
Abstract

The paper discusses the modelling of the influence

of temperature on average daily electricity demand

in South Africa using a piecewise linear regression

model and the generalized extreme value theory

approach for the period - 2000 to 2010. Empirical

results show that electricity demand in South Africa

is highly sensitive to cold temperatures. Extreme

low average daily temperatures of the order of

8.20C are very rare in South Africa. They only

occur about 8 times in a year and result in huge

increases in electricity demand.
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1. Introduction

Drivers of electricity demand are generally divided

into economic factors, calendar effects, weather

variables and lagged demand variables. Inclusion of

these factors in electricity demand models improves

the predictive power of the models and also

enables system operators and load forecasters to

have a better understanding of the factors that

have a greater impact on electricity demand.

Weather variables such as temperature, solar radia-

tion, humidity, wind speed and rainfall are often

used as explanatory variables in regression based load

forecasting models. Most authors, however, use tem-

perature as the main driver (Munoz et al., 2010).

The influence of temperature on daily electricity

load forecasting has been studied extensively in the

energy sector using classical time series, regression

based methods including artificial neural networks

(Miragedis et al., 2006; Hekkenberg et al., 2009;

Psiloglou et al., 2009; Munoz et al., 2010; Pilli-

Sihvola et al., 2010; among others). The paper dis-

cusses the modelling of the effect of average daily

temperature on daily electricity demand in South

Africa using a piecewise linear regression modelling

framework and the generalized extreme value theory

approach. A generalized extreme value distribution

(GEVD) is fitted to the temperature data below the

reference temperature. Extreme value theory

(EVT) is a powerful and fairly robust framework

for modelling the tail behaviour of a distribution

(Gencay and Selcuk, 2004). Extreme value theory

has been applied in various fields such as flood fre-

quency analysis, environmental sciences, model-

ling extreme temperatures, finance and insurance

including material and life sciences. The family of

extreme value distributions is called the generalized

extreme value distribution. GEVD consists of the

Gumbel, Frechet and Weibull class distributions

which are also known as the type I, II and III extreme

value distributions respectively. 

The rest of the paper is organized as follows. The

models are discussed in Section 2. In Section 3 we

briefly describe the data used. Empirical results are

presented in Section 4 while Section 5 concludes. 

2. The models

Our modelling approach is in two stages. A piecewise

linear regression model is used to explore the effect of

temperature on daily electricity demand. In stage

two, we fit a generalized extreme value distribution

to the temperature values below the reference tem-

perature. The fitted distribution is then used to esti-

mate extreme low temperatures and calculating the

corresponding marginal increases of electricity

demand.

2.1 Piecewise linear regression model 

The piecewise linear regression model used for

modelling the influence of temperature on electric-

ity demand is given in equation (1). 
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2.2 Generalized extreme value distribution

The GEVD consists of the Gumbel, Frechet and

Weibull class of distributions. The unified GEVD for

modelling maxima is given by

3. Data

National daily electricity data for the industrial,

commercial and domestic sectors of South Africa

is used in this study. The data is from Eskom,

South Africa’s power utility company. Figure 1 shows

that ADED data exhibits strong seasonality and has

a positive upward trend. 

Aggregated ADT from 32 meteorological sta-

tions of South Africa representing all provinces

(regions) of the whole country is used in the analy-

sis.1

Figure 2 shows that ADT has strong seasonality

and is stationary. The minimum ADT and maxi-

mum ADT over the sampling period (2000-2010)

are 7.50C and 26.10C respectively. 

4. Empirical results and discussion

4.1 Piecewise linear regression model

output

The model identifies the winter sensitive, weather

neutral and summer sensitive periods. The model is

not used for forecasting electricity demand but

rather to explain the influence of temperature on

electricity demand. 

E(ADED = 23932 + 263 max(0,22 – ADT) 

+ 138 max(0,ADT – 18) (5)

The graphical plot of ADED against ADT is shown

in Figure 3. The three demand-temperature equa-

tions are given in equations 6-8. If average daily

temperature is less than or equal to 180C equation

(5) reduces to

E(ADED = 23932 + 263 max(0,22 – ADT) (6)

That is, if the temperature decreases by 10C (e.g.

from 180C to 170C) electricity demand will increase

marginally by 263 MW. A fall in ADT of 10C (say,

from 160C to 150C) would result in an increase of

about 1.03% in electricity consumption.

If average daily temperature is greater than or

equal to 220C equation (5) reduces to

E(ADED = 23932 + 138 max(0,ADT – 18) (7)

If temperature increases by 10C (e.g. from 220C

to 230C) electricity demand will increase marginally

by 138 MW. For a rise in average daily temperature

of 10C (say, from 250C to 260C) would result in an

increase of about 0.55% in electricity consumption.

For the average daily temperature between

180C and 220C we use the full model given in equa-

tion (5), i.e.

64 Journal of Energy in Southern Africa  •  Vol 24 No 4  • November 2013



E(ADED = 23932 + 263 max(0,22 – ADT) 

+ 138max(0,ADT – 18) (8)

If temperature decreases by 10C (e.g. from 220C

to 210C) electricity demand will increase marginally

by 125 MW. A decrease of ADT from 200C to 190C

would result in an increase of about 0.51% in elec-

tricity consumption.

This analysis shows that electricity demand in

South Africa is highly sensitive to cold temperature

(see Figure 3). There is a non-linear relationship

between temperature and electricity demand as

shown in Figure 3. This non-linear relationship is

modelled in literature using heating degree days

(HDD) and cooling degree days (CDD). Modelling

of this relationship between temperature and elec-

tricity demand is discussed in literature (Mirasgedis,

2006; Franco and Sanstad, 2008; Psilogu et al.,

2009; Munoz et al., 2010; Pilli-Sihvola et al.,

2010; among others). HDD and CDD are calculat-

ed using the following functions: 

HDDt = max(Tr – ADT,) (9)

CDDt = max(ADT – Tr ,0) (10)

where ADT is the average daily temperature at

time and  is the reference temperature. 

In this paper a piecewise linear regression model

is used with two reference temperature values

which are estimated using the MARS algorithm

(Friedman, 1991).

Figure 3 shows the plot of the model in equation

(5). The piecewise linear regression plot separates the

non-linear response of electricity demand to tempera-

ture into three regions: cold for temperatures lower

than 180C, neutral for temperatures between 180C

and 220C, and hot for temperatures above 220C.

There are other several methods of filtering data

(i.e. removing both the trend and the calendar

effects) which are discussed in literature (see Moral-

Carcedo and Vic´ens-Otero, 2005; Munoz et al.,

2010; among others). 
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Figure 1: Average daily electricity demand (megawatts) from 2000-2010

Figure 2: Time series plot of average temperature (degrees C)



4.2 Modelling the minimum daily

temperature (tail quantile estimation)

In section 4.1 it was noted that demand of electric-

ity is more sensitive to cold temperatures (less than

180C) than to hot temperatures (more than 220C).

Modelling of extreme minimum temperatures is

therefore important to load forecasters and system

operators for planning, load flow analysis and

scheduling of electricity. In this section, we estimate

the extreme tail quantiles of ADT below 180C using

the GEVD. The data is seasonally adjusted. There

are 1649 observations below 180C. Figure 4 shows

data for temperature below 180C. 

4.3 Tail quantile estimation

We use the principle of duality between the distri-

butions of minima and maxima as discussed in

Section 2.2. Figure 5 shows the graph of –xi, i = 1,

...,n where xi represents temperature below 180C.

The R statistical package Ismev (Heffernan and

Stephenson, 2013) is used to obtain the ML esti-

mates. The estimates are given as (the standard

errors are given in parentheses): 

This implies that for any degree decrease below

4.60C there won’t be any further increase in elec-

tricity demand.

The quantile-quantile (QQ) and probability-

probability (PP) plots given in Figure 6 show that a

Weibull distribution is a good fit to the data. The

return level estimates are inside the 95% confi-
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Figure 3: Scatter plot of ADED (seasonally adjusted) against ADT with the fitted piecewise

regression line of equation (5)

Figure 4: ADT below 180C (2000 to 2010)



dence interval. This is an indication that the fitted

distribution is capable of accurately predicting

future return levels. We then use equation (4) to

estimate the future return levels for different return

periods. The return level is the quantile of the

GEVD (Weibull distribution). For example, the 95th

quantile is obtained as follows:

The number of observations that are smaller

than the estimated tail quantile (x0.05 = 10.369) are

then counted and found to be 78. For the observed

number of exceedances, we get 0.05 × 1649 =

82.45 ≈ 82 where 1649 is the number of tempera-

ture values below 180C. The increase in electricity

demand for a drop of temperature from 180C to x0.05
= 10.4°C is given by (18 – 10.4) × 263 =

1998.8MW, where 263 is the marginal increase in

demand for a decrease of 10C below 180C as dis-

cussed in Section 4.1. It should be noted that this
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Figure 5: Inverted graph of Figure 4. Figure 4 is inverted so that we can use the duality between the

distributions for maxima and minima 

Figure 6: Diagnostic plots illustrating the fit of the data (temperature below 180C) to the GEVD, (a)

Probability plot (top left panel), (b) Quantile plot (top right panel), (c) Return level plot (bottom left

panel) and (d) Density plot (bottom right panel) 



increase in ADED for temperature decreases below

180C is bounded above. As temperature decreases

below 180C, the increases in ADED reaches a cer-

tain maximum after which any further decrease in

temperature will not have any effect on ADED. That

is as temperature decreases people will switch on

heating systems up to a point when all the heating

systems are all switched on and no additional ener-

gy is consumed. 

Table 1 presents a summary of the estimated tail

quantiles at different tail probabilities. The tail

quantiles (temperature) are given in column 2. The

observed number of observations (temperature)

that are smaller than the estimated tail quantiles are

shown in column 3 while column 4 shows the cor-

responding number estimated using GEVD. In

equation (5) it is given that for a degree decrease in

temperature below 180C there will be a marginal

increase in demand of 263 MW. For each of the esti-

mated quantiles in column 2, column 5 shows the

marginal increases from one quantile to the next, e.g.

if temperature drops from 11.30C to 10.40C there

will be an increase in demand of 263(11.3 – 10.4)

= 236.7MW. Similarly, for a decrease from 10.40C

to 8.80C the marginal increase will be 263(10.4 –

8.8) = 420.8MW. Extreme low average daily tem-

peratures of the order of 8.20C are very rare in South

Africa. This only occurs about 8 times in a year.

Table 2 given in the Appendix summarizes the

temperature values at high quantiles and the corre-

sponding marginal increases while Figure 7 shows

that the marginal increases converge to 1.58 MW

when temperature converges to 4.60C. 

A summary of the monthly frequency of occur-

rence of temperature values below 12.40C (i.e.

above the 95th quantile –x0.05 = 10.369 is given in

Table 2. Over the sampling period, i.e. years 2000

to 2010 the month of July has the highest number of

days with temperature values below 10.40C. This is

an indication that the month of July is the coldest

month in South Africa and the winter period is from

May to August of each year. 

The bar chart of the monthly frequency of

occurrence of exceedances is given in Figure 8. 
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Table 1: In-sample evaluation of estimated tail quantiles at different probabilities (number of

exceedances) 

Quantiles Temp (xp) Observed no. GEVD (no. of Marginal increase in

of exceedances exceedances) demand (MW) 

90th 11.30C 164 159

95th 10.40C 82 78 236.7

99th 8.80C 16 12 420.8

99.5th 8.20C 8 8 157.8

Table 2: Monthly frequency of exceedances below x0.05 = 10.4°C

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Freqency 0 0 0 0 11 16 45 6 0 0 0 0

Figure 7: (a) Left panel shows that the gradual decrease in temperature converges to 4.60C 

and (b) Right panel shows that the marginal increases converge to 1.58MW when temperature

converges to 4.60C



Figure 8: Bar chart of the monthly frequency of

occurrence of exceedances (x0.05 = 10.4). 

The exceedances are average daily

temperature values below 10.40C

5. Conclusion

An analysis of the intensity and frequency of

occurrence of extreme low temperatures is impor-

tant for load forecasters in the electricity sector. In

this paper, the modelling of the influence of tem-

perature on average daily electricity demand in

South Africa using a piecewise linear regression

model and the extreme value theory modelling

framework is discussed. The developed piecewise

linear regression model is not meant for forecasting

but to model the effect of temperature on electricity

demand. The study establishes temperature as an

important variable in explaining electricity demand.

Empirical evidence from this study shows that for

temperature values below 180C demand for elec-

tricity in South Africa increases significantly while

for temperature values above 220C demand

increases slightly. This analysis is important for deci-

sion makers in Eskom, South Africa’s power utility

company. Extreme low temperatures can be mod-

elled by the Weibull class of distributions. Extreme

low temperatures of the order of 60C are very rare

in South Africa, but can cause huge increases in

electricity demand. An investigation of expected

cooler or warmer than typical years is important

and helps in guiding planning to decision makers in

the electricity sector.

Areas for future research would include a compar-

ative analysis of the generalized extreme value distri-

bution with a generalized Pareto distribution and a

generalized single Pareto distribution in modelling

extreme low temperatures in South Africa. These

areas will be studied elsewhere. 

Note

1. Average daily temperature for the whole country is

usually built into the modelling as weighted average

temperatures from different meteorological stations of

a country. The weightings should reflect consumption

of electricity of each region (province). Population

figures are often used for estimating the weights. In

this research, the weightings were not done since only

aggregated average daily temperature was available.

Acknowledgments 

The authors are grateful to Eskom for providing the data

and to the numerous people who assisted in making com-

ments on this paper. 

References
Chikobvu, D. and Sigauke, C., (2012). A frequentist and

Bayesian regression analysis to daily peak electricity

load forecasting in South Africa. African Journal of

Business Management, 6(40): 10524-10533.

ClimateTemp.info. (Accessed on 10 June 2012) 

www.climatetemp.info/south-africa/.

Franco, G. and Sanstad, A.H. (2008). Climate change

and electricity demand in California. Climatic

Change, 87 (Suppl 1): S139-S151. 

Heffernan, J.E. and Stephenson, A.G. (2013). Ismev:

R package version 1.39. 

Hekkenberg, M., Benders, R.M.J., Moll, H.C. and

Journal of Energy in Southern Africa  • Vol 24 No 4  •  November 2013 69

Appendix

Table 2: Evaluation of estimated tail quantiles using the GEVD quantile function

Observation number 1 2 3 4 5

Quantile 99.99th 99.999th 99.9999th 99.99999th 99.999999th

Temp (deg C) 6.285 5.679 5.297 5.056 4.905

Marginal increase (MW) 252.74 159.38 100.5 63.38 39.713

Observation number 6 7 8 9 10

Quantile 99.9999999th 99.99999999th 99.999999999th 99.9999999999th 99.99999999999th

Temp (deg C) 4.809 4.749 4.711 4.687 4.672

Marginal increase (MW) 25.248 15.78 9.994 6.312 3.945

Observation number 11 12 13 14

Quantile 99.999999999999th 99.9999999999999th 99.99999999999999th 99.9999999

99999999th

Temp (deg C) 4.662 4.656 4.652 4.646

Marginal increase (MW) 2.63 1.578 1.052 1.578



Schoot, A.J.M. (2009). Indications for a changing

Electricity demand pattern: The temperature

dependence of electricity demand in the

Netherlands, Energy Policy, 37: 1542-1551. 

Gencay, R. and Selcuk, F. (2004). Extreme value theory

and value-at-risk: relative performance in emerging

markets. International Journal of Forecasting, 20:

287-303. 

Hyndman, R.J., Fan, S. (2010). Density forecasting for

long-term peak electricity demand. IEEE Transactions

on Power Systems, 25(2): 1142-1153. 

Mirasgedis, S., Sarafidis, Y., Georgopoulou, E., Lalas,

D.P., Mschovitis, M., Karagiannis, F. and

Papakonstantinou, D. (2006). Models for mid-term

electricity demand forecasting incorporating weather

influences. Energy, 31: 208-227.

Moral-Carcedoa, J. and Vic´ens-Otero, J. (2005).

Modelling the non-linear response of Spanish elec-

tricity demand to temperature variations. Energy

Economics, 27, 477–494.

Munoz, A., Sanchez-Ubeda, E.F., Cruz, A. and Marin, J.

(2010). Short-term forecasting in power systems: a

guided tour. Energy Systems, 2: 129-160.

Pilli-Sihvola, K., Aatola, P., Ollikainen, M. and

Tuomenvirta, H. (2010). Climate change and electrici-

ty consumption Witnessing increasing or decreasing use

and costs, Energy Policy, 38(5), pp. 2409-2419. 

Psiloglou, B.E., Giannakopoulos, C., Majithia, S. and

Petrakis, M., (2009). Factors affecting electricity

demand in Athens, Greece and London, UK: A

comparative assessment. Energy, 34: 1855-1863. 

SouthAfrica.info. (Accessed on 10 June 2012)

southafrica.info/travel/advice/climate.htm.

www.ral.ucar.edu/˜ericg/softextreme.php. 

Received 1 October 2012; revised 21 November 2013

70 Journal of Energy in Southern Africa  •  Vol 24 No 4  • November 2013


