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Abstract

Given the importance of models in complicated
problem solving, an inappropriate energy model
can lead to inaccurate decisions and poor policy
prescriptions. This paper aims at developing a deci-
sion support tool with which the selection of appro-
priate model characteristics can be facilitated for
developing countries. Hence, it provides a compar-
ative overview of different ways of energy models
characterization and extracts the underlying rela-
tionships amongst them. Moreover, evolution of
dynamic characteristics of energy models for devel-
oping countries is identified according to the previ-
ous studies on the developed and developing coun-
tries. To do this, it reviews the related literature and
follows a systematic comparative approach to
achieve its purposes. These findings are helpful in
cases where model developers themselves are look-
ing for appropriate characteristics in terms of certain
purpose or situation.

Keywords: energy models; energy models charac-
terization; developing countries

1. Introduction

Over the past three decades, energy planning and
management (EPM) has played an essential role in
long-term social, environmental, and economic pol-
icy making of countries. Energy systems as an inte-
gral part of socio-economic systems of societies
have several cross-disciplinary interactions with
economy, society, and environment. To name a
few, (1) the energy-economy interactions consist of
changes over time in price elasticity of demand and
also impacts of macroeconomic activity on energy
demand; (2) the energy-society interactions are the
impacts of energy cost on labour productivity, capi-
tal formation, energy consumption and therefore,
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economic growth and enhancing welfare and
equality in the long term; (3) the energy-environ-
ment interactions include the impacts of energy pol-
icy on environmental phenomena such as climate
change, resources stocks, ecosystem and human
health. Therefore, the major difficulty of the EPM
not only lies in its multi scales aspects (temporal and
geographical), but also in the necessity to take into
account the economic, technical, environmental
and social criteria. Modelling of complex problems
can lead to better decisions by providing decision
makers with more information about the possible
consequences of their choices. Hence, energy mod-
els as valuable tools for dealing with complicated
problems can help decision makers to overcome
this difficulty. Energy models are useful mathemati-
cal tools based on the system approach and the best
model should be determined based on the problem
that decision makers endeavour to solve.

Recently, the total number of developed energy
models has grown tremendously and they vary con-
siderably in characteristics and features. Hence, the
key question is that ‘which model(s) and character-
istics are most suited for a certain purpose and situ-
ation?” Also ‘what are the underlying relationships
amongst these characteristics?” Given the diversity
of the possible characterization approaches, this
study aims at developing a comparative picture of
them which can provide insight not only in the dif-
ferences and similarities between them but also in
the underlying relationships amongst them.
Moreover, the evolution of dynamic characteristics
of energy models for developing countries is identi-
fied according to the previous studies on the devel-
oped and developing countries. To do this, it
reviews the related literature and follows a system-
atic comparative approach to achieve its purposes.

In this paper, we will first give an introduction to
the different energy model categorization approach-
es as section 2 and then indicate their relationships
via a schematic diagram. Trends in dynamic char-
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acteristics of energy model for developing countries
are also extracted from the related literature in sec-
tion 3.

2. Approaches of characterizing energy
models

The energy models existing in the literature can be
categorized via different ways; however, these cate-
gorizations are related to each other. In the follow-
ing, we will discuss each of these ways in more
details.

Model type

Descriptive or prognostic models depict or describe
how things actually work or might work, and
answer the question, ‘What is this?’ In comparison,
normative models are prescriptive and suggest what
should be done (how things ought to work) accord-
ing to an assumption or standard. The first
approach belongs to the concept of planning as
reaction and the second approach involves goal
attainment and assumes autonomous planning or
planning as an action. Descriptive models comprise
different methods of econometrics or simulation,
while normative models lie within the scope of opti-
mization.

Purpose

Energy models are usually designed to address spe-
cific questions and hence, are only suitable for the
purpose they were developed. For our categoriza-
tion, we will make a distinction between three pur-
poses i.e., Prediction/Forecasting, Exploring, and
Back-casting purpose as follows (Beek, 1999):

1. Prediction/forecasting

Basically, forecasting focuses on extrapolation of
trends found in historical data. A prior condition for
this method is that the critical underlying parame-
ters remain constant. Therefore, this method can be
applied for analysing relatively medium to long
term impacts of actions. In fact, forecasting is about
what things will look like in the future and the
method used for forecasting depends on the situa-
tion. Prediction uses past observations to extrapo-
late future short-term observations. Long-term fore-
casting is usually made by econometrics methods
and short-term prediction uses extrapolation meth-
ods (Armstrong, 2001).

2. Exploring:

Scenario analysis is utilized for exploring the future.
In this method, a limited number of developed sce-
narios are compared with a Business As Usual
(BAU) reference scenario. In developing scenarios,
some assumptions like economic growth and tech-
nological progress, which are not relied on the
parameters extracted from the past behaviour, are
made.

3. Back casting:

This approach is used to determine the conditions
of a desired future and to define steps to attain a
desired vision of the future. This is an alternative to
traditional forecast which relies on what is known
today and the future is viewed as a continuum of
past or present. Back-casting is a planning method-
ology under uncertain circumstances that is particu-
larly helpful when problems are complex, and there
is a need for major change and in cases in which it
is risky to view the future just in the mirror of the
past (Holmberg, 2000).

Modelling paradigm

The difference between top-down and bottom-up
models is related to the technological and sectoral
aggregation. A broader economy is investigated by
use of top-down models in order to examine effects
between different sectors and they do not consider
details of energy production technologies. Smooth
production functions are used to represent energy
sectors in an integrated way. In such models, sub-
stitution is determined by elasticity. On the other
hand, technologies are represented in detail in bot-
tom-up models, but they miss to take into account
economy-wide interactions such as price distortions
(Bohringer, 1998).

Grubb et al. (1993) stated that the top-down
approach addresses the ‘descriptive’ economic par-
adigm, while the bottom-up approach is associated
with— but not exclusively restricted to— the ‘norma-
tive’ engineering paradigm. In the economic para-
digm, technology is considered as a set of process-
es by which inputs such as capital, labour, and ener-
gy can be transferred into useful outputs and the
‘best’” or most optimal techniques are defined by
efficient markets. However, in the engineering par-
adigm, the developed model is independent of
observed market behaviour. In other words, the
economic paradigm is based on market behaviour
and aggregated data, while the engineering para-
digm tends to ignore existing market constraints and
uses disaggregated data. For example, in the top-
down approach the key question is ‘By how much
does a given energy price movement change ener-
gy demand or energy-related carbon emission?’ In
contrast, in bottom-up the question is ‘How can a
given emission reduction task be accomplished at
minimum costs?’(e.g., see Frei et al. 2003).

While the traditional top-down approach follows
an aggregated view and believes in the influence of
price and markets, the bottom-up models focus on
the technical characteristics of the energy sector.
Hybrid models try to bridge the gap between top-
down and bottom-up by including elements of both
approaches. They attempt to combine the benefits
of both top-down and bottom-up modelling
schemes using each modelling vision where appro-
priate and a modular structure to integrate the dis-
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parate systems. The hybrid models undertake to
consider economic effects on model outcomes
through taking into consideration the market
behaviour. Market behaviour is a result of interac-
tions among the economy sector, supply side and
demand side entities.

The underlying methodology

In the following part, an overview of commonly

used methodologies in developing energy models

will be presented.

1. Econometrics: Econometric methodology focus-
es on statistical methods to extrapolate past mar-
ket behaviour into the future. They use aggre-
gated data measured in the past to predict the
short- or medium-term future in terms of labour,
capital, or other inputs. They are frequently used
to analyse energy-economy interactions. The
experience of the expert using this method is a
key element for achieving reliable results.
Another shortcoming of this model is that it
needs a large amount of data from the past and
aggregated data is required to reduce the fluctu-
ations over time. Furthermore, the stability of
economic behaviour is a prerequisite for using
this method.

2. Macro-economics: The macro-economic meth-
odologies are methodologies that consider the
entire economy of a society and the interaction
between sectors. The economy-energy interac-
tion is analysed by input-output tables. These
tables describe transactions between different
sectors of the economy that is viewed as a whole
in this method. Therefore, energy is just a small
sector between all sectors considered in the
macroeconomic model and cannot concentrate
on energy technologies, specifically in details.
This approach is common in energy demand
analysis when taken from a neo-Keynesian per-
spective (i.e., output is demand determined).

3. Economic equilibrium: In economic equilibrium
methodology, the energy sector is considered as
part of the overall economy and it focuses on
interrelations between the energy sector and the
rest of the economy sectors. Economic equilibri-
um models are sometimes also referred to as
resource allocation models. Very long term
growth paths are simulated by this method, but
the underlying path towards the new equilibri-
um is not clear enough. The treatment of equi-
librium in a single market is considered as par-
tial equilibrium in which the price plays a key
role in equilibrating demand and supply.
General equilibrium indicates conditions allow-
ing simultaneous equilibrium in all markets in
the economy. In this extension a coherent theo-
ry of the price system and the coordination of
economic activity have to be considered.

4. Optimization: An optimization problem consists

in finding a good choice out of a set of alterna-
tives by minimizing or maximizing one or some
real functions. Input values are selected from an
allowed set and must satisfy some constraints.
Energy optimization models are used to opti-
mize energy investment decisions endogenously
and the outcome represents the best solution for
input variables while meeting the given con-
straints. This method is a branch of applied
mathematics and requires a relatively high level
mathematical knowledge and that the included
processes must be analytically defined.
Optimization models often use Linear Program-
ming (LP), Non-linear Programming (NLP), and
Mixed Integer Linear Programming (MILP) tech-
niques.

5. Simulation: According to the World Energy
Conference (1999), simulation energy models
are descriptive models based on a logical repre-
sentation of an energy system, and they are
used to present a simplified operation of this sys-
tem. Simulation models are usually used as an
alternative, when it is impossible, hard or really
costly to do experiments with the real system
(Rosseti et al., 2009).

6. Back-casting: The back-casting methodology is
used to construct visions of desired futures
based on experts’ ideas in the fields and subse-
quently by looking at which changes are
required or needed to be carried out to accom-
plish such futures.

7. Multi-criteria: The multi-criteria methodology
can be used for including various criteria such as
economic efficiency and cost reduction. It can
include quantitative as well as qualitative data in
the analysis. This approach is not yet widely
applied in energy models.

8. Hybrid: The hybrid methodology consists of two
or more aforementioned methodology.

Resolution technique

At the level of concrete models, a further distinction
can be made considering the resolution tools uti-
lized in the models. Linear Programming (LP), is
widely used for modelling energy supply (e.g.,
capacity expansion planning) because of its simplic-
ity in solution.

Mixed Integer Linear Programming (MILP)
models the problems in which some variables are
discrete. This technique has been widely used in
MES (Multi-Energy Systems) planning problems,
where various energy carriers with different units in
terms of size and type are considered.

When there are nonlinear relations in either con-
straints or objective functions, the problem is mod-
elled as a Non-Linear Problem (NLP). Often, endo-
genizing the model variables such as technological
learning leads to convert a linear model into a non-
linear one. The multi-criteria models are used when
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there is more than one criterion, usually conflicting
ones, as the objective functions to be optimized.

Dynamic Programming (DP) divides the prob-
lem into sub problems to be able to solve them
more easily. In addition, in most recent studies fuzzy
programming (FP) or stochastic and/or interval pro-
gramming (SP) methods have been applied to deal
with uncertainties. Energy demand, price market,
and learning rate of technologies are common
parameters assumed uncertain in the energy system
modelling (Salas, 2013).

Techniques such as Artificial Neural Networks
(ANN), Autoregressive, Adaptive Neural Fuzzy
Inference Systems (ANFIS), and Markov chain tech-
niques are extensively used for forecasting/predic-
tion purposes (Ettoumi et al., 2003).

Geographical coverage
Energy models may analyse different levels of geo-
graphical and spatial areas. This level will effective-
ly influence the structure of the model. The world
economy is investigated in global energy models as
a whole at a large scale. These models are designed
to replicate how the world energy markets function.
They are practical tools that generate region by
region projections for different scenarios. In the
regional models international areas like Latin
America, South-East Asia and Europe are taken
into consideration. National models study all major
sectors inside one country endogenously, while the
world energy parameters are considered exoge-
nously in the model. The local level is related to the
models encompassing regions inside a country.
According to the available literature, the com-
prehensiveness of models relying on the global or
national level often (not always) requires aggregat-
ed data and uses economic (top-down) approach.
In this regard, the models focusing on regional or
local level often (not always) disregard macro-eco-
nomic effects on energy system applying an engi-
neering (bottom-up) approach.

Sectoral coverage

The economy can be divided into certain sectors.
Based on this division, models can be classified,
into sub-sectoral, sectoral, and economy wide mod-
els. Sub-sectoral models provide only information
in just one particular sector and do not take into
account the macro-economic linkages of that sector
with the rest of the economy. The other sectors of
the economy are simplified in these models. Sub-
sectoral models addressing specific short-term con-
cerns e.g., dispatch scheduling of a set of power
generating units in a utility, fall into the first catego-
ry. On the other hand, sectoral models investigate
more than one sector of the economy and the inter-
action between the studied sectors. Sub-sectoral or
sectoral models having one year to few years of
planning horizon can be classified as medium-term

and long-term models with implications at national
or global level.

The time horizon

The time frame defined in energy models are usu-
ally categorized as short term (day, month, till 5
years), medium term (from 5 to 15 years), and long
term (beyond 15 years) (Grubb et al., 1993). The
structure of the models differs in different time hori-
zons. Technological changes, paradigm shifts, long-
range scenario analysis and multi-stage modelling
are an innate part of the long term energy models.
While in daily or monthly analysis of one energy
sector, these issues are of less importance.

Data type

Aggregated and disaggregated data are two
extremes for required data of energy models. Top-
down models use aggregated data for short term
predicting purposes, while bottom-up models use
disaggregated data for exploring purposes. Most of
models usually need quantitative data. But in some
circumstances that little quantitative data is avail-
able or the available quantitative data is unreliable,
the models should be able to deal with qualitative
data. Furthermore, it may happen that considering
stochastic or fuzzy data, instead of deterministic
data, will lead the model to better and more robust
results.

Endogenization degree

A model with high endogenization degree is one
that its parameters are incorporated within the
model equation so as to minimize the number of
exogenous parameters. The analytical approach is
in a close relationship with the level of endogeniza-
tion. A high level of endogenization is considered in
top-down models while in bottom-up engineering
energy models, many parameters are reflected
exogenously. It is very common that population
growth, economic growth or even energy demand
is carried out exogenously in bottom-up energy
models.

Addressed side

Energy models are usually designed to deal with
demand side issues such as demand forecasting, or
supply side (e.g., capacity expansion plans) or both
of them so called energy system models.
Forecasting energy demand can be performed in
just one sector like electricity, natural gas, heat, or in
all different types of energy as a whole. In these
models, both forms of final or useful demand may
be predicted and is usually regarded as a function of
income, population, price, etc. In the supply side,
the demand is usually put into the model exoge-
nously so as to investigate conditions needed to
reach equilibrium between demand and supply.
Technological aspects are concerned in more detail

104 Journal of Energy in Southern Africa + Vol 25 No 4 « November 2014



and financial aspects of each technology are used
for evaluation of different scenarios.

Figure 1 relates the different ways of energy
model characterization to each other while they
vary along a spectrum. However, a few exceptions
can be founded in the literature. This figure pro-
vides guidelines to facilitate efficient selection of the
model characteristics based on the available models
in the literature.

As it can be seen in Figure 1, almost all of the
models addressing demand side are descriptive with
a top-down modelling paradigm. The purpose of
these models is often (not always) a prediction with
aggregate data while underlying methodologies for
data processing are econometrics or macro-eco-
nomics. Given the widely applications of AR and
ANN techniques in these models, the endogeniza-
tion degree of these models are high. In contrast
with these models, the models addressing supply
side are often normative with a bottom-up model-
ling paradigm. The general purpose of these mod-
els is often (not always) exploring and they rely on
disaggregated data rather than aggregated data.
Long-term considered time horizon and hence, low
a endogenization degree are the main characteris-
tics of these models.

For instance; Dilavar and Hunt (2011) applied
a structural time series analysis to forecast industri-
al electricity demand of Turkey in 2020, by focusing
on the relationship between electricity consumption
of industries, value added of industries, and the
price of electricity. The annual data over the period
1960 to 2008 is used to develop the industrial elec-
tricity demand function. This descriptive demand
side model uses aggregated data of annual industri-
al electricity consumption from the International
Energy Agency, IEA, and industrial value added

Purpose

Geographical Coverage
Methodology Approach
Data Type

Addressed Side

Modeling Paradigm
& & Delphi MADM

. —
Resolution Techniq Back-Casting

Time Horizon

Sectoral Coverage
Model Type

Endogenization Degree

Figure 1: Schematic diagram of relations between different ways of energy model characterization
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from the World Bank in the econometric estimation
model. No technological details are considered in
this national sectoral model. Also, a long term
model for natural gas and electricity expansion
planning developed by Unsihuay-Vila et al. (2010),
named Gas Electricity Planning Model (GEP). They
used a mixed integer linear programming model for
this energy supply planning model. The objective of
the model is to minimize investment and opera-
tional cost of new facilities by selecting the optimum
ones for power generation. Different technologies,
with their related costs and constraints are taken
into account. Disaggregated data with specific
details for different supply technologies is required
to be able to deal with this bottom-up model. This
is a normative model, since an optimization is per-
formed for the optimum selection of NG and elec-
tricity expansion facilities in order to meet the future
growth of energy demand.

3. Trends in energy models characteristics

A first step in developing an appropriate model is to
make decision about its characteristics (which were
previously introduced) according to the defined
problem. Some of these characteristics are static,
i.e. they do not change over time, such as ‘Model
type’ or ‘Purpose’ and the rest are dynamic and will
change over time such as ‘Analytical approach’.
Therefore, to select dynamic characteristics of a
model, it is necessary to consider their evolutions in
the future. Understanding the evolution of a
dynamic characteristic help identifying the require-
ments set of characteristics and features of a model
in order to be in accordance with its future needs.
This section undertakes to extract the evolution of
dynamic characteristics, i.e. analytical approach,
problem formulation, problem environment, sus-

Prediction

Economic-
Equilibrium

Optimization
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tainable criteria, and solution techniques for devel-
oping countries according to the previous studies
on the developed and developing countries. To do
this, it introduces different states for each key char-
acteristic, and addresses them by mentioning the
first related paper as well as an example (as a rep-
resentative of other studies). It should be noted that
this section aims at determining the evolution of
dynamic characteristics of energy models for devel-
oping countries, rather than reviewing all relevant
studies of the energy model literature.

Analytical approach

Top-down and bottom up approaches are two
extreme modelling paradigms. Several authors
linked bottom-up energy models to top-down ones
in order to simulate the macro-level economy and
micro-level technology details of the energy sys-
tems. The available integrated models can be gen-
erally categorized as: (1) the models which try to
endogenize the market price using game theory and
real option concepts in the bottom-up models
(Botterud and Korpas, 2007; Pereira and Saraiva,
2011); (2) the models which employ System
Dynamics or Computable General Equilibrium
(CGE) techniques to incorporate price dynamics of
demand and supply into the bottom-up models
(Frei et al., 2003; Andreas Schafer et al., 2006; Wei
et al., 2006; Pereira and Saraiva, 2011); and (3) the
integrated multi-agent based models that consider
not only inter-temporal price dynamics of supply
and demand but also demand side interactions in
the model (Hodge et al., 2008; Jiang Chang and
Shu-<Yun Jia, 2009; Logenthiran et al., 2011; Ma
and Nakamori, 2009).

Generally, there are two main solution
approaches used in these studies. In the first
approach, a combination of LP and an economet-
ric demand equation is used to determine equilibri-
um price and quantities of fuels. This approach
demonstrates perfect foresight and is proved to be
non-realistic and unsuitable for the resulting year by
year analysis. The second approach namely; a
modular approach is developed in order to com-
pute equilibrium price and quantities by iterative
interactions between various modules

Problem formulation

Energy systems as an integral part of socio-eco-
nomic systems of societies have several cross-disci-
plinary interactions with the economy, society, and
environment. Moreover, a set of interdependencies
between its parameters and variables exists that all
cause an uncertain problem environment for ener-
gy systems. Endogenizing uncertain parameters is
an effective way to reduce the uncertainty of the
problem environment. A parameter is endogenized
into the model through developing it internally
within the model equation. To name a few, endog-

enizing: the future demand (Cerisola et al., 2009;
Choi and Thomas, 2012; ‘EIA — The National
Energy Modeling System: An Overview 2003-
Overview of NEMS,” 2011; Hodge et al., 2008; Ko
et al., 2010; Murphy and Smeers, 2005); the ener-
gy market price (Pereira and Saraiva, 2011), the
technological change (Duncan, 2012; Hedenus et
al., 2005; Ma and Nakamori, 2009; Messner, 1997;
Todtling, 2012); the discounted rate (Neuhoff,
2008); and the marginal cost (Olsina et al., 2006;
Pereira and Saraiva, 2011) are addressed in this
manner.

Problem environment

According to the literature, both certain and uncer-
tain environments have been assumed for EPM
problems. The uncertain information in energy sys-
tems is usually classified into three types (i.e., possi-
bility distributions, probability distributions, or sin-
gle/dual discrete intervals). In order to address these
uncertainties, three corresponding inexact program-
ming techniques i.e., fuzzy programming (e.g., Li
and Cheng (2007)), stochastic programming (e.g.,
Lin and Huang (2009)) and single/dual interval-
parameter programming (e.g., Zhu et al. (2012))
have been widely applied for energy systems mod-
elling.

These approaches mostly focused on particular
type of uncertainty or certain hybrid uncertainties
within energy systems. However, in many real-
world problems, multiple uncertainties may coexist
in energy planning and management systems, of
which the systems complexities may not be ade-
quately reflected through the current approaches.
Moreover, system dynamics associated with multi-
stage decision makings are frequently confronting
decision makers, which also need to be integrated
and addressed in the same modelling framework.
Thus, it brings about the requirement that can
directly incorporate system uncertainties expressed
as fuzzy membership functions, probability density
functions, discrete intervals and dual intervals with-
in a multi-stage modelling framework. Fuzzy dual-
interval multi-stage stochastic (FDMS) approach is
an efficient one that could not only tackle uncer-
tainties with single/dual interval values and possibil-
ity distributions existed in energy, economy and
environment systems, but also conduct in-depth
analysis of long-term stochastic planning problems
within multi-layer scenario trees (e.g., Li et al,
2014).

Sustainable criteria

The most common definition of sustainable devel-
opment is a development which meets the needs of
the present without compromising the ability of
future generations to meet their own needs. This
definition first appeared in the World Commission
on Environment and Development’s report, Our
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Common Future (World Commission on Environ-
ment and Development, 1987).

Nowadays, the assessment criteria (economic,
environmental, and social) of sustainable develop-
ment are becoming important because of the rapid
increase in awareness of the importance of sustain-
ability. The energy system (supply, transport and
usage) is of the highest importance in the context of
sustainable development. According to the litera-
ture, the energy systems are required to meet sever-
al important goals, including conformance with the
environmental goals (e.g., Akisawa et al., 1999;
Bala and Khan, 2003; Dong et al., 2013; ‘LEAP:
Long range Energy Alternatives Planning system —
Stockholm Environment Institute,” 2011; Reich-
Weiser et al., 2008); economical goals (e.g., Grubb
et al., 1993; Gustafsson, 1993; Heinzelman et al.,
2000; Kanniappan and Ramachandran, 1998; Liu,
2007; Sadeghi and Mirshojaeian Hosseini, 2006;
Sirikum and Techanitisawad, 2005); social (e.g.,
Correljé and van der Linde, 2006; Pereira and
Saraiva, 2011; Sirikum and Techanitisawad, 2005);
or integrated goals (e.g., Bazmi and Zahedi, 2011;
Cai, 2010; Ren et al., 2010b; Thery and Zarate,
2009; van Vliet et al., 2012) of sustainable devel-
opment.

Underlying solution techniques

Exact solution algorithms which are suitable for lin-
ear (e.g., MILP, LP) and nonlinear (NLP) problems
encourage shortages rather than inexact algorithms
when problems are complex, non-smooth or non-
convex. Despite its name, optimization does not
necessarily mean finding the optimum solution to a
complex problem with non-smooth function, since
it may be unfeasible due to the characteristics of the
problem, which in many cases are included in the
category of NP-hard problems. Optimization prob-
lems with no polynomial time algorithm need expo-
nential computation time in the worst case to obtain
the optimum, which leads to computation times
that are too high for practical purposes.

In recent years, due to issues such as hybridizing
energy models, considering uncertainty in model-
ling, necessity of modelling with large geographical
coverage and examining global changes such as
global warming, the size and complexity of energy
problems have increased and accurate algorithm
have failed to solve this class of problem, given too
huge convergence time and required computer
memory. Consequently, in recent decades, many
authors have proposed approximate methods,
including heuristic approaches to solve NP-hard
problems instead of using traditional solution meth-
ods, such as Mixed Integer programming (MIP)
technique (Mirzaesmaeeli, 2007; Ren et al., 2010a);
Nonlinear Complementary programming (NCP)
algorithms (‘EIA — The National Energy Modeling
System: An Overview 2003-Overview of NEMS,’

2011; Messner, 1997); quadratic programming
(QP) techniques (Cai, 2010); and fuzzy-parameter
linear programming techniques (Agrawal R.K. and
Singhl S.P, 2001; Li et al., 2010; Sadeghi and
Mirshojaeian Hosseini, 2006).

Heuristic methods as simple procedures provide
satisfactory, but not necessarily optimal solutions to
large instances of complex problems rapidly. Meta-
heuristics are generalizations of heuristics in the
sense that they can be applied to a wide set of prob-
lems, needing few modifications to be addressed to
a specific case. Based on our knowledge, heuristic
methods have not been yet used for energy system
planning, however, several studies have been
adopted (meta)heuristic algorithms to generation
expansion planning problem (Chung et al., 2004;
Pereira and Saraiva, 2011; Safari et al., 2013;
Sirikum and Techanitisawad, 2005; Subramanian
et al., 2006).

The detailed survey is summarized in terms of
developing and developed countries as Table 1.

3.1. Synthesis results of literature

According to Table 1, we grasped the literature ana-

lytically and made a digest of the related literature

chronologically and addressed the key issues. The
important findings extracted from Table 1 are listed
here:

* The developing countries often experience the
lagging research concerns of developed coun-
tries. For instance, in the 2000s, the focus was
based on merging two analytical modelling par-
adigms in developed countries, while this is
postponed to the next decade for developing
countries. In fact, promoting some changes in
energy strategies of developed countries can be
a strategy for future energy of developing coun-
tries.

* In the late 2000s, the efforts have been directed
to merge top-down and bottom-up modelling
paradigms so as to consider economic, social,
and environmental impacts simultaneously. The
uncertainty and risks of such extensions are
large and the validity of behavioural assump-
tions, technological specifications and resource
allocations becomes complex in developing
economies. This has led to incorporation of
uncertainty analysis into the system analysis on
one hand, and new model development initia-
tives on the other hand in these countries.

* Recently, the researchers have approached the
endogenized models in order to capture the eco-
nomic and technological effects and especially,
to take care of structural changes and competi-
tion in the emerging markets and the uncertain
patterns of business environment in developing
countries.

* Given the used solution techniques, the energy
planning problems experience a rapid growth in
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magnitude and also computational difficulties
associated with non-convex and non-smooth
objective functions.

* In recent years, multi dimension integrated crite-
ria has attracted much interest rather than single
dimension criteria such as cost or profit.

Although there is a huge variation amongst
developing countries in terms of socio-economic
structure, a few features are found in common in
the energy sector of many developing countries.
These characteristics include: (1) reliance on tradi-
tional energies, (2) the existence of large informal
sectors which are sometimes as large as the formal
sector, (3) prevalence of inequity and poverty, (4)
structural changes of the economy and accompany-
ing transition from traditional to modern lifestyles,
(5) inefficient energy sector characterized by supply
shortages and poor performance of energy utilities,
and (6) existence of multiple social and economic
barriers to capital flow and slow technology diffu-
sion make developing countries’ energy systems
significantly different from that of developed coun-
tries.

Top-down models use a price-driver which play
a limited role in developing countries and cannot
capture informal sector or traditional energies ade-
quately. These models also have difficulties in cap-
turing the technological diversity, besides, they
require high skill levels. Bottom-up models have a
good description of technological features of the
energy sector with high-level skill needs. Moreover,
the problems of subsidies and shortages are also not
adequately captured as the demand in these mod-
els. Hence, hybrid models appear to be more
appropriate for developing country contexts
because of their flexibility and limited skill require-
ment.

It can be concluded that most of the standard
(computer based) models are perhaps not suitable
for [Jdeveloping countries applications considering
their underlying assumptions. As most of the stan-
dard models are designed and developed in the
developed world, they fail to capture the specific
needs of the developing countries because they are
incapable of reflecting the specific features of ener-
gy models of developing countries.

4. Conclusions

Up to now, many characterizations have been made
for energy models, whereas the relationship among
them is under question. In this study, we gave an
introduction to the different ways of energy model
categorization approaches (e.g., modelling para-
digm, endogenization degree, model type, and
addressed side) and the relationships behind these
approaches were indicated schematically. The
designed diagram as a decision support tool facili-
tates efficient selection of the model characteristics

based on the examined models in the literature. But
some characteristics are dynamic and will change
over time such as analytical approach. Therefore, in
order to select the dynamic properties for a model,
it is necessary to consider their evolution in the
future. The evolution of dynamic energy model
characteristics for the developing countries were
extracted from the related literature digests.

The findings of this paper confirms the fact that
it is required to incorporate the specific features of
developing countries in energy system modelling
and to consider the informal sector and traditional
energy use in the analysis of these systems.

This study suggests identifying the evolution of
dynamic energy model characteristics for develop-
ing countries in terms of geographic coverage (glob-
al, national, regional, local) as future research.
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