
Abstract
Meteorological factors have an influence on global
energy systems. This study reviewed some of the
latest research contributions from other global stud-
ies on climate change impacts, energy transporta-
tion and international collaboration in the energy-
meteorology sector. It is a summary of relevant
South African research on energy demand, forecast-
ing and vulnerability to extreme meteorological
conditions. International weather-energy partner-
ships are growing fast, while the Global Framework
for Climate Services has provided a global frame-
work for scientific collaboration across sectors to
assist with climate-related risk management and
decision-making. The uptake of weather-energy
partnerships in developing regions has remained
slow, however, particularly in Africa, where basic
requirements such as meteorological observations
are still sought. This review found that studies on
the impact that future projections of climate change

and variability might have on the South African
electricity transmission network were inadequate. A
deeper understanding of such impacts on the elec-
tricity infrastructure would assist considerably with
risk management and decision-making; conse-
quently contributing to the sustainable provision of
electricity in South Africa.
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1. Introduction
Weather refers to the atmospheric conditions over a
short period (hours to days), while climate refers to
atmospheric behaviour over longer periods, rang-
ing from months to thousands or millions of years
(Pyle and Zhang, 2015). Globally, power utilities
have experienced power interruptions caused by
severe weather and climate events (Yamba et al.,
2011; McColl et.al., 2012; Ward, 2013). These
weather and climate impacts are not limited to one
power generation source type, but are common to
almost all, including hydropower (Harrison and
Whittington, 2002), wind power (Pryor and
Barthelmie, 2010; Szeczuk and Prinsloo, 2010),
biofuels (Lucena et al., 2009), solar energy (Fenger,
2007), oil and natural gas (Harsem and Heen,
2011), and thermal power (Kopytko and Perkins,
2011). The projected impacts of climate variability
and change on electricity production and vulnera-
bility have also been researched at institutions
around the world, with a wide range of results that
could assist weather- and climate-related risk man-
agement and the sustainable use of energy
resources (Van Vliet, 2012). For instance, a study by
Hamlet et al. (2010), based on climate projections,
reported on the temperature impacts on energy
supply in the Pacific Northwest and Washington
State.

Extremes in weather parameters such as temper-
ature, rainfall and wind impact on the generation,
transmission and distribution of electricity. Electrical
power supply is strongly intertwined with weather
variability to such an extent that several power util-
ities already predict energy demand on an opera-
tional basis using weather parameters as predictors
(Makridakis et al., 1998). For example, Ghosh
(2008) used weather parameters to predict month
peak demands of electricity in the northern region
of India using a multiplicative seasonal autoregres-
sive integrated moving average. Goia et al. (2010)
explored the forecasting of short-term electricity
loads using past heating demand data from a dis-
trict heating system. An econometric multivariate
regression model was used to investigate the
impacts of the gradual warming associated with cli-
mate change on the need for heating and cooling in
five European countries (Pilli-Sihvola et al., 2010).
Sigauke and Chikobvu (2010) investigated the use
of the non-parametric multivariate adaptive regres-
sion splines model in South Africa to forecast daily
peak electricity loads using meteorological data
inputs and found this method to be more effective
than piecewise linear regression models. Majodina
(2015) illustrated the linkage between the El Niño
Southern Oscillation and electricity production in
South Africa.

Ziramba (2008) examined the residential
demand of electricity in South Africa through the
use of an econometric model that factored in the

gross domestic product per capita and the price of
electricity during the period 1978–2005. Similar
research studies have since been conducted in
South Africa (Van Wyk, 2009; Inglesi, 2010). These
studies were in response to the high electricity
demand that had outstripped supply in South Africa
since 2007, as found by Inglesi. Econometric mod-
els, which applied statistical techniques and are
based on the economic theory, attempted to incor-
porate price elasticity into the modelling of electric-
ity demand. Debba et al. (2010), on the other hand,
successfully incorporated predictors, such as final
consumption expenditure by households, popula-
tion, mining index, manufacturing index, platinum
production index, coal production index and gold
ore treated, into a similar econometrics model for
South Africa to forecast electricity demand for the
period 2010–2035. The inclusion of meteorological
parameters has therefore benefitted these models
and created more representative forecasts of elec-
tricity demand. 

The purpose of the present study was to review
the latest global research developments on climate
change impacts, energy transportation and interna-
tional collaboration in the energy-meteorology dis-
cipline. The study also aimed to contrast the mete-
orological-energy research conducted in other parts
of the world with that which has been conducted in
South Africa.

2. Impacts of climate variability and change
on electricity supply
The advent of climate change is a concern for many
key socio-economic sectors throughout the world
(Alcamo et al., 2007). Schaeffer et al. (2012) high-
lighted research gaps in understanding how climate
change could affect the electricity sector, including
the challenges posed by uncertainties when using
climate change projections to investigate the impact
of the intensity of extreme weather events on the
energy sector. The study emphasised the need to
conduct climate impact assessments on energy
planning and operations using different scenarios.
The gaps identified in the conduct of climate assess-
ments for specific energy segments included region-
al impacts and climate impacts on energy variations
across regions (e.g. tropical vs temperate energy
consumption in a warmer environment). Cooling
requires more electricity, which in turn can lead to
energy bottlenecks in the warmer tropics where air-
conditioning could become a factor – a topic for fur-
ther research. Schaeffer et al. noted that there was
limited knowledge on the impacts of a projected
increase in extreme weather events on electricity
transmission. These extremes could include winds,
ice loads, lightning strikes, conductor vibrations,
and heavy rains leading to landslides and flooding. 

Investigating the impact of climate change on
nuclear power generation in Europe, Linnerud et al.
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(2011) found that rising temperatures have a gener-
al negative effect on the efficiency of thermal power
stations. For example, a rise in temperature of 1°C
in Europe would reduce nuclear power supply by
0.5%. During periods of drought associated with
high temperatures, nuclear output could be reduced
by 2%. The study found that higher temperatures
reduced efficiency and loads of nuclear power
plants. More frequent shutdowns of nuclear power
could result from higher temperatures because of
cooling problems and pressure exceedances, lead-
ing to energy insecurities, given the relatively large
energy outputs of nuclear power stations.

In a review of contemporary research on the
impact of climate change on the electricity markets
through both demand and supply (Mideska and
Kallbekken, 2010), the uncertainty characterising
this research area was further revealed. The consen-
sus from the research was that rising temperatures
could lead to increased electricity demand for cool-
ing, reduced demand for heating, and reduced elec-
tricity production from thermal power plants. Power
generation from non-thermal power plants showed
great diversity because of geographical variability,
given different patterns of rainfall and temperature.
Mideska and Kallbekken highlighted four significant
research gaps: (a) regional studies of demand
impacts for Africa, Asia, the Caribbean and Latin
America; (b) the effects of extreme weather events
on electricity generation, transmission and demand;
(c) changes to the adoption rate of air-conditioning;
and (d) the understanding of the sensitivity of ther-
mal power supply to changes in air and water tem-
peratures.

Similarly, Franco and Sanstad (2008) investigat-
ed, using global climate models (GCMs), the impact
of climate change on electricity demand in
California, United States of America. It was found
that the rise in temperatures from global warming
would result in a rise in peak time demand, leading
to an increase in the cost of power generation. In a
review of downscaling from GCM research, Fowler
et al. (2007) pointed to the need and feasibility of
applications of downscaling research to aid deci-
sion-making during planning and management of
resources that are vulnerable to climate change,
such as water and electricity. 

In a study of the potential influence of climate
change and variability on hydropower electricity
generation in the Zambezi River basin, Yamba et al.
(2011) used GCMs to project future monthly rain-
fall. The water demand was projected using esti-
mated population growth figures in each sub-basin.
A water balance model was used, incorporating the
projected rainfall data and water demand input to
determine projected run-offs. Strong relations were
found between hydropower potential and projected
rainfall. The study provided further insight on other
factors, such as projected dry years, floods and

increasing water demand. It also forecast a general
trend of decreasing hydroelectric power potential in
the Zambezi River basin, linked to climate change
and increasing water demands. A modelling study
by Spalding-Fecher et al. (2017) showed that,
although the electricity demand and supply in
twelve countries in the Southern Africa Power Pool
would increase by multiples of eight to fourteen
between 2010 and 2070, there would be a notable
reduction in the share of South Africa. A study con-
ducted in Kenya on the impacts of climate change
on energy generation from the Seven Forks hydro-
electric project concluded that temperatures were
increasing on an annual basis at a rate of +0.02 °C,
while rainfall was declining by 3.9 mm annually,
resulting in continued reduced electricity generation
from Seven Forks (Bunyasi, 2012). 

In a study by Fauchereau et al. (2003) on
regional climate model (RCM) projections of cli-
mate change in southern Africa, the HadAM3 RCM
and A2 special reports on emission scenarios RCMs
were compared in their downscaling capability.
Projected changes in summer season rainfall totals,
rain days and average air temperatures were anal-
ysed. Broad and consistent changes were found for
most of the region. Time and location difference
were, however, noted in the magnitude of change,
which could be attributed to different representa-
tions in the internal physics and local hydrological
cycles in the RCMs. Fauchereau et al. (2003) also
analysed rainfall variability over southern Africa
and investigated future rainfall projections using a
GCM, and showed that southern Africa had experi-
enced significant rainfall variability in the past.
Historical rainfall anomalies did not show any sta-
tistically significant trends, however; inter-annual
rainfall variability was found to have increased
since the late 1960s, while droughts were found to
be more intense and widespread. Teleconnection
patterns associated with summer rainfall variability
were found to have changed from regional-scale
before the 1970s, to near global-scale thereafter. An
increased correlation with the El Niño Southern
Oscillation phenomenon was also observed since
the 1970s. It is interesting to note that the French
ARPEGE-Climat GCM indicated that these changes
in teleconnections are related to long-term cycles in
sea-surface temperature patterns, which is a known
signal of global warming (Déqué et al. 1994).

South Africa’s climate change research is rela-
tively advanced, compared with other developing
countries and consensus has been reached amongst
scientists projecting likely future climate patterns.
Hewitson and Crane (2006) described the use of
empirical downscaling techniques as a new
approach as expressed on self-organising maps. For
this purpose, the National Centre for Environmental
Prediction six-hourly data were used for the period
1972-2002, while self-organising maps were used
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to characterise the state of the atmosphere. Future
climate states were obtained from three GCMs,
namely the HadAM3, ECHAM4.5 and CSIRO Mk2
GCMs (Hewitson et al. 2004). Precipitation results
from all three GCMs were consistent and showed
increased summer rainfall over the South African
interior and eastern parts of the country, and dry
patterns over the Western Cape (austral winter rain-
fall region). More recently, the development of rep-
resentative concentration pathways has provided
important new tools in climate research, vital for
impact analysis into socio-economic sectors such as
electricity (Van Vuuren et al., 2011). These project-
ed weather patterns, including possible extreme
weather events, might have implications for the
electricity infrastructure and generation, and there-
fore must be factored into researched that addresses
sustainable electricity production in South Africa.

In this section, it has been established that elec-
tricity supply, both globally and regionally, is sus-
ceptible to climate variability and change. Studies
have shown long-term atmospheric behaviour or
climate impact on electricity supply (Sinden, 2007).
The research gaps included climate impact assess-
ments for specific energy segments, the impact of
the projected increases in weather extremes on elec-
tricity transmission, climate impact on energy gen-
eration, the long-term change in temperatures on
energy consumption, and the potential use of cli-
mate models in climate research into the electricity
sector. 

3. Energy transport and electricity faults
Troccoli et al. (2014) recognised that transmission
of electricity in Australia often extended over dis-
tances in the order of thousands of kilometres.
Similarly, the transmission and distribution net-
works of Eskom (South Africa’s electricity utility) are
in excess of 300 000 km (Minaar et al., 2012).
These networks, which are responsible for the trans-
portation of electricity and extend across different
climate zones, are exposed to a variety of meteoro-
logical conditions. The high voltage in transmission
(approximately 11 000 V and usually in three-
phase transmission) is ideal for carrying electricity
efficiently over long distances (Koen and Gaunt,
2003). Before use, the high voltage in distribution is
transformed down to lower and safer voltage levels
in substations, which makes the electricity suitable
for consumption by commercial and household
users (Al-Shaher et al., 2009). According to
Aivalioti (2015), the bulk of the transmission net-
works consist of overhead lines rather than under-
ground cables, because of the ease of installation,
maintenance and cost-effectiveness. Electricity sub-
stations are also generally designed for the outside
environment.

In an investigation of weather-related electrical
faults, McColl et al. (2012) found the electrical net-

work (overhead lines, underground cables, trans-
formers and substations) in the United Kingdom to
be susceptible to various types of extreme weather
variables: winds and gales;, snow, sleet, blizzards,
and lightning. Campbell (2012) estimated the
annual costs of weather-related electrical faults in
the United States of America at USD 20–55 billion.
That study also found an increasing trend in US
power outages linked to weather-related faults.
Similar interruptions to electricity transmission and
distribution were found in Italy (Pirovano et al.,
2014), where the vulnerability of the network was
linked to thunderstorms, salt deposits and heavy
snowfalls, prompting the enhancement of weather
forecasting systems to allow the optimal deploy-
ment of remedial solutions.

Ward (2013) defined a ‘fault’ as any unplanned
event that results in the circuit or component of the
equipment in a network to be switched out of ser-
vice, either automatically by an electrical protection
system or manually in response to an alert on the
system. Faults on an electrical network can be
caused by a myriad of factors that may include
tsunamis, earthquakes, hardware failure, vandal-
ism, theft, veld fires, geomagnetic storms, birds and
weather events. In fact, in both Europe and North
America, weather events were found to be the
major cause of faults linked to loss of supply to con-
sumers (Campbell, 2012). Hines et al. (2009) found
that approximately half of the faults in the electrical
network in North America were linked to
unfavourable weather events. Similar percentages
for faults were also reported by Ward (2013) for
Great Britain, and a slightly higher figure of 56%
was found by Martikainen et al. (2007) for Finland.
The significant contribution of weather events to
faults on the electricity distribution network was also
reported by Brown (2002) and by Amin (2015).

Oseni (2012) characterised the provision of
electricity over Africa as being low in supply and
generation; and dominated by frequent outages
owing to lack of financial resources, old infrastruc-
ture, poor maintenance and lack of business conti-
nuity management. Brown and Lawson (1988)
attributed electrical faults on the Namibian electric-
ity transmission network to interference by several
species of birds. Similar electrical faults caused by
birds were identified by Rooyen and Ledger (1999)
in several southern and eastern African countries
including Botswana, Kenya, Lesotho, Malawi,
Mozambique, Swaziland and Zimbabwe. These
were attributed to the lack of bird-friendly electricity
network designs. Kaseke and Hoskins (2013)
attributed the electricity faults in Sub-Saharan
Africa to droughts, oil price shocks, system disrup-
tions caused by social conflicts, and low investment
in generation. 

Similarly, in South Africa, Minaar et al. (2012)
characterised the fault types on the Eskom transmis-
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sion network and investigated relations between
these faults and local climate and key design
parameters of the overhead power lines. This
research found four main causes of transmission
faults: bird streamers, lightning, fire, and pollution.
Included was the characterisation of the faults
according to the winter and summer rainfall regions
in which they were occurring and through the use
of performance statistics of the transmission net-
work.

In summary, the long transmission lines that are
responsible for transportation of high voltage elec-
tricity globally are vulnerable to weather and cli-
mate extremes. The electrical faults resulting from
severe weather and climate are, however, not ade-
quately researched, particularly on the African con-
tinent. Although similarities were found in key caus-
es of transmission faults amongst African countries,
the South African transmission network seems to be
particularly vulnerable to lightning. An understand-
ing of the impact of these faults is essential for a
soundly managed and sustainable electricity supply
in South Africa.

4. International collaboration in the energy-
meteorology discipline
Zillman (2014) identified five international initia-
tives which could hold a potential for related service
delivery enhancements in the energy sector as a
consequence of the important influence of weather
and climate: 
• the Intergovernmental Panel on Climate

Change (IPCC);
• the Global Earth Observation System of

Systems (GEOSS);

• the Madrid Action Plan on social and economic
benefits of weather, climate and water services;

• the Third World Climate Conference (WCC-3)
and Global Framework for Climate Services
(GFCS); and

• the World Meteorological Organization (WMO)
Strategy for Service Delivery.

The IPCC assessment process provided the most
authoritative source of information on aspects of
science and implications of anthropogenic climate
change. The 2014 IPCC Fifth Assessment Report
suggested major implications for the global energy
sector, requiring extensive collaboration between
the climate and energy communities (IPCC, 2014).
The intergovernmental Group on Earth Observ-
ations, with its ten-year GEOSS implementation
plan to provide in situ and space-based observa-
tions for effective application in nine key societal
benefit areas, including weather, climate and ener-
gy, made recommendations for the energy sector
(Koike et al., 2010). These included support of
environmentally responsible and equitable energy
management; better matching of energy supply and
demand; and management of risks to energy infras-
tructure. Through the 2007 Madrid Conference on
Secure and Sustainable Living, the WMO is current-
ly developing specific proposals concerned with the
development of new-energy-needs-specific observ-
ing; data collection and model development of new
wind, solar, wave, tidal and other alternative energy
systems (WMO, 2011). The 2009 WCC-3 Confer-
ence that established the GFCS to improve the pro-
vision and applications of climate services in the
key climate sensitive-sectors globally, identified the
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following priority areas for the energy sector: histor-
ical and quality observations; seamless predictions;
updated reanalysis; reliable access; joint partner-
ship; capacity building; and technical cooperation
and vulnerability assessments, as shown in Figure 1.
The WMO Service Delivery Strategy is an umbrella
initiative to support the implementation of the
Madrid Action Plan, the WMO Strategic Plan and
GFCS Implementation Plan with an international
focus on new and enhanced meteorological ser-
vices for the energy sector over the coming decades
(WMO, 2015).

Advances have been made in the UK to incor-
porate the climate challenge agenda for the energy
sector into law. Cooperation amongst climate scien-
tists and the energy sector has already led to the
development of a series of projects globally to
enhance energy infrastructure and related technolo-
gy (Majithia, 2014). In Italy, several risk mitigation
initiatives have been introduced, including
enhanced forecasting capabilities, intelligent grid
management, and increased flexible storage capac-
ity to better manage adverse weather phenomena
(Pirovano et al., 2014). Power system engineers
and meteorologists have begun to work together in
Australia to improve forecasting tools to better man-
age the changing power supply and demand linked
to climate change (Love et al., 2014). This cooper-
ation is aimed at ensuring reliability of the increas-
ing renewable energy sources and managing the
related costs (George and Hindsberger, 2014). In
Africa, the dire need for investment in the develop-
ment of a climate knowledge base, improvement of
observational meteorological coverage, and the
reliability and timeliness of meteorological data, has
been identified by Ejigu (2014) as essential for
exploiting the connection between bioenergy and
weather/climate.

Emanating from the GFCS, South Africa,
through a multi-stakeholder engagement process
initiated by the South African Department of
Environmental Affairs (DEA) and the South African
Weather Service, has developed a National
Framework for Climate Services for South Africa
(NFCS-SA) with a specific theme on energy. The
NFCS-SA aims to improve resilience in the energy
sector by enhancing tools for decision-makers to
analyse and manage risks under current and future
climate conditions associated with climate variabili-
ty and change (DEA, 2016). The published
research work in South Africa in the discipline of
weather and climate impacts on electricity transmis-
sion is relatively low. Furthermore, there has not
been adequate attention given to the assessment of
the climate risks on the electricity sector, stakeholder
engagement and cross-sectional collaboration in
the electricity industry and academia. Within the
NFCS-SA, this calls for dedicated resources to con-
duct these important investigations and for the

power utility and research institutes to collect and
share data that facilitates decision-making and sus-
tain electricity transmission in South Africa. 

5. Conclusions
According to the literature reviewed, it is acknowl-
edged that weather and climate have a significant
impact on energy supply and distribution. Several
studies have shown how weather parameters are
used to predict energy supply and demand. Global
climate change application studies reveal an
increasing demand for electricity for cooling, as
opposed to a declining demand for heating in resi-
dences. Climate change projections for increasing
rainfall in the interior and eastern parts of South
Africa and drier conditions in the winter rainfall
region in the Western Cape could present chal-
lenges for electricity generation and transportation.
Several studies have also revealed the susceptibility
of distribution and transmission power lines to
extreme weather. South African transmission lines
have been shown to be vulnerable to high winds,
floods and lightning. The literature further identified
global initiatives to enhance collaborative partner-
ships in the energy-meteorology discipline. The like-
ly impact of climate change on the South African
electricity sector remains a research gap. This pro-
vides a good motivation for a thorough understand-
ing of weather impacts on the national electricity
network. Future climate change projection-based
scenarios are important for improved planning for
adaptation, selection of technology choices for risk
mitigation, effective management of faults on the
national electricity network, and the establishment
of a stable and continuous supply of electricity. The
National Framework for Climate Services of South
Africa provides an important policy framework for
collaboration between the meteorological service
and various key socio-economic sectors. There is an
urgent need in the South African energy sector,
however, to initiate multi-sectorial projects, similarly
to those in Europe, the Americas and Australia, in
order to enhance operations and mitigate emerging
risks associated with climate variability and change. 
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