
The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 1 -

Implementing Zero-Knowledge Authentication with Zero Knowledge

(ZKA_wzk)

Lum Jia Jun, Brandon

Temasek Polytechnic

lumjjb@gmail.com

Abstract

A practical web/python implementation of Zero-Knowledge Authentication protocol without

any prior knowledge of the concept of Zero-Knowledge Proof.

The Zero-Knowledge Proof is a concept used in many cryptography systems. It allows a

party to prove that he/she knows something (i.e. credential), without having to send over the

value of the credential. In this implementation, it will be used to prove the password of the

user without sending over the actual password. The system also allows for no password

hashes to be stored on the server.

The purpose of the implementation is to make implementing the Zero-Knowledge Proof

Authentication portable and easily customizable. This is achieved by using python based

scripts in web applications to simulate the protocol.

1. Introduction

This section will cover the various background knowledge and reasons relating to the paper.

This covers concepts such as Zero-Knowledge Proof and several current configurations of

corporate sites.

1.1. What is Zero-Knowledge Proof

Zero-Knowledge proof is a much popular concept utilized in many cryptography systems. In

this concept, 2 parties are involved, the prover A and the verifier B. Using this technique, it

allows prover A to show that he has a credential (for example, a credit card number), without

having to give B the exact number. The reason for the use of a Zero-Knowledge Proof in this

situation for an authentication system is because it has the following properties:

• Completeness: if the statement is true, the honest verifier (that is, one following the

protocol properly) will be able to prove that the statement is true to an honest verifier

everytime.

• Soundness: if the statement is false, it is not possible (with a very small chance) to

fake the result to the verifier that the statement is true.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The Python Papers Anthology

https://core.ac.uk/display/230921466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 2 -

• Zero-knowledge: if the statement is true, the verifier will not know anything other

than that the statement is true. Information about the details of the statement will not

be revealed.

For a more detailed explanation of the concept of Zero-Knowledge Proof, you may refer to

the paper titled “How to Explain Zero-Knowledge Protocols to Your Children” (Quisquater

and others, 1990)
1
.

1.2. Rising use of web applications

There has been an increase of usage of web-based applications as compared to 10 years ago.

This is mainly due to several advantages of web applications that they provide over

traditional software [based on the article (Yadav 2008)
2
]:

• Compatibility with devices, web browsers & operating systems

• Capability of performing tasks which were done using host-based software

• Development of new web technologies, languages and procedures has given way to

the development of new dynamic applications (i.e. AJAX)

• Easy to use and are more presentable and attractive

• Does not require any additional hardware or software (installation, etc.) configuration

• Data security is there as it is stored in one central server and not individual computers

• A custom build web application certainly costs less than the off the shelf applications

and provides greater efficiency and reduced maintenance

That given, it is important for us to focus on how to improve the security of web-based

applications, and maintain the ease of use to develop and implement them.

1.3. Security issues relating to web applications

There are many vulnerabilities and attack vectors for web-based application. This includes

both web-specific (i.e. Cross-Site Scripting), as well as generic (i.e. Password Sniffing), all

of which leave the user susceptible to being victims of identity theft.

“Almost 80 percent of more than 3,000 software security flaws publicly reported so far this

year have been in Web technologies such as Web servers, applications, plugins, and Web

browsers. “ - According to a report (Vijayan 2009) by application security vendor Cenzic
3

Also, relying on service based security solutions such as SSL may fully protect an

application due to the introduction of new web concepts such as cloud computing and the

growing complexity of attack vectors.

1
 "How to Explain Zero-Knowledge Protocols to Your Children." Advances in Cyptology - CRYPTO '89. Jean-

Jacques Quisquater, Louis C. Guilou, Thomas A. Berson, 1990. 628-631.
2
 Yadav, Sujeet. Rising Popularity of Web Application Development . August 28, 2008.

http://ezinearticles.com/?Rising-Popularity-of-Web-Application-Development&id=1449765
3
 Vijayan, Jaikumar. Web application security is growing problem for enterprises. November 11, 2009.

http://www.infoworld.com/d/security-central/web-application-security-growing-problem-enterprises-843

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 3 -

“Web security, application security, software security, or whatever you want to call it will

soon come into its own. It will no longer be acceptable, feasible, or even seriously

suggestible to run for cover by simply adding more firewalls and SSL. Things like “the

cloud” will help make this fail plain as day.” - Jeremiah Grossman (2010)
4

1.4. Current web application login process

The most common login system used in web application currently is through the use of a

form submission of a username and passwords enabled with SSL communication. In more

secure systems, the password is hashed using a javascript-based md5 hash before sending it

over.

Fig. 1.1. Traditional Authentication System

4
 Grossman, Jeremiah. Be Ready -- With Answers. February 2, 2010.

http://jeremiahgrossman.blogspot.com/2010/02/be-ready-with-answers.html

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 4 -

However, by using this traditional authentication systems, there are many problems which

will arise such as sniffing and hash attacks. These problems will be described in the Section

2: Problems to Solve.

2. Problems to solve

This section covers the various problems which are prevalent that leads to the

implementation of the ZKA_wzk.

2.1. Problem of the usage of unsecure wireless networks

Today, the usage of wireless hotspots is growing in popularity. Though these services

provide convenience and ease of access, they are, more often or not, unsecure in terms of

transmission.

"I think a lot of people don't realise that using public Wi-Fi that's insecure is pretty much like

writing your bank details onto a postcard and popping it in the post and being surprised that

someone's read it." - Tom Illube (2009), chief executive of internet security firm Garlik
5

Therefore, users may be susceptible to password sniffing and may end up not realizing the

‘full potential’ of these services. The existent of non-encrypted transmission of data through

these mediums result in the existence of several problems such as password sniffing. Please

refer to Section 2.2: Problem of sending over password hashes.

2.2. Problem of 3G Networks

Another alternative which many people rely on today is 3G, broadband on mobile

technology. Although there protection in the form on encryption using the 128-bit A5/3

encryption algorithm, which is implemented across all 3G networks.

However, the Isreal’s Wizmann Institute of Science (Lai 2010) has found a way to crack this

algorithm
6
, thus making it unsafe and susceptible to attacks, likewise to unsecured wireless

access points.

5
 Arthur, Charles. Watchdog finds public Wi-Fi hotspots open to hackers. October 29, 2009.

http://www.guardian.co.uk/technology/2009/oct/29/wifi-watchdog-hotspot-security-vulnerable
6
 Lai, Richard. 3G GSM encryption cracked in less than two hours. January 15, 2010.

http://www.engadget.com/2010/01/15/3g-gsm-encryption-cracked-in-less-than-two-hours/

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 5 -

Thus, due to the vulnerability in this system, there is a need to create a more secured

authentication system to prevent theft of passwords.

2.3. Problem of sending over password hashes

The issue of sending over password hashes arises from the fact the information sent over is all

that is necessary for a hacker to masquerade as a legitimate user. For example, in a normal

authentication, the user sends over his username and hashed password. What happens is that if a

hacker is able to sniff the username and hashed password, he will be able to login as the user at

any point in time. However, a more pressing issue with sending over password hashes revolves

around the insecurity of revealing a plaintext password.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 6 -

Fig. 2.2. Example of the problem of sending over password hashes

Through sniffing the network, the attacker will be able to obtain the user’s password hash.

This becomes malicious when the user uses the same password for different services. (I.e.

Username: tompj, E-Mail: tompj@gmail.com, etc.)

3. What is ZKA_wzk?

This section will contain information about ZKA_wzk, the logic behind it and how the

process changes with the implementation of it.

3.1. Summary of usage of ZKA_wzk

Zero-Knowledge Authentication with zero knowledge (ZKA_wzk) is as created framework

which allows companies to easily implement the use of Zero-Knowledge Authentication,

which allows for secure login without the need of transmitting the password or hash over the

network. This system also allows for the server to prevent storage of password hashes in the

database. Thus, if a hacker is able to obtain the database, he/she will still not be able to crack

the passwords. The algorithm behind the system is based on the Zero Knowledge Proof of

Knowledge (ZKPoK) about Discrete Logarithms – Knowledge of Discrete Logarithms. This

is based on the problem of Discrete Logarithms.

Please refer to the thesis “Group Signature Schemes and Payment Systems Based on the

Discrete Logarithm Problem” by Jan Camenisch (Camenisch 1998)
7
 for more information on

the algorithm used.

3.2. ZKA_wzk Logic Summary

The ZKA_wzk logic, as mentioned will be based on the ZKPoK Sigma Protocol. The

following is a step-by-step procedure of the protocol, using SPK1{(x) : Y = g0
x
} (a).

Initialization:

1. Given group G. Let g0, g1 be random elements of G.

2. Let the public key be zkapk ={G, g0}.

Registration Process:

1. User inputs username and password.

2. The user hashes the password with Hash function, H and calculates x = H(password).

3. The user then computes Y = g0
x

4. The user sends (username, Y) to the server

7
 "Group Signature Schemes and Payment Systems Based on the Discrete Logarithm Problem." Chur: Jan

Leohard Camenisch, 1998.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 7 -

5. The server stores (username, Y) into the database.

Authentication Process:

1. The server generates a random one-time token a and stores it and sends it to the user.

2. User inputs username and password

3. The user hashes the password with Hash function, H and calculates x = H(password).

4. The user then computes Y = g0
x

5. The user generates random rx ϵ G and calculates T1=g0
rx.

6. The user then calculates c=H(Y,T1,a).and zx = rx – cx

7. The user sends (c, zx) over to the server

8. The server calculates T1=Y
c
g0

zx and verifies that c=H(Y,T1,a)

9. If successful, user is authenticated.

3.3. How does it work?

The algorithm above is based on a non-interactive sigma protocol. This is a technique

commonly used to prove the knowledge of a variable, which in this case, is the password.

In this explanation of ZKA_wzk, let us take the user who is logging in to be the prover and

the server verifying the login to be the verifier.

To start off, here are some of the explanation of the components in the algorithm:

Component Description

G This is a cyclic group. This group contains a set of numbers which is based on

a formula. This is a public group which will be available to both prover (user)

and verifier (server).

g0 A generator of the group G. It is an element of the group G. This is a public

variable which will be available to both prover (user) and verifier (server).

x The hash of the password that the user inputs

Y The pseudonym of the user. This is used for the verifier in the calculation of

the proof of knowledge.

a The random token generated for each login attempt

T1,rx,zx,c, Other miscellaneous variables which are used in the calculation.

Legend:

 Public Values - Known to both the user and the server

 Server Secret Values – Known to the prover, but can be derived from accurate credentials

 User Secret Values – Known only to the user

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 8 -

With that knowledge, here is how the algorithm will work. To keep things simple, you may

think of G as a group of natural numbers from {1,2,3,4...}, and g0 as a randomly generated

number of that group, 5. However, in the algorithm, cyclic groups are used, making it

difficult to derive the calculation of a discrete logarithm (i.e. finding x where Y=g0
x
).

The 3 main processes are:

• Initialization

• Registration

• Authentication

Initialization:

This is where the public key is created. Simply, the value g0 is generated.

For simplicity, let g0=5.

Registration:

This is where the pseudonym of the user is created. This is simply done by hashing the user’s

password into x, and calculating Y=g0
x
.

For simplicity, let us assume the password is abc and the hashed value is 6.

Thus, x=6 and Y= g0
x
 =5

6
. Therefore, Y=15625. The pseudonym Y is then passed to the

server and stored.

Authentication:

Before proceeding, we may now look at what each party has.

Prover (User) Verifier (Server)

g0 g0

password Y

In the following, let H be a hash function, i.e. SHA1. For simplicity reasons once again.

Please assume that all the following variables are just ordinary natural numbers.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 9 -

Authentication Process

No User (Prover) Verifier (Server)

1 Generate random a

2 Receive a � Send a

3

4 Calc. x=H(password)

5 Calculate Y=g0
x

6

7 Randomly generate rx

8 Calculate T1=g0
rx

9 Calculate c=H(Y,T1,a)

10

11 Calculate zx=rx - cx

12 Send c, zx � Receive c, zx

13 Calculate T1=Ycg0
zx

14 Check if c= H(Y,T1,a)

The ‘magic’ in this formula happens in step no. 14. Notice how T1 is calculated without the

knowledge of the randomly generated secret. rx?

If we look at the formula of T1 in step 8 and step 13

Step 8: T1=g0
rx

Step 14: T1=Y
c
g0

zx

We will have to prove that

g0
rx= Y

c
g0

zx

With reference to step 5 and step 11, we know that

Step 5: Y=g0
x

Step 11: zx=rx – cx

Therefore, by performing a simple substitution, we can prove that

g0
rx

= Y
c
g0

zx

g0
rx

= (g0
x
)
c
g0

 (r x-cx)

g0
rx

= g0
cx

g0
 r x-cx

g0
rx

= g0
cx + r x-cx

g0
rx

= g0
r x

(Proven)

With all 3 elements, we can verify that c=H(Y,T1,a), thus proving that user knows x

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 10 -

3.3. ZKA_wzk Architechture

Registration Process:

Fig. 3.1. Workflow of the login process

Based on this registration process, we can see that the password hash or password is not

stored on the database at all. Even though attackers manage to obtain the username and Y,

they are not able to compute the password hash, x, based on the problem of discrete

logarithms.

Authentication Process:

The user firsts requests for the login page, i.e. login.php. This page will then pass back a

one-time token a, which is stored in the server database (for that session), and passed back to

the user. This will be used in the hash later on to prevent using the same, valid credentials.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 11 -

Fig. 3.1. Workflow of the authentication process

From this we can also see that whatever is sent over, c & zx, has no meaning to the attacker.

Even if he understands the formula, it is impossible to reverse a hash and obtain x from zx.

Thus, we can see that the user can easily prove his/her identity without having to send over

any confidential data.

4. Why ZKA_wzk?

This section covers benefits of ZKA_wzk, such as the security, ease of implementation and

comparisons to other authentication systems.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 12 -

4.1. Security of ZKA_wzk

ZKA_wzk is secure for several reasons. This includes:

• Data transmitted over the network from authentication is useless to attackers

The data transmitted over the network, (c, zx), are not usable by the hacker to help

fake an identity

• Prevention of obtaining password hashes or plaintext passwords from sniffing the

network

Obtaining any information being sent over the network, namely, Y, c and zx, will not

allow the attacker to be able to crack the plaintext password of the user.

• Prevention of similar values used through one-time tokens

Through the use of a one-time token in the hashing function, the information sent

over is only valid for once, and thus will not be usable by attackers who intercept the

information.

4.2. Comparison of ZKA_wzk with other alternative authentication systems

ZKA_wzk has benefits over other authentication systems due to the fact that there is no

additional hardware required, as compared to systems such as biometrics and token-based

authentication.

For example, biometric authentication systems rely on an external biometrics reader which

not all users may have. Additionally, it has a certain level of uncertainty in its use and often

requires a two factor authentication, which still requires using a password.

As for token-based/donger-based authentication, it requires additional hardware and can

often result in identity theft from the lost of the identification device if not implemented

correctly.

5. The Framework

This section covers how the structure of ZKA_wzk, its components, and how it can be used

in web applications.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 13 -

5.1. The Infrastructure

Similar to other web applications, the platform required for the ZKA_wzk is similar to that

of a normal web application. This would consist of a client and a server. An example would

be as of below. (i.e. an apache web server and a MySQL database using PHP pages).

Fig. 5.1. The base infrastructure

Client

As the objective is to prevent the transfer of a password over the network, pre-processing

must be done on the client side to calculate the values (c and zx) and send them over. In order

to do this, 3 components need to be present. We shall refer to them as the:

• Interface

• Processor

• Algorithm

In this case, they are a Web Browser, a Java Applet and Python Scripts.

Fig. 5.2. The client overview

Web Server

Python Scripts

Web Pages

Web Browser

Java Applet

Python Scripts

Database

Client

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 14 -

5.2. About the code

There are several things to cover in the framework, which are:

• Python scripts

• Java Applet Processor

• Running the process through a web browser

For those who would like to make modifications to the algorithms, changes can be made to

the python scripts. However, the way the framework is made is that the client can directly

run the python scripts through javascript via the java applet, and post the results to the

server, where they are input to the script to be processed. Thus, allowing it to be used

without prior knowledge of the formulae.

Python Scripts

There are several python scripts, with each representing an individual function required in

the process of the initialization/authentication. This includes:

• initialize.py – initializes generator g0

• generate_a.py – generates random token a

• register.py – calculates value Y based on password provided

• userauth.py – calculates c and zx to be sent over based on user input and token

• vertifyuser.py – calculates and checks the validity of the authentication

Java Applet Processor

The java applet is basically used as a tool to download the python scripts automatically so

that it can be used by the web browser via javascript. This is used to make the download and

running of the script seamless.

Running the process through a web browser

Through the use of the java applet, they python scripts can be run and controlled easily via

javascript. This allows for easy integration and smooth integration onto web applications.

5.3. How to modify the algorithm

To modify the algorithm, the python script files can be edited. The python binding pypbc

and its dependencies will be required. The source contains a modified version which

allows conversion of the elements to a readable/storable output.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 15 -

Example: userauth.py

At the start of the script there will be a variable called stored_params. This defines

the group G.

 stored_params = """type a

 q

87807107996633125224377819847540498158068831994142082110286

5339926647563088022295...

...

...

 exp2 159

 exp1 107

 sign1 1

 sign0 1

 """

The values can be stored and read in later. This is used to read in arguments as well

as static values such as g0.

 _g0buf="56:88:1:174:167:6:55:...”
 _g0 = Element.from_bytes(_g0buf,pairing, G1)

_abuf=sys.argv[1]

 _a = Element.from_bytes(_abuf,pairing, Zr)

The algorithm can be modified by editing the arithmetic statements

#Step 4 - calculate Y

 _Y=pow(_g0,_x)

 #Step 5

 #Generate rx

 _rx = Element.random(pairing,Zr)

 #Calculate T1

 _T1=pow(_g0,_rx)

The output can then be printed out. This is to allow the variables to be passed from

client to server and vice versa, as well as to store the static variables.

 print(Element.to_bytes(_c))

 print(Element.to_bytes(_zx))

5.4. How to use it

In the authentication process, scripts will have to be processed on both the client and

server side. Below shows how these scripts can be run in very brief details. The source

files will provide a working example to start with.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 16 -

Server-Side

On the server side, the python scripts can be run via a web application. For example,

using PHP with the variables from authentication:

Register

$input = "./register.py "."'".$pass."'";

 exec($input, $result,$rtv);

 $_Y=$result[0];

 include("config/mysql.php");

 $sql = "SELECT username FROM `ZKAwzk`.`Users` WHERE

Username = '$user'";

 $result = mysql_query($sql, $link);

 mysql_close($link);

Generate token (to be placed on the login page/frame)

exec("./generate_a.py", $result,$rtv);

echo "

Value of token (a):
$_a";

Authenticate

$input = "./verifyuser.py "."'".$_Y."'"." "."'".$_a."'"."

"."'".$_c."'"." "."'".$_zx."'"." ";

 exec($input, $result,$rtv);
print $result[0];

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 17 -

Client-Side

The code can be easily used through having a login form as usual, but adding in

several other variables.

<form name=login method="post" action="authenticate.php">

<input type="hidden" name="_a" value="<?php echo $_a?>">

Username:<input type="text" size="12" maxlength="36"

name="user">

Password: <input type="password" size="12" maxlength="36"

name="pass">

<input type="hidden" name="_c">

<input type="hidden" name="_zx">

</form>

The java applet also needs to be loaded in the page:

<applet name="ZKAapplet"

 code = "ZKA.run.class"

 archive = "applet.jar"

 width = 120

 height = 25 >

 <param name="token" value="<? echo $_a?>"/>

 </applet>

Next, to run the script with the form values, a javascript call can simply be done:

<script type="text/javascript">

 document.ZKAapplet.authenticate(document.login.user.value

,document.login.pass.value);

</script>

Thereafter, the values can be set and posted via the form:

<script type="text/javascript">

 document.login._c.value = document.ZKAapplet._c;

 document.login._zx.value = document.ZKAapplet._zx;

 document.login.pass.value="";

 document.login.submit();

</script>

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 18 -

6. Conclusion

Besides providing a much higher level of security to a web application, there are many other

reasons why ZKA_wzk is worth implementing. Firstly, it allows for someone with no

knowledge on how the protocol works to take advantage of such a concept. Also, through the

use of embedded applets, the system is basically transparent to the user. Finally, the

simplicity and ease to implement the system is definitely a value-add and a reason to have

this in any web application.

7. About the author

Brandon Lum Jia Jun is a graduate of the diploma in Cyber and Digital Security/Temasek

Informatics & IT School. Despite only becoming part of the IT industry in 2007, he is an

active member of the security community in Singapore. As a security enthusiast and firm

believer in Open Source technologies, he has helped organize security and open source

seminars and events over the past three years. He is also the recipient of the Lee Kuan Yew

Maths and Science Award.

Brandon has had experience in implementing cryptography systems during a 3-month term

in which he was attached to the University of Wollongong for research under Professor

Willy Susilo. There, he implemented systems based on cryptography techniques such as

Zero Knowledge Proof of Knowledge and BBS+ Signatures.

In addition Brandon is part of the team that emerged champion and top offensive team at a

security based competition, Syscan ’09 CTF (Capture The Flag). He is also the team lead in

a project which has achieved the SiTF and APICTA Award and the team leader of the

champion team of a Secure Coding Competition, HelloSecure@SG. He has also obtained the

Singapore Top IT Developers Award, which is given to the top developers in Singapore.

8. Acknowledgement

I would like to give special thanks to my supervisors, Professor Willy Susilo, A/Professor Yi

Mu, and Dr. Allen Au for giving me the chance to learn and understand the Cryptography

concepts during my time in the University of Wollongong (UoW). I would also like to thank

Temasek Polytechnic Informatics & IT School for providing me the opportunity for the

attachment to UoW.

The Python Papers Monograph 2: 9

Proceedings of PyCon Asia-Pacific 2010

 - 19 -

9. References

Arthur, Charles. Watchdog finds public Wi-Fi hotspots open to hackers. October 29, 2009.

http://www.guardian.co.uk/technology/2009/oct/29/wifi-watchdog-hotspot-security-

vulnerable (accessed December 27, 2009).

Grossman, Jeremiah. Be Ready -- With Answers. February 2, 2010.

http://jeremiahgrossman.blogspot.com/2010/02/be-ready-with-answers.html (accessed

February 7, 2010).

"Group Signature Schemes and Payment Systems Based on the Discrete Logarithm

Problem." Chur: Jan Leohard Camenisch, 1998.

"How to Explain Zero-Knowledge Protocols to Your Children." Advances in Cyptology -

CRYPTO '89. Jean-Jacques Quisquater, Louis C. Guilou, Thomas A. Berson, 1990. 628-631.

Lai, Richard. 3G GSM encryption cracked in less than two hours. January 15, 2010.

http://www.engadget.com/2010/01/15/3g-gsm-encryption-cracked-in-less-than-two-hours/

(accessed February 20, 2010).

Vijayan, Jaikumar. Web application security is growing problem for enterprises. November

11, 2009. http://www.infoworld.com/d/security-central/web-application-security-growing-

problem-enterprises-843 (accessed December 31, 2009).

Yadav, Sujeet. Rising Popularity of Web Application Development . August 28, 2008.

http://ezinearticles.com/?Rising-Popularity-of-Web-Application-Development&id=1449765

(accessed December 28, 2009).

