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Abstract
This  manuscript  describe  BeSSY,  a  function-centric  language  for  formal  behavioural 
specification that requires no more than high-school mathematics on arithmetic, functions, 
Boolean algebra and sets theory.  An object can be modelled as a union of data sets and 
functions whereas inherited object can be modelled as a union of supersets and a set  of 
object-specific functions. Python list and dictionary operations will be specified in BeSSY 
for illustration. 

1. Introduction
Formal methods are mathematically-based methods to define the actions of a system. The 
result of formal methods is a formal specification of a system which can then be verified for 
consistency using the rules of mathematics. A specification of a system is a description of 
what a system should do without going into details of how the system does it (Spivey, 1992; 
Woodcock et al., 2009). For example, the specification of all sort algorithms is the same with 
the end result being an ascending or descending sequence although the implementation and 
performance vary greatly. This suggests that a specification deals with the destination, not 
the  journey,  and  certainly,  no  optimisation  involved.  Putting  in  layman's  terms,  a 
specification is to say “I am not interested in how you do it but this is what it must do”.

The formal aspect of formal specification is synonymous with un-ambiguity. That is to say, a 
formal specification cannot be ambiguous or implying more than one interpretation. This 
suggest  that  natural  language  cannot  be  the  basis  of  formal  specification  as  a  natural 
language statement can have multiple interpretations based on context (such as situation, 
cultural context and body language), otherwise we will not have mis-communication or mis-
interpretation of another person's intentions. The lack of the “un-writable” aspects of natural 
language communication such as body language is  one of the main reasons that  written 
communication such as emails and letters are easily mis-quoted or mis-interpreted. 

In contrast,  the language of mathematics is much more precise and less ambiguous than 
natural  language.  It  is  the  precision  and  un-ambiguity  of  mathematical  statements  that 
underpins the formal aspect of formal methods. Ironically, it is also this nature of precision 
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in  mathematics  that  makes  the  mastery  of  mathematics  difficult  –  there  is  no  veil  of 
ambiguity and benefit of doubt to cushion against any errors in expression. 

This is made worse by the general sense of “unfriendliness” and difficult type-setting of 
mathematical notations (Clarke et al., 1996; Sobel, 1996). These difficulties are emphatically 
stated in Bowen and Hinchey (1995) when they exclaimed that “many nonformalists seems 
to  believe  that  formal  methods  are  merely  an  academic  exercise  –  a  form  of  mental  
masturbation that has no relation to real-world problems.”

A number  of  student/instructor  surveys  on  formal  methods  in  the  1990s  revealed  that 
students understood the importance of mathematical formalism in software engineering but 
were concerned about its adoption and utility in the industry (Palmer and Pleasant, 1995; 
Sobel, 1996). 

Despite  the  inherent  difficulties,  formal  methods  of  specification  are  slowly  gaining 
acceptance (Sharpe, 2004) over the last decade through a number of success stories (Hinchey 
and Bowen, 1999) in industrial context (Berry, 2008; Ciapessoni et al., 2002). For example, 
formal methods have been used in the following situations: to verify compliance of floating-
point operations in hardware (Russinoff,  1998; O'Leary et  al.,  1999), real-time CORBA-
based  application  (Rossi  and  Mandrioli,  2004),  and  memory  allocation  in  C  language 
compilation  (Leroy  and  Blazy,  2008).  Sobel  and  Clarkson  (2002)  did  a  case-controlled 
experiment comparing software implementations and found that the group of students using 
formal methods achieved more correct implementation than the group that did not use formal 
methods. A survey by Woodcock et al. (2009) reveals an improvement of software quality 
with no cases reporting a decrease in quality through the use of formal methods.

These successes do not imply that formal methods are easy to learn. The learning curve of 
formal methods has always been steep and much of it is to achieve competency with the 
notations (Chiang, 2004). This is supported by Bowen and Hinchey (2005) in their  First  
Commandment, “Thou shalt choose an appropriate notation.” They propose that any forms 
of mathematical and symbolic obfuscation should be avoided. 

This manuscript describes the language for a behavioural specification system (abbreviated 
to  BeSSY)  which uses  no  more  than  high-school  mathematics  (arithmetic,  sets  theory, 
functions, and Boolean algebra) as a basis to describe the behaviour of software systems. 
Functions and logic (in the form of Boolean algebra) is an important aspect of computer 
programming; hence, is a bridge to convert a specification to skeletal source codes. 

The rest of this manuscript are organized as follow: Section 2 describes the mathematical 
aspect of BeSSY language while Section 3 illustrates the use of BeSSY language through 
specifying the operations of Python list and dictionary. Section 4 concludes this manuscript 
with a general discussion of BeSSY and future work.
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2. The BeSSY Language
BeSSY  is  a  function-centric  language  –  every  operation  is  a  function.  Other  terms 
synonymous with “function” includes operator, transformation, mapping etc. The concept of 
function  is  central  and  fundamental  in  mathematics  and  is  also  a  crucial  concept  in 
programming. The main difference between a programmatic function and a mathematical 
function  is  that  a  programmatic  function  is  always  pre-fixed  (such  as  <operator> 
<operand(s)>) whereas a mathematical function can be pre-fixed (such as Σx), in-fixed (such 
as 8+4), or post-fixed (such as 4!). 

Strictly, BeSSY only allows pre-fixed function but since it is more natural to write addition 
as an in-fixed operator without any detriment to the mathematical rigor, a list of arithmetic 
equivalence rules (Section 2.2) relaxes the requirement of pre-fixing and allows for casting 
specific arithmetic operators from in-fixed form to pre-fixed form as required by BeSSY.

The rest of this section contains the definition of BeSSY language.

2.1. Logical True and Holding Variable

Definition 1.1: The term 'true' is used to denote logical true or not numeric zero.

Definition 1.2: The term 'false' is used to denote logical false or numeric zero.

Definition 1.3: A variable, hV, is used to denote a holding variable for the calling function.

For example, given the function y = z2 and z is equal to 5, then the right-hand side (RHS) of 
the equation is evaluated to 25 (52 = 25). The variable, hV, is used to hold the value of 25 to 
transit to the calling equation.

2.2. Arithmetic Equivalence Rules
The following arithmetic equivalence rules are defined to enable the use of natural arithmetic 
expressions,  which  are  in-fixed  operators.  These  natural  arithmetic  expressions  are  re-
composed into pre-fixed function forms, summarized in Table 2.1.

Definition 2.1: Arithmetic equal is defined as a function, =(x, y), where x = y.

Definition 2.2: Material equivalence (usually denoted by the symbol '⇔' or '<=>') is defined 
as a function, ==(x, y), where x and y are equivalent to each other. 

D2.2.1: x <=> y <=> ==(x, y)

Hence, we can re-write Definition 2.1 above as

D2.1.1: =(x, y) <=> x = y
D2.1.2: ==(=(x,y), x=y)
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Definition 2.3: Material implication (usually denoted by the symbol ' ' or '=>') is defined as⇒  
a function, =>(x, y), where x implies y.

D2.3.1: x => y <=> =>(x, y)

Definition  2.4: Arithmetic  addition  is  defined  as  a  function,  +(x,  y),  and  returns  the 
evaluated value to hV,

D2.4.1: x + y <=> +(x, y)
D2.4.2: +(x, y) => =(hV, +(x,y))

Definition  2.5: Arithmetic  subtraction  is  defined  as  a  function,  -(x,  y),  and  returns  the 
evaluated value to hV,

D2.5.1: x - y <=> -(x, y)
D2.5.2: -(x, y) => =(hV, -(x,y))

Definition 2.6:  Arithmetic multiplication is defined as a function, *(x, y), and returns the 
evaluated value to hV,

D2.6.1: x * y <=> *(x, y)
D2.6.2: *(x, y) => =(hV, *(x,y))

Definition 2.7: Arithmetic division is defined as a function, /(x, y), and returns the evaluated 
value to hV,

D2.7.1: x / y <=> /(x, y)
D2.7.2: /(x, y) => =(hV, /(x,y))

Definition 2.8: Arithmetic  exponential  is  defined as  a  function,  ^(x,  y),  and returns  the 
evaluated value to hV,

D2.8.1: xy <=> x ^ y
D2.8.2: x ^ y <=> ^(x, y)
D2.8.3: ^(x, y) => =(hV, ^(x,y))

Definition  2.9: Arithmetic  modulus  is  defined  as  a  function,  %(x,  y),  and  returns  the 
evaluated value to hV,

D2.9.1: x % y <=> %(x, y)
D2.9.2: %(x, y) => =(hV, %(x,y))

Definition 2.10: Arithmetic more than is defined as a function, >(x, y), and returns the 'true' 
to hV if the expression is arithmetically correct or else returns the value 'false' to hV if the 
expression is arithmetically incorrect,
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D2.10.1: x  y <=> >(x, y)≻
D2.10.2: x  y => 'true' = >(x, y)≻
D2.10.3: x  y => =(hV, =('true', >(x, y)))≻
D2.10.4: x  y => =(hV, =('false', >(x, y)))⊁

Definition 2.11: Arithmetic less than is defined as a function, <(x, y), and returns the 'true' to 
hV if the expression is arithmetically correct or else returns the value 'false' to hV if the 
expression is arithmetically incorrect,

D2.11.1: x  y <=> <(x, y)≺
D2.11.2: x  y => 'true' = <(x, y)≺
D2.11.3: x  y => =(hV, =('true', <(x, y)))≺
D2.11.4: x  y => =(hV, =('false', <(x, y)))≮

Definition 2.12: Arithmetic less than or equals (symbolically denoted as ≤ or ) to is defined≦  
as a function, <=(x, y), and returns the 'true' to hV if the expression is arithmetically correct 
or else returns the value 'false' to hV if the expression is arithmetically incorrect,

D2.12.1: x ≤ y <=> x <= y
D2.12.2: x ≤ y <=> <=(x, y)
D2.12.3: x ≤ y => 'true' = <=(x, y)
D2.12.4: x ≤ y => =(hV, =('true', <=(x, y)))
D2.12.5: x  y => =(hV, =('false', <=(x, y)))≰

Definition 2.13: Arithmetic  more than or  equals  to  (symbolically denoted as  ≥ or )  is≧  
defined as a function, >=(x, y), and returns the 'true' to hV if the expression is arithmetically 
correct or else returns the value 'false' to hV if the expression is arithmetically incorrect,

D2.13.1: x ≥ y <=> x >= y
D2.13.2: x ≥ y <=> >=(x, y)
D2.13.3: x ≥ y => 'true' = >=(x, y)
D2.13.4: x ≥ y => =(hV, =('true', >=(x, y)))
D2.13.5: x  y => =(hV, =('false', >=(x, y)))≱

Definition 2.14: Arithmetic not equals to is defined as a function, !=(x, y), where x ≠ y. The 
typographical arithmetic equivalent form is x != y. This function returns 'true' to hV if x is 
not equals to y, or else this function will return 'false' to hV if x is equals to y.

D2.14.1: x ≠ y <=> x != y
D2.14.2: x ≠ y <=> !=(x, y)
D2.14.3: x ≠ y => 'true' = !=(x, y)
D2.14.4: x ≠ y => =(hV, =('true', !=(x, y)))
D2.14.5: x = y => =(hV, =('false', !=(x, y)))
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Definition Mathematical Meaning Function Form Arithmetic Form
2.1 Equals =(x, y) x = y
2.2 Material equivalence ==(x, y) x <=> y
2.3 Material implication =>(x, y) x => y
2.4 Addition +(x, y) x + y
2.5 Subtraction -(x, y) x - y
2.6 Multiplication *(x, y) x * y
2.7 Division /(x, y) x / y
2.8 Modulus %(x, y) x % y
2.9 Exponential ^(x, y) x ^ y
2.10 More than <(x, y) x < y
2.11 Less than >(x, y) x > y
2.12 More than or equal <=(x, y) x <= y
2.13 Less than or equal >=(x, y) x >= y
2.14 Not equals to !=(x, y) x != y

Table 2.1:  Syntactically equivalence rules between arithmetic expression and functional 
form. 

2.3. Set Construction
This section defines the syntactic rules for set construction.

Definition 3.1: A function for set construction, set, is defined as

D3.1.1: A = { x | conditionA | ... | conditionZ} <=> 
A = set(x, conditionA, ..., conditionZ)

D3.1.2: A = { x | conditionA | ... | conditionZ} <=> 
=(A, set(x, conditionA, ..., conditionZ))

D3.1.3: A = { x | conditionA | ... | conditionZ} => 
=(A, =(hV, set(x, 

 conditionA, ..., conditionZ)))

where conditions will be evaluated in the order of appearance and 'x' will be evaluated to 
lowest form.

Definition 3.2: A sequence is a multiset. A multiset is a generalization of set whereby each 
member need not be unique.

Definition 3.3: A function for sequence construction, seq, is defined as
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D3.3.1: A = (x, ..., y) <=> 
A = seq(enum(x, ..., y))

D3.3.2: A = (x, ..., y) <=> 
=(A, seq(enum(x, ..., y)))

D3.3.3: A = (x, ..., y) => 
=(A, =(hV, seq(enum(x, ..., y))))

where

D3.3.4: seq(x, y) != seq(y, x)
D3.3.5: !=(seq(x, y), seq(y, x))

Sequence construction function, seq, can also take conditions as per normal set construction 
and each condition must be fulfilled for each element in the order of enumeration. Each 
element will also be evaluated to lowest form.

D3.3.6: A = (y | memb(y, X) | conditionA | … | 
conditionZ) <=>
A => seq(y, memb(y, X), conditionA, …,

    conditionZ)
D3.3.7: A = (y | memb(y, X) | conditionA | … | 

conditionZ) <=>
=(A, seq(y, memb(y, X), conditionA, …,

    conditionZ))
D3.3.8: A = (y | memb(y, X) | conditionA | … | 

conditionZ) =>
=(A, =(hV, seq(y, memb(y, X), 

conditionA, …,conditionZ)))

Definition 3.3: A function for enumeration, enum, is defined as

D3.3.1: enum(x, y, ..., z) <=> x, y, ..., z
(if x, y, ..., z are not sequences)

D3.3.2: enum(x, y, ..., z) <=> x1, ..., xn, y, z
(if x is a sequence, y and z are not)

D3.3.3: enum(x, y, ..., z) <=> x1, ..., xn, y1, ..., ym, z
(if x and y are sequence, z is not)

D3.3.4: enum(x, y, ..., z) <=> x1, ..., xn, y1, ..., ym, 
 z1, ..., zi

(if x, y, ..., z are sequences)

Hence, enumeration can be seen as a flattening of nested set or sequence.

2.4. Basic Logical and Set Operators
This section defines a list of fundamental logical and set operations.
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Definition 4.1: The logical AND operator (symbolically denoted as ) and equivalent set∧  
intersect or global set intersect (symbolically denoted as ∩) is defined as a function, &. The 
evaluated value is returned to hV.

D4.1.1: x1 ∩ ... ∩ xn <=> &(x1, ..., xn)
D4.1.2: x1 ∩ ... ∩ xn => =(hV, &(x1, ..., xn))

Definition 4.2: The logical  OR operator  (symbolically denoted as  )  and equivalent  set∨  
union  or  global  set  union  (symbolically  denoted  as  )  is  defined  as  a  function,  $.  The∪  
evaluated value is returned to hV.

D4.2.1: x1  ...  x∪ ∪ n <=> $(x1, ..., xn)
D4.2.2: x1  ...  x∪ ∪ n => =(hV, $(x1, ..., xn))

Definition  4.3: The  logical  NOT operator  (symbolically  denoted  as  ~)   is  defined as  a 
function, ~. This operator is also used to describe complement set. The evaluated value is 
returned to hV.

D4.3.1: x' <=> ~(x)
D4.3.2: x' => =(hV, ~(x))

Definition 4.4: The set operator, member of (symbolically denoted as ), is defined as a∈  
function, memb(x, A). This function returns 'true' to hV if x is a member of set A, otherwise 
it returns 'false' denoting that x is not a member of set A.

D4.4.1: x  A <=> memb(x, A)∈
D4.4.2: x  A => =(hV, =('true', memb(x, A)))∈
D4.4.3: x  A => =(hV, =('false', memb(x, A)))∉

Definition 4.5: The set operator, not a member of (symbolically denoted as ), is defined as∉  
a function, nmemb(x, A). This function returns 'true' to hV if x is not a member of set A, 
otherwise it returns 'false' denoting that x is a member of set A.

D4.5.1: x  A <=> nmemb(x, A)∉
D4.5.2: x  A => =(hV, =('true', nmemb(x, A)))∉
D4.5.3: x  A => =(hV, =('false', nmemb(x, A)))∈

Definition  4.6: The  set  operator,  subset  (symbolically  denoted  as  ),  is  defined  as  a⊂  
function, ss(A, B). This function returns 'true' to hV if A is a subset of B, otherwise it returns 
'false' denoting that A is not a subset of B.

D4.6.1: A  B <=> ss(A, B)⊂
D4.6.2: A  B => =(hV, =('true', ss(A, B)))⊂
D4.6.3: A  B => =(hV, =('false', ss(A, B)))⊄
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Definition 4.7: The set operator, proper subset (symbolically denoted as ), is defined as a⊆  
function, pss(A, B). This function returns 'true' to hV if A is a proper subset of B, otherwise it 
returns 'false' denoting that A is not a proper subset of B.

D4.7.1: A  B <=> pss(A, B)⊆
D4.7.2: A  B => =(hV, =('true', pss(A, B)))⊆
D4.7.3: A  B => =(hV, =('false', pss(A, B)))⊈

Definition 4.8: The set difference operator is defined as a function, sdiff(A, B) as

D4.8.1: sdiff(A, B) <=> A\B
D4.8.2: A\B <=> {x | memb(x, A) | nmemb(x, B)}
D4.8.3: sdiff(A, B) => 

=(hV, {x | memb(x, A) | nmemb(x, B)})

Definition 4.9: The cardinal operator, #, is defined as a function to return the measure of the 
number of elements in a set.

D4.9.1: #(X) <=> |X|
D4.9.2: #(X) => =(hV, #(X))

Definition 4.10: The random operator, rand, is defined as a function to return a random 
element in a set.

D4.10.1: rand(X) => =(hV, rand(X))

2.5. Special Set Constructs
This section defines a list of sets with special meanings within BeSSY.

Definition 5.1: A set of real numbers (R#) is defined as real().

D5.1.1: R# <=> real()
D5.1.2: real() => =(hV, real())

Definition 5.2: A set of complex numbers is defined as 

D5.2.1: complex() <=> { x | nmemb(x, real()) }
D5.2.2: complex() => =(hV, { x | nmemb(x, real()) })

Definition 5.3: A set of rational numbers is defined as ratn().

Definition 5.4: A set of irrational numbers is defined as 

D5.4.1: irratn() <=> { x | nmemb(x, ratn()) }
D5.4.2: irratn() => =(hV, { x | nmemb(x, ratn()) })
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Definition 5.5: A set of integer numbers is defined as 

D5.5.1: int() <=> { x | memb(x, real()) | 
  memb(x/2, {1, 0}) }

D5.5.2: int() => =(hV, { x | memb(x, real()) |
   memb(x/2, {1, 0}) })

Definition 5.6: A power set of A (2A) is defined as

D5.6.1: 2A <=> ps(A)
D5.6.2: ps() => =(hV, ps())

Definition 5.7: A null set is defined as

D5.7.1: ns() <=> {}
D5.7.2: ns() => =(hV, {})

Definition 5.8: An universal set is defined as

D5.8.1: us() <=> ~({})
D5.8.2: us() => =(hV, ~({}))

Definition 5.9: A set of odd numbers is defined as

D5.9.1: oddn() <=> { x | memb(x, int()) | x % 2 = 1 }

Definition 5.10: A set of odd numbers is defined as

D5.10.1: evenn() <=> { x | memb(x, int()) | x % 2 = 0 }

2.6. Construction and Properties of Functions
Functions are the executable aspect of BeSSY.

Definition 6.1: A function is a composition of a list of functions from a set of pre-defined or 
previously-defined functions (G) that takes in a set of input variables (X) and output a set of 
result objects (Y). The notation for declaring a function named 'test' is given as follows,

D6.1.1: test(X) = Y
D6.1.2: test(X) <=> seq(z | memb(z, G))

Definition 6.2: The set of input variables (X) of a function is known as the domain of a 
function. A function, domain, is used to generate the domain of a function. The domain of 
itself is the universal set.

D6.2.1: domain(function) <=> X
D6.2.2: domain(function) => =(hV, X)
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D6.2.3: domain(domain) <=> us()

Definition 6.3:  The set  of  output  objects  (Y) of  a  function  is  known as  the  range of  a  
function. A function, range, is used to generate the range of a function. The range of itself is 
the null set.

D6.3.1: range(function) <=> Y
D6.3.2: range(function) => =(hV, Y)
D6.3.3: range(range) <=> ns()

Definition 6.4: A coordinate of a function 'f'  is defined as a 2-element ordered set where the 
first element is the input variable and the second element is the output object.

D6.4.1: f(x) = y => (x, y)

Definition  6.5: The  graph  of  a  function  'f'  can  be  defined  by  the  set  of  all  possible 
coordinates of the function f.

D6.5.1: f(x) = y <=> {(x, y) | memb(x, domain(f)) |
 memb(y, range(f)) }

Definition 6.6: Two functions, 'f' and 'g', are equivalent if function f and function g have the 
same graph.

D6.6.1: f(X) = Y <=> g(X) = Y
D6.6.2: (f(X) <=> g(X)) <=> =(hV, 'true')

Definition 6.7: A function 'f' is an identity function (1A) if the domain of f is equivalent to 
the range of f.

D6.7.1: f(X) = X => 1A()

Definition 6.8: The inverse of function f, 'f-1', is defined when the domain of f is equivalent 
to the range of f-1, and the range of f is equivalent to the domain of f-1.

D6.8.1: f(X) = Y => f-1(Y) = X

Definition 6.9: Every function has an inverse function of itself.

2.7. Construction and Properties of Objects
This section details the construction of objects and the rules related to the evaluation of sets 
and functions within objects.

Definition 7.1: An object (obj) is the union of a set of sets (S) and/or a set of pre-defined or 
previously defined functions (preF).
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D7.1.1: obj = $(S, preF)

Definition 7.2: A set of objects is denoted as 'Oset'.

D7.2.1: Oset = { obj }

Definition 7.3: An object (obj) can be the union of other objects.

D7.3.1: obj = { obj | memb(obj, Oset) }

Definition 7.4: Assuming that an object 'obj' is a union of set B and function F, set B and 
function F can be accessed external to  object 'obj' using a location function '@', defined as

Given obj = $(B, F)
D7.4.1: @(B, obj) => =(hV, B)     (data access)
D7.4.2: @(F(X), obj) => =(hV, F(X))  (function access)

Definition 7.5: Assuming that an object 'objS' is a union of object 'objA', and set C. Object 
'objA' is a union of set B and function F, set B and function F can be accessed external to 
object 'objS' using a location function '@', defined as

Given objA = $(B, F) and objS = $(objA, C)
D7.5.1: @(@(B, objA), objS) => =(hV, B)    

(data access)
D7.5.2: @(@(F(X), objA), objS) => =(hV, F(X))

(function access)

Definition 7.6: It is understandable that this syntax will get very long and messy when there 
is multiple layers of object unions. Combining Definition 7.5 with Definition 2.2 (Material 
equivalence), the following short-hand can be defined,

Given objA = $(B, F) and 
objS = $(objA, C,

   ==(objAsB, @(B, objA),
   ==(objAfF(X), @(F(X), objA)))

where set B and function F are made equivalence as objAsB and objAfF in object 'objS' 
respectively.

From D7.5.1: @(objAsB, objS) => =(hV, objAsB)
From D7.5.2: @(objAfF(X), objS) => =(hV, objAfF(X))

2.8. Build-in Functions
This section details a list of common build-in functions that are  needed for logical flow, 
such as selection functions and iteration functions, and other utility functions.
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Definition 8.1: An if-then-else selection function is defined as 

D8.1.1: IF(condF, X, Y) => 
$(seq(k | memb(k, X) | condF ),
  seq(h | memb(h, Y) | ~(condF) ))

The sequence X is evaluated if condF is true; the ordered set Y is evaluated if condF is false.

Definition 8.2: An iteration function, FOR, can be defined as 

D8.2.1: FOR(X, y, z) => 
$(seq(k | memb(k, X) | &(y, z)))

The sequence X is evaluated if conditions y and z are true. In addition, an endless loop can 
be defined if conditions y and z are tautology (always true). For example,

D8.2.2: FOR(X, 'true', 'true') => X is permanent

Definition 8.3: A generic mathematical expression wrapper function, MATH, is defined to 
wrap and evaluate any syntactically correct mathematical expression.

D8.3.1: MATH(x) => =(hV, MATH(x))

where x is any syntactically correct mathematical expression.

Definition 8.4: A generic formal expression wrapper function, FORMAL, is defined to wrap 
and evaluate any syntactically correct formal expression 'exp' specified in a formal language 
'x'.

D8.4.1: FORMAL(x, exp) => =(hV, FORMAL(x, exp))

where x is any syntactically correct mathematical expression.

Definition 8.5: INDEX, declared in the form of INDEX(x, Y), is defined a function to give 
the position of element x in set Y.

D8.5.1: INDEX(x, Y) => =(hV, INDEX(x, Y))

Definition 8.6: eINDEX, declared in the form of eINDEX(x, Y), is defined as a function to 
give the element in index x of set Y.

D8.6.1: eINDEX(x, Y) => =(hV, eINDEX(x, Y))
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3. Examples of Specification Construction with BeSSY
In this section, I will attempt to re-construct the specifications of Python list and dictionary 
operations using BeSSY. 

3.1. Python List Operations
Given that 'data' is an ordered sequence, an empty 'data' can be defined as

(1) data = seq(ns())

Hence, a Python list data type (L) can be defined as

(2) L = $(data,
__add__, __contains__, __delattr__,

 __delitem__, __delslice__,__eq__, __ge__,
__getattribute__, __getitem__, __getslice__,
__gt__, __iadd__, __imul__, __iter__, __le__,

 __len__,__lt__, __mul__, __ne__, __reversed__,
 __rmul__,__setattr__,__setitem__,__setslice__,

append, count, extend, index, insert, pop,
remove, reverse, sort)

Given that 'y'  is to be added to L and returns the result as a new list,  the concatenation 
function (__add__) can be defined as

(3) __add__(y) = seq(enum(@(data, L), y))

Given that L is to be checked for the presence of 'y', the membership function (__contains__) 
can be defined as

(4) __contains__(y) = memb(y, @(data, L))

Given that 'y' is the name of the attribute to be deleted from L, the delete attribute function 
(__delattr__) can be defined as

(5) __delattr__(y) =>
L = set(x | memb(x, L) | x != y)

Given that 'posn' is the integer position of the data to delete in L, the delete by index function 
(__delitem__) can be defined as

(6) __delitem__(position)  => 
@(data, L) = seq(x | 

    memb(x, @(data, L)) | 
    posn != INDEX(x, @(data, L)) )
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Given that 'start' is the starting integer position and 'end' is the ending integer position to 
delete a segment of L, the delete item by slice function (__delslice__) can be defined as

(7) __delslice__(start, end) => 
IF(&(start ≤ end, 0 < start, 0 < end),
   @(data, L) = 

  enum(x, 0 ≤ index ≤ start, 
  eINDEX(index, @(data, L))) + 

  enum(x, end ≤ index ≤ #(@(data, L)), 
  eINDEX(index, @(data, L)))),

   ns())

Given that  L is  to  be checked for equality to  'y',  the equality function (__eq__) can be 
defined as

(8) __eq__(y) = &(ss(y, @(data, L)), 
    ss(@(data, L), y))

Given that 'y' is to be checked for greater or equal to L, the greater or equal than function 
(__ge__) can be defined as

(9) __ge__(y) = 
&(set(eINDEX(index, y) <= 

eINDEX(index, @(data, L) |
   0 ≤ index ≤ #(y)),
  #(@(data, L)) = #(y))

Given  that  'y'  is  the  name  of  the  attribute  to  access  in  L,  the  get  attribute  function 
(__getattribute__) can be defined as

(10) __getattribute__(y) = @(y, L)

Given that 'y' is the integer position of the data to access in L, the get item by index function 
(__getitem__) can be defined as

(11) __getitem__(y) = eINDEX(y, @(data, L))

Given that 'start' is the starting integer position and 'end' is the ending integer position to 
extract a segment of L, the get item by slice function (__getslice__) can be defined as

(12) __getslice__(start, end) = 
seq(x | start ≤ position < end |

   eINDEX(position, @(data, L)))

Given that 'y' is to be checked for greater to L, the greater than function (__gt__) can be 
defined as
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(13) __gt__(y) = 
&(set(eINDEX(index, y) < 

 eINDEX(index, @(data, L) |
   0 ≤ index ≤ #(y)),
  #(@(data, L)) = #(y))

Given that  'y'  is  the  data  to  be  added  into  L (does  not  return  a  new list),  the  in-place  
concatenation function (__iadd__) can be defined as

(14) __iadd__(y) => 
@(data, L) = enum(@(data, L), y)

Given that 'n' is the number of times to repeat L and present the results in a new list, the 
multiplication function (__mul__) can be defined as

(15) __mul__(n) = enum(FOR(__iadd__(@(data, L), 
  0 < x ≤ n, 
  x = x + 1))

Given that 'n' is the number of times to repeat L and store the results in L (does not return a 
new list), the in-place multiplication function (__imul__) can be defined as

(16) __imul__(n) => @(data, L) = __mul__(n)

The iterator function (__iter__) presents an enumeration of the data in L; hence,  can be 
defined as

(17) __iter__() = enum(@(data, L))

Given that 'y' is to be checked for lesser or equal to L, the lesser or equal than function 
(__le__) can be defined as

(18) __le__(y) = 
  &(set(eINDEX(index, y) >= 

eINDEX(index, @(data, L) | 
       0 ≤ index ≤ #(y)), 
    #(@(data, L)) = #(y))

The length function (__len__) which gives the number of data elements in L can be defined 
as

(19) __len__() = #(@(data, L))

Given that 'y' is to be checked for lesser to L, the lesser than function (__lt__) can be defined 
as

(20) __lt__(y) = 
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  &(set(eINDEX(index, y) > 
eINDEX(index, @(data, L) | 

   0 ≤ index ≤ #(y)), 
    #(@(data, L)) = #(y))

Given that L is to be checked for non-equality to 'y', the nonequality function (__ne__) can 
be defined as

(21) __ne__(y) = ~(@(__eq__(y), @(data, L)))

The reverse iterator  function (__reversed__) presents  the data  in  L in  the reverse order; 
hence, can be defined as

index = #(@(data, L))
(22) __reversed__() = enum(x, 

  FOR(eINDEX(index, @(data, L)), 
 0 ≤ index, index = index - 1))

The reverse multiplication function (__rmul__) in a Python list (L) has the same behaviour 
as multiplication function (__mul__),

(23) __rmul__(n) => __mul__(n)

Given that 'name' is the attribute to set as 'value', the set attribute function (__setattr__) can 
be defined as

(24) __setattr__(name, value) => @(name, L) = value

Given that 'y' is the position in L to set to 'value', the set item function (__setitem__) can be 
defined as

(25) __setitem__(y, value) => 
@(INDEX(y, @(data, L)), L) = value

Given that a sequence (y) is to replace L from the 'start' position to 'end' position, the set a  
slice of items function (__setslice__) can be defined as

(26) __setslice__(start, end, y) => 
IF(&(#(y) = end-start, 0 < start, 0 < end, 
     start ≤ #(@(data, L)), 
     end ≤ #(@(data, L)),
   seq(__setitem__(index , 

  eINDEX(index, @(data, y))),
      start ≤ index < end),
   ns())

The 'append' function concatenates the value 'y' into L; hence, can be defined as
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(27) append(y) == __iadd__(y)

The 'count' function counts the number of occurrences of 'y' in L; hence, can be defined as

(28) count(y) = #(enum(x, 
        0 ≤ index ≤ #(@(data, L)), 
        eINDEX(index, @(data, L)) = y))

The 'extend' function concatenates a list 'y' into L; hence, can be defined as

(29) extend(y) == __iadd__(y)

The 'index' function gives the position of 'y' in L; hence, can be defined as

(30) index(y) = IF(INDEX(y, @(data, L)),
    INDEX(y, @(data, L)),
    ValueError())

Given a value 'y' to be inserted before a 'position' in L, the 'insert' function can be defined as

(31) insert(position, y) =>
@(data, L) = 

enum(x, 0 ≤ index < position, 
eINDEX(index, @(data, L))) + 

enum(y) +
enum(x, position ≤ index ≤ #(@(data, L)), 

eINDEX(index, @(data, L)))

Given a 'value' to remove from L, the 'remove' function can be defined as

(32) remove(value) => 
IF(INDEX(value, @(data, L),
   __delslice__(INDEX(value, @(data, L)), 

    INDEX(value, @(data, L))),
   ValueError())

The 'pop' function which removes the last element of L can be defined as

(33) pop() = 
IF(#(@(data, L)) > 0,
   $(eINDEX(#(@(data, L)), @(data, L)),

remove(eINDEX(#(@(data, L)),@(data, L))),
   ValueError())

The 'pop' function may also remove the n-th element of L can be defined as
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(34) pop(n) = 
IF(&(0 < #(@(data, L)), n ≤ #(@(data, L))),
   $(eINDEX(n, @(data, L)),

remove(n, @(data, L))),
   ValueError())

The in-place 'reverse' function can be defined as

(35) reverse() =>
@(data, L) = __reversed__()

The in-place 'sort' function can be defined as

(36) sort() =>
@(data, L) = 

seq(x | memb(x, @(data, L)) | 
    INDEX(x, @(data, L)) < 

INDEX(x+1, @(data, L)) )

3.2. Python Dictionary Operations
A hash table,  known as  dictionary in  Python,  can  be  considered  as  a  bundle  of  2  lists 
(defined in Section 3.1), a key list and a value list, with 2 constraints. Firstly, the number of 
elements in key list must match that of value list. Secondly, the elements in key list must not 
be duplicated. Therefore, 'key' and 'value' lists can be defined as

(1) key = seq(ns())

(2) value = seq(ns())

(3) kv_constraint = &(#(key) = #(value))

A Python dictionary data type (D) can be defined as

(4) D = $({(key, value) | kv_constraint},
__cmp__, __contains__, __delattr__,

 __delitem__, __eq__, __ge__, __getattribute__,
__getitem__, __gt__, __iter__, __le__,
__len__,__lt__, __ne__, __setattr__,
__setitem__,
clear, copy, fromkeys, get, has_key, items,
iteritems, iterkeys, itervalues, keys, pop,
popitem, setdefault, update, values)

Given that 'y' is to be compared for equality to D, the comparator function (__cmp__) which 
checks for both the key and value lists can be defined as
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(5) __cmp__(y) = 
IF(&(@(__eq__(@(key, y)), @(key, D)),

@(__eq__(@(value, y)), @(value, D))), 
   0, 
   IF(&(@(__gt__(@(key, y)), @(key, D)),

   @(__gt__(@(value, y)), @(value, D)))
 1,
 -1)

  )

Given that 'y' is to be checked if it is found in the key list of D, the membership function 
(__contains__) can be defined as

(6) __contains__(y) = @(__contains__(y), @(key, D))

Given that 'y' is the name of the attribute to be deleted from D, the delete attribute function 
(__delattr__) can be defined as

(7) __delattr__(y) =>
D = {x | memb(x, D) | x != y}

Given that 'y' is the key of the data to delete in D, the delete by index function (__delitem__) 
can be defined as

(8) __delitem__(y)  => 
seq(value_index = INDEX(y, @(key, D)),
    @(__delitem__(value_index), @(value, D)),
    @(key, D) = seq(x | 

       memb(x, @(key, D)) | 
      y != INDEX(x, @(data, L))))

Given the 'y'  is to be checked for equality with D, the equality function (__eq__) which 
checks for both key and value lists can be defined as

(9) __eq__(y) = IF(__cmp__(y) == 0, 'true', 'false')

Given the 'y' is to be checked for greater than with D, the greater than function (__gt__) 
which only checks key list can be defined as

(10) __gt__(y) = @(__gt__(@(key, y)), @(key, D))

Given the 'y' is to be checked for greater or equal than with D, the greater or equal than 
function (__ge__) which only checks key list can be defined as

(11) __ge__(y) = $(__eq__(y), __gt__(y))
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Given  that  'y'  is  the  name  of  the  attribute  to  access  in  D,  the  get  attribute  function 
(__getattribute__) can be defined as

(12) __getattribute__(y) = @(y, D)

Given  that  'y'  is  the  key of  the  value  to  access  in  D,  the  get  item by index  function 
(__getitem__) can be defined as

(13) __getitem__(y) = eINDEX(INDEX(y, @(key, D)), 
    @(value, D))

The iterator function (__iter__) presents an enumeration of the key list in D; hence, can be 
defined as

(14) __iter__() = enum(@(key, D))

Given the 'y' is to be checked for less than with D, the less than function (__lt__) which only 
checks key list can be defined as

(15) __lt__(y) = @(__lt__(@(key, y)), @(key, D))

Given the 'y' is to be checked for less or equal than with D, the less or equal than function 
(__le__) which only checks key list can be defined as

(16) __le__(y) = $(__eq__(y), __lt__(y))

The length function (__len__) which gives the number of data elements in D can be defined 
as

(17) __len__() = #(@(key, D))

Given that D is to be checked for non-equality to 'y', the nonequality function (__ne__) can 
be defined as

(18) __ne__(y) = ~(@(__eq__(y), @(key, D)))

Given that 'name' is the attribute to set as 'value', the set attribute function (__setattr__) can 
be defined as

(29) __setattr__(name, value) => @(name, L) = value

Given that 'y' is the position in L to set to 'value', the set item function (__setitem__) can be 
defined as

(30) __setitem__(y, value) => 
__setattr__(eINDEX(y, @(key, D)), value)
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The clear function removes all items from the dictionary.

(31) clear() => __delitem__(seq(@(key, D)))

The copy function is a shallow copy of the called dictionary.

(32) copy() => =(hV, D)

The items function returns a set of (key, value) pairs in the dictionary.

(33) items() => set((key, value), 
@(key, D), @(value, D))

The  fromkeys  function  creates  another  dictionary  and  copies  each  item  in  the  called 
dictionary into the created dictionary. This is also known as deep copy.

(34) fromkeys = @(__setattr__(items(), D')

The get function returns the value of 'k' key. If 'k' key is not found, the function will return a  
default None value.

(35) get(k, default=ns()) => IF(memb(k, @(key, D)),
  __getitem__(k),
  default)

Given that 'y' is to be checked if it is found in the key list of D, the membership function 
(has_key) is equivalent to __contains__ function and can be defined as

(36) has_key(y) => __contains__(y)

The iterkeys function provides an iterative output over the keys in the dictionary.

(37) iterkeys() => seq(@(key, D))

The itervalues function provides an iterative output over the values in the dictionary.

(38) itervalues() => seq(@(value, D))

The  iteritems  function  provides  an  iterative  output  over  the  (key,  value)  pairs  in  the 
dictionary.

(39) iteritems() => items()

The keys function returns a list of keys in the dictionary.

(40) keys() => seq(@(key, D))
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Given a 'k' key, the pop function returns the corresponding value and deletes the key-value 
pair from the dictionary.

(41) pop(k) => seq(=(hV, get(k)),
    __delitem__(k))

The pop item function returns the random key-value pair and deletes the key-value pair from 
the dictionary.

(42) popitem() => seq(rand(=(k, @(key, D))),
  =(hV, (k, get(k)
  __delitem__(k))

The get function returns the value of 'k' key. If 'k' key is not found, the function will return a  
default None value and set the 'k' key to the given default value or None.

(43) setdefault(k, default=ns()) => 
seq(get(k, default),
    IF(~(has_key(k)),

  __setattr__(k, default),)

The dictionary can be updated with E and F using the update function. 

(44) update(E, F) => seq(__setitem__(G), seq(E), seq(F))

The values function returns a list of values in the dictionary.

(45) values() => seq(@(value, D))

4. Concluding Remarks and Future Work
The beauty of mathematics lies in its precision. However, it is this very precision that makes  
mathematics fearful as there is no veil of ambiguity, yet it is required to define the behaviour 
of a system. To make things worse, mathematical notations are usually terse; thus, tend to be 
tougher to read than prose. Despite the necessity of mathematics, an appropriate choice of 
notations may go a long way in reducing the learning curve (Bowen et al., 2005). This study 
describes a formal behavioural specification language, BeSSY, which uses only 4 areas of 
mathematics, namely, sets theory, functions, arithmetic and Boolean operations. We believe 
that these 4 areas should be familiar to most, if not all, software engineers and developers as 
they lie at the fundamentals of computer science. Arithmetic and Boolean operations and 
functions are both fundamental concepts in high-school mathematics as well as procedural 
programming  languages.  Set  theory  is  fundamental  for  relational  database  management 
systems;  hence,  should  be  versed  by  the  time  one  completes  first  year  undergraduate 
computer science curriculum.
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The Python programming language defined 4 primary data structures (van Rossum, 2008), 
namely, list, dictionary, sets and tuple. Of these, list and dictionary are more commonly used 
than sets and tuple. Tuple is an immutable list while the functions of sets can be simulated 
using  dictionary  keys.  Hence,  only  list  and  dictionary  were  chosen  for  specification  in 
BeSSY. As a litmus test, this suggests that BeSSY is likely to be sufficiently rich to describe 
most Python programs.

Although mathematical simplicity is a major design criterion for BeSSY, are there certain 
things that are impossible to express in BeSSY despite demonstration of Python list and 
dictionary operations  in  this  study? Expressiveness  is  an important  criteria  in  evaluating 
formal languages (Ruiz et al., 1994, van Harmelen et al., 1993, van Harmelen et al., 1996). 
We  used  Turing  completeness  as  a  test  for  expressiveness.  Brainfuck  is  an  esoteric 
programming  language  invented  by  Urban  Muller  aiming  to  create  a  Turing-complete 
language.  There have been a number of Brainfuck interpreter implemented using Python 
programming language and Python list as the storage array (McGugan, 2005, Lindstrom, 
2007).  In  addition,  Frans  Fasse  had  provided  several  proofs  of  Brainfuck's  Turing-
completeness,  including  implementation  of  each  Turing  operations  in  Brainfuck 
(http://www.iwriteiam.nl/Ha_bf_Turing.html).  As  Python  list  operations  was  used  to 
implement an interpreter for a Turing-complete language; thus, Python list operations are 
Turing-complete by extension. Since Python list operations can be fully expressed in BeSSY 
(as  shown in  Section  3.1),  suggesting  that  BeSSY is  Turing-complete;  thus,  sufficiently 
expressive to express all computable operations.

BeSSY has a few significant limitations. Although BeSSY is Turing-complete, it does not 
imply ease of expression. At the same time, there is no tool support for BeSSY as it is a 
newly created formal language. However, the specification of Python list and dictionary data 
types  in  BeSSY suggests  future  possibility  in  developing  tools  that  may  assist  in  the 
conversion  of  BeSSY specifications  into  Python  codes  which  is  likely  to  improve  the 
employment of formal languages in Python software development (Bowen et al., 2005).
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Appendix I: Brainfuck interpreter by Edvin Lindstrm

#! /usr/bin/env python
# -*- coding: utf-8 -*-
#brainfuck.py
#Brainfuck interpreter
#By Edvin Lindström
#Started 2007-02-26
#Latest revision 2007-02-26

import sys

def main():
    mem = [0] * 30000       #Memory "array"
    c = 0                   #Counter ("pointer")
    source = raw_input("Complete path of brainfuck source file: ")
    try:
        f = open(source, 'r')
    except IOError:
        print "Error while trying to open file %s" % source
        return False        #Quit program execution
    else:
        print "File opened."
    debug = ''
    while debug != 'y' and debug != 'n':
        debug = raw_input("Debug mode? (y/n) ")
    if debug == 'y':
        debug = True
    elif debug == 'n':
        debug = False
    
    try:
        program = f.read()
    except MemoryError:
        print "Memory error occurred while reading file %s" % source
        return False        #Quit program execution
    else:
        f.close()
        print "File data read."
        print "Executing program.\n-----"
    
    loops = 0               #The current byte in the file
    
    #Main loop
    while True:
        byte = program[loops]   #Read the current byte
        if debug:
            print "BF byte %d" % loops
        
        #Fix out-of-range problems
        if c < 0:
            c = 0
        elif c > 29999:
            c = 29999
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        #Do what's supposed to be done
        if byte == '>': 

c += 1
        elif byte == '<': 

c -= 1
        elif byte == '+':
            mem[c] += 1
        elif byte == '-':
            mem[c] -= 1
        elif byte == '.':
            if mem[c] in range(256):
                sys.stdout.write(chr(mem[c]))
        elif byte == ',':
            while True:
                inp = raw_input()
                #If more than one byte is entered only the first is 

    #accepted
                if len(inp) > 1:
                    inp = inp[0]
                #This catches input shortened by the previous if too
                if len(inp) == 1:
                    mem[c] = ord(inp)
                    break
                #If nothing was entered the while loop starts over
        elif byte == '[':
            if mem[c] == 0:
                leftps = 0      #Left parentheses found
                rghtps = 0      #Right parentheses found
                bt = loops
                while True:
                    bt += 1     #Move to the next byte
                    if program[bt] == '[':
                        leftps += 1
                    elif program[bt] == ']':
                        if leftps == rghtps:
                            loops = bt      #Move to the right bracket
                            break   #Incrementing loops is carried out 

#later
                        else:
                            rghtps += 1
        elif byte == ']':
            leftps = 0          #Left parentheses found
            rghtps = 0          #Right parentheses found
            bt = loops
            while True:
                bt -= 1         #Move to the previous byte
                if program[bt] == ']':
                    rghtps += 1
                elif program[bt] == '[':
                    if leftps == rghtps:
                        loops = bt - 1  #Because later loops will be 

    #incremented again
                        break
                    else:
                        leftps += 1

        if debug:
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            print "   mem[%d] = %d" % (c, mem[c])
        
        if loops < len(program) - 1:
            loops += 1
        else:
            return True         #Quit program execution

if __name__ == '__main__':
    a = main()
    if a == True:
        print "\n-----"
        print "Execution terminated properly."
    elif a == False:
        print "\n-----"
        print "Execution unexpectedly terminated."
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