-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by The Python Papers Anthology

The Python Papers Monograph, Vol. 1 (2009)
Available online at http://ojs.pythonpapers.org/index.php/tppm

Python Data Plotting and Visualisation
Extravaganza

Guy K. KLoss

Computer Science
Institute of Information & Mathematical Sciences
Massey University at Albany,

Auckland, New Zealand
G.Kloss@massey.ac.nz

This paper tries to dive into certain aspects of graphical visualisation of
data. Specifically it focuses on the plotting of (multi-dimensional) data us-
ing 2D and 3D tools, which can update plots at run-time of an application
producing or acquiring new or updated data during its run time. Other visual-
isation tools for example for graph visualisation, post computation rendering
and interactive visual data exploration are intentionally left out.

Keywords: Linear regression; vector field; affine transformation; NumPy.

1 Introduction

Many applications produce data. Data by itself is often not too helpful. To generate
knowledge out of data, a user usually has to digest the information contained within
the data. Many people have the tendency to extract patterns from information much
more easily when the data is visualised. So data that can be visualised in some way
can be much more accessible for the purpose of understanding.

This paper focuses on the aspect of data plotting for these purposes. Data stored
in some more or less structured form can be analysed in multiple ways. One aspect
of this is post-analysis, which can often be organised in an interactive exploration
fashion. One may for example import the data into a spreadsheet or otherwise
suitable software tool which allows to present the data in various ways. A user may
“play” with different views, plots, scales, etc. to do so. Another way of accessing
information from data visually is to plot it at the time of computation at a much
earlier stage of the process. An engineer may for example be interested in the change
of a parameter during the long numerical solution of a problem, so that the process
can be interrupted early to avoid an unnecessary waste of time and computational
resources in case the solver diverges rather than converges.

https://core.ac.uk/display/230921721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Python Data Plotting and Visualisation Extravaganza 2

To get to the point ... the aspects discussed here are centering on displaying and
updating data in plots at runtime of a computation. Whether it is a single scalar
value plotted over time, or multi-dimensional vector fields are displayed.

Simple one-dimensional data is boring, as it may just be represented by a single
bar or “gauge” like display (e. g. a “speedometer”). So what we are going to look at are
two- (see Sect. 2) and three-dimensional plotting tools (see Sect. 3) used for forcing
numerical content onto us through a GUI plot pane. In the minimum these are then
scalar values that change over time/iterations, through two- and three-dimensional
data sets, up to snapshots of higher-dimensional data sets.

Some of the tools that were originally intended to find their (stronger) represen-
tation in this paper had to be “kept short” and may only be mentioned. Unfortu-
nately these had some more or less severe problems being installed on the author’s
system(s) at the time of writing (Ubuntu Jaunty and Karmic). Nonetheless, these
are very much “worthy” of the inclusion and closer discussion in this list, but their
code base, packaging and/or installer needs more time to mature towards current
“painless” usage.

2 Two Dimensional Tools

The world of two dimensional plotting is (much more than the three dimensional
tool set) generously populated by numerous tools. Many of them unmaintained,
with no community or otherwise “esoteric”. The tools discussed here do not claim
to be the “ideal” tools, but they have proven to have a good persistence over time
and feature a larger community of users. The first one is the “godfather” of plotting
tools Gnuplot, which is still largely in use for the purpose of “academically credible”
plotting purposes. In many aspects it is in the Python world nowadays superseded
by the more modern matplotlib.

2.1 Gnuplot.py

Gnuplot [1,2] is most undoubtedly regarded by many as the original and most widely
used plotting tool in the field. It has a usage history well exceeding a decade, and it
is still maintained and enhanced. It is possible to use Gnuplot also for live plotting
purposes, and Michael Haggerty has developed Python bindings for it [3]. These
bindings have come a bit of age, but are still very well and easily usable. One just has
to avoid minor pitfalls due to the introduction of the with key word in Python, but
that can be very easily and elegantly circumvented by using dictionaries for plotting
attributes. Fig. 1 shows a simple example on how to engage in an updatable data
plotting session.

Another point to mention is, that it uses temporary files for storage of the plotting
data, rather than passing the data straight into Gnuplot. However, as Gnuplot is
very fast, this does not introduce any noticeable delays in plotting compared to the

Python Data Plotting and Visualisation Extravaganza 3

import Gnuplot
import math
import time

SIZE = 100
INCREMENT = 10.0 * math.pi / SIZE

class MyPlotter(object):
def __init__(self):
self.values = []
self.my_plot = Gnuplot.Gnuplot()
self.current_x = 0.0

def update(self):
self.current_x += INCREMENT
self.values.append(math.sin(self.current_x) / self.current_x)
self.my_plot.plot(self.values)

def run(self):
for i in range(SIZE):
self.update()
time.sleep(0.1)

if __name__ == '__main__"':
plotter = MyPlotter()
plotter.run()
raw_input(’'Please press return to finish ...\n’)

Figure 1: Gnuplot example, adding values on every call to update() to a list for
plotting.

“matplotlib” (see next section).

2.2 matplotlib

matplotlib [4,5] is a more recent plotting package that has gained significant traction
in the Python community. It provides a very powerful and feature rich environment
for plotting. The resulting plot panels as well as the integrated GUI elements look
much more modern, and the plotting panel can also be integrated into various other
GUI applications, rather than “living” in a separate window (as compared to Gnu-
plot). For the GUI it can use various generic GUI toolkits (wxPython, Qt or GTK).

One of the features of matplotlib is, that it offers next to the object-oriented API
an additional procedural interface (the pylab interface) that is closely modelled to
resemble that of MATLAB. The combination of matplotlib with NumPy [6] therefore
can be used as a free, modern and easy to learn replacement for the commercial
MATLAB package(s).

In Fig. 2 the Gnuplot example is picked up and implemented using matplotlib.

clRew N =

~

10
11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27

29
30
31

33
34
35
36

Python Data Plotting and Visualisation Extravaganza 4

import math

import matplotlib

matplotlib.use(’'GTKAgg’) # do this before importing pylab or pyplot
from matplotlib import pyplot

import gobject

SIZE = 100
INCREMENT = 10.0 * math.pi / SIZE

class MyPlotter(object):
def __init (self):

self.current_x = 0.0
self.x_values = []
self.y_values = []
self.my_figure = pyplot.figure()
self.my_plot = self.my_figure.add_subplot(111)
self.my_curve = self.my_plot.plot(self.x values, self.y values)

def update(self):
self.current_x += INCREMENT
self.x_values.append(self.current_x)
self.y_values.append(math.sin(self.current_x) / self.current_x)
self.my_curve[0].set _xdata(self.x_values)
self.my_curve[0].set_ydata(self.y_values)
self.my_plot.relim()
self.my_plot.autoscale_view()
self.my_figure.canvas.draw()

def run(self):
for i in range(SIZE):
self.update()

if __name__ == '__main__":
plotter = MyPlotter()
gobject.idle_add(plotter.run)
pyplot.show()

Figure 2: Example for matplotlib, similar to the previous Gnuplot example.

Matplotlib in contrast to Gnuplot runs within the same process. As it comes along
with its own GUI event loop, a little more boiler plate code is needed to keep the
main Python script “alive” to feed further data.

2.3 Honorary Mentions

As mentioned in the introduction to this section, the user is facing a multitude of
available plotting packages for two dimensions which would clearly exceed the scope
of this paper. Some of these, however, deserve a mention without too much further

Python Data Plotting and Visualisation Extravaganza 5

description.

RPy is a a programming language and software environment for statistical com-
puting and graphics [7,8]. RPy |9] provides a Python interface to the R programming
language. Through RPy it is possible to use the features or R almost seamlessly,
including graph plotting. In terms of plotting, R is comparable to Gnuplot, each
having advantages and disadvantages to each other in different places.

Chaco is an open source Python plotting application toolkit for all types of 2D
plotting [10]. It features a huge set of capabilities — both for live plotting, as well as
for an interactive data visualization and exploration. Its capabilities go well beyond
those of matplotlib. It builds on the very powerful Enthought Tool Suite and Traits
by the company Enthought [11], who are also sponsoring and supporting the open
source SciPy tools [12|. Unfortunately at the time of writing it failed to install
and/or run properly both under Ubuntu Jaunty as well as Karmic. Although an
excellent tool, it can be rather difficult to match all dependencies and get everything
right, even for the distributor’s packages.

GracePlot A Python interface [13] to another grandfather of plotting tools, “xm-
grace.” Both, GracePlot as well as xmgrace, did not experience much developer
attention in the past. But this year GracePlot development has been picked up
(again) with a release of a 2.0 version of the libraries. GracePlot owns its popularity
for be very easy to use, but does not nearly offer the features of the tools mentioned
above.

3 Three Dimensional Tools

Three- and higher-dimensional plotting challenges the plotting tool in a different
way. These tools usually all have to create the impression of three-dimensionality
on a 2D screen. Usually this is supported by the use of hardware accelerated OpenGL
based libraries. Perspective and shading as well as transparency are tricks used to
give the impression of spatiality.

This works still quite well for plotting 3D data sets like surface plots in a 2D
domain. Unfortunately this is in many cases not enough. For example when a
scalar field within a 3D space is to be visualised, or a 2D vector field in a 2D plane.
Developers of plotting tools have put much effort into enabling the visualisation of
these. These are some of the tricks used to achieve this:

e (Quiver Plots
little “vector arrows” at (regular) intervals within the plot

Python Data Plotting and Visualisation Extravaganza 6

Figure 3: Surface plot from irregularly sampled data created with Mayavi from
script in Fig. 4.

e [S50 Surfaces
regions of equal values in a 3D space are represented as (partly translucent)
2D membranes

e Colour Shading
using colour encoding on a surface to indicate a value

e (Cutting Planes
using (movable) planes cross-secting a volume to render the “inside” of a volume
on it

o Stream Lines
showing virtual paths of a number of particles as if they were moved through
space by the forces of a field

3.1 Mayavi

Mayavi [14] is today — just like Chaco — a highly sophisticated plotting tool built
on top of the Enthought Tool Suite and Traits, and also supported by Enthought.
For the 3D rendering purposes it uses TVTK, a Pythonic API to the Visualization
Toolkit (VTK), which can be considered as being one of the de-facto tools for 3D
data rendering.

Mayavi features all the techniques mentioned above and is particularly well suited
for these tricks. For multi-dimensional plotting in scientific applications Mayavi is
a tool definitely worth evaluating, and will probably score at least among the first
places in any evaluation for Python based tools. A simple sample plot is shown in
Fig. 3 with the corresponding script in Fig. 4.

N =

0 N o 1~

10
11

13

15
16

18
19

21
22
23

25
26
27

Python Data Plotting and Visualisation Extravaganza 7

from enthought.mayavi import mlab
import numpy

Create data with x and y random in the [-2, 2] segment, and z a
Gaussian function of x and y.
numpy . random. seed(12345)

X = 4 x (numpy.random.random(500) -
y = 4 x (numpy.random.random(500) -

)

0.5
0.5)

def f(x, y):
return numpy.exp(-(x *x 2 + y *x 2))

z = T(x, y)

Create a figure.
mlab.figure(1l, fgcolor=(0, 0, 0), bgcolor=(1, 1, 1))

Visualize the points.
points = mlab.points3d(x, y, z, z, scale_mode="none’, scale_factor=0.2)

Create and visualize the mesh.
mesh = mlab.pipeline.delaunay2d(points)
surface = mlab.pipeline.surface(mesh)

Set viewing direction/distance and show.
mlab.view(47, 57, 8.2, (0.1, 0.15, 0.14))
mlab.show()

Figure 4: Example of a surface plot from irregularly sampled data using Mayavi.

3.2 Visual Python

Visual Python [15] — or short VPython — is actually not a plotting tool. VPython is
a tool that aims at making it “easy to create navigable 3D displays and animations,
even for those with limited programming experience.” It is originally developed by
David Scherer and now for several years maintained by Bruce Sherwood. It is mostly
used for educational purposes (at universities) for teaching without the need to get
deeper into programming.

And it was exactly this fact of ease of use that has helped the author many times
to “knock up” easily visualisation tools to gain better insight into multi-dimensional
data sets. Particularly for two reasons:

1. Tt is “easy as” to come up with a fast, hardware accelerated visualisation.

2. As it is not “plotting” in the general sense, one has got more influence on the
exact representations.

Some of the data sets faced were dealing with colour spaces, often encoded with
three channels (e.g. RGB). This way objects for colour transformations could be

O 0 ~N o

10
11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27

29
30
31

33
34
35

Python Data Plotting and Visualisation Extravaganza 8

import visual
import numpy

SIZE = 4

class PointCloud(object):
def __init__(self):
self.iterator = None
self.balls = numpy.zeros([SIZE] * 3, dtype=object)
for x in range(SIZE):
for y in range(SIZE):
for z in range(SIZE):
coords = numpy.array([x, y, z], dtype=float)
new_sphere = visual.sphere(pos=coords,
radius=0.25,
color=tuple(coords / (SIZE - 1)))
self.balls[x, y, z] = new_sphere

def update_balls(self):
for x in range(SIZE):
for y in range(SIZE):
for z in range(SIZE):

offset = numpy.random.normal(loc=0.0,
scale=0.01,
size=3)

pos = self.balls[x, y, z].pos

self.balls[x, y, z].pos = pos + offset

def run(self):
for i in range(10000):
self.update_balls()

if __name__ == '__main__":
foo = PointCloud()
foo.run()

Figure 5: Example simulating a Brownian point cloud using VPython.

assigned directly the appropriate colour (3D) to points in 3D space, yielding a 6D
space that was to explore and analyse (see some samples in Fig. 6). VPython renders
fast ... very fast! With the help of Python bindings to OpenCV [16] and NumPy
it was possible to capture and analyse frames off a web cam every 1-2 seconds, and
display three dimensional colour space distributions (histograms) live. The scene
can be rotated, zoomed and panned with no visible performance impact during this
live process.

During simulations for example it is possible to update the pos attribute of
rendered objects, and without further ado VPython would reposition and update
the scene with minimal time impact on the computation. This even works very well

Python Data Plotting and Visualisation Extravaganza 9

Figure 6: Some sample plots using VPython. (top left) Colour shifts through arrows
(quiver plot). (top right) Cubic point clouds of interpolation volume and data
points. (bottom) Colour measurement values in RGB space with measurement errors
indicated through ellipsis sizes.

with scenes containing more than 5000 nodes rendered as spheres in a cubic mesh.
Another very nice feature is that a POVray export module is available for
VPython. With this one 3D scenes can be rendered in much superior quality over
the raw OpenGL window by ray tracing output for highest publication quality ren-
dering. The POVray output is not 100 % feature complete to VPython, but it does
handle the basic object geometries very reliably and well.
The biggest drawback currently is that VPython is not installable on recent

Python Data Plotting and Visualisation Extravaganza 10

versions of Python, as a change in Python 2.6.3 has introduced a compatibility
problem with all stable versions of Boost.Python, which are needed to bind the
native C+-+ code base to the Python API. Future versions of the Boost libraries
(> 1.40) or Python (> 2.6.4) may fix this problem.

3.3 Mayavi “visual” Module

VTK through TVTK features similar possibilities to render 3D objects, as VPython
does. A first attempt of a compatibility module enthought.tvtk.tools.visual has
been made by Raashid Baig, a student of Prabhu Ramachandran, the original author
of Mayavi. Some aspects of VPython are covered by this visual module due to the
attempt to retain the API.

This visual module therefore can partly be used as a replacement for VPython.
But of course one must be aware of the differences:

e Once rendered, it is just as fast as VPython in the direct mouse interaction
with the scene, but rendering can be a lot slower, particularly when using the
default wzWindows GUI back end. This can be partly improved by switching
to the @t/ back end (by setting the environment variable ETS_TOOLKIT to the
value of qt4).

e The compatibility API is not yet complete, and some things are handled dif-
ferently.

e The implementation was developed with compatibility of VPython 3.x (current
is version 5.x).

e Range checking through the “traits model” (a trait is a type definition that
can be used for normal Python object attributes, giving the attributes some
additional characteristics) based approach imposes some not so sensibles lim-
itations to object sizing.

e One can use the very convenient “Iraits” based GUI dialogues to alter object
properties.

e The implementation of the module in visual.py is quite easy to understand
and extend.

e The Mayavi visual module does currently not perform all kinds of wild card
imports internally (Which is a good thing! The visual name space is “polluted”
with wild card imports of numpy and math.).

Python Data Plotting and Visualisation Extravaganza 11

from enthought.tvtk.tools import visual
Rest of class definition clipped ...

def run(self):
self.iterator = visual.iterate(30, self.update_balls)
visual.show()

Figure 7: Adaptations to imports and the run() method from listing in Fig. 5 for
the Mayavi visual module.

3.4 Honorary Mentions

Grand dad Gnuplot is also capable of plotting in 3D to some extent. But that is
mainly reduced to some rather simple surface plots or curves and scattered points in
3D. It is therefore not further discussed here. The access to Gnuplot’s 3D features
works the same way just using the Gnuplot.py bindings as used for 2D, just the
usual 3D features (e. g. “splot”) are used.

4 Conclusion

This paper shows by no means an exhaustive picture of plotting tools. But it shows
that data plotting and visualisation, particularly for live plotting, is possible for
two and more dimensions. The tools presented give some good examples for people
who want to engage in scientific data plotting and visualisation, and the features
discussed just barely scratch the surface of what is possible. Everybody has to
evaluate and study each tool for personal needs to come up with a good solution for
the current problem at hand. However, all of the discussed tools are worth keeping
in one’s personal “tool chest” for the point of time when they become useful.

The newer and more fully featured plotting tools (matplotlib, Mayavi, Chaco)
commonly run within the same process, and they can be embedded within other
(GUI) applications. Unfortunately these features come at a cost by introducing
further steps in order to make them “play nice” with the general core application.
This is also mainly one of the reasons why the classics as Gnuplot still have a very
strong stand in the scientific community where the goal is functionality over “pretty
applications.”

All the discussed tools in this paper (as well as Chaco) provide the feature
to export rendered frames to image files. These can be used for documentation
purposes, or to produce more advanced output compilations in the form of movie
sequences compiled from them.

Python Data Plotting and Visualisation Extravaganza 12

References

[1] J. K. Philipp, Gnuplot in Action: Understanding Data with Graphs. Manning
Publications, 2009.

[2] “Gnuplot Homepage,” http://www.gnuplot.info/.

[3] M. Haggerty, “Gnuplot.py Web Site,” http://gnuplot-py.sourceforge.net /.

[4] J. Hunter, “matplotlib Project Web Site,” http://matplotlib.sourceforge.net /.
[5] “SciPy’s matplotlib Cookbook,” http://www.scipy.org/Cookbook/Matplotlib/.

[6] T. E. Oliphant, Guide to NumPy, T. E. Oliphant, Ed. Trelgol Publishing,
2006.

[7] R. Ihaka and R. Gentleman, “R: A language for data analysis and graphics,”
Journal of Computational and Graphical Statistics, vol. 5, pp. 299-314, 1996.

[8] “R Main Project Web Page,” http://www.r-project.org/.
[9] “RPy Project Web Site,” http://rpy.sourceforge.net/.
[10] “Chaco Project,” http://code.enthought.com/projects/chaco/.

[11] T. Vaught and E. Jones, “Enthought Scientific Computing Solutions, Inc.” http:
/ /www.enthought.com/.

[12] “SciPy — Scientific Python Project,” http://www.scipy.org/.
[13] “GracePlot Web Site,” http://graceplot.sourceforge.net /.

[14] P. Ramachandran and G. Varoquaux, “Mayavi Project,” http://code.
enthought.com/projects/mayavi/.

[15] B. Sherwood and D. Scherer, “Visual Python Project,” http://vpython.org/.

[16] “OpenCV Project,” http://opencv.willowgarage.com/.

