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Recently, statistical techniques have been used to assist art histo-
rians in the analysis of works of art. We present a novel technique
for the quantification of artistic style that utilizes a sparse coding
model. Originally developed in vision research, sparse coding mod-
els can be trained to represent any image space by maximizing the
kurtosis of a representation of an arbitrarily selected image from
that space. We apply such an analysis to successfully distinguish a
set of authentic drawings by Pieter Bruegel the Elder from another
set of well-known Bruegel imitations. We show that our approach,
which involves a direct comparison based on a single relevant sta-
tistic, offers a natural and potentially more germane alternative to
wavelet-based classification techniques that rely on more compli-
cated statistical frameworks. Specifically, we show that our model
provides a method capable of discriminating between authentic
and imitation Bruegel drawings that numerically outperforms
well-known existing approaches. Finally, we discuss the applica-
tions and constraints of our technique.

art analysis ∣ art authentication ∣ image classification ∣ machine learning ∣
stylometry

The use of mathematical and statistical techniques for the anal-
ysis of artwork generally goes by the name “stylometry.”

Although such qualitative techniques have a fairly long history
in literary analysis (see, e.g., ref. 1), their use in paintings and
drawings is much more recent. Although this work is still in its
relative infancy, statistical methods have shown potential for aug-
menting traditional approaches to the analysis of visual art by
providing new, objective, quantifiable measures that assess ar-
tistic style (2–5), as well as other perceptual dimensions (6–9).
Recent studies have shown that mathematical analyses can pro-
duce results in line with accepted art historical findings (2, 10).

The statistical approaches that can be applied to the analysis of
artistic style are varied, as are the potential applications of these
approaches. Wavelet-based techniques are often used [e.g., (2)],
as are fractals (3), as well as multiresolution hidden Markov
methods (11). In this paper, we bring instead the adaptive tech-
nique of sparse coding to bear on the problem. Although origin-
ally developed for vision research (12), we show that the principle
of sparse coding (finding a set of basis functions that is well-
adapted for the representation of a given class of images) is useful
for accomplishing an image classification task important in the
analysis of art. In particular, we show that a sparse coding model
is appropriate for distinguishing the styles of different artists. This
kind of discriminatory ability could be used to provide statistical
evidence for, or against, a particular attribution, a task which is
usually known as “authentication.”

In this paper, we consider the application of sparse coding to a
particular authentication task, looking at a problem that has al-
ready been attacked by statistical techniques (2, 10): distinguish-
ing a set of secure drawings by the great Flemish artist Pieter
Bruegel the Elder (1525–1569) from a set of imitation Bruegels,
each of whose attribution is generally accepted among art histo-
rians. The drawings in the group of imitations were long thought
to be by Bruegel (13), so that their comparison to secure Bruegels
is especially interesting.

The sparse coding model attempts to create the sparsest pos-
sible representation of a given image (or set of images). Thus, a
useful statistic for the attribution task is to compare the kurtosis
of the representations of the authentic and imitation Bruegels in
order to determine their similarity to a control set of authentic
Bruegel drawings. Fig. 1 shows the steps involved in our analysis.

We find that a sparse coding approach successfully distin-
guishes the secure Breugel drawings from the imitations. In ad-
dition, we compare our method to two other approaches: (i) the
technique in refs. 2 and 10 that uses wavelets (quadrature mirror
filters), and (ii) an approach similar to ref. 2 in which the wavelets
are replaced by curvelets. Curvelets form a tight frame for the
image space and are well adapted for generating sparse represen-
tations of curves, thus making them potentially appropriate for
representing art images (14, 15). We find that sparse coding is
superior (from a statistical point of view) for the task of discrim-
inating imitations from secure Bruegels. These findings suggest
that sparse coding could be of great use in visual stylometry.

Sparse Coding Model
The sparse coding model attempts to describe a space of images
by training an overcomplete set of not necessarily orthogonal
basis functions that describe the space optimally according to a
sparseness constraint (12). Although sparse coding is quite simi-
lar to independent component analysis (ICA), it differs in that in
sparse coding the kurtosis of the resultant output distribution is
maximized, whereas in ICA, the statistical independence of the
outputs is maximized. However, if the sparseness constraint ap-
plied in a sparse coding model is the logarithm of a sparse prob-
ability density function, then the sparseness measure is essentially
equivalent to entropy in an information-theoretic approach to
ICA (16).

The use of sparse coding in the 2D image domain was inspired
by work in vision science related to natural scenes. Olshausen and
Field showed that training a sparse coding model to represent
the space of natural images resulted in basis functions that were
similar to receptive fields in primate visual cortex (12). It is gen-
erally believed that these functions capture the localized orienta-
tion and spatial frequency information that exists in natural
scenes (17).

The success of sparse coding in the analysis of natural scenes
indicates that it could be useful for modeling features in drawings
and other 2D media. Indeed, it has been suggested that the spars-
eness of the statistical structure of works of art, which can only be
detected via higher-order statistics, may contribute to the percep-
tion of similarity (6, 7, 18). The sparse coding model, working
with small local patches of images, learns functions that could
capture the properties of a particular artist’s style, to the extent
that these properties are perceptible.
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In the sparse coding model, basis functions are trained to
maximize the kurtosis of the distribution of responses of the
projection of random patches selected from images in the input
space onto those basis functions. Such a model assumes that any
grayscale image Iðx; yÞ can be represented as a linear superposi-
tion of basis functions, ϕiðx; yÞ, according to coefficients ai (12):

Iðx; yÞ ¼ ∑
i

aiϕiðx; yÞ:

Specifically, we derive for each set of images a corresponding set
of functions that most sparsely represent those images, according
to the following cost function:

E ¼ −½preserve information� − λ½sparseness of ai�;

where λ is a positive constant that controls the importance of the
sparseness constraint for the coefficients ai. Information preser-
vation is usually quantified as

−∑
x;y

�
Iðx; yÞ −∑

i

aiϕiðx; yÞ
�
2

:

Furthermore, the pairwise sparseness of the coefficients ai is con-
strained by a function that heavily penalizes instances in which
many coefficients simultaneously deviate from zero:

−∑
i

S
�
ai
σ

�
;

where σ is a scaling constant. S is a suitable nonlinear function,
for example, logð1þ x2Þ, or the negative logarithm of a prior
(sparse) distribution over the ai (12).

Methods
The Bruegel and Bruegel imitator source images were obtained from high-
resolution scans of slides provided by the Metropolitan Museum of Art
(MMA). In these images, a single pixel spans the same physical area.

Images were converted to (lossless) Portable Network Graphics format
and converted to grayscale using the following transform:

Igray ¼ 0.2989 × Rþ 0.5870 ×Gþ 0.1140 × B;

where R, G, and B are the red, green, and blue components of the image
pixels, respectively, and Igray is the resultant image. For each image, each
dimension was then downsampled to one-half its original extent, yielding
an image with four times fewer pixels. This was done to increase computa-
tional efficiency by reducing the size of the basis functions, whose size should
roughly correspond to the size of salient features in the images. Throughout
all stages of our preprocessing, the images were never compressed using a
lossy compression algorithm.

Next, a random square section was taken from each image with side
length equal to the smaller of the two image dimensions. This random square
section became the source image for the images in each set used in our
experiments. Random square sections from images in the Bruegel set have
amplitude spectra that fall off as 1∕f . Because of this, the variance in certain
directions in the input space is much larger than in others, which can create
difficulties for the convergence of the sparse coding algorithm (19). Further-
more, because we extracted square patches from each image when training
our basis functions, the sampling density in the high-frequency areas of the
2D frequency plane is higher than in other frequency bands (19).

To ameliorate these effects as well as those due to noise and aliasing
artifacts inherent to downsampling, we used a special filter as described
in ref. 19

Rð f Þ ¼ f e−ð f∕f 0Þn

(where f0 ¼ ⌊s∕2⌋, for s, the side length of the square image patch, and
n ¼ 4) to “whiten” the images by flattening their amplitude spectra and
attenuating high-frequency components. This also removes first-order corre-
lations in the image, leaving only higher-order redundancies, the very statis-
tical characteristics of the images that sparse coding is designed to exploit.
Finally, the grayscale pixel values in each patch were linearly rescaled so that
the maximum (absolute) pixel value was one.

In all experiments, three sets of basis functions, of sizes 8 × 8, 12 × 12, and
16 × 16 pixels, were randomly initialized to values on the interval ½−0.5; 0.5�.
In each set, the number of functions was set equal to the square of the side
length of a particular function from that set (e.g., we trained 64 8 × 8 bases).
In a given training epoch, an image was selected at random and, from this
image, 2048 random patches of the same size as the basis functions were
selected.

A set of coefficients faig was derived for each image patch according to
the sparseness constraint described above. Using these coefficients, the set of
basis functions was updated according to the following rule:

Δϕiðxm; ynÞ ¼ ηhai½Iðxm; ynÞ − Îðxm; ynÞ�i;
where Îðxm; ynÞ is the current image reconstruction (given ϕi and ai) and η is
the learning rate (in our experiments, η ¼ 0.5). Note that h·i denotes the aver-
aging operator, in this case applied across all extracted image patches. Each
set of basis functions was trained for 1,000 epochs.

In our experiments, we used the sparsenet software package, written and
maintained by Bruno Olshausen (20). All model parameters were set to the
default sparsenet parameters, except where indicated. Note also that the
same image preprocessing steps were applied to the source authentic Brue-
gels used for model training, as well as to the authentic and imitator images
used during testing.

Results
To assess the robustness and validity of using the sparse coding
model to quantify artistic style, we compared a set of established
drawings by Pieter Bruegel the Elder with a set of well-known
Bruegel imitations. There is consensus among art historians as
to who actually created these works of art, providing us with a
ground truth upon which to examine our approach to the quan-
tification of artistic style (13). We use the measure of kurtosis to
quantify similarity of style in the context of Bruegel’s work: If a set

Fig. 1. Workflow of the analysis presented here. We begin by preprocessing
our source images and training a set of basis functions to optimally represent
them. We then convolve an authentic Bruegel and a randomly selected
imitator image with the learned basis functions and estimate the kurtosis
of the response distribution for each of these. We say that the image whose
representation had higher mean kurtosis was more similar to the control set
of authentic Bruegels than the other.

1280 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0910530107 Hughes et al.



of basis functions trained on a group of Bruegel drawings more
sparsely represents one unknown than another, then we judge
that unknown to be more like the works that were used to gen-
erate the functions in the first place. This follows directly from the
assumptions of the model. Indeed, because the basis functions are
trained exactly according to the constraint that sparseness should
be maximized, we conclude that the sparsest representation indi-
cates greatest similarity with respect to the learned features.

In our task, we compared an authentic Bruegel and a Bruegel
imitator to the same set of authentic Bruegel images. Iteratively,
we held out each authentic Bruegel and trained a set of basis
functions on the remaining Bruegels. We then selected a random
imitator image. We convolved 2,048 patches from each held-out
image with each set of Bruegel basis functions, obtaining for each
patch an estimate of the kurtosis of that distribution of responses.
Once estimates were obtained, we compared the authentic draw-
ing to the imitator’s work in the following manner: We directly
compared the means of the kurtosis distributions, asking if the
mean of the estimated kurtosis distribution for the authentic
Bruegel was greater than that of the imitator image’s distribution.
We performed this process 25 times for each authentic Bruegel,
selecting a different random imitator image each time, yielding
625 pairwise comparisons per authentic Bruegel per basis set.

From this comparison-of-means test, we estimated the p value
of observing the number of times the authentic Bruegel was
judged more similar to the other authentic drawings than the ran-
dom imitator, under the assumption that the two were drawn from
the same distribution. This allows us to place concrete confidence
estimates on the reliability of our predictions. In our analyses, we
used basis functions of sizes 8 × 8, 12 × 12, and 16 × 16 pixels.

Table 1 shows the results of the comparison of the means of
the kurtosis estimates for authentic and imitation Bruegel draw-
ings across five runs. For seven of eight authentic Bruegels, the
Bruegel work was considered more authentic than the imitator in
more than 50% of trials at all three spatial scales. Furthermore, as
Table 2 indicates, all of these results were statistically significant
at the α ¼ 0.05 level. One of the authentic drawings (MMA cat-
alogue no. 11), however, was consistently judged less similar to
the other secure Bruegels than a random imitator at two of three
spatial scales. Nevertheless, the accuracy, stability, and robust-
ness of our results indicate that kurtosis is an appropriate proxy
for judging similarity in stylometric analysis. Indeed, we see by
this measure that the excluded authentic Bruegel drawings were
judged to be “more similar” to the other authentic Bruegels than
the imitator drawings at a level that was consistently statistically
significant.

We also asked whether each imitation could be successfully
distinguished from the group of authentic Bruegels. To this
end, we computed the p values of a nonparametric t test per-
formed on the distributions of kurtosis values for all authentic
Bruegels versus a distribution for each imitation. We estimated
the kurtosis distribution for the authentic drawings by using a
model trained on all of the authentic images, and then projected
patches from each authentic image onto this basis and obtained

the kurtosis distribution in the manner described above. For each
imitation image, we obtained a kurtosis distribution by projecting
patches of the image onto the same model trained on the authen-
tic Bruegels. In all cases, distributions were estimated as the ag-
gregate of distributions obtained over five independent runs. We
performed this test, as before, for all three spatial scales. Four out
of five imitations were judged significantly different from the
authentic Bruegels at the α ¼ 0.05 significance level at all three
spatial scales. The remaining imitation was judged significantly
different under the same criterion at two of three spatial scales.
The first column of Table 3 gives the best p value obtained for
each imitation at any spatial scale.

Comparison with Quadrature Mirror Filters. It is useful to compare
our work with other multiscale approaches to the quantification
of style. First, we consider the approach presented in ref. 2, which
used the same set of authentic and imitation Bruegels and sum-
marized the images with sets of feature vectors constructed from
the marginal and error statistics (computed from the best linear
predictor) derived from a multiscale analysis using quadrature
mirror filters (QMFs) of a tiling of each image. This analysis maps
each image to a “cloud” (set) of points in a 72-dimensional space
whereupon the images are assigned a dissimilarity given by the
(Hausdorff) distance between the point clouds.

Our analysis is similar in that we also project the images onto a
set of functions to quantify their similarity, but differs from the
method used in ref. 2 in at least two important ways. First, rather
than use an arbitrarily chosen wavelet decomposition at fixed
scales, we take advantage of the statistics of the image spaces
themselves to train functions to optimally represent those spaces,
according to the sparseness constraint. As shown in Fig. 2, our
basis functions occur at several scales and are localized and band-
pass in nature. Second, our notion of similarity is based on direct
comparison of a single metric associated with a particular image,
given a set of basis functions (i.e., kurtosis), rather than a set of
quantities (like the statistics of a wavelet decomposition). In this
sense, our approach can be considered simpler and more ger-
mane to the task.

The experiments in ref. 2 demonstrated the ability to distin-
guish the authentic and imitation images in three dimensions
in an unquantified manner, by showing that multidimensional
scaling of the distance matrix of authentic and imitation Bruegels
produced a 3D representation in which the authentic Bruegel
images were contained within a bounding sphere that did not con-
tain any imitations. Our approach provides a direct method of

Table 1. Classification of Bruegel drawings by
comparison ofmeans, specified byMMA catalogue
number

No. 8 × 8 12 × 12 16 × 16

3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0
6 0.59 0.61 0.69
9 0.86 0.87 0.82
11 0.55 0.41 0.43
13 0.70 0.62 0.73
20 0.94 1.0 1.0

Table 2. p values for the results in Table 1

No. 8 × 8 12 × 12 16 × 16

3 p < 10−188 p < 10−188 p < 10−188

4 p < 10−188 p < 10−188 p < 10−188

5 p < 10−188 p < 10−188 p < 10−188

6 p < 10−5 p < 10−8 p < 10−20

9 p < 10−79 p < 10−83 p < 10−61

11 p ¼ 0.0125 p ≈ 1.0 p ≈ 0.9999
13 p < 10−24 p < 10−8 p < 10−31

20 p < 10−129 p < 10−188 p < 10−188

Table 3. Best p values obtained for rejecting each
imitation drawing, across all three approaches

No. Sparse coding QMFs Curvelets

1 8.75 × 10−8 1∕9 2∕9
2 4.92 × 10−198 1∕9 1∕3
3 ≈0 1∕9 1∕3
4 8.75 × 10−57 1∕9 2∕9
5 1.33 × 10−99 1∕9 2∕9

Hughes et al. PNAS ∣ January 26, 2010 ∣ vol. 107 ∣ no. 4 ∣ 1281
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comparing a single statistic, making direct numerical comparison
between our result and ref. 2 difficult. However, we can compare
quantitatively the two approaches in an indirect manner by con-
sidering the probability of observing the imitation images in the
context of each respective model.

Following (10) we can use a simple nonparametric statistic to
rank sets of images, using only the summary statistics of the QMF
image decompositions (see ref. 10 for further detail). According
to this statistic, the lowest-ranking image in a set is most “unlike”
the rest of the images in the group and thus obtains the lowest
possible p value (see ref. 10 for further detail). We performed this
test for each imitation with respect to the entire set of authentic
Bruegel drawings, so that the smallest possible p value was one-
ninth (eight authentic images and one imitation per test). In this
test, each imitation was assigned the smallest possible p value (10)
(see column 2 of Table 3).

Comparison with Curvelets. Curvelets (14, 15) provide another
means for image analysis that appears a priori relevant for the
analysis of visual art. Furthermore, they are also related to sparse
coding techniques: Curvelets are effectively a formalization of the
types of functions learned by sparse coding models like the one
used in our experiments (14, 15). Motivated by this fact, we per-
formed an experiment analogous to the one described in ref. 2,
replacing the QMFs with curvelets, using the CurveLab software
package (21). As in ref. 2, we took equally sized sections of the
central 512 × 512 pixel section of all authentic and imitation
Bruegels for the sizes 512 × 512, 128 × 128, 64 × 64, and
32 × 32 pixels (note that the CurveLab software did not support
patch sizes below 32 × 32 pixels). We represented each section
using a vector of coefficient statistics (the first four moments
of the distribution of coefficients) at each subband (across scale
and orientation). At each of the four spatial scales, we computed
the Hausdorff distance between the sets of statistics for all pairs
of images. We then performed both metric and nonmetric multi-
dimensional scaling on the resultant distance matrix.

Unlike ref. 2, at none of these spatial scales was there an
implicit grouping of the images that allowed us to separate

the authentic drawings from the imitations in three or fewer
dimensions. However, we were able to achieve classification
performance on par with our primary result (Table 1) by using
a nearest neighbor approach (22) to classify points as authentic
or imitation drawings, correctly identifying seven of eight authen-
tic Bruegels as most similar to other authentic Bruegels, for the
Hausdorff distance matrix obtained using 32 × 32 pixel sections.
Although this classification performance is equal to our own, we
cannot estimate a p value for this process or directly evaluate its
significance.

However, we performed the test described in ref. 10, as above,
using the distance matrix between images obtained from the sum-
mary statistics of curvelet representations of images. In none of
our tests, across any of the four spatial scales considered, was any
imitation judged least like the authentic drawings (i.e., no imita-
tion was ever assigned the lowest possible p value). Table 3 com-
pares these numbers with those obtained for the two previous
approaches detailed here, using p values obtained for the
32 × 32 spatial scale. Note that, in making this comparison, we
acknowledge that the test described in ref. 10 does not have
the ability to give stronger measures of statistical significance.
Nevertheless, our approach provides robust and strongly signifi-
cant results.

From these experiments, we draw two important conclusions.
First, sparse coding provides a method for classifying authentic
Bruegel drawings (i.e., including authentic Bruegels with other
authentic images) that is both robust and produces statistically
significant results. Although curvelets produced a promising re-
sult on par with ours in the same task, the classification approach
used here does not have a significance criterion associated with it.
Finally, in the task of discriminating imitations from authentic
Bruegels (i.e., rejecting an imitation as being sufficiently unlike
the authentic images), we have shown that our method produces
a result (a set of p values) that is numerically superior to the other
two approaches presented.

Discussion
We have shown that our model generates robust conclusions in
line with art historical evidence in the analysis of the Bruegel
drawings presented here. However, a few caveats bear mention-
ing. First, sparse coding does not necessarily lend itself to easy
application in every analysis of artistic style. The current scenario
dealt with specific examples of images in which the ratio of un-
known to known exemplars was relatively small (per experimental
run). Indeed, the validity of the sparse coding model, which by
design attempts to generate a statistically representative set of
basis functions for a given image space, rests on possessing a
sufficient number of examples of that image space.

Also, as demonstrated by our analysis, the scale at which sparse
coding analysis is performed can have a significant effect on the
outcome. This results from several factors, including the actual
physical area of each pixel, the size of salient features represented
by the model, and the extent to which the images are down-
sampled, among others.

Finally, any classification problem should be well posed and
fairly constrained. For example, a sparse coding approach would
be inappropriate when attempting to compare works from artists
whose styles vary considerably. The technique is most apt to deal
with situations where the notion of stylistic similarity can be re-
duced to straightforward assertions, e.g., comparing a known
work by a particular artist to sets of works by the same artist,
or attempting to authenticate a work by comparing it to known
works by a particular artist. Additionally, some care should be
taken in choosing works that contain similar subject matter, such
as landscapes, if this is important to the question at hand.

Fig. 2. Set of 144 12 × 12 basis functions trained on all authentic Bruegels
for 1,000 epochs. Note that these functions are localized, oriented, and
bandpass.

1282 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0910530107 Hughes et al.



Conclusion
We have presented the use of sparse coding as a unique technique
for the quantification of artistic style. We applied it to the sig-
nificant art historical problem of authentication and, in particu-
lar, to classify authentic Bruegel drawings, as well as to distinguish
imitation Bruegel drawings from secure ones. Our classifi-
cation technique relied on a straightforward comparison of a sin-
gle statistic, making it an attractive alternative to wavelet-like
techniques that may involve a more complicated statistical frame-
work. Furthermore, we have shown that our technique produces a
numerically superior result to two alternative approaches at sep-
arating imitations from the set of authentic Bruegel drawings.
The superior performance of the sparse coding model may result
from the fact that it creates an adaptive representation of the
image space, an attribute that more restrictive methods (e.g.,
QMFs) do not possess. This example is both evidence for the

utility of sparse coding for authentication as well as a validation
of the general concept.

Although this success is encouraging, we see sparse coding and
other digital stylometric tools as useful supplements to, rather
than replacements for, traditional tools and techniques in art his-
torical analysis. These digital techniques can assist art historians
in making judgements and may provide detailed information
about subtleties inherent to a particular artist’s style that are
not immediately observable.
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