
The Python interpreter as a framework for integrating
scientific computing software-components

Michel F. Sanner
The Scripps Research Institute,

Department of Molecular Biology, TPC26
La Jolla, CA 92037

Abstract:
The focus of the Molecular Simulation Laboratory is to model molecular

interactions. In particular, we are working on automated docking and molecular
visualization. Building and simulating complex molecular systems requires the tight
interoperation of a variety of software tools originating from various scientific disciplines
and usually developed independently of each other. Over the last ten years we have
evolved a strategy for addressing the formidable software engineering problem of
integrating such heterogeneous software tools. The basic idea is that the Python
interpreter serves as the integration framework and provides a powerful and flexible glue
for rapidly prototyping applications from reusable software components (i.e. Python
packages). We no longer think in terms of programs, but rather in terms of packages
which can be loaded dynamically into the interpreter when needed, and instantly extend
our framework (i.e. the Python interpreter) with new functionality. We have written
more than 30 packages (>2500 classes) providing support for applications ranging from
scientific visualization and visual programming to molecular simulations and virtual
reality. Moreover, some of our components have been reused successfully by other
laboratories for their own research. Applications created from our software components
have been distributed to over 15000 users around the world. In this paper we describe
our approach and its various applications, discuss the reasons that make this approach so
successful, and present lessons learns and pitfalls to avoid in order to maximize the
reusability and interoperability of software components.

Keywords: scripting languages, interpretive languages, interpreters, programming
paradigms, code reusability, modularity, interoperability, component-based software
development, software engineering.

Introduction
Molecular biology is evolving from the study of macromolecules in isolation

towards complex environments, potentially as large as complete cells. The amount and
heterogeneity of information that needs to be processed and integrated in order to
understand and simulate such complexity requires a leap in the level of sophistication of
our software tools. The next generation of bioinformatics programs will have to: (1)
support the inter-operation of rapidly evolving and sometimes brittle, computational
software developed in a variety of scientific fields and programming languages; (2)
support the integration of data across biological experiments and scales; (3) adapt to
rapidly evolving hardware environments; and (4) empower users by allowing them to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Python Papers Anthology

https://core.ac.uk/display/230921279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

carry out operations unanticipated by the programmers such as trying new combinations
of algorithms or new visualizations. These combined requirements of flexibility,
portability, resilience to failure, programmability by the user, and responsiveness to
changes in the computational models and the hardware pose a tremendously challenging
software engineering problem.

So far, this challenge has mainly been address by the creation of software
frameworks that provide Application Program Interfaces (APIs) for integrating new
software components. These frameworks usually provide support for managing software
components (e.g. plugin technology) and the overall workflow and communication
between components. We have found that this approach has several drawbacks. First of
all, it promotes extensible environments rather than code reuse. Users and developers
often have their own software environment and would prefer to include a new method in
their own environment rather than having to switch to a completely new framework in
which many of their usual tools might not be available. The integration of a given
computational method into one of these frameworks only benefits this particular
framework and this integration work will have to be repeated for each new framework.
More importantly, each framework wants to act as the central piece of the software
environment, and be in charge of scheduling operations and the execution flow, thus
making it difficult to combine functionality available in various frameworks. These
frameworks also often impose restricting data types or data models, and grant limited
control to components over execution flow and other components. Finally, in many of
these frameworks link their extensions into the environment rather than dynamically
loading them when needed, thus leading to bloat-ware.

Command languages and scripting capability are often available in complex
software environments. On rare occasions, these languages are powerful enough to be
used to implement new extensions. However, these languages are often highly biased
toward a particular scientific domain and lack generality. Moreover, a framework’s
language is only usable in that particular application which limits the size of the user
community, and in turn reduces the potential contributions for the user community.
Some applications embed scripting languages such as TCL or Python which is a better
approach than developing a custom language. However, the framework is still the central
piece of the environment and dictates the way extensions are developed, thus making
these extensions framework specific. Moreover, the functionality of the application is not
re-usable in other applications, but merely scriptable through the interpreter.

Our Approach
Here we present a solution we have evolved and implemented over the past ten

years and which has proven to be successful in addressing some of the shortcomings
discussed above. Rather than developing our own interpretive language we used the
Python programming language 1, and instead of embedding Python into a framework or
developing yet another framework, we decided to make the Python interpreter itself our
framework. This idea of using an interpretive language as an integration framework
could work with other interpretive languages as well. This Python-centric framework is
extended by developing dynamically-loadable Python packages implementing specific
functionality. This approach promotes code compartmentalization and forces developers
to switch their mindset from writing programs to writing components that carry out

specific tasks. Applications are then generated by combining these components at a high
level, leading to true component-based applications. This architecture makes swapping
software components, comparing implementations and integrating new methods trivial.
Such a high level of flexibility is particularly interesting in a research environment where
the goals are constantly shifting as new discoveries are made, and where new
computational methods need to be integrated in our simulation environments as they
become available. While this difference in mindset might appear trivial, experience has
shown that the development of software components in isolation of an application or a
framework is greatly increasing their re-usability. When developing for a framework it is
always tempting to take advantages of some of its features with the detrimental
consequence of tying the extension to this particular framework. Using Python-centric
approach, we have experienced an unprecedented level of reuse of software components
in several applications that we have developed and distributed. Some of these
components have also been used successfully in other laboratories and software
environments.

We recognize that the requirement of a Python interpreter for developing and
reusing our software components is a constraint in our approach. However, the numerous
advantages of this approach largely outweigh this constraint. Python is a general purpose
programming language, therefore the Python language is not biased toward any
application domain. There is a large user community contributing Python packages that
can be readily integrated for the most part and we are using several third party packages
in our applications. Having a fully-fledged, high-level, object-oriented programming
language as a glue to connect software components greatly reduces the need for stringent
APIs for components to be inter-operable because adapters can always be written.
Finally, since our software components are developed independently of each other and no
component is allowed to assume control of the application, the Python interpreter remains
central to the software environment. Python naturally provides scripting capability over
the applications and the data they manipulate. An additional benefit of programming in
Python is platform independence which is a great advantage when supporting multiple
platforms. While there were initial concerns about the performance impact of using an
interpretive language, we found that Python is well suited for developing entire software
components. This is due to the fact that we and other developers often have a wrong
impression about how much and where the utmost performance is needed, and where the
true bottlenecks are.

Below we will briefly describe the key differences between compiled and
interpretive languages and stress the advantages of interpretive languages in general and
Python in particular as integration platforms. We describe some software components we
have developed and illustrate their integration into end-user applications. We conclude
with some lessons learned, pitfalls to avoid and discuss some of the challenges associated
with our approach.

Programming languages
In compiled languages (FORTRAN, C, C++, etc.) an executable has to be built

(i.e. compiled and linked) from the source code before it can be executed. Extending or
modifying these programs requires re-building the application after the source code has
been modified. This cannot be done while the program is running. Moreover, these

languages require complete and syntactically correct source code before compilation and
testing become possible. Interpretive languages (Perl 2, Python 1, Tcl 3, Ruby 4, Scheme
5, Lisp 6, Basic 7, etc.) use a program called an interpreter to evaluate source code as it is
read from a file or typed in interactively by a user. These languages are often referred to
as scripting- or interpreted-languages. Applications written in these languages can be
extended and modified while the program is running without having to quit, recompile or
restart the application. Code can be executed and tested as it is written, even if only a
small fraction of the complete application has been implemented, thus allowing the rapid
exploration of novel hypothesis and the early determination of design flaws.

Programming languages can also be classified and described by placing them on a
scale ranging from low- to high-level languages. We will deem a language “high-level”
if it provides: high-level data structures such as lists and associative arrays; mechanisms
for preventing errors from aborting the application (exceptions); array boundary
checking, and support for automatic memory management as part of the language. The
more such features any particular language provides, the higher it will be ranked.
Interpretive languages usually are higher level than compiled languages.

Advantages of Interpretive Languages
Rapid development: The high-level and dynamic nature of interpretive language

offers several advantages for scientific computing. The ability to quickly prototype
software is particularly interesting in a research environment where the software
requirements are constantly shifting as the understanding of the underlying science
evolves. Easy to learn: Their easy syntax and high-level data structures make it easier
for non-professional programmers such as computational biologists to develop
programming skills enabling them to interact with data programmatically and eventually
develop code on their own. For instance, Python is becoming an increasingly popular
language for teaching computational skills 8. Open-ended application extensibility:
Software environments enabling end users to interact programmatically with their data
and with the application using a simple yet fully fledged programming language provides
the highest level of extensibility. While GUIs are an excellent way to abstract
programming syntax and data structures, with the exception of visual programming (see
below), GUIs can only be implemented for anticipated ways of using a program. This
lack of programmability associated with GUI-based interfaces greatly limits the
application’s range of capabilities and its extensibility. Modifying an application’s
source code enables unrestricted modifications; however, it is usually a difficult task and
always presents the danger of corrupting the application. General purpose scripting
languages provide a safer and easier way to extend applications, while providing the
open-ended extensibility which is missing in GUI-based interfaces. In fact, scripting
languages blur the line between users and developers. Glue languages: Interpretive
language can be used to integrate heterogeneous pieces of software written in a variety of
compiled languages and let them interoperate.

Interpretive languages provide new solutions to the challenges mentioned in the
introduction and are becoming increasingly popular for developing bioinformatics
applications (BioPerl 9, BioPython 10, Chimera 11, PMV 12, Vision 13, PyMol 14, WhatIf
15, PHENIX 16, MMTK 17, VMD 18) and for teaching programming concepts to biologists
8.

Performance
A drawback of interpretive languages is that they are slower than compiled

languages, typically by a factor of 15 to 40 19. When compiled languages appeared, they
rapidly replaced assembly languages. The substantial increase in readability and
portability they offered outweighed the associated potential decrease in runtime
performance. Today, this pattern is repeating itself: the sustained increase of
computational power in typical desktop computers makes interpretive languages a
practical alternative to compiled languages for a variety of tasks. Moreover, we often
have a wrong intuition about how much and where performance is needed. A key
observation is that the bulk of the source code of programs used in computational biology
deals with input and output, handling events, and bookkeeping of data structures. The
computationally intensive parts are often confined to a few functions that amount to a
small percentage of the total number of lines of source code, typically less than 10%.
Hence, large amounts of code can be implemented in high-level interpretive languages
without affecting the overall performance of the application.

Which scripting language is right for my application?
Scripting languages such as the various UNIX shell scripting languages and awk

20 have been available for a long time. However, these languages are arcane and limited
in generality. They have been reserved to computer savvy users. A number of high-level
scripting languages are available today. Perl was one of the first to be widely used in
scientific computing. It is a powerful language for writing highly concise scripts.
However, the way its syntax and notation tends to promote obfuscation is not a desirable
feature for reusing and sharing code. Perl is mainly used for writing relatively short,
“use-once”-type scripts, but is ill suited for developing large and complex software
applications 21. It also is lacking a good interpreter shell for interactive code
development. The Tcl language is another example of a widely used scripting language.
Unfortunately, its one strength – all data are represented as strings – is also its main
weakness for scientific computing. This makes Tcl cumbersome and inefficient for
numerical computations. The Tcl-shell is also relatively simple and underdeveloped.

Python appeared in 1991 and was designed from the outset as an object-oriented
language while allowing for simple scripting. It supports multiple inheritance,
introspection, self-documenting code, high-level data-structures (i.e. lists and associative
arrays called dictionaries), and exceptions and warning mechanisms. Its syntax was
designed to be free of arcane symbols and to look like English text (i.e. pseudo-code).
Python is open source and runs on virtually any computer from super-computers to
PDA’s. New functionality can be added to the interpreter by loading extensions to the
language at runtime. Such extensions can be organized into sets called packages. The
standard Python distribution comes with a comprehensive library of extensions covering
needs in areas as diverse as regular expression matching, GUI toolkits, databases,
network protocols, numerical calculations and XML processing to name a few. In
addition, an active community of developers provides a variety of packages spanning all
areas of computing, reflecting the diversity of Python’s user community and application
areas. Python extensions can be written both in the Python programming language and in
compiled languages such as FORTRAN, C or C++, thus allowing the incorporation of
legacy code. Code written in compiled languages must be “wrapped” (i.e. turned into a

Python extension) before it can be called from a Python interpreter. Semi-automatic tools
22 facilitate the process of wrapping compiled code. These extensions execute faster than
those written using the Python language. However, they are platform-dependent (i.e.
they need to be compiled for every hardware platform and operating system). With
Python, it is possible to have “the best of both worlds” by implementing those functions
that require the utmost in performance using a compiled language while the remainder of
the application can be written in a high-level and platform-independent language.

Python has been used as a “glue language” to integrate monolithic programs.
With the wrapping mechanism described above, a scripting layer can be added to such
programs, allowing them to inter-operate within a Python interpreter 23 18; 11. Using
Python for scripting applications should be contrasted with using a custom scripting
language (i.e. SVL 24, BCL 25, SPL 26, batchmin 27, MATLAB 28, etc.). Such languages
often lack extensibility and tend to be domain specific since they are created by
developers whose strengths are in a specific application domain. Because of their
specificity, these languages will not benefit from the input of a large community.
Designing a language is better left to people whose primary occupation is designing
languages.

While an excellent scripting- and glue-language, Python is also a general-purpose,
object-oriented programming language. This aspect has been key for our purpose. It can
be used as the primary language for the implementation of complete packages and
applications which have the great advantage of platform-independence (i.e. the same
source code runs on all platforms). Our software development effort has grown to over
15 packages written in pure Python, amounting to over 2500 classes and well over
1’000’000 lines of code. Such a colossal software base would be extremely difficult to
manage without object orientation and hierarchical names spaces. Unfortunately, the
often wrong intuition about where and how much performance is needed tends to deter
programmers from using interpretive languages. This misconception about performance
is difficult to overcome. However, designing and implementing components in the
Python programming language first, provides several advantages: (1) The development
cycle of a prototype is greatly accelerated through the use of a high-level language and
the reuse of software components. It is not uncommon for a Python program to have 3 to
10 times fewer lines of source code than the same program written in C; (2) The design
of software components can be validated rapidly. Python code can be tested as it is
written. The ability to run code after only a fraction of an application or component has
been implemented helps identify design problems early on; (3) Performance bottlenecks
can be identified using Python’s profiler and resolved by optimizing the Python code, or
by providing a re-implementation of parts of the code in C or C++; Finally, (4) a
potentially slow but working Python implementation is always available in the case that a
C or C++ implementation cannot be loaded.

Software-components and their integration
We have developed a number of Python packages (Table 1). To illustrate our

approach, we describe two independently developed software components: MolKit and
DejaVu, and demonstrate their integration for molecular visualization.

MolKit: This software component has no dependencies on other Python packages
and provides objects for reading and writing common data file formats describing

biological molecules such as PDB, Mol2 and mmCIF. When a molecule is read, a
hierarchical data-structure is built reproducing the natural hierarchy found in molecules
such as proteins. Molecule objects can be queried and can also generate information such
as atom types, covalent bonds, atomic radii, etc. This component is written in pure
Python.

Package Description
MolKit Read, write and build hierarchical representation of molecular data structures.

ViewerFramework Visualization application template. Uses DejaVu for rendering 3-D geometry.

PyBabel Re-implementation of Babel 1.6 (molecular file formats conversion). Supports assigning of atom
type and bond order, ring detection, Gasteiger charges, protonation.

Mglutil Various packages containing mathematical functions, GUI widgets, etc.

FlexTree Provides hierarchical, high-level representations of molecular flexibility.

PyBabel A Python re-implementation of Babel 1.6 for molecular data file format conversions

shapefit Protein-Protein docking software package based on the complementarity of smoothed protein
shapes

Volume A package for representing and manipulating 3D regular grids of volumetric data.

WebServices Generic support for web services

symserv A set of objects for describing point symmetries

Vision A component supporting visual programming

ViewerFramework A boiler plate for creating visualization applications

DejaVu An OpenGL-based general purpose 3D geometry rendering component

PyARTK A software component for virtual reality

PyQslim Python wrapper of the polygonal mesh decimation library QSlim 29.

Mslib Python wrapper of the MSMS library 30 for computing molecular surfaces.

UT-packages A suite of Python wrapper of C++ libraries for fast iso-contouring, volume rendering, pseudo
density maps calculations, signed distance fields, meshing techniques, etc. 31.

SFF Python wrapper of a C-implementation of the AMBER Force Field (Simple Force Field).

SpatialLogic Python wrapper of a C library performing BSP-Tree-based CSG operations.

Gle Python wrapper of the GL Extrusion library 32

opengltk Python wrapper for OpenGL, generated on the fly from .h files

memoryObject A native extension for speeding up communication between C and C++ and Python code

PyAutoDock objects implementing the AutoDock forcefield.

SurfDock Python wrapper of the protein-protein docking program SurfDock

Stride A wrapper of the Stride program for assigning secondary structure to proteins

BHtree A Python wrapper of a C library implementing binary spatial divisions

Table 1: Python packages developed in our laboratory. A shaded background indicates
packages that are platform-independent (i.e. written entirely in Python).

DejaVu is our OpenGL-based, platform-independent, general-purpose 3-D

geometry visualization component. It defines classes implementing objects such as
Viewer, Camera, Light, ClippingPlane, ColorEditor, Geometry, etc. The Viewer class
implements a fully-fledged visualization application. It provides control over a large
number of rendering parameters including: user controllable depth-cueing; global anti-
aliasing; perspective and orthographic projection modes; multiple light sources; as well
as per geometry: rendering modes (points, lines, polygons, outlined), shading modes (flat,
Gouraud), culling modes (back, front, none), arbitrary clipping planes, magic lenses that
reveal geometry only inside the lens, blending functions for transparency, etc. Each
DejaVu Viewer object maintains a hierarchy of geometrical objects. Rendering attributes
and 3-D transformations can be defined for any particular geometry in this hierarchy, or
can be inherited from a parent. A Viewer object contains a virtual trackball object for

rotating, translating and scaling. This trackball can be bound to any geometry, camera,
light source, clipping plane, or texture. DejaVu also supports Non Photo-realistic
rendering and interactive Mpeg movie generation from the Camera,

DejaVu's set of geometry objects is extensible and currently includes: Polylines,
IndexedPolylines, IndexedPolygons, QuadStrips, TriangleStrips, Spheres, Cylinders,
Ellipsoids, Arcs3D, Arrows, Box, Points, CrossSets and TextLabels. Such objects can be
instantiated and added dynamically to a viewer. DejaVu is written entirely in Python but
relies on the presence of the Numeric package as well as opengltk, our OpenGL wrapper
for Python.

Combining MolKit and DejaVu for molecular visualization: Figure 1 shows
the code necessary for reading a molecule using the MolKit component and displaying a
CPK model of this molecule (i.e. a single sphere per atom). Nine lines of Python code
are sufficient for achieving basic molecular visualization with software components that
have been developed independently of each other.

More complex applications: Using the software components described in Table

1, we have created complex applications, including: PMV (Figure 2A), a general purpose
molecular visualization and manipulation environment; AutoDockTools, a GUI for
setting up and launching AutoDock-based automated docking calculations 33, and
analyzing the results; and PyARTK, an augmented reality software in which we combine
live video of physical models manipulated by the user with computer graphics enhancing
the displayed video 34. Both AutoDockTools and PyARTK are specializations of PMV.

from MolKit import Read
mols = Read(‘1crn.pdb’)
coords = mols[0].chains.residues.atoms.coords
radii = mols[0].defaultRadii()

from DejaVu import Viewer
vi = Viewer() # create a viewer

from DejaVu.Spheres import Spheres
s = Spheres(‘sph’, centers=coords,
 radii=radii,quality=10)
vi.AddObject(s) # display atomic spheres

Figure 1: Nine lines of Python code are needed to read a molecule and display a sphere for each atom
using two software components developed independently of each other: MolKit and DejaVu. The Read
factory function from MolKit builds molecular objects from which data, such as atomic centers can be
retrieved, and which can infere attributes such at atomic radii. A Viewer object from DejaVu provides a
fully-fledged 3D geometry viewer in which geometry such as a set of spheres can be displayed.

Figure 2: Two applications PMV and Vision built from, and sharing many software components.
(A) PMV: a general purpose molecular visualization application. (B) Architectural layout of PMV.
Nested boxes denote dependencies between Python packages. Packages with dark pink
background are platform-dependent. (C) A molecular visualization application built using the
Vision visual programming environment. A network used to display a viral capsid is shown. The
sub-network embedded in the “Lines Macro” is shown as an inset. The “node Editor” allowing
inspecting and modifying nodes interactively has been started on the “Read Molecule” node. (D)
Architectural layout of Vision. Libraries of Vision nodes are shown with dashed outlines. Note the
number of shared software components.

Software component integration by non-programmers
In a research setting where goals and questions are constantly evolving with the

discovery of new knowledge it is impossible for a programmer to foresee all possible way
in which a user might want to combine algorithms to process his/her data and look at the
results. The Python interpreter is the foundation of all the applications we develop and is
always accessible for scripting thus providing a way to extend and modify any of our
applications. However, domain experts such as biologists, often feel that learning a
programming language (even as simple as Python) is more than what they ought to be
doing. To use an analogy, it is similar to asking a driver to learn to tune his car’s engine
before he can drive it. We have explored a couple of ideas to address this problem. First,
in our ViewerFramework component which is underlying PMV and AutoDockTools, all
commands invoked through the graphical user interface generate a log string which
corresponds to what a user would have to type in the Python shell to achieve the same
result. This can help some of the more sophisticated users to prototype a series of
operations, capture the log, and for instance place it inside a loop to apply these
operations to a sequence of objects. However, the user still has to worry about proper
indentation and other syntactical details of the Python language. In order to hide this
level of complexity completely from the user we have explored the concept of visual
programming. We have implemented a software component called Vision (figure 2C) 13
which support dragging and dropping computational nodes onto a canvas and connecting
their input and output ports for creating workflows and computational networks.
Libraries of Vision node expose the functionality from other Python packages such as

MolKit and DejaVu. Figure 3 shows a
Vision network that is equivalent to the
Python script shown in figure 1. This
paradigm empowers the end user with
the ability to extend the application with
new functionality and novel
combination of computational methods
without having to learn the syntax of a
programming language, or getting
intimate with the data structures used
to store objects. A key difference
between Vision and other visual
programming languages such as Open
DX 35 or AVS 36 is that Vision is a
software component that can be reused
in other applications. We have
deomstrated its integration with PMV
37. All the domain-specific knowledge
is in the Vision nodes found in various
libraries. The Vision nodes are light-
weight wrappers for functionality
otherwise available in Python. For
instance the full implementation of the
Read Molecule node in Figure 3 is to
get the input (i.e. the file name),
invoke the Read function from the
MolKit package, and output the
resulting Python object on the output
port. In this sense, the node is merely

an adaptor for the Read function in the Vision environment.

Lessons learned and pitfalls
Python’s modular nature does promote the compartmentalization of code.

However, for software components to achieve their full potential in terms of re-usability
special care has to be taken beside the obvious idea described earlier which is to develop
components in isolation. Here we provide a short list of common mistakes we have
identified over the years. Simple mistakes include using global variables. This is always
undesirable in object oriented environment as it precludes the simultaneous use of
multiple instances of objects referring to these variables.

One common pitfall in object-oriented languages is the tendency to create a large
hierarchy of objects for all software developed by a group. While the idea is appealing
from an esthetic point of view, it can be quite damaging from the software engineering
aspect. The popular visualization toolkit VTK 38 provide a typical example of such a
situation where the complete source has to be downloaded and compiled before any part
of the toolkit can be used. Moreover, if the build fails half way it is often difficult to
know whether or not the part that is of interest has built properly or not. We found that

Figure 3: a simple Vision network corresponding
to the Python script in Figure 1. The nodes are
colored by the library they originate from. The
CPK macro node is expanded in the inset. A user
can create this network without any knowledge of
the Python syntax or the data structures use to
store molecules.

keeping the package hierarchy as flat as possible and reducing inter-packages
dependencies to a minimum leads to much more reusable components. The same is true
with data-types. In computational biology it is often tempting to pass complex objects
such as a molecule to a given computational method which might only be using a small
fraction of the information stored in the molecule object. Reducing the information
passed into the computational method to the strict minimum that is needed is a better
approach. For instance in the example in Figure 1, we could have passed a molecule to
the viewer, but this approach would make the visualization component aware of
molecular objects. Alternatively, a molecule could have a display method, but here
again, the MolKit component would become aware of DejaVu. Instead, we are passing 2
numeric arrays, one for coordinates and one for radii, because that is all that is needed for
drawing the spheres. By passing the simplest data types between software components,
we reduce the dependencies between these components and minimize the data structures
we impose onto other users of these components. Developers of libraries written in the C
and C++ programming languages sometimes choose to make their code exit if input files
are not found or an error is encountered. This is highly undesirable in our setting, as such
a call would terminate the Python interpreter and hence our working session. We have
also found that techniques such as writing unit tests before writing code lead to better
designed classes as it forces the programmer to think more thoroughly about the input to
methods and behavior of the object when the input is wrong. It is also helpful to think of
the object in more than a single context. While this violates some extreme programming
principles and can lead to “over designing” objects we have found it to be useful in
identifying general aspects from domain specific ones in objects.

Conclusion
The concepts of modularity and compartmentalization of computational tasks are

not new; however, time has shown that these concepts are poorly promoted by compiled
languages. When programming in the latter languages, the goal is to write an application
that produces the right result. There is little incentive to implement independent and
therefore reusable software components for solving each particular sub-task. In fact,
even if the software is properly compartmentalized, special “main” functions have to be
written to ascertain the independence and correctness of the various components, which
is rarely done. The intrinsic modular nature of Python on the other hand promotes the
creation of self-contained components each implementing a specific functionality. This
component can then be loaded into a Python interpreter, effectively extending the
interpreter with new functionality. Moreover, this component naturally becomes
available to any application running a Python interpreter.

We have described an approach in which the Python interpreter is the foundation
of the software environment and serves as both an integration platform and a primary
development language for new software components. With this approach we have
witnessed extremely high levels of code reuse both within and outside our laboratory.
While this approach has been successful in addressing many of the shortcomings of
software frameworks, it has also revealed a new set of challenges. While applications
built from software components are desirable for many reasons, they increase the
complexity of software distribution, as the right set of components (i.e. compatible
versions of all components) has to be used. Better support in the Python language for

package management would help with this problem. Keeping track of inter-packages
dependencies is also tricky. We have found that such dependencies are easily created and
often inadvertently. To address this issue we have started to explicitly declare
dependencies in all of our packages. These dependencies can be critical, if the package
cannot function without the package it depends on, or weak if the dependencies is only
needed for a secondary feature of the package. Our nightly unit tests monitor imports and
report as errors imports of packages that are not declared in the dependency lists.

As modern computational biology moves towards the study of larger systems it
will require the integration of computational methods and experimental data from a
variety of scientific fields. Furthermore, the complexity of the models will require an
unprecedented level of flexibility in the software tools to allow investigators to formulate
and validate new hypotheses. The interactive and dynamic nature of Python, its
simplicity, and ease-of-use, makes the language an excellent choice for creating software
tools with these advanced and complex requirements.

Acknowledgments: The development of the Python-based software components

described in this article was supported through the NSF grant CA ACI9619020 and the
NIH grant RR08605. This is manuscript 18323 from The Scripps Research Institute.

REFERENCES:

1. Lutz, M.; Asher, D., Learning Python. March 1999 First Edition ed.; O'reilly & Associates: 101
Morris Street, Sebastopol, CA 95472, 1999.
2. Tisdall, J., Mastering Perl for Bioinformatics. O'reilly: 2003.
3. Ousterhout, J., Tcl and the Tk Toolkit. Addision-Wesley, 1994.
4. Thomas, D., Hunt, A., Programming Ruby - The Pragmatic Programmer's Guide. 1st edition
(December 15, 2000) ed.; Addison Wesley Longman, Inc.: 2001; p 608.
5. Dybvig, R. K., The Scheme Programming Language Second Edition. Prentice Hall PTR: 1996.
6. Steele, G. L., Common Lisp the Language, 2nd edition. Digital Press: 1990; p 1029.
7. Lien, D. A., The Basic Handbook: Encyclopedia of the BASIC Computer Language. 3rd ed.;
Compusoft Publishing: 1986.
8. Schuerer, K.; Letondal, C. Python course in Bioinformatics.
http://www.pasteur.fr/recherche/unites/sis/formation/python/
9. BioPerl BioPerl project home page. http://bio.perl.org/
10. BioPython BioPython project home page. http://www.biopython.org/
11. Huang, C. C.; Couch, G. S.; Pettersen, E. F.; Ferrin, T. E. In Chimera: An Extensible Molecular
Modeling Application Constructed Using Standard Components, Pacific Symposium on Biocomputing,
1996; 1996; p 724.
12. Coon, S.; Sanner, M. F.; Olson, A. J. In Re-Usable components for Structural Bioinformatics., 9th
International Python conference (IPC9), Long Beach, California, 2001; Long Beach, California, 2001; pp
157-166.
13. Sanner, M. F.; Stoffler, D.; Olson, A. J. In ViPEr, a visual programming environment for Python,
Proceedings 10th International Python Conference, Alexandria, VA, February 4-7, 2002, 2002; Alexandria,
VA, 2002; pp 103-115.
14. Delano, W. L. The PyMOL Molecular Graphics System., Delano Scientific: San Carlos, CA, 2002.
15. Vriend, G., WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 1990, 8,
52-56.
16. Adams, P. D.; Grosse-Kunstleve, R. W.; Hung, L. W.; Ioerger, T. R.; McCoy, A. J.; Moriarty, N.
W.; Read, R. J.; Sacchettini, J. C.; Sauter, N. K.; Terwilliger, T. C., PHENIX: building new software for
automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 2002, 58, (Pt 11),
1948-54.

17. Hinsen, K. In The molecular modeling toolkit: A case study of a large scientific application in
Python, 6th International Python Conference, San Jose, CA, October 14-17, 1997, 1997; San Jose, CA,
1997.
18. Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics. J Mol Graph 1996,
14, (1), 27-8.
19. Cowell-Shah, C. W. Nine Language Performance Round-up: Benchmarking Math & File I/O.
http://www.osnews.com/story.php?news_id=5602
20. Aho, A.; Kernighan, B.; Weinberger, P., The AWK Programming Language. Addisson Wesley:
1988.
21. Raymond, E. S., Why Python? In Linux Journal, 2001.
22. SWIG Simple Wrapper Interface Generator (SWIG).
23. Sanner, M. F., Python: a programming language for software integration and development. J Mol
Graph Model 1999, 17, (1), 57-61.
24. Santavy, M.; Labute, P. SVL: The Scientific Vector Language.
http://www.chemcomp.com/Journal_of_CCG/Features/svl.htm
25. Daelen, T. v. The Insight Scripting Language.
http://www.chem.ac.ru/Chemistry/Soft/BIOLANGU.en.html
26. Tripos SYBYL, 6.9.2; Tripos Inc., .
27. Schrodinger MacroModel.
28. Hanselman, D.; Littlefield, B. R., Mastering MATLAB 6, 1/e. Prentice Hall: 2001; p 832.
29. Garland, M. QSlim Simplification Software, 2.0; 1999.
30. Sanner, M. F.; Olson, A. J.; Spehner, J.-C., Reduced surface: An efficient way to compute
molecular surfaces. Biopolymers 1996, 38, 305-320.
31. Bajaj, C.; Pascucci, V.; Schikore, D., Fast isocontouring for improved interactivity. Proc: ACM
Siggraph/IEEE Symp on Volume Visualization, San Francisco, CA 1996.
32. Vepstas, L. GL Extrusion library, 1991.
33. Morris, G.; Goodsell, D.; Halliday, R.; Huey, R.; Hart, W.; Belew, R.; Olson, A., Automated
docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comp.
Chem. 1998, 19, (14), 1639-1662.
34. Gillet, A.; Goodsell, D.; Sanner, M. F.; Stoffler, D.; Oslon, A. J. In A Tangible Model Augmented
Reality Application for Molecular Biology., IEEE Visualization Vis04, Austin Texas, October 10-15 2004,
2004; Austin Texas, 2004; pp 235-241.
35. IBM Open Visualization Data Explorer, OpenDX, 4.2.0; IBM: 2002.
36. Upson, C.; Faulhaber, T.; Kamins, D.; Laidlaw, D.; Schlegel, D.; Vroom, J.; Gurwitz, R.; van
Dam, A., The Application Visualization System: A Computer Environment for Scientific Visualization.
IEEE Computer Graphics and Applications. 1989, 9(4), 30-42.
37. Stoffler, D.; Coon, S. I.; Huey, R.; Olson, A. J.; Sanner, M. F. In Integrating biomolecular
analysis and visual programming: flexibility and interactivity in the design of bioinformatics tools, Proc.
Thirty-Sixth Annual Hawaii International Conference on Systems Sciences, Waikoloa, Hawaii, Jan. 6-9,
2003, 2003; Computer Society Press: Waikoloa, Hawaii, 2003; p 10.
38. Will Schroeder, K. M., Bill Lorensen, The Visualization Toolkit, An Object-Oriented Approach To
3D Graphics. 3rd ed.

