proposed algorithm 

was implemented in Visual C#.Net 2013 and MPI 

messaging passing interface. 

 

 

Figure 1: General Genetic Algorithm Model 

2 Parallel Genetic Algorithms  

With larger and more complex problem, the 

response time for GA increases proportionately. 

Thus to speed up genetic algorithm, we’d rather 

implement them in parallel. Fortunately GA 

works on a population of independent solutions, 

which allows distribute computational load on 

multiple processors. However, the problem 

needs to have the ability to be implemented in 

parallel. In general, there are four models for the 

implementation of parallel genetic algorithms as 

proceeds  (Cantú-Paz, 1998),  (Shahhoseini, 

Mousavi Mirkalayy, & Mollajafari, 2012): 

Master-Slave Model: In this model, a 

computing node is considered as Master Node 

and the other are namely affiliated as servants of 

R 

Generate and Initialize Population 

Evaluate each chromosome 

using fitness function. 

Crossover operator 

Selection operator 

Mutation operator 
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the Manager Node. The Manager Node has the 

population and many GA Operations in control. 

The Manager can assign one or more computing 

complex works to servants. Through this course, 

sending one or more chromosomes from server 

to servants is practiced. Then manager waits 

until the results return back by servants. 

Coarse–Grained Model: In coarse-grained 

GA, the population is divided among computing 

nodes and each node applies GA operation on its 

subpopulation. To ensure, good solutions will be 

distributed to other nodes, sometimes nodes can 

exchange their chromosomes, with certain rate of 

probability. This exchange operation is 

essentially called Migration, which in fact stands 

for sending a chromosome from one node to 

other nodes. After receiving chromosome the 

nodes can replace yet another chromosome in 

the population, but which chromosome is 

selected for migration or replacement depends 

on the migration strategy that was earlier used. 

Fine–Grained Model: This model enjoys the 

highest level of parallelism among the other four 

types of parallel GA. Typically; nodes are placed 

in a spatial structure where each node is 

connected to only the neighboring nodes. 

Population is rather known as a set of the 

chromosomes of nodes. Also in this model, the 

overlay neighbors are used to spread the good 

characteristics of a chromosome across the total 

population. The fine-grained GA is running 

according to the interactions among the nodes, 

so the overhead communication is definitely 

high. 

Hierarchical Model: This model is also called 

hybrid model, which is composed of two levels, 

higher level algorithm acts as a coarse–grained 

GA and in the lower level it just acts as a fine–

grained GA.  

3 Parallel Communication Topology 

Topology is originally a criterion for the 

classification of the communication network 

across multi-processor systems. Topology is 

tasked to determine how to connect processors 

and memory. Topology in parallel algorithms is 

similarly assigned to determine how to connect 

processors and memory to other processors and 

memory. For example in a fully connected 

topology, each processor is connected to all 

available processors in the computer system. 

In general, topology can be bifurcated into 

two groups: static and dynamic. In static 

networks all connections are created right at the 

design time. But in dynamic networks, as 

necessity rises, connections between two or 

more processors are made. Different types of 

Static topology are but no limited to: linear, 

ring, mesh, tree, hypercube (Casanova, 

Legrand, & Robert, 2008). Figure 2. 

 

Linear  Ring  Mesh 

 

     Tree            Hyper cube 

Figure 2:  Types of topologies 

 

The researchers in this paper used 

wraparound Mesh topology for all nodes in that 

the number for all neighbors and 

communications were identical. The model is as 

put on display in Figure 3. 

 

Figure 3: Wraparound Mesh 

 

In this topology, all nodes communicated 

only with their neighbors. As seen, the extreme 

nodes are connected to the other side nodes; 

this connection repeats for the same number of 

neighbors for all the nodes. 

4 The Proposed algorithm 

The proposed algorithm uses fine-grained 

model in parallel GA, the main reason for 

choosing this is the high level of corporation in 

this model. The implementation of parallel GA 

makes all computational nodes generate their 

sub-population randomly and apply GA 

operations respectively. Finally, after the 

execution of iteration for each node, they send 
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“achieved finest path” to their neighbor’s nodes 

and receive “finest paths” from neighbor’s path 

in return and substitute them for their worst 

paths. Operation of computing nodes is 

enumerated as follows: 

1. Generate subpopulation randomly. 

2. Calculating fitness of each chromosome in 

subpopulation. 

3. Identify Neighbors. 

4. Send the best chromosome to neighbors. 

5. Receive the best chromosome from neighbors. 

6. Execute several Crossover operations over 

time mainly to generate new children of 

subpopulation, Parent chromosomes are 

randomly selected from the subpopulation.  

7. Execute mutation operation on chromosomes. 

8. Migrate is to receive 3 best chromosome and 

replace 3 worst chromosome in 

subpopulation. 

9. Repeat step 2, until sub-population converges 

or the maximum iterate of steps is obtained 

the answer, we got maximum iterate 50. 

4.1 Display path in Genetic Algorithms 

A network can be displayed as a directed 

graph G (V, E) as it is in figure 4, where in V as a 

set of nodes represents routers and E is better 

known as a set of connected edges among the 

routers. Any edge (i,j) with an integer represents 

the cost of sending data from node i to node j 

and vice-versa. 

 

Figure 4: Directed Graph 

In the proposed algorithm, any of the 

chromosomes is encoded as a set of node 

identifiers which is located somewhere ranging 

from source up to destination. To wit, the first 

gene in chromosome is always labeled as source 

node and the destination node is the last. Since 

different paths may involve different number of 

intermediate nodes, so chromosomes length 

varies. Repeating a node among chromosomes 

represents a loop in the path, which should be 

removed. 

4.2 Generate Population 

In the beginning, sub-population should be 

created by means of those chromosomes which 

stand for random paths. Although paths are 

random, they are still assumed to be valid. 

Chromosome is essentially considered as a 

sequence of extant nodes throughout source and 

destination path. Sn represents the number of 

generated chromosome for each sub-population; 

this in fact depends on the size of total 

population and number of computing nodes, as 

shown in equation (1). 

(1) 

 

Sn represents sub-population of nth node; P 

represents total size of population and N is the 

count of nodes. The algorithms which were 

availed to generate random paths are as follows: 

1. Start from source node. 

2. Generate unvisited list, at first, this list 

includes all nodes except the source node and 

once the node is already selected, its value 

will be removed from the unvisited list. 

3. Randomly select one node from the unvisited 

list and remove the selected node from the 

list. Removing a node from the list is done 

just by moving a pointer. 

4. If the selected node is in connection to the 

current node, this node is considered as the 

next one in the path and with the new node 

will be looking for the other node (Go to stage 

3), Otherwise it will be looking for the other 

node with the previous node (Go to stage 3). 

5. If the unvisited list length is 0 then go to stage 

1. 

6. Repeat until the destination node is found. 

4.3 Fitness function 

Each chromosome in the population has a 

fitness value which is calculated by means of the 

fitness function, this value represents the 

proportion of the suitability of each solution of 

the chromosomes, and this information is used 

to generate chromosomes in the next iteration. In 

the proposed algorithm fitness function is 

defined as follows: 

(2) 
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fi represents the fitness value of ith 

chromosome, and Pi represents the total cost of 

path it chromosome. In this manner fitness 

function gives greater value for shorter paths. 

4.4 Selection function 

This function is used to select a chromosome for 

crossover and mutation. Selection for crossover 

operation is basically meant for choosing two 

chromosomes with higher fitness in the 

population as the parent. Selection for mutation 

and crossover operations occurs mostly after 

0.5% of the population. For example, if 

population size is 1000, selection is somewhat 

between 5th to 1000th chromosomes. Since the 

beginning of the population includes the best 

chromosomes and it is rational not to lose their 

negative genetic operation, so only some first 

chromosomes are not selected for changes 

(genetic operation). Chromosomes with a 

positive change can be placed in front the 

population. 

4.5 Crossover function 

Crossover of the two parent chromosomes 

were adopted through selection function. To 

ensure that the generated path by crossover 

operator still sounds valid it is required that two 

chromosomes be chosen which are common in at 

least one node (other than source and destination 

nodes). If the two extant chromosomes are 

sharing commonality in more than one node, 

then one node which is randomly selected is 

called crossover point. As a case in point, 

suppose there are two chromosomes as follows: 

Selected chromosome 1: [A B C G H I X Y Z] 

Selected chromosome 2: [A K L M I T U Z] 

A and Z represent the source and the 

destination nodes respectively. In this example I 

is a common node. So the crossover operation 

changes the first part of chromosome 1 as well as 

the second part of chromosome 2, and vice versa; 

which are realized into two new members of 

chromosomes in the population. The result of 

crossover is child chromosome as follows:  

First chromosome: [A B C G H I T U Z] 

Second chromosome: [A K L M I X Y Z] 

4.6 Mutation function 

Selection of each chromosome through 

crossover operation leaves little chance for 

change; no surprise the mutation operation is 

preferred. Mutation probability is shown with 

the Pm, for all tests Pm is ranging from 0.02 to 

0.03.Hence for each selected chromosome in the 

mutation operation, a random mutation point is 

selected. Then the chromosomes undergo 

changes from the mutation point onward. For 

example, suppose that the chromosome selected 

for mutation operation is as the example: 

Selected :[A C E F G H I J K L M N Y Z] 

A and Z are respectively the sending and 

receiving nodes. Suppose that the node I is 

selected as a mutation point. Then the mutated 

chromosome is similar to the following: 

Mutated: [A C E F G H I x1 x2 x3 … Z] 

The mutated chromosome includes a new path 

from I to Z, where Xi represents the ith node in 

the new path. The new path is created in the 

same way as to the randomly created initial 

population. 

4.7 Migration 

Migration is a genetic action which is mostly 

availed in parallel genetic algorithms. Each 

computing node develops its subpopulations 

independently. Migration is an action that is 

used to increase the diversity of the population 

of each computing nodes. In fact, migration 

denotes sending chromosome from each 

computing node to yet another computing node. 

Besides, each of the computing nodes receives 

migrated chromosome from other computing 

nodes. The received chromosome can be 

replaced by one of the sub-populations 

chromosomes. There are several strategies for 

migration, in which any computing node can 

send the best chromosome or the random 

chromosome to other nodes from the sub-

population. On the other side, it can be replaced 

by the worst chromosomes or random 

chromosome in the population. The migration 

strategy that was used for the algorithm was to 

send the best chromosome and replacement by 

the worst chromosome.  

5 Experimental result 



333 
 

Recebido: dia/mês/ano Aceito: dia/mês/ano 

The proposed algorithm was implemented in 

the Visual studio.NET 2013 environment and in 

C# programming language on a computer 

featured as Windows 7 x64 equipped with the 

processor Intel 2.8GHz core2 Quad and RAM 

8GB and run on MPI with 4, 9 and 16 process 

element. This simulation was performed on a 

wraparound mesh topology and length of paths 

were considered as 10, 100, 500, 1000 and 10000. 

The results of the implementation of the 

algorithm are shown in Table 1. 

Table 1: Time of algorithms for finding shortest path problem 

Path 

size 

Time of serial 

(second) 

Time of 

genetic 

(second) 

Time of parallel 

genetic with 4 

process element 

(second) 

Time of parallel 

genetic with 9 

process element 

(second) 

Time of parallel 

genetic with 16 

process element 

(second) 

10 1 2 0.36 0.17 0.11 

100 1,040 15 2.65 1.06 0.44 

500 130,072 73 20 7.11 2.56 

1,000 1,040,582 160 62.25 22.2 6.81 

10,000 820,408,163 7,286 2,981 623 107 

 

Several experiments were performed to 

identify the most influential parameters such as 

Migration rate, Mutation rate, and Crossover 

rate. The best result of mutation rate was drawn 

as about 0.02 and 0.03, and the migration rate 

was 3 best chromosomes for sending to the 

neighbors’ nodes. 

6 Conclusion 

Routing is one of the major fields of computer 

networks. According to the algorithms and 

techniques that were presented in this field, in 

this study, an algorithm was proposed which 

used parallel genetic algorithm for obtaining the 

shortest path among the available paths at the 

right time. The fine-grained parallel genetic 

algorithm model is used so that we can take 

maximum benefit from parallelism. To 

implement parallelism, multi computing nodes 

with wraparound mesh topology was used. 

Hence each computing node generated its own 

sub-population through parallelism at the same 

time. Then genetic operators were applied to 

evaluate subpopulation chromosome and then it 

sent 3 best chromosomes for other computing 

nodes according to network topology that 

ultimately replaced the worst chromosome in 

sub-population. This process was repeated until 

the algorithm managed to archive the result. The 

proposed method in genetic algorithm and 

parallel genetic algorithm were compared with 

the serial algorithm. The experiment showed that 

the proposed method obtained the result in an 

apt moment.  
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