
328

Recebido: dia/mês/ano Aceito: dia/mês/ano

Ciência e Natura, v. 37 Part 2 2015, p. 328−333

ISSN impressa: 0100-8307 ISSN on-line: 2179-460X

Parallel Genetic Algorithm for Shortest Path Routing Problem with

Collaborative Neighbors

Reza Roshani 1, Mohammad Karim Sohrabi 2

1Department of Computer Engineering, Islamic Azad University, Semnan Branch, Semnan, Iran
2Department of Computer Engineering, Islamic Azad University, Semnan Branch, Semnan, Iran

Abstract

Shortest path routing is generally known as a kind of routing widely availed in computer networks nowadays. Although advantageous

algorithms exist for finding the shortest path, however alternative methods may have their own supremacy. In this paper, para llel genetic

algorithm for finding the shortest path routing is resorted to. In order to improve the computation time in this routing algorithm and to

distribute the load balance between the processors as well, Fine-Grained parallel GA model is opted for. The proposed algorithm was

simulated on Wraparound Mesh network topologies in different sizes. To this end, several experiments were anchored to identify the most

influential parameters such as Migration rate, Mutation rate, and Crossover rate. The simulation result shows that best result of mutation

rate is: about 0.02 and 0.03, and migration rate for transmission to the neighbor’s node is 3 of the best chromosomes. This study has already

shown that through using performance-based GA which uses fine-grained parallel algorithms, timing germane shortest path routing can be

improved.

Keywords: Parallel Genetic Algorithm, Fine-Grained, Genetic Algorithms, Parallel Communication Topology, Shortest

path routing.

329

Recebido: dia/mês/ano Aceito: dia/mês/ano

1 Introduction

outing in computer network essentially

refers to finding a route from source node

all way through to the destination node.

According to the network, there is a probability

that there might be more than one route to be

take (Cherkassky, Goldberg, & Radzik, 1996).

The task of routing algorithms is originally to

come up with the shortest path among the

existing routes. Nowadays in computer network

realm, usually the shortest path routing

algorithms, better known as Dijkstra and

Bellman-Ford are rather used (J. F. Kurose, K.

W. Ross, 2010). Although the extant algorithms

for the shortest path routing have been well

established, yet, researchers continue trying to

find an alternative method to end up with

alternative shortest paths. These alternative

methods are usually AI techniques such as

(Yussof, Razali, & See, 2011): genetic algorithms,

neural networks, particle swarm optimization,

ant colony optimization, simulated annealing

algorithm, and A* search algorithm. Genetic

Algorithms (GA) as the most well-known

evolutionary algorithm (Ashlock, 2006) is in fact

a multi-purpose search and optimization

algorithm inspired by the theory of natural

selection and genetics (Goldberg, 1989). Genetic

algorithms using encoded chromosomes try to

bring forth a solution for this problem. Each

chromosome is composed of several genes. The

solution for the problem is provided based on

group chromosome that represents a population

per se. For each iteration in the algorithm, one or

more genetic operations on population of

chromosome are executed such as: crossover and

mutation which altogether these results of

genetic operation make up the next generation of

solutions. This process continues until a solution

is found or rather a terminate condition occurs.

The main idea of GA is that population

chromosome tends to converge slowly toward

good response. Outline genetic algorithm is

shown in Figure 1.

One of the latest proposed algorithms for

shortest path routing based on GA is proposed

by Salman and colleagues, in which coarse-

grained parallel model are implemented upon

Waxman and Mesh network. In this article fine-

grained parallel model in order for optimal use

and load balancing distribution among

processors are resorted to. In fact, in this paper a

fine-grained parallel genetic algorithm using

neighborhood techniques for shortest path

routing problem is provided. Main goal of this

paper is to improve computation time by

running parallel GA. The proposed algorithm

was implemented in Visual C#.Net 2013 and MPI

messaging passing interface.

Figure 1: General Genetic Algorithm Model

2 Parallel Genetic Algorithms

With larger and more complex problem, the

response time for GA increases proportionately.

Thus to speed up genetic algorithm, we’d rather

implement them in parallel. Fortunately GA

works on a population of independent solutions,

which allows distribute computational load on

multiple processors. However, the problem

needs to have the ability to be implemented in

parallel. In general, there are four models for the

implementation of parallel genetic algorithms as

proceeds (Cantú-Paz, 1998), (Shahhoseini,

Mousavi Mirkalayy, & Mollajafari, 2012):

Master-Slave Model: In this model, a

computing node is considered as Master Node

and the other are namely affiliated as servants of

R

Generate and Initialize Population

Evaluate each chromosome

using fitness function.

Crossover operator

Selection operator

Mutation operator

330

Recebido: dia/mês/ano Aceito: dia/mês/ano

the Manager Node. The Manager Node has the

population and many GA Operations in control.

The Manager can assign one or more computing

complex works to servants. Through this course,

sending one or more chromosomes from server

to servants is practiced. Then manager waits

until the results return back by servants.

Coarse–Grained Model: In coarse-grained

GA, the population is divided among computing

nodes and each node applies GA operation on its

subpopulation. To ensure, good solutions will be

distributed to other nodes, sometimes nodes can

exchange their chromosomes, with certain rate of

probability. This exchange operation is

essentially called Migration, which in fact stands

for sending a chromosome from one node to

other nodes. After receiving chromosome the

nodes can replace yet another chromosome in

the population, but which chromosome is

selected for migration or replacement depends

on the migration strategy that was earlier used.

Fine–Grained Model: This model enjoys the

highest level of parallelism among the other four

types of parallel GA. Typically; nodes are placed

in a spatial structure where each node is

connected to only the neighboring nodes.

Population is rather known as a set of the

chromosomes of nodes. Also in this model, the

overlay neighbors are used to spread the good

characteristics of a chromosome across the total

population. The fine-grained GA is running

according to the interactions among the nodes,

so the overhead communication is definitely

high.

Hierarchical Model: This model is also called

hybrid model, which is composed of two levels,

higher level algorithm acts as a coarse–grained

GA and in the lower level it just acts as a fine–

grained GA.

3 Parallel Communication Topology

Topology is originally a criterion for the

classification of the communication network

across multi-processor systems. Topology is

tasked to determine how to connect processors

and memory. Topology in parallel algorithms is

similarly assigned to determine how to connect

processors and memory to other processors and

memory. For example in a fully connected

topology, each processor is connected to all

available processors in the computer system.

In general, topology can be bifurcated into

two groups: static and dynamic. In static

networks all connections are created right at the

design time. But in dynamic networks, as

necessity rises, connections between two or

more processors are made. Different types of

Static topology are but no limited to: linear,

ring, mesh, tree, hypercube (Casanova,

Legrand, & Robert, 2008). Figure 2.

Linear Ring Mesh

 Tree Hyper cube

Figure 2: Types of topologies

The researchers in this paper used

wraparound Mesh topology for all nodes in that

the number for all neighbors and

communications were identical. The model is as

put on display in Figure 3.

Figure 3: Wraparound Mesh

In this topology, all nodes communicated

only with their neighbors. As seen, the extreme

nodes are connected to the other side nodes;

this connection repeats for the same number of

neighbors for all the nodes.

4 The Proposed algorithm

The proposed algorithm uses fine-grained

model in parallel GA, the main reason for

choosing this is the high level of corporation in

this model. The implementation of parallel GA

makes all computational nodes generate their

sub-population randomly and apply GA

operations respectively. Finally, after the

execution of iteration for each node, they send

331

Recebido: dia/mês/ano Aceito: dia/mês/ano

“achieved finest path” to their neighbor’s nodes

and receive “finest paths” from neighbor’s path

in return and substitute them for their worst

paths. Operation of computing nodes is

enumerated as follows:

1. Generate subpopulation randomly.

2. Calculating fitness of each chromosome in

subpopulation.

3. Identify Neighbors.

4. Send the best chromosome to neighbors.

5. Receive the best chromosome from neighbors.

6. Execute several Crossover operations over

time mainly to generate new children of

subpopulation, Parent chromosomes are

randomly selected from the subpopulation.

7. Execute mutation operation on chromosomes.

8. Migrate is to receive 3 best chromosome and

replace 3 worst chromosome in

subpopulation.

9. Repeat step 2, until sub-population converges

or the maximum iterate of steps is obtained

the answer, we got maximum iterate 50.

4.1 Display path in Genetic Algorithms

A network can be displayed as a directed

graph G (V, E) as it is in figure 4, where in V as a

set of nodes represents routers and E is better

known as a set of connected edges among the

routers. Any edge (i,j) with an integer represents

the cost of sending data from node i to node j

and vice-versa.

Figure 4: Directed Graph

In the proposed algorithm, any of the

chromosomes is encoded as a set of node

identifiers which is located somewhere ranging

from source up to destination. To wit, the first

gene in chromosome is always labeled as source

node and the destination node is the last. Since

different paths may involve different number of

intermediate nodes, so chromosomes length

varies. Repeating a node among chromosomes

represents a loop in the path, which should be

removed.

4.2 Generate Population

In the beginning, sub-population should be

created by means of those chromosomes which

stand for random paths. Although paths are

random, they are still assumed to be valid.

Chromosome is essentially considered as a

sequence of extant nodes throughout source and

destination path. Sn represents the number of

generated chromosome for each sub-population;

this in fact depends on the size of total

population and number of computing nodes, as

shown in equation (1).

(1)

Sn represents sub-population of nth node; P

represents total size of population and N is the

count of nodes. The algorithms which were

availed to generate random paths are as follows:

1. Start from source node.

2. Generate unvisited list, at first, this list

includes all nodes except the source node and

once the node is already selected, its value

will be removed from the unvisited list.

3. Randomly select one node from the unvisited

list and remove the selected node from the

list. Removing a node from the list is done

just by moving a pointer.

4. If the selected node is in connection to the

current node, this node is considered as the

next one in the path and with the new node

will be looking for the other node (Go to stage

3), Otherwise it will be looking for the other

node with the previous node (Go to stage 3).

5. If the unvisited list length is 0 then go to stage

1.

6. Repeat until the destination node is found.

4.3 Fitness function

Each chromosome in the population has a

fitness value which is calculated by means of the

fitness function, this value represents the

proportion of the suitability of each solution of

the chromosomes, and this information is used

to generate chromosomes in the next iteration. In

the proposed algorithm fitness function is

defined as follows:

(2)

332

Recebido: dia/mês/ano Aceito: dia/mês/ano

fi represents the fitness value of ith

chromosome, and Pi represents the total cost of

path it chromosome. In this manner fitness

function gives greater value for shorter paths.

4.4 Selection function

This function is used to select a chromosome for

crossover and mutation. Selection for crossover

operation is basically meant for choosing two

chromosomes with higher fitness in the

population as the parent. Selection for mutation

and crossover operations occurs mostly after

0.5% of the population. For example, if

population size is 1000, selection is somewhat

between 5th to 1000th chromosomes. Since the

beginning of the population includes the best

chromosomes and it is rational not to lose their

negative genetic operation, so only some first

chromosomes are not selected for changes

(genetic operation). Chromosomes with a

positive change can be placed in front the

population.

4.5 Crossover function

Crossover of the two parent chromosomes

were adopted through selection function. To

ensure that the generated path by crossover

operator still sounds valid it is required that two

chromosomes be chosen which are common in at

least one node (other than source and destination

nodes). If the two extant chromosomes are

sharing commonality in more than one node,

then one node which is randomly selected is

called crossover point. As a case in point,

suppose there are two chromosomes as follows:

Selected chromosome 1: [A B C G H I X Y Z]

Selected chromosome 2: [A K L M I T U Z]

A and Z represent the source and the

destination nodes respectively. In this example I

is a common node. So the crossover operation

changes the first part of chromosome 1 as well as

the second part of chromosome 2, and vice versa;

which are realized into two new members of

chromosomes in the population. The result of

crossover is child chromosome as follows:

First chromosome: [A B C G H I T U Z]

Second chromosome: [A K L M I X Y Z]

4.6 Mutation function

Selection of each chromosome through

crossover operation leaves little chance for

change; no surprise the mutation operation is

preferred. Mutation probability is shown with

the Pm, for all tests Pm is ranging from 0.02 to

0.03.Hence for each selected chromosome in the

mutation operation, a random mutation point is

selected. Then the chromosomes undergo

changes from the mutation point onward. For

example, suppose that the chromosome selected

for mutation operation is as the example:

Selected :[A C E F G H I J K L M N Y Z]

A and Z are respectively the sending and

receiving nodes. Suppose that the node I is

selected as a mutation point. Then the mutated

chromosome is similar to the following:

Mutated: [A C E F G H I x1 x2 x3 … Z]

The mutated chromosome includes a new path

from I to Z, where Xi represents the ith node in

the new path. The new path is created in the

same way as to the randomly created initial

population.

4.7 Migration

Migration is a genetic action which is mostly

availed in parallel genetic algorithms. Each

computing node develops its subpopulations

independently. Migration is an action that is

used to increase the diversity of the population

of each computing nodes. In fact, migration

denotes sending chromosome from each

computing node to yet another computing node.

Besides, each of the computing nodes receives

migrated chromosome from other computing

nodes. The received chromosome can be

replaced by one of the sub-populations

chromosomes. There are several strategies for

migration, in which any computing node can

send the best chromosome or the random

chromosome to other nodes from the sub-

population. On the other side, it can be replaced

by the worst chromosomes or random

chromosome in the population. The migration

strategy that was used for the algorithm was to

send the best chromosome and replacement by

the worst chromosome.

5 Experimental result

333

Recebido: dia/mês/ano Aceito: dia/mês/ano

The proposed algorithm was implemented in

the Visual studio.NET 2013 environment and in

C# programming language on a computer

featured as Windows 7 x64 equipped with the

processor Intel 2.8GHz core2 Quad and RAM

8GB and run on MPI with 4, 9 and 16 process

element. This simulation was performed on a

wraparound mesh topology and length of paths

were considered as 10, 100, 500, 1000 and 10000.

The results of the implementation of the

algorithm are shown in Table 1.

Table 1: Time of algorithms for finding shortest path problem

Path

size

Time of serial

(second)

Time of

genetic

(second)

Time of parallel

genetic with 4

process element

(second)

Time of parallel

genetic with 9

process element

(second)

Time of parallel

genetic with 16

process element

(second)

10 1 2 0.36 0.17 0.11

100 1,040 15 2.65 1.06 0.44

500 130,072 73 20 7.11 2.56

1,000 1,040,582 160 62.25 22.2 6.81

10,000 820,408,163 7,286 2,981 623 107

Several experiments were performed to

identify the most influential parameters such as

Migration rate, Mutation rate, and Crossover

rate. The best result of mutation rate was drawn

as about 0.02 and 0.03, and the migration rate

was 3 best chromosomes for sending to the

neighbors’ nodes.

6 Conclusion

Routing is one of the major fields of computer

networks. According to the algorithms and

techniques that were presented in this field, in

this study, an algorithm was proposed which

used parallel genetic algorithm for obtaining the

shortest path among the available paths at the

right time. The fine-grained parallel genetic

algorithm model is used so that we can take

maximum benefit from parallelism. To

implement parallelism, multi computing nodes

with wraparound mesh topology was used.

Hence each computing node generated its own

sub-population through parallelism at the same

time. Then genetic operators were applied to

evaluate subpopulation chromosome and then it

sent 3 best chromosomes for other computing

nodes according to network topology that

ultimately replaced the worst chromosome in

sub-population. This process was repeated until

the algorithm managed to archive the result. The

proposed method in genetic algorithm and

parallel genetic algorithm were compared with

the serial algorithm. The experiment showed that

the proposed method obtained the result in an

apt moment.

References

Ashlock, D. (2006). Evolutionary Computation

for Modeling and Optimization. Springer

Science & Business Media.

Cantú-Paz, E. (1998). A survey of parallel genetic

algorithms. Calculateurs paralleles, reseaux et

systems repartis, 10(2), 141-171.

Casanova, H., Legrand, A., & Robert, Y. (2008).

Parallel Algorithms. CRC Press.

Cherkassky, B. V., Goldberg, A. V., & Radzik, T.

(1996). Shortest paths algorithms: theory and

experimental evaluation. Mathematical

Programming, 2, 129-174.

Goldberg, D. E. (1989). Genetic Algorithm in

Search, Optimization, and Machine Learning.

Addison-Wesley.

J. F. Kurose, K. W. Ross. (2010). Computer

Networking: A Top-down Approach. 5th

Edn., Pearson Education, CA.

Shahhoseini, H., Mousavi Mirkalayy, S. M., &

Mollajafari, M. (2012). Evoloutionary

algorithms: Principles, Applications,

Implemetation. In Farsi.

Yussof, S., Razali, R. A., & See, O. H. (2011). An

Investigation of Using Parallel Genetic

Algorithm for Solving the Shortest Path

Routing Problem. Journal of Computer

Science, 2, 206-215.

