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Abstract: 
The focus of the Molecular Simulation Laboratory is to model molecular 

interactions.  In particular, we are working on automated docking and molecular 
visualization.  Building and simulating complex molecular systems requires the tight 
interoperation of a variety of software tools originating from various scientific disciplines 
and usually developed independently of each other.  Over the last ten years we have 
evolved a strategy for addressing the formidable software engineering problem of 
integrating such heterogeneous software tools.  The basic idea is that the Python 
interpreter serves as the integration framework and provides a powerful and flexible glue 
for rapidly prototyping applications from reusable software components (i.e. Python 
packages).  We no longer think in terms of programs, but rather in terms of packages 
which can be loaded dynamically into the interpreter when needed, and instantly extend 
our framework (i.e. the Python interpreter) with new functionality.  We have written 
more than 30 packages (>2500 classes) providing support for applications ranging from 
scientific visualization and visual programming to molecular simulations and virtual 
reality.  Moreover, some of our components have been reused successfully by other 
laboratories for their own research.  Applications created from our software components 
have been distributed to over 15000 users around the world.  In this paper we describe 
our approach and its various applications, discuss the reasons that make this approach so 
successful, and present lessons learns and pitfalls to avoid in order to maximize the 
reusability and interoperability of software components. 
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Introduction 
Molecular biology is evolving from the study of macromolecules in isolation 

towards complex environments, potentially as large as complete cells.  The amount and 
heterogeneity of information that needs to be processed and integrated in order to 
understand and simulate such complexity requires a leap in the level of sophistication of 
our software tools.  The next generation of bioinformatics programs will have to: (1) 
support the inter-operation of rapidly evolving and sometimes brittle, computational 
software developed in a variety of scientific fields and programming languages; (2) 
support the integration of data across biological experiments and scales; (3) adapt to 
rapidly evolving hardware environments; and (4) empower users by allowing them to 
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carry out operations unanticipated by the programmers such as trying new combinations 
of algorithms or new visualizations.  These combined requirements of flexibility, 
portability, resilience to failure, programmability by the user, and responsiveness to 
changes in the computational models and the hardware pose a tremendously challenging 
software engineering problem. 

So far, this challenge has mainly been address by the creation of software 
frameworks that provide Application Program Interfaces (APIs) for integrating new 
software components.  These frameworks usually provide support for managing software 
components (e.g. plugin technology) and the overall workflow and communication 
between components.  We have found that this approach has several drawbacks.  First of 
all, it promotes extensible environments rather than code reuse.  Users and developers 
often have their own software environment and would prefer to include a new method in 
their own environment rather than having to switch to a completely new framework in 
which many of their usual tools might not be available.  The integration of a given 
computational method into one of these frameworks only benefits this particular 
framework and this integration work will have to be repeated for each new framework.  
More importantly, each framework wants to act as the central piece of the software 
environment, and be in charge of scheduling operations and the execution flow, thus 
making it difficult to combine functionality available in various frameworks.  These 
frameworks also often impose restricting data types or data models, and grant limited 
control to components over execution flow and other components.   Finally, in many of 
these frameworks link their extensions into the environment rather than dynamically 
loading them when needed, thus leading to bloat-ware. 

Command languages and scripting capability are often available in complex 
software environments.  On rare occasions, these languages are powerful enough to be 
used to implement new extensions.  However, these languages are often highly biased 
toward a particular scientific domain and lack generality.  Moreover, a framework’s 
language is only usable in that particular application which limits the size of the user 
community, and in turn reduces the potential contributions for the user community.  
Some applications embed scripting languages such as TCL or Python which is a better 
approach than developing a custom language.  However, the framework is still the central 
piece of the environment and dictates the way extensions are developed, thus making 
these extensions framework specific.  Moreover, the functionality of the application is not 
re-usable in other applications, but merely scriptable through the interpreter. 

Our Approach 
Here we present a solution we have evolved and implemented over the past ten 

years and which has proven to be successful in addressing some of the shortcomings 
discussed above.  Rather than developing our own interpretive language we used the 
Python programming language 1, and instead of embedding Python into a framework or 
developing yet another framework, we decided to make the Python interpreter itself our 
framework.  This idea of using an interpretive language as an integration framework 
could work with other interpretive languages as well.  This Python-centric framework is 
extended by developing dynamically-loadable Python packages implementing specific 
functionality.  This approach promotes code compartmentalization and forces developers 
to switch their mindset from writing programs to writing components that carry out 



specific tasks.  Applications are then generated by combining these components at a high 
level, leading to true component-based applications.  This architecture makes swapping 
software components, comparing implementations and integrating new methods trivial.  
Such a high level of flexibility is particularly interesting in a research environment where 
the goals are constantly shifting as new discoveries are made, and where new 
computational methods need to be integrated in our simulation environments as they 
become available.  While this difference in mindset might appear trivial, experience has 
shown that the development of software components in isolation of an application or a 
framework is greatly increasing their re-usability.  When developing for a framework it is 
always tempting to take advantages of some of its features with the detrimental 
consequence of tying the extension to this particular framework.  Using Python-centric 
approach, we have experienced an unprecedented level of reuse of software components 
in several applications that we have developed and distributed.  Some of these 
components have also been used successfully in other laboratories and software 
environments. 

We recognize that the requirement of a Python interpreter for developing and 
reusing our software components is a constraint in our approach. However, the numerous 
advantages of this approach largely outweigh this constraint.  Python is a general purpose 
programming language, therefore the Python language is not biased toward any 
application domain.  There is a large user community contributing Python packages that 
can be readily integrated for the most part and we are using several third party packages 
in our applications.  Having a fully-fledged, high-level, object-oriented programming 
language as a glue to connect software components greatly reduces the need for stringent 
APIs for components to be inter-operable because adapters can always be written.  
Finally, since our software components are developed independently of each other and no 
component is allowed to assume control of the application, the Python interpreter remains 
central to the software environment.  Python naturally provides scripting capability over 
the applications and the data they manipulate.  An additional benefit of programming in 
Python is platform independence which is a great advantage when supporting multiple 
platforms.  While there were initial concerns about the performance impact of using an 
interpretive language, we found that Python is well suited for developing entire software 
components.  This is due to the fact that we and other developers often have a wrong 
impression about how much and where the utmost performance is needed, and where the 
true bottlenecks are.   

Below we will briefly describe the key differences between compiled and 
interpretive languages and stress the advantages of interpretive languages in general and 
Python in particular as integration platforms.  We describe some software components we 
have developed and illustrate their integration into end-user applications.  We conclude 
with some lessons learned, pitfalls to avoid and discuss some of the challenges associated 
with our approach. 

Programming languages 
In compiled languages (FORTRAN, C, C++, etc.) an executable has to be built 

(i.e. compiled and linked) from the source code before it can be executed.  Extending or 
modifying these programs requires re-building the application after the source code has 
been modified.  This cannot be done while the program is running.  Moreover, these 



languages require complete and syntactically correct source code before compilation and 
testing become possible.  Interpretive languages (Perl 2, Python 1, Tcl 3, Ruby 4, Scheme 
5, Lisp 6, Basic 7, etc.) use a program called an interpreter to evaluate source code as it is 
read from a file or typed in interactively by a user.  These languages are often referred to 
as scripting- or interpreted-languages.  Applications written in these languages can be 
extended and modified while the program is running without having to quit, recompile or 
restart the application.  Code can be executed and tested as it is written, even if only a 
small fraction of the complete application has been implemented, thus allowing the rapid 
exploration of novel hypothesis and the early determination of design flaws. 

Programming languages can also be classified and described by placing them on a 
scale ranging from low- to high-level languages.  We will deem a language “high-level” 
if it provides: high-level data structures such as lists and associative arrays; mechanisms 
for preventing errors from aborting the application (exceptions); array boundary 
checking, and support for automatic memory management as part of the language.  The 
more such features any particular language provides, the higher it will be ranked.  
Interpretive languages usually are higher level than compiled languages.   

Advantages of Interpretive Languages 
Rapid development: The high-level and dynamic nature of interpretive language 

offers several advantages for scientific computing.  The ability to quickly prototype 
software is particularly interesting in a research environment where the software 
requirements are constantly shifting as the understanding of the underlying science 
evolves.  Easy to learn: Their easy syntax and high-level data structures make it easier 
for non-professional programmers such as computational biologists to develop 
programming skills enabling them to interact with data programmatically and eventually 
develop code on their own.  For instance, Python is becoming an increasingly popular 
language for teaching computational skills 8.  Open-ended application extensibility: 
Software environments enabling end users to interact programmatically with their data 
and with the application using a simple yet fully fledged programming language provides 
the highest level of extensibility.  While GUIs are an excellent way to abstract 
programming syntax and data structures, with the exception of visual programming (see 
below), GUIs can only be implemented for anticipated ways of using a program.  This 
lack of programmability associated with GUI-based interfaces greatly limits the 
application’s range of capabilities and its extensibility.  Modifying an application’s 
source code enables unrestricted modifications; however, it is usually a difficult task and 
always presents the danger of corrupting the application.  General purpose scripting 
languages provide a safer and easier way to extend applications, while providing the 
open-ended extensibility which is missing in GUI-based interfaces.  In fact, scripting 
languages blur the line between users and developers.  Glue languages: Interpretive 
language can be used to integrate heterogeneous pieces of software written in a variety of 
compiled languages and let them interoperate.   

Interpretive languages provide new solutions to the challenges mentioned in the 
introduction and are becoming increasingly popular for developing bioinformatics 
applications (BioPerl 9, BioPython 10, Chimera 11, PMV 12, Vision 13, PyMol 14, WhatIf  
15, PHENIX 16, MMTK 17, VMD 18) and for teaching programming concepts to biologists 
8. 



Performance 
A drawback of interpretive languages is that they are slower than compiled 

languages, typically by a factor of 15 to 40 19.  When compiled languages appeared, they 
rapidly replaced assembly languages.  The substantial increase in readability and 
portability they offered outweighed the associated potential decrease in runtime 
performance.  Today, this pattern is repeating itself: the sustained increase of 
computational power in typical desktop computers makes interpretive languages a 
practical alternative to compiled languages for a variety of tasks.  Moreover, we often 
have a wrong intuition about how much and where performance is needed.  A key 
observation is that the bulk of the source code of programs used in computational biology 
deals with input and output, handling events, and bookkeeping of data structures.  The 
computationally intensive parts are often confined to a few functions that amount to a 
small percentage of the total number of lines of source code, typically less than 10%.  
Hence, large amounts of code can be implemented in high-level interpretive languages 
without affecting the overall performance of the application. 

Which scripting language is right for my application? 
Scripting languages such as the various UNIX shell scripting languages and awk 

20 have been available for a long time.  However, these languages are arcane and limited 
in generality.  They have been reserved to computer savvy users.  A number of high-level 
scripting languages are available today.  Perl was one of the first to be widely used in 
scientific computing.  It is a powerful language for writing highly concise scripts.  
However, the way its syntax and notation tends to promote obfuscation is not a desirable 
feature for reusing and sharing code.  Perl is mainly used for writing relatively short, 
“use-once”-type scripts, but is ill suited for developing large and complex software 
applications 21.  It also is lacking a good interpreter shell for interactive code 
development.  The Tcl language is another example of a widely used scripting language.  
Unfortunately, its one strength – all data are represented as strings – is also its main 
weakness for scientific computing.  This makes Tcl cumbersome and inefficient for 
numerical computations.  The Tcl-shell is also relatively simple and underdeveloped. 

Python appeared in 1991 and was designed from the outset as an object-oriented 
language while allowing for simple scripting.  It supports multiple inheritance, 
introspection, self-documenting code, high-level data-structures (i.e. lists and associative 
arrays called dictionaries), and exceptions and warning mechanisms.  Its syntax was 
designed to be free of arcane symbols and to look like English text (i.e. pseudo-code).  
Python is open source and runs on virtually any computer from super-computers to 
PDA’s.  New functionality can be added to the interpreter by loading extensions to the 
language at runtime.  Such extensions can be organized into sets called packages.  The 
standard Python distribution comes with a comprehensive library of extensions covering 
needs in areas as diverse as regular expression matching, GUI toolkits, databases, 
network protocols, numerical calculations and XML processing to name a few.  In 
addition, an active community of developers provides a variety of packages spanning all 
areas of computing, reflecting the diversity of Python’s user community and application 
areas.  Python extensions can be written both in the Python programming language and in 
compiled languages such as FORTRAN, C or C++, thus allowing the incorporation of 
legacy code.  Code written in compiled languages must be “wrapped” (i.e. turned into a 



Python extension) before it can be called from a Python interpreter.  Semi-automatic tools 
22 facilitate the process of wrapping compiled code.  These extensions execute faster than 
those written using the Python language.  However, they are platform-dependent (i.e. 
they need to be compiled for every hardware platform and operating system).  With 
Python, it is possible to have “the best of both worlds” by implementing those functions 
that require the utmost in performance using a compiled language while the remainder of 
the application can be written in a high-level and platform-independent language.   

Python has been used as a “glue language” to integrate monolithic programs.  
With the wrapping mechanism described above, a scripting layer can be added to such 
programs, allowing them to inter-operate within a Python interpreter 23 18; 11.  Using 
Python for scripting applications should be contrasted with using a custom scripting 
language (i.e. SVL 24, BCL 25, SPL 26, batchmin 27, MATLAB 28, etc.).  Such languages 
often lack extensibility and tend to be domain specific since they are created by 
developers whose strengths are in a specific application domain.  Because of their 
specificity, these languages will not benefit from the input of a large community.  
Designing a language is better left to people whose primary occupation is designing 
languages.   

While an excellent scripting- and glue-language, Python is also a general-purpose, 
object-oriented programming language.  This aspect has been key for our purpose.  It can 
be used as the primary language for the implementation of complete packages and 
applications which have the great advantage of platform-independence (i.e. the same 
source code runs on all platforms).  Our software development effort has grown to over 
15 packages written in pure Python, amounting to over 2500 classes and well over 
1’000’000 lines of code.  Such a colossal software base would be extremely difficult to 
manage without object orientation and hierarchical names spaces.  Unfortunately, the 
often wrong intuition about where and how much performance is needed tends to deter 
programmers from using interpretive languages.  This misconception about performance 
is difficult to overcome.  However, designing and implementing components in the 
Python programming language first, provides several advantages: (1) The development 
cycle of a prototype is greatly accelerated through the use of a high-level language and 
the reuse of software components.  It is not uncommon for a Python program to have 3 to 
10 times fewer lines of source code than the same program written in C; (2) The design 
of software components can be validated rapidly.  Python code can be tested as it is 
written.  The ability to run code after only a fraction of an application or component has 
been implemented helps identify design problems early on; (3) Performance bottlenecks 
can be identified using Python’s profiler and resolved by optimizing the Python code, or 
by providing a re-implementation of parts of the code in C or C++;  Finally, (4) a 
potentially slow but working Python implementation is always available in the case that a 
C or C++ implementation cannot be loaded. 

Software-components and their integration 
We have developed a number of Python packages (Table 1).  To illustrate our 

approach, we describe two independently developed software components: MolKit and 
DejaVu, and demonstrate their integration for molecular visualization. 

MolKit: This software component has no dependencies on other Python packages 
and provides objects for reading and writing common data file formats describing 



biological molecules such as PDB, Mol2 and mmCIF.  When a molecule is read, a 
hierarchical data-structure is built reproducing the natural hierarchy found in molecules 
such as proteins.  Molecule objects can be queried and can also generate information such 
as atom types, covalent bonds, atomic radii, etc. This component is written in pure 
Python. 

   
Package Description 
MolKit Read, write and build hierarchical representation of molecular data structures. 

ViewerFramework Visualization application template.  Uses DejaVu for rendering 3-D geometry. 

PyBabel Re-implementation of Babel 1.6 (molecular file formats conversion).  Supports assigning of atom 
type and bond order, ring detection, Gasteiger charges, protonation.   

Mglutil Various packages containing mathematical functions, GUI widgets, etc. 

FlexTree Provides hierarchical, high-level representations of molecular flexibility. 

PyBabel A Python re-implementation of Babel 1.6 for molecular data file format conversions 

shapefit Protein-Protein docking software package based on the complementarity of smoothed protein 
shapes 

Volume A package for representing and manipulating 3D regular grids of volumetric data. 

WebServices Generic support for web services 

symserv A set of objects for describing point symmetries 

Vision A component supporting visual programming 

ViewerFramework A boiler plate for creating visualization applications 

DejaVu An OpenGL-based general purpose 3D geometry rendering component 

PyARTK A software component for virtual reality 

PyQslim Python wrapper of the polygonal mesh decimation library QSlim 29. 

Mslib Python wrapper of the MSMS library 30 for computing molecular surfaces. 

UT-packages A suite of Python wrapper of C++ libraries for fast iso-contouring, volume rendering, pseudo 
density maps calculations, signed distance fields, meshing techniques, etc. 31. 

SFF  Python wrapper of a C-implementation of the AMBER Force Field (Simple Force Field). 

SpatialLogic Python wrapper of a C library performing BSP-Tree-based CSG operations. 

Gle Python wrapper of the GL Extrusion library 32 

opengltk Python wrapper for OpenGL, generated on the fly from .h files 

memoryObject A native extension for speeding up communication between C and C++ and Python code 

PyAutoDock objects implementing the AutoDock forcefield. 

SurfDock Python wrapper of the protein-protein docking program SurfDock 

Stride A wrapper of the Stride program for assigning secondary structure to proteins 

BHtree A Python wrapper of a C library implementing binary spatial divisions 

Table 1: Python packages developed in our laboratory.  A shaded background indicates 
packages that are platform-independent (i.e. written entirely in Python). 

 
DejaVu is our OpenGL-based, platform-independent, general-purpose 3-D 

geometry visualization component.  It defines classes implementing objects such as 
Viewer, Camera, Light, ClippingPlane, ColorEditor, Geometry, etc.  The Viewer class 
implements a fully-fledged visualization application.  It provides control over a large 
number of rendering parameters including: user controllable depth-cueing; global anti-
aliasing; perspective and orthographic projection modes; multiple light sources; as well 
as per geometry: rendering modes (points, lines, polygons, outlined), shading modes (flat, 
Gouraud), culling modes (back, front, none), arbitrary clipping planes, magic lenses that 
reveal geometry only inside the lens, blending functions for transparency, etc.  Each 
DejaVu Viewer object maintains a hierarchy of geometrical objects.  Rendering attributes 
and 3-D transformations can be defined for any particular geometry in this hierarchy, or 
can be inherited from a parent.  A Viewer object contains a virtual trackball object for 



rotating, translating and scaling.  This trackball can be bound to any geometry, camera, 
light source, clipping plane, or texture. DejaVu also supports Non Photo-realistic 
rendering and interactive Mpeg movie generation from the Camera, 

DejaVu's set of geometry objects is extensible and currently includes: Polylines, 
IndexedPolylines, IndexedPolygons, QuadStrips, TriangleStrips, Spheres, Cylinders, 
Ellipsoids, Arcs3D, Arrows, Box, Points, CrossSets and TextLabels.  Such objects can be 
instantiated and added dynamically to a viewer.  DejaVu is written entirely in Python but 
relies on the presence of the Numeric package as well as opengltk, our OpenGL wrapper 
for Python. 

Combining MolKit and DejaVu for molecular visualization:  Figure 1 shows 
the code necessary for reading a molecule using the MolKit component and displaying a 
CPK model of this molecule (i.e. a single sphere per atom).  Nine lines of Python code 
are sufficient for achieving basic molecular visualization with software components that 
have been developed independently of each other. 

 
More complex applications: Using the software components described in Table 

1, we have created complex applications, including: PMV (Figure 2A), a general purpose 
molecular visualization and manipulation environment; AutoDockTools, a GUI for 
setting up and launching AutoDock-based automated docking calculations 33, and 
analyzing the results; and PyARTK, an augmented reality software in which we combine 
live video of physical models manipulated by the user with computer graphics enhancing 
the displayed video 34.  Both AutoDockTools and PyARTK are specializations of PMV. 

 

 

 

from  MolKit import Read 
mols = Read(‘1crn.pdb’) 
coords = mols[0].chains.residues.atoms.coords 
radii = mols[0].defaultRadii() 
  
from DejaVu import Viewer 
vi = Viewer()   # create a viewer 
 
from DejaVu.Spheres import Spheres 
s = Spheres(‘sph’, centers=coords,   
                     radii=radii,quality=10) 
vi.AddObject(s) # display atomic spheres 
 

Figure 1: Nine lines of Python code are needed to read a molecule and display a sphere for each atom 
using two software components developed independently of each other: MolKit and DejaVu.  The Read 
factory function from MolKit builds molecular objects from which data, such as atomic centers can be 
retrieved, and which can infere attributes such at atomic radii.  A Viewer object from DejaVu provides a 
fully-fledged 3D geometry viewer in which geometry such as a set of spheres can be displayed. 



Figure 2: Two applications PMV and Vision built from, and sharing many software components.  
(A) PMV: a general purpose molecular visualization application.  (B) Architectural layout of PMV.  
Nested boxes denote dependencies between Python packages.  Packages with dark pink 
background are platform-dependent.  (C) A molecular visualization application built using the 
Vision visual programming environment.  A network used to display a viral capsid is shown.  The 
sub-network embedded in the “Lines Macro” is shown as an inset.  The “node Editor” allowing 
inspecting and modifying nodes interactively has been started on the “Read Molecule” node.  (D) 
Architectural layout of Vision.  Libraries of Vision nodes are shown with dashed outlines.  Note the 
number of shared software components. 

 

Software component integration by non-programmers 
In a research setting where goals and questions are constantly evolving with the 

discovery of new knowledge it is impossible for a programmer to foresee all possible way 
in which a user might want to combine algorithms to process his/her data and look at the 
results. The Python interpreter is the foundation of all the applications we develop and is 
always accessible for scripting thus providing a way to extend and modify any of our 
applications. However, domain experts such as biologists, often feel that learning a 
programming language (even as simple as Python) is more than what they ought to be 
doing. To use an analogy, it is similar to asking a driver to learn to tune his car’s engine 
before he can drive it.  We have explored a couple of ideas to address this problem.  First, 
in our ViewerFramework component which is underlying PMV and AutoDockTools, all 
commands invoked through the graphical user interface generate a log string which 
corresponds to what a user would have to type in the Python shell to achieve the same 
result.  This can help some of the more sophisticated users to prototype a series of 
operations, capture the log, and for instance place it inside a loop to apply these 
operations to a sequence of objects.  However, the user still has to worry about proper 
indentation and other syntactical details of the Python language.  In order to hide this 
level of complexity completely from the user we have explored the concept of visual 
programming.  We have implemented a software component called Vision (figure 2C) 13 
which support dragging and dropping computational nodes onto a canvas and connecting 
their input and output ports for creating workflows and computational networks.  
Libraries of Vision node expose the functionality from other Python packages such as 



MolKit and DejaVu.  Figure 3 shows a 
Vision network that is equivalent to the 
Python script shown in figure 1.  This 
paradigm empowers the end user with 
the ability to extend the application with 
new functionality and novel 
combination of computational methods 
without having to learn the syntax of a 
programming language, or getting 
intimate with the data structures used 
to store objects.  A key difference 
between Vision and other visual 
programming languages such as Open 
DX 35 or AVS 36 is that Vision is a 
software component that can be reused 
in other applications.  We have 
deomstrated its integration with PMV 
37.  All the domain-specific knowledge 
is in the Vision nodes found in various 
libraries.  The Vision nodes are light-
weight wrappers for functionality 
otherwise available in Python.  For 
instance the full implementation of the 
Read Molecule node in Figure 3 is to 
get the input (i.e. the file name), 
invoke the Read function from the 
MolKit package, and output the 
resulting Python object on the output 
port.  In this sense, the node is merely 

an adaptor for the Read function in the Vision environment. 

Lessons learned and pitfalls 
Python’s modular nature does promote the compartmentalization of code.  

However, for software components to achieve their full potential in terms of re-usability 
special care has to be taken beside the obvious idea described earlier which is to develop 
components in isolation.  Here we provide a short list of common mistakes we have 
identified over the years.  Simple mistakes include using global variables.  This is always 
undesirable in object oriented environment as it precludes the simultaneous use of 
multiple instances of objects referring to these variables. 

One common pitfall in object-oriented languages is the tendency to create a large 
hierarchy of objects for all software developed by a group.  While the idea is appealing 
from an esthetic point of view, it can be quite damaging from the software engineering 
aspect.  The popular visualization toolkit VTK 38 provide a typical example of such a 
situation where the complete source has to be downloaded and compiled before any part 
of the toolkit can be used.  Moreover, if the build fails half way it is often difficult to 
know whether or not the part that is of interest has built properly or not.  We found that 

Figure 3: a simple Vision network corresponding 
to the Python script in Figure 1.  The nodes are 
colored by the library they originate from.  The 
CPK macro node is expanded in the inset.  A user 
can create this network without any knowledge of 
the Python syntax or the data structures use to 
store molecules. 



keeping the package hierarchy as flat as possible and reducing inter-packages 
dependencies to a minimum leads to much more reusable components.  The same is true 
with data-types.  In computational biology it is often tempting to pass complex objects 
such as a molecule to a given computational method which might only be using a small 
fraction of the information stored in the molecule object.  Reducing the information 
passed into the computational method to the strict minimum that is needed is a better 
approach.  For instance in the example in Figure 1, we could have passed a molecule to 
the viewer, but this approach would make the visualization component aware of 
molecular objects.  Alternatively, a molecule could have a display method, but here 
again, the MolKit component would become aware of DejaVu.  Instead, we are passing 2 
numeric arrays, one for coordinates and one for radii, because that is all that is needed for 
drawing the spheres.  By passing the simplest data types between software components, 
we reduce the dependencies between these components and minimize the data structures 
we impose onto other users of these components.  Developers of libraries written in the C 
and C++ programming languages sometimes choose to make their code exit if input files 
are not found or an error is encountered.  This is highly undesirable in our setting, as such 
a call would terminate the Python interpreter and hence our working session. We have 
also found that techniques such as writing unit tests before writing code lead to better 
designed classes as it forces the programmer to think more thoroughly about the input to 
methods and behavior of the object when the input is wrong. It is also helpful to think of 
the object in more than a single context. While this violates some extreme programming 
principles and can lead to “over designing” objects we have found it to be useful in 
identifying general aspects from domain specific ones in objects. 

Conclusion 
The concepts of modularity and compartmentalization of computational tasks are 

not new; however, time has shown that these concepts are poorly promoted by compiled 
languages.  When programming in the latter languages, the goal is to write an application 
that produces the right result.  There is little incentive to implement independent and 
therefore reusable software components for solving each particular sub-task.  In fact, 
even if the software is properly compartmentalized, special “main” functions have to be 
written to ascertain the independence and correctness of the various components, which 
is rarely done.  The intrinsic modular nature of Python on the other hand promotes the 
creation of self-contained components each implementing a specific functionality.  This 
component can then be loaded into a Python interpreter, effectively extending the 
interpreter with new functionality.  Moreover, this component naturally becomes 
available to any application running a Python interpreter. 

We have described an approach in which the Python interpreter is the foundation 
of the software environment and serves as both an integration platform and a primary 
development language for new software components.  With this approach we have 
witnessed extremely high levels of code reuse both within and outside our laboratory.  
While this approach has been successful in addressing many of the shortcomings of 
software frameworks, it has also revealed a new set of challenges.  While applications 
built from software components are desirable for many reasons, they increase the 
complexity of software distribution, as the right set of components (i.e. compatible 
versions of all components) has to be used.  Better support in the Python language for 



package management would help with this problem.  Keeping track of inter-packages 
dependencies is also tricky.  We have found that such dependencies are easily created and 
often inadvertently.  To address this issue we have started to explicitly declare 
dependencies in all of our packages.  These dependencies can be critical, if the package 
cannot function without the package it depends on, or weak if the dependencies is only 
needed for a secondary feature of the package.  Our nightly unit tests monitor imports and 
report as errors imports of packages that are not declared in the dependency lists. 

As modern computational biology moves towards the study of larger systems it 
will require the integration of computational methods and experimental data from a 
variety of scientific fields.  Furthermore, the complexity of the models will require an 
unprecedented level of flexibility in the software tools to allow investigators to formulate 
and validate new hypotheses.  The interactive and dynamic nature of Python, its 
simplicity, and ease-of-use, makes the language an excellent choice for creating software 
tools with these advanced and complex requirements.  
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