View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by The Python Papers Anthology

The Python interpreter as a framework for integrating
scientific computing software-components

Michel F. Sanner
The Scripps Research Institute,
Department of Molecular Biology, TPC26
La Jolla, CA 92037

Abstract:

The focus of the Molecular Simulation Laboratory ts model molecular
interactions. In particular, we are working on aamated docking and molecular
visualization. Building and simulating complex malilar systems requires the tight
interoperation of a variety of software tools on@fing from various scientific disciplines
and usually developed independently of each oth@wer the last ten years we have
evolved a strategy for addressing the formidabléwsme engineering problem of
integrating such heterogeneous software tools. Basic idea is that the Python
interpreter serves as the integration framework@oglides a powerful and flexible glue
for rapidly prototyping applications from reusaldeftware components (i.e. Python
packages). We no longer think in terms of programs rather in terms of packages
which can be loaded dynamically into the interpreteen needed, and instantly extend
our framework (i.e. the Python interpreter) withan&nctionality. We have written
more than 30 packages (>2500 classes) providingostifor applications ranging from
scientific visualization and visual programming rimlecular simulations and virtual
reality. Moreover, some of our components havenbeised successfully by other
laboratories for their own research. Applicatiensated from our software components
have been distributed to over 15000 users arouadvtirld. In this paper we describe
our approach and its various applications, distiisgeasons that make this approach so
successful, and present lessons learns and pittalksvoid in order to maximize the
reusability and interoperability of software compats.

Keywords: scripting languages, interpretive langsgnterpreters, programming
paradigms, code reusability, modularity, interopéity, component-based software
development, software engineering.

Introduction

Molecular biology is evolving from the study of nmmamolecules in isolation
towards complex environments, potentially as laagecomplete cells. The amount and
heterogeneity of information that needs to be msed and integrated in order to
understand and simulate such complexity requiresa in the level of sophistication of
our software tools. The next generation of biadinfatics programs will have to: (1)
support the inter-operation of rapidly evolving asdmetimes brittle, computational
software developed in a variety of scientific feldnd programming languages; (2)
support the integration of data across biologioglegiments and scales; (3) adapt to
rapidly evolving hardware environments; and (4) emgr users by allowing them to

https://core.ac.uk/display/230921279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

carry out operations unanticipated by the programmach as trying new combinations
of algorithms or new visualizations. These comdimequirements of flexibility,
portability, resilience to failure, programmabilityy the user, and responsiveness to
changes in the computational models and the haedp@se a tremendously challenging
software engineering problem.

So far, this challenge has mainly been addresshbycteation of software
frameworks that provide Application Program Inteda (APIs) for integrating new
software components. These frameworks usuallyigeosupport for managing software
components (e.g. plugin technology) and the ovemadtkflow and communication
between components. We have found that this apprbas several drawbacks. First of
all, it promotes extensible environments rathentbade reuse. Users and developers
often have their own software environment and waqarkfer to include a new method in
their own environment rather than having to switcha completely new framework in
which many of their usual tools might not be auvgda The integration of a given
computational method into one of these frameworkdy doenefits this particular
framework and this integration work will have to tepeated for each new framework.
More importantly, each framework wants to act as tentral piece of the software
environment, and be in charge of scheduling opmratiand the execution flow, thus
making it difficult to combine functionality avaldée in various frameworks. These
frameworks also often impose restricting data typeslata models, and grant limited
control to components over execution flow and ot@nmponents. Finally, in many of
these frameworks link their extensions into theimmment rather than dynamically
loading them when needed, thus leading to bloaewar

Command languages and scripting capability areno#ieailable in complex
software environments. On rare occasions, thesguéges are powerful enough to be
used to implement new extensions. However, thasgulages are often highly biased
toward a particular scientific domain and lack gefity. Moreover, a framework’s
language is only usable in that particular applcatvhich limits the size of the user
community, and in turn reduces the potential cbaotions for the user community.
Some applications embed scripting languages sudiCasor Python which is a better
approach than developing a custom language. Hawtnesframework is still the central
piece of the environment and dictates the way axt@s are developed, thus making
these extensions framework specific. Moreover fdinetionality of the application is not
re-usable in other applications, but merely schjgahrough the interpreter.

Our Approach

Here we present a solution we have evolved andeim@hted over the past ten
years and which has proven to be successful ineadoig some of the shortcomings
discussed above. Rather than developing our owarpiretive language we used the
Python programming languadeand instead of embedding Python into a frameveork
developing yet another framework, we decided toerihle Python interpreter itself our
framework. This idea of using an interpretive laage as an integration framework
could work with other interpretive languages aslwdlhis Python-centric framework is
extended by developing dynamically-loadable Pytipackages implementing specific
functionality. This approach promotes code compartalization and forces developers
to switch their mindset from writing programs toitmxg components that carry out

specific tasks. Applications are then generateddmgbining these components at a high
level, leading to true component-based applicatiofkis architecture makes swapping
software components, comparing implementationsiatejrating new methods trivial.
Such a high level of flexibility is particularly t@resting in a research environment where
the goals are constantly shifting as new discose@@e made, and where new
computational methods need to be integrated insimulation environments as they
become available. While this difference in mindseght appear trivial, experience has
shown that the development of software componenisalation of an application or a
framework is greatly increasing their re-usabilitfhen developing for a framework it is
always tempting to take advantages of some of etsufes with the detrimental
consequence of tying the extension to this pasdictriamework. Using Python-centric
approach, we have experienced an unprecedentddoferause of software components
in several applications that we have developed distributed. Some of these
components have also been used successfully inr ddb®ratories and software
environments.

We recognize that the requirement of a Python pnéter for developing and
reusing our software components is a constrainumapproach. However, the numerous
advantages of this approach largely outweigh tbistraint. Python is a general purpose
programming language, therefore the Python languiagenot biased toward any
application domain. There is a large user commguwontributing Python packages that
can be readily integrated for the most part andaveeusing several third party packages
in our applications. Having a fully-fledged, higghvel, object-oriented programming
language as a glue to connect software componesdslyyreduces the need for stringent
APIs for components to be inter-operable becausgptads can always be written.
Finally, since our software components are developdependently of each other and no
component is allowed to assume control of the appbn, the Python interpreter remains
central to the software environment. Python ndljuggovides scripting capability over
the applications and the data they manipulate. additional benefit of programming in
Python is platform independence which is a greaaathge when supporting multiple
platforms. While there were initial concerns abthé performance impact of using an
interpretive language, we found that Python is walted for developing entire software
components. This is due to the fact that we aherotlevelopers often have a wrong
impression about how much and where the utmosbpaénce is needed, and where the
true bottlenecks are.

Below we will briefly describe the key differencdmetween compiled and
interpretive languages and stress the advantagesegpretive languages in general and
Python in particular as integration platforms. Wéscribe some software components we
have developed and illustrate their integratiom iehd-user applications. We conclude
with some lessons learned, pitfalls to avoid arstuls some of the challenges associated
with our approach.

Programming languages

In compiled languages (FORTRAN, C, C+etc) an executable has to be built
(i.e. compiled and linked) from the source codeoleit can be executed. Extending or
modifying these programs requires re-building tppligation after the source code has
been modified. This cannot be done while the @wgis running. Moreover, these

languages require complete and syntactically cosegrce code before compilation and
testing become possible. Interpretive languages tPPython®, Tcl 3, Ruby?, Scheme
® Lisp®, Basic’, etc.) use a program called an interpreter toustalsource code as it is
read from a file or typed in interactively by a us&@hese languages are often referred to
as scripting- or interpreted-languages. Applig&iavritten in these languages can be
extended and modified while the program is runnifiipout having to quit, recompile or
restart the application. Code can be executedtestdd as it is written, even if only a
small fraction of the complete application has bmeplemented, thus allowing the rapid
exploration of novel hypothesis and the early deieation of design flaws.

Programming languages can also be classified asctided by placing them on a
scale ranging from low- to high-level languagese WIIl deem a language “high-level”
if it provides: high-level data structures suchists and associative arrays; mechanisms
for preventing errors from aborting the applicatigexceptions); array boundary
checking, and support for automatic memory managéeme part of the language. The
more such features any particular language proyities higher it will be ranked.
Interpretive languages usually are higher levehtt@mpiled languages.

Advantages of Interpretive Languages

Rapid development: The high-level and dynamic nature of interprefaeguage
offers several advantages for scientific computinghe ability to quickly prototype
software is particularly interesting in a researmhvironment where the software
requirements are constantly shifting as the undedshg of the underlying science
evolves. Easy to learn: Their easy syntax and high-level data structumege it easier
for non-professional programmers such as compuigtiobiologists to develop
programming skills enabling them to interact witktad programmatically and eventually
develop code on their own. For instance, Pythobeisoming an increasingly popular
language for teaching computational skflls Open-ended application extensibility:
Software environments enabling end users to intgresyrammatically with their data
and with the application using a simple yet fulgdiged programming language provides
the highest level of extensibility. While GUls aen excellent way to abstract
programming syntax and data structures, with treegtxon of visual programming (see
below), GUIs can only be implemented for anticigateays of using a program. This
lack of programmability associated with GUI-baseuteifaces greatly limits the
application’s range of capabilities and its extbitisy. Modifying an application’s
source code enables unrestricted modifications;elvew it is usually a difficult task and
always presents the danger of corrupting the agibic. General purpose scripting
languages provide a safer and easier way to exapptications, while providing the
open-ended extensibility which is missing in GUkbed interfaces. In fact, scripting
languages blur the line between users and devalop8tue languages. Interpretive
language can be used to integrate heterogeneaesé software written in a variety of
compiled languages and let them interoperate.

Interpretive languages provide new solutions todhallenges mentioned in the
introduction and are becoming increasingly popuiar developing bioinformatics
applications (BioPer!, BioPython'®, Chimera®, PMV *4, Vision **, PyMol **, Whatlf

;5, PHENIX ** MMTK **, VMD *® and for teaching programming concepts to bioksgis

Performance

A drawback of interpretive languages is that theg slower than compiled
languages, typically by a factor of 15 to 40 When compiled languages appeared, they
rapidly replaced assembly languages. The subalaimcrease in readability and
portability they offered outweighed the associatedtential decrease in runtime
performance. Today, this pattern is repeatinglfitsthe sustained increase of
computational power in typical desktop computerskesainterpretive languages a
practical alternative to compiled languages forasiety of tasks. Moreover, we often
have a wrong intuition about how much and wherdoperance is needed. A key
observation is that the bulk of the source coderoframs used in computational biology
deals with input and output, handling events, aodkkeeping of data structures. The
computationally intensive parts are often confineda few functions that amount to a
small percentage of the total number of lines afrse code, typically less than 10%.
Hence, large amounts of code can be implementdudgim-level interpretive languages
without affecting the overall performance of thelkgation.

Which scripting language is right for my application?
Scripting languages such as the various UNIX st@ipting languages and awk
Y have been available for a long time. Howevers¢hlanguages are arcane and limited
in generality. They have been reserved to commatevy users. A number of high-level
scripting languages are available today. Perl ovas of the first to be widely used in
scientific computing. It is a powerful languager fariting highly concise scripts.
However, the way its syntax and notation tendsrtonote obfuscation is not a desirable
feature for reusing and sharing code. Perl is lpaised for writing relatively short,
“use-once’-type scripts, but is ill suited for deygng large and complex software
applications*. It also is lacking a good interpreter shell fiteractive code
development. The Tcl language is another examipéevaidely used scripting language.
Unfortunately, its one strength — all data are @spnted as strings — is also its main
weakness for scientific computing. This makes Gambersome and inefficient for
numerical computations. The Tcl-shell is alsotreddy simple and underdeveloped.
Python appeared in 1991 and was designed fromutsetoas an object-oriented
language while allowing for simple scripting. lupports multiple inheritance,
introspection, self-documenting code, high-levdbektructures (i.e. lists and associative
arrays called dictionaries), and exceptions andniwgr mechanisms. Its syntax was
designed to be free of arcane symbols and to ldakBEnglish text (i.e. pseudo-code).
Python is open source and runs on virtually any maer from super-computers to
PDA’s. New functionality can be added to the ipteter by loading extensions to the
language at runtime. Such extensions can be ag@dnnto sets called packages. The
standard Python distribution comes with a comprsivenlibrary of extensions covering
needs in areas as diverse as regular expressiochinggt GUI toolkits, databases,
network protocols, numerical calculations and XMtogessing to name a few. In
addition, an active community of developers prosidevariety of packages spanning all
areas of computing, reflecting the diversity of iRyt’s user community and application
areas. Python extensions can be written botharPgithon programming language and in
compiled languages such as FORTRAN, C or C++, Hilesving the incorporation of
legacy code. Code written in compiled languagestrbe “wrapped” (i.e. turned into a

Python extension) before it can be called from th&y interpreter. Semi-automatic tools
%2 facilitate the process of wrapping compiled cod@ese extensions execute faster than
those written using the Python language. Howetley are platform-dependent (i.e.
they need to be compiled for every hardware platf@nd operating system). With
Python, it is possible to have “the best of bothlday by implementing those functions
that require the utmost in performance using a dlethpanguage while the remainder of
the application can be written in a high-level atatform-independent language.

Python has been used as a “glue language” to ateegnonolithic programs.
With the wrapping mechanism described above, atsugi layer can be added to such
programs, allowing them to inter-operate within ghen interprete® *% 1. Using
Python for scripting applications should be cortdswith using a custom scripting
language (i.e. SVE* BCL %°, SPL?®, batchmin?’, MATLAB %8, etc). Such languages
often lack extensibility and tend to be domain #pecince they are created by
developers whose strengths are in a specific agit domain. Because of their
specificity, these languages will not benefit frale input of a large community.
Designing a language is better left to people whmsaary occupation is designing
languages.

While an excellent scripting- and glue-languagehBy is also a general-purpose,
object-oriented programming language. This aspastbeen key for our purpose. It can
be used as the primary language for the implementaif complete packages and
applications which have the great advantage offglatindependence (i.e. the same
source code runs on all platforms). Our softwareetbpment effort has grown to over
15 packages written in pure Python, amounting ter @500 classes and well over
1'000°’000 lines of code. Such a colossal softwaase would be extremely difficult to
manage without object orientation and hierarchitames spaces. Unfortunately, the
often wrong intuition about where and how much @eniance is needed tends to deter
programmers from using interpretive languages.s Thisconception about performance
is difficult to overcome. However, designing amdpiementing components in the
Python programming language first, provides sevadslantages: (1) The development
cycle of a prototype is greatly accelerated throtilghuse of a high-level language and
the reuse of software components. It is not uncomfar a Python program to have 3 to
10 times fewer lines of source code than the saimgram written in C; (2) The design
of software components can be validated rapidlythéh code can be tested as it is
written. The ability to run code after only a fliao of an application or component has
been implemented helps identify design problemby/ ear; (3) Performance bottlenecks
can be identified using Python’s profiler and rgedl by optimizing the Python code, or
by providing a re-implementation of parts of thedeon C or C++; Finally, (4) a
potentially slow but working Python implementatisralways available in the case that a
C or C++ implementation cannot be loaded.

Software-components and their integration

We have developed a number of Python packagesgTBbl To illustrate our
approach, we describe two independently developéidvare components: MolKit and
DejaVu, and demonstrate their integration for molacvisualization.

MolKit: This software component has no dependencieshar Bython packages
and provides objects for reading and writing comnuata file formats describing

biological molecules such as PDB, Mol2 and mmCI®hen a molecule is read, a

hierarchical data-structure is built reproducing tratural hierarchy found in molecules
such as proteins. Molecule objects can be quanedcan also generate information such
as atom types, covalent bonds, atomic radii, etds Tomponent is written in pure

Python.

Package Description

MolKit Read, write and build hierarchical representation of molecular data structures.

ViewerFramework Visualization application template. Uses DejaVu for rendering 3-D geometry.

PyBabel Re-implementation of Babel 1.6 (molecular file formats conversion). Supports assigning of atom
type and bond order, ring detection, Gasteiger charges, protonation.

Mglutil Various packages containing mathematical functions, GUI widgets, etc.

FlexTree Provides hierarchical, high-level representations of molecular flexibility.

PyBabel A Python re-implementation of Babel 1.6 for molecular data file format conversions

shapefit Protein-Protein docking software package based on the complementarity of smoothed protein
shapes

Volume A package for representing and manipulating 3D regular grids of volumetric data.

WebServices Generic support for web services

symserv A set of objects for describing point symmetries

Vision A component supporting visual programming

ViewerFramework A boiler plate for creating visualization applications

DejaVu An OpenGL-based general purpose 3D geometry rendering component

PYyARTK A software component for virtual reality

PyQslim Python wrapper of the polygonal mesh decimation library QSlim %.

Mslib Python wrapper of the MSMS library * for computing molecular surfaces.

UT-packages A suite of Python wrapper of C++ libraries for fast iso-contouring, volume rendering, pseudo
density maps calculations, signed distance fields, meshing techniques, etc. 3

SFF Python wrapper of a C-implementation of the AMBER Force Field (Simple Force Field).

SpatialLogic Python wrapper of a C library performing BSP-Tree-based CSG operations.

Gle Python wrapper of the GL Extrusion library *

opengltk Python wrapper for OpenGL, generated on the fly from .h files

memoryObject A native extension for speeding up communication between C and C++ and Python code

PyAutoDock objects implementing the AutoDock forcefield.

SurfDock Python wrapper of the protein-protein docking program SurfDock

Stride A wrapper of the Stride program for assigning secondary structure to proteins

BHtree A Python wrapper of a C library implementing binary spatial divisions

Table 1: Python packages developed in our laboratory. A shaded background indicates
packages that are platform-independent (i.e. written entirely in Python).

DgaVu is our OpenGL-based, platform-independent, genmrgdose 3-D
geometry visualization component. It defines @&@assmplementing objects such as
Viewer, Camera, Light, ClippingPlane, ColorEdit@eometry, etc. The Viewer class
implements a fully-fledged visualization applicatio It provides control over a large
number of rendering parameters including: userrotiable depth-cueing; global anti-
aliasing; perspective and orthographic projectiordes; multiple light sources; as well
as per geometry: rendering modes (points, lineggpas, outlined), shading modes (flat,
Gouraud), culling modes (back, front, none), adbitrclipping planes, magic lenses that
reveal geometry only inside the lens, blending fiems for transparency, etc. Each
DejaVu Viewer object maintains a hierarchy of getiinal objects. Rendering attributes
and 3-D transformations can be defined for anyi@der geometry in this hierarchy, or
can be inherited from a parent. A Viewer objeattams a virtual trackball object for

rotating, translating and scaling. This tracklzah be bound to any geometry, camera,
light source, clipping plane, or texture. DejaVuwsalsupports Non Photo-realistic
rendering and interactive Mpeg movie generatiomftbe Camera,

DejaVu's set of geometry objects is extensible andently includes: Polylines,
IndexedPolylines, IndexedPolygons, QuadStrips, nbieStrips, Spheres, Cylinders,
Ellipsoids, Arcs3D, Arrows, Box, Points, CrossSatsl TextLabels. Such objects can be
instantiated and added dynamically to a viewerjale is written entirely in Python but
relies on the presence of the Numeric package dsawepengltk, our OpenGL wrapper
for Python.

Combining MolKit and DgaVu for molecular visualization: Figure 1 shows
the code necessary for reading a molecule usinythKit component and displaying a
CPK model of this molecule (i.e. a single spheregiem). Nine lines of Python code
are sufficient for achieving basic molecular viszation with software components that
have been developed independently of each rTn‘hPr

v | DejaVu Viewer - [=][*

from MolKit import Read

mols = Read(‘1crn.pdb’)

coords = mols[0].chains.residues.atoms.coords
radii = mols[0].defaultRadii()

from DejaVu import Viewer
vi = Viewer() # create a viewer

from DejaVu.Spheres import Spheres

s = Spheres(‘sph’, centers=coords,
radii=radii,quality=10)

vi.AddObiject(s) # display atomic spheres

Figure 1: Nine lines of Python code are needed to read a molecule and display a sphere for each atom
using two software components developed independently of each other: MolKit and DejaVu. The Read
factory function from MolKit builds molecular objects from which data, such as atomic centers can be
retrieved, and which can infere attributes such at atomic radii. A Viewer object from DejaVu provides a
fully-fledged 3D geometry viewer in which geometry such as a set of spheres can be displayed.

More complex applications: Using the software components described in Table
1, we have created complex applications, includiigyV (Figure 2A), a general purpose
molecular visualization and manipulation environtmeAutoDockTools, a GUI for
setting up and launching AutoDock-based automatedkidg calculations®®, and
analyzing the results; and PyARTK, an augmentelityesoftware in which we combine
live video of physical models manipulated by therusith computer graphics enhancing
the displayed vided". Both AutoDockTools and PyARTK are specializatiaii PMV.

=
Fie Edit UnDisplay Color Select Compute Macros

[indispiaySticksA v Al ndisplayCPK_v]

NetworkEditor

Python Interpreter [Python Interpreter

Figure 2: Two applications PMV and Vision built from, and sharing many software components.
(A) PMV: a general purpose molecular visualization application. (B) Architectural layout of PMV.
Nested boxes denote dependencies between Python packages. Packages with dark pink
background are platform-dependent. (C) A molecular visualization application built using the
Vision visual programming environment. A network used to display a viral capsid is shown. The
sub-network embedded in the “Lines Macro” is shown as an inset. The “node Editor” allowing
inspecting and modifying nodes interactively has been started on the “Read Molecule” node. (D)
Architectural layout of Vision. Libraries of Vision nodes are shown with dashed outlines. Note the
number of shared software components.

Software component integration by non-programmers

In a research setting where goals and questionsaargantly evolving with the
discovery of new knowledge it is impossible forragrammer to foresee all possible way
in which a user might want to combine algorithmgtocess his/her data and look at the
results. The Python interpreter is the foundatibaliothe applications we develop and is
always accessible for scripting thus providing ayw@ extend and modify any of our
applications. However, domain experts such as Qisls, often feel that learning a
programming language (even as simple as Pythomjoig than what they ought to be
doing. To use an analogy, it is similar to askindyiger to learn to tune his car’'s engine
before he can drive it. We have explored a coapldeas to address this problem. First,
in our ViewerFramework component which is undedyfPMV and AutoDockTools, all
commands invoked through the graphical user interfgenerate a log string which
corresponds to what a user would have to type enPython shell to achieve the same
result. This can help some of the more sophigittaisers to prototype a series of
operations, capture the log, and for instance piacaeside a loop to apply these
operations to a sequence of objects. Howeverugee still has to worry about proper
indentation and other syntactical details of théhBy language. In order to hide this
level of complexity completely from the user we @asxplored the concept of visual
programming. We have implemented a software compbealled Vision (figure 2CY
which support dragging and dropping computatiomales onto a canvas and connecting
their input and output ports for creating workflovesxd computational networks.
Libraries of Vision node expose the functionalitprh other Python packages such as

F%& e o e . [olx)] MolKit and DejaVu. Figure 3 shows a

Vision network that is equivalent to the

SEEdIISRLY BRI _ ! Python script shown in figure 1. This
o e dagues aat paradigm empowers the end user with

g R | the ability to extend the application with

X - self.outputlata (Mol3ets=mols) ﬂ neW functlonallty and novel
%1 Ok ‘ Apply‘ Cancel Ln:7lcol:o| combination of computational methods
Fitae et Waceos T T without having to learn the syntax of a

t MadFra m CIFW, s Eﬁm pFresyE T H .

% e] e e pr(_)gramml_nrglj hIanguage, or getting
B |t e (e] intimate with the data structures used
FTLBLT B, » - to store objects. A key difference
Nateots O G aces ey between Vision and other visual
et prog3r?mming I%rgg_uages sqc_h as Open

[rpuren} DX * or AVS * is that Vision is a
CP¥ Maacro —| «——— | software component that can be reused

| ro= in other applications. We have
[vaee] [I"‘”—*““hm— deomstrated its integration with PMV

P, Pl LS 37 . e

. All the domain-specific knowledge

Sohares | is in the Vision nodes found in various

libraries. The Vision nodes are light-

= weight wrappers for functionality

otherwise available in Python. For
Figure 3: a simple Vision network corresponding instance the full implementation of the
to the Python script in Figure 1. The nodes are Read Molecule node in Figure 3 is to
colored by the library they originate from. The ; ; :
CPK macro node is expanded in the inset. A user get the input (i.e. the. file name),
can create this network without any knowledge of 'nVOk,e the Read function from the
the Python syntax or the data structures use to ~ MOIKit package, and output the
store molecules. resulting Python object on the output

port. In this sense, the node is merely
an adaptor for the Read function in the Vision emvinent.

Lessons learned and pitfalls

Python’s modular nature does promote the compatatieation of code.
However, for software components to achieve thdirgotential in terms of re-usability
special care has to be taken beside the obvioasdescribed earlier which is to develop
components in isolation. Here we provide a shigtt df common mistakes we have
identified over the years. Simple mistakes includig global variables. This is always
undesirable in object oriented environment as écludes the simultaneous use of
multiple instances of objects referring to thesealdes.

One common pitfall in object-oriented languagethestendency to create a large
hierarchy of objects for all software developedabgroup. While the idea is appealing
from an esthetic point of view, it can be quite égmng from the software engineering
aspect. The popular visualization toolkit VTR provide a typical example of such a
situation where the complete source has to be dmmield and compiled before any part
of the toolkit can be used. Moreover, if the budds half way it is often difficult to
know whether or not the part that is of interest bailt properly or not. We found that

keeping the package hierarchy as flat as possilblé eeducing inter-packages
dependencies to a minimum leads to much more reusaimponents. The same is true
with data-types. In computational biology it idesf tempting to pass complex objects
such as a molecule to a given computational metffudh might only be using a small
fraction of the information stored in the molecubject. Reducing the information
passed into the computational method to the stnicimum that is needed is a better
approach. For instance in the example in Figune€elcould have passed a molecule to
the viewer, but this approach would make the vigaabn component aware of
molecular objects. Alternatively, a molecule colldve a display method, but here
again, the MolKit component would become aware efaMu. Instead, we are passing 2
numeric arrays, one for coordinates and one far, faglcause that is all that is needed for
drawing the spheres. By passing the simplest yatss between software components,
we reduce the dependencies between these comp@mehtainimize the data structures
we impose onto other users of these componentsel@mers of libraries written in the C
and C++ programming languages sometimes choosake their code exit if input files
are not found or an error is encountered. Thisghly undesirable in our setting, as such
a call would terminate the Python interpreter aedde our working session. We have
also found that techniques such as writing unitstéefore writing code lead to better
designed classes as it forces the programmerri& thore thoroughly about the input to
methods and behavior of the object when the inputrong. It is also helpful to think of
the object in more than a single context. Whils tholates some extreme programming
principles and can lead to “over designing” objests have found it to be useful in
identifying general aspects from domain specifie®m objects.

Conclusion

The concepts of modularity and compartmentalizatibnomputational tasks are
not new; however, time has shown that these cos@eptpoorly promoted by compiled
languages. When programming in the latter langsiatpe goal is to write an application
that produces the right result. There is littleeintive to implement independent and
therefore reusable software components for soldagh particular sub-task. In fact,
even if the software is properly compartmentalizggkcial “main” functions have to be
written to ascertain the independence and corrsstoéthe various components, which
is rarely done. The intrinsic modular nature oty on the other hand promotes the
creation of self-contained components each impléimgra specific functionality. This
component can then be loaded into a Python intenpreffectively extending the
interpreter with new functionality. Moreover, thisomponent naturally becomes
available to any application running a Python ipteter.

We have described an approach in which the Pythi@mgreter is the foundation
of the software environment and serves as botmeagnation platform and a primary
development language for new software componenf¢ith this approach we have
witnessed extremely high levels of code reuse bathin and outside our laboratory.
While this approach has been successful in addigssiany of the shortcomings of
software frameworks, it has also revealed a newokehallenges. While applications
built from software components are desirable fornynaeasons, they increase the
complexity of software distribution, as the righgt o0f components (i.e. compatible
versions of all components) has to be used. Bstipport in the Python language for

package management would help with this probleneegfng track of inter-packages
dependencies is also tricky. We have found thett siependencies are easily created and
often inadvertently. To address this issue we hatsted to explicitly declare
dependencies in all of our packages. These depeigdecan be critical, if the package
cannot function without the package it dependsaonyeak if the dependencies is only
needed for a secondary feature of the package.ni@itly unit tests monitor imports and
report as errors imports of packages that are edtacked in the dependency lists.

As modern computational biology moves towards tiuelys of larger systems it
will require the integration of computational medlsoand experimental data from a
variety of scientific fields. Furthermore, the qolexity of the models will require an
unprecedented level of flexibility in the softwaomls to allow investigators to formulate
and validate new hypotheses. The interactive aypgbmic nature of Python, its
simplicity, and ease-of-use, makes the languagexaellent choice for creating software
tools with these advanced and complex requirements.

Acknowledgments. The development of the Python-based software oo@ts
described in this article was supported throughNB& grant CA ACI19619020 and the
NIH grant RR08605. This is manuscript 18323 frohe Bcripps Research Institute.

REFERENCES:

1. Lutz, M.; Asher, D.Learning PythonMarch 1999 First Edition ed.; O'reilly & Assoaat 101
Morris Street, Sebastopol, CA 95472, 1999.

2. Tisdall, J.Mastering Perl for BioinformaticgO'reilly: 2003.

3. Ousterhout, JTcl and the Tk ToolkitAddision-Wesley, 1994.

4, Thomas, D., Hunt, ARrogramming Ruby - The Pragmatic Programmer's Guld edition
(December 15, 2000) ed.; Addison Wesley Longmamn; R001; p 608.

5. Dybvig, R. K.,The Scheme Programming Language Second EdRimntice Hall PTR: 1996.
6. Steele, G. LCommon Lisp the Language, 2nd editibigital Press: 1990; p 1029.

7. Lien, D. A.,The Basic Handbook: Encyclopedia of the BASIC Caenptanguage3rd ed.;
Compusoft Publishing: 1986.

8. Schuerer, K.; Letondal, C. Python course in ifmimatics.
http://www.pasteur.fr/recherche/unites/sis/formatpython/

9. BioPerl BioPerl project home padrtp://bio.perl.org/

10. BioPython BioPython project home palygp://www.biopython.org/

11. Huang, C. C.; Couch, G. S.; Pettersen, E.éfrjiF; T. E. InChimera: An Extensible Molecular
Modeling Application Constructed Using Standard @oments Pacific Symposium on Biocomputing,
1996; 1996; p 724.

12. Coon, S.; Sanner, M. F.; Olson, A. JRe-Usable components for Structural Bioinformafi@gh
International Python conference (IPC9), Long Be&lifornia, 2001; Long Beach, California, 2001; pp
157-166.

13. Sanner, M. F.; Stoffler, D.; Olson, A. JMIPEr, a visual programming environment for Python
Proceedings 10th International Python Conferendexaiadria, VA, February 4-7, 2002, 2002; Alexandria
VA, 2002; pp 103-115.

14. Delano, W. LThe PyMOL Molecular Graphics Systemelano Scientific: San Carlos, CA, 2002.
15. Vriend, G., WHAT IF: A molecular modeling andid design progrand. Mol. Graph.1990, 8,
52-56.

16. Adams, P. D.; Grosse-Kunstleve, R. W.; HungM.; loerger, T. R.; McCoy, A. J.; Moriarty, N.
W.; Read, R. J.; Sacchettini, J. C.; Sauter, NTirwilliger, T. C., PHENIX: building new softwafer
automated crystallographic structure determinatiania Crystallogr D Biol CrystallogR002, 58, (Pt 11),
1948-54.

17. Hinsen, K. InThe molecular modeling toolkit: A case study cdirgé scientific application in
Python 6th International Python Conference, San Jose,@#ober 14-17, 1997, 1997; San Jose, CA,
1997.

18. Humphrey, W.; Dalke, A.; Schulten, K., VMD: ui molecular dynamics. Mol Graph1996,
14, (1), 27-8.

19. Cowell-Shah, C. W. Nine Language Performancen@eup: Benchmarking Math & File 1/O.
http://www.osnews.com/story.php?news_id=5602

20. Aho, A.; Kernighan, B.; Weinberger, Phe AWK Programming Languag&ddisson Wesley:
1988.

21. Raymond, E. S., Why Python?Uimux Journaj 2001.

22. SWIGSimple Wrapper Interface Generator (SWIG)

23. Sanner, M. F., Python: a programming languagsdftware integration and developmehiMol
Graph Model1999, 17, (1), 57-61.

24. Santavy, M.; Labute, P. SVL: The Scientific Wed anguage.
http://www.chemcomp.com/Journal_of CCG/Featureditvi

25. Daelen, T. v. The Insight Scripting Language.
http://www.chem.ac.ru/Chemistry/Soft/BIOLANGU.emfit

26. TriposSYBYL.6.9.2; Tripos Inc., .

27. SchrodingeMacroModel

28. Hanselman, D.; Littlefield, B. RMastering MATLAB 6, 1/éPrentice Hall: 2001; p 832.

29. Garland, MQSIim Simplification Softway®.0; 1999.

30. Sanner, M. F.; Olson, A. J.; Spehner, J.-CduRed surface: An efficient way to compute
molecular surface®iopolymersl996, 38, 305-320.

31. Bajaj, C.; Pascucci, V.; Schikore, D., Fast@uouring for improved interactivitferoc: ACM
Siggraph/IEEE Symp on Volume Visualization, Saméisto, CAL996.

32. Vepstas, LGL Extrusion library 1991.

33. Morris, G.; Goodsell, D.; Halliday, R.; Huey,; Rlart, W.; Belew, R.; Olson, A., Automated
docking using a Lamarckian genetic algorithm aneapirical binding free energy functiah. Comp.
Chem.1998, 19, (14), 1639-1662.

34. Gillet, A.; Goodsell, D.; Sanner, M. F.; Steffl D.; Oslon, A. J. I Tangible Model Augmented
Reality Application for Molecular BiologylEEE Visualization Vis04, Austin Texas, Octobé&r15 2004,
2004; Austin Texas, 2004; pp 235-241.

35. IBM Open Visualization Data Explorer, OpenPX2.0; IBM: 2002.

36. Upson, C.; Faulhaber, T.; Kamins, D.; Laidl@w, Schlegel, D.; Vroom, J.; Gurwitz, R.; van
Dam, A., The Application Visualization System: A@puter Environment for Scientific Visualization.
IEEE Computer Graphics and Applicatiori989, 9(4), 30-42.

37. Stoffler, D.; Coon, S. I.; Huey, R.; Olson,JA. Sanner, M. F. Imtegrating biomolecular
analysis and visual programming: flexibility anderactivity in the design of bioinformatics topRroc.
Thirty-Sixth Annual Hawalii International Conferenoe Systems Sciences, Waikoloa, Hawaii, Jan. 6-9,
2003, 2003; Computer Society Press: Waikoloa, Ha2@03; p 10.

38. Will Schroeder, K. M., Bill Lorenseithe Visualization Toolkit, An Object-Oriented Apgech To
3D Graphics 3rd ed.

