
The Python Papers 7: 2

 - 1 -

High-Speed Data Shredding using Python

David Leong
School of Infocomm, Republic Polytechnic

david_leong@rp.edu.sg

Eugene Yeo

School of Infocomm, Republic Polytechnic

91315@myrp.edu.sg

Abstract

In recent years, backup and restore is a common topic in data storage. However, there’s

hardly anybody mention about safe data deletion. Common data destruction methodology

requires the wipe operation to fill the disk with zeros, then with random data, and then with

zeros again. Three passes are normally sufficient for ordinary home users. On the down side,

such algorithms will take many hours to delete a 2TB hard disk. Although current Linux

utility tools gives most users more than enough security and data protections, we had

developed a cross-platform standalone application that could expunge all confidential data

stored in flash drive or hard disk. The data shredding software is written in Python, and it

could overwrite existing data using user-defined wipe algorithm. This software project also

explores the technical approaches to digital data destruction using various methodologies

defined in different standards, which includes a selection of military-grade procedures

proposed by information security specialists. The application operates with no limitations to

the capacity of the storage media connected to the computer system, it can rapidly and

securely erase any magnetic mediums, optical disks or solid-state memories found in the

computer or embedded system. Not only does the software comply with the IEEE T10/T13

specifications, it also binds to the number of connectivity limited by the SAS/SATA buses.

Keywords: data security, data destruction standards, data wiping algorithms.

1. Introduction

Many old hard disks are usually filled up to the brim with data, and users may habitually

think about buying a new and bigger disk when its capacity is almost full. To reduce the

impact on their budgets, they could either choose to expand their local data storage capacity

by reusing existing old hard disks, or they may decide to sell them via one of the many

online auction sites, such as eBay or Gmarket.

In the course of time, users will have left numerous traces of personal and business data on

the disk (Schneier, 1996). Of course, they would prefer to remove applications, confidential

documents, letters, dismissal notices, emails, personal photo, video albums, financial

statements, and access credentials from the disk (Morris, 2011).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Python Papers Anthology

https://core.ac.uk/display/230921208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Python Papers 7: 2

 - 2 -

A lot of users might already know how to delete a file or directory in their computers. All

operating systems adopt the analogous approach by permitting users to click and select the

file or directory icon and then press the [Delete] key on their keyboard to send the file off to

the recycle bin. Some users might think that file deletion from a command line is much safer

than deleting directly from the file icons, presuming that the deleted files will not be

resurrected again in the recycle bin. For instance, Windows PowerShell has a one-liner at the

command line that could make file deletion handy:

remove-item –path C:\test*.* -force

Such file deletion techniques would permanently erase the file and folder from the context of

their file system, and that is what many of the users might believe. Even if the user could

manage to empty the files or folders from the recycle bin, these techniques simply remove

entries in the file system journals. Without these entries, the file system has no way of

locating the data. However, this does not mean that the data would just vanish in the hard

disk. The content of the file is still resided somewhere in the hard disk platters. Old data do

not disappear abruptly until the user starts writing new data over it.

To elaborate the analogy further, the remove-item command above simply deletes the test

directory, its subdirectories, and all files it contain without prompting the user for

confirmation. Strictly speaking, the command merely deletes the entry in the file allocation

table associating with the file system. What really happens is that the operating system

removes the inode from the inode table, thus freeing up some space in their local storage

(Bach, 1986). Unfortunately, deleting files in this manner do not radically wipe out existing

data from the hard disk. Physically removing the data stored in the space where the inode

pointing to simply requires too much computational effort for the file system.

Contrary to many beliefs, reformatting of hard drives does not eradicate data from the

computers either. For instance, when a hard disk is formatted, a modern operating system

will just create a superblock to store information that protects the integrity of the file system

(Deitel et al., 2004), and repartitioning just changes the entries in the partition table on the

user’s disk. The data may be lost somewhere in data nirvana, but it is definitely still reside

on the disk media. Unskilled hackers are able to retrieve files (even those deleted a long time

ago) using off-the-shelf data recovery tools that are easily available on the Internet. Many of

the vulnerabilities were the result of bypassing the prevention mechanism (Schneier, 2000).

Given this reality, factual response to data security is predominant.

In retrospect to expunging digital data in a way that is irrecoverable (NIST, 2006 & Wei, et

al., 2011), users are highly recommended to perform secure erase procedure (also known as

"disk wiping" or “data shredding”) on old hard disks that may be eventually reused. The

aspiration of our project is to develop a cross-platform data wiping application software

using Python programming language. The software should be capable of sanitizing multiple

hard disks or flash media devices simultaneously. The software should also be able to

overwrite any existing data using predefined data destruction algorithms, which include a

selection of military-grade procedures proposed by information security specialists

(Gutmann, 1996; Roebuck, 2010).

The Python Papers 7: 2

 - 3 -

The ultimate goal of our data destruction software is to annihilate all previous data entries

and partitions, so as to make it impossible for malicious user to recover any readable data

that was previously stored in the hard disk or non-volatile memory. In order to corroborate

common server-board and mother-board architectures, the software shall support up to 4

PATA hard drives as well as 8 SATA/SCSI/USB hard drives or flash media devices. For

versatility, the software executable should be small enough to be available in a bootable

flash media device, or CD-ROM/DVD-ROM disc. It must be capable of supporting a variety

of data storage devices with sector/block size of 512 bytes or greater. The software should

also provide a built-in Disk Viewer utility for data read-back and verifications.

The remainder of this paper is organized as follows: Section 2 briefly describes our

implementation of the Graphical User Interface (GUI). Section 3 describes the programming

techniques used for extracting system information. Section 4 describes a variety of different

data destruction methods and their wipe patterns. Section 5 describes the numpy method that

generates pseudo-random numbers for scribbling existing data. Section 6 presents the

generic file I/O methods for reading back raw data stored in a disk sector. Section 7 presents

the prevailing technique to handle concurrency. Section 8 presents the wx methods used for

displaying application status and gauge bars. Section 9 describes briefly our error logs and

reports. Section 10 describes the techniques for optimizing wipe performance. Section 11

concedes our software limitations and describes future explorations, and Section 12 presents

our conclusion.

2. Graphical User Interface

In the implementation process, the entire software development is divided into several

software modules to simplify our development cycle; each was developed simultaneously by

different individual. There are currently a handful of cross-platform Python frameworks that

can used to develop graphical desktop applications, such as PyGTK, wxPython and PyQT.

We have espoused wxPython. It is a set of Python bindings to the wxWidgets library,

which is a prevailing cross-platform C++ application framework that can be used to create

our GUI. What sets wxPython apart is the use of the same controls and themes as the rest of

the system. Another benefit of using wxPython is that it can rapidly developed on one

operating system platform and deployed to another with little or no changes to the source

code (Precord, 2010).

Figure 2.1. Selecting physical devices for data destruction

The Python Papers 7: 2

 - 4 -

The main GUI screen of our data shredder software is shown in Figure 2.1. On the left pane,

it shows a list of storage devices mounted onto the operating system. Detection and

recognition of storage devices, as well as the presentation of device information are

emphasized in the next section. The right pane shows a list of available data destruction

methods to be selected by user. We will be describing their unique wipe patterns and number

of wipe iterations in Section 4. In order to improve the software usability, we have included

the status and progress bar to be elaborated further in Section 8. In addition, a checkbox is

included to permit user to select whether reports should be generated after each wipe

operation (see Section 9). This option is useful for security auditing as well as monitoring

the performance of disk I/O.

3. Extracting Device Information

Once the software application is launched, it would scan through the computer system

spontaneously to identify the type of operating system used. The [Detect] button in the main

GUI will registers all data storage devices that are connected to the system. Figure 2.1

indicate a list of storage media mounted onto the operating system. The selection panel on

the left pane displays the type of storage devices available, and user is able to select

individual storage devices to view its device information. The information displayed

includes the hard drive model, serial number, firmware revision, capacity (in gigabytes),

total number of cylinders, heads, sectors, sector size, total number of sectors available,

maximum value of the Logical Block Addressing (LBA), and many more.

Listing 3.1. Partial code to extract disk drive information from the Win32 system

For Windows platform, we have used the Windows Management Instrumentation (WMI)

library to extract system information from the storage device. WMI is Microsoft's

implementation of the Web-Based Enterprise Management (WBEM) and Common

Information Model (CIM) standards. It is basically a set of extensions to the Windows

Driver Model that provides an operating system interface to acquire system information. We

have installed WMI v.1.4.9 package on top of the pywin32 extension. This module is a

The Python Papers 7: 2

 - 5 -

lightweight wrapper that communicates to the WMI API. Listing 3.1 shows the partial code

that extracts disk drive information using WMI.

For Linux platform, we used fdisk and lshw commands to extract detailed information of

disk and hardware configuration in the computer system. lshw could exact memory

configuration, firmware version, mainboard configuration, CPU version and speed, cache

configuration, bus speed on DMI-capable x86 or IA-64 systems. It currently also supports

PCI/AGP, CPUID, IDE/ATA/ATAPI, PCMCIA, SCSI and USB. Detailed usage of these

commands can be found in the Linux man page. These Linux commands are executed using

the Python’s subprocess module, and we have used the regular expression module

to search and extract vital disk drive information to be displayed on the center pane (see

Figure 2.1).

4. Supporting Numerous Data Destruction Standards

The Wipe Options screen in Figure 4.1 consist more than 10 optional wipe methods

incorporated into our data destruction software. The option allows the user to select various

type of wiping algorithm that they desired. Beside customized settings, the software supports

many standard wiping methods listed in the following sub-sections.

Figure 4.1. Supporting large variety of data wiping algorithms

4.1 British HMG IS5 - Baseline (1 pass + 1 verification pass)

This baseline scheme allows the data sectors in the storage device to be overwritten with

zeroes. This wiping method also does a verification pass to ensure that the data written is

correct.

4.2 British HMG IS5 - Enhanced (3 passes + 1 verification pass)

This enhanced scheme is a three pass overwriting algorithm. In the first pass, it overwrites

all the data sectors in the storage device with 0x00. In the second pass, it overwrites the

entire data sectors again with 0xFF. In the last pass, it overwrites all the data sectors in the

storage device with pseudo-random numbers. This wiping method also does a verification

pass after the third pass to ensure that the data overwritten are correct.

The Python Papers 7: 2

 - 6 -

4.3 Russian GOST P50739-95 (2 passes)

This Russian standard allows the data sectors in the storage device to be overwritten with a

single pass of zeroes (0x00), followed by another pass with pseudo-random numbers.

4.4 U.S. Standard, DoD 5220.22-M (3 passes)

The National Industrial Security Program Operating Manual, issued to the US Department of

Defense, Department of Energy, and other US government agencies specifies standards for

the clearing, and sanitising of data classified as confidential, secret, and top secret.

Under this standard, data may be cleared by writing any bit pattern to the entire disk once.

Disks are sanitised by writing a different bit pattern to the disk on each of three passes

(Schneier, 1996). However, drives containing top secret data are not permitted to be

sanitised in this manner; they must be physically destroyed, or the disks subjected to

degaussing, scrambling completely the magnetic patterns used to store data on the disk,

rendering the drive itself inoperable.

U.S. Department of Defense specifies three passes extended character rotation overwrite

algorithm in the DoD 5220.22-M specification. This Total Privacy shredding method

conforms to these overwriting standards as well as method 'd' of the Cleaning and Sanitation

Matrix (DoD, 2006).

4.5 Canadian RCMP DSX Method (3 passes + 3 verification passes)

The DSX method is a three pass overwriting algorithm. In the first pass, it overwrites all the

data sectors in the storage device with zeroes. In the second pass, it overwrites the entire data

sectors again with ones. In the third pass, it overwrites all the data sectors in the storage

device with pseudo-random numbers. After each pass, the values overwritten in the data

sectors are verified to ensure integrity (RCMP, 2003).

4.6 Canadian RCMP TSSIT OPS-II (7 passes + 1 verification pass)

This method is a seven passes overwriting algorithm with three alternating patterns of zeroes

and ones followed by the last pass with random characters. This wiping method also does a

verification pass to ensure that the data overwritten in the final pass is correct.

4.7 German VSITR (7 passes)

Similar to previous method, the German standard overwrites each data sector in the storage

device with three alternating patterns of zeroes and ones, followed by the seventh pass with

random character. However, no verification on the overwritten data is needed.

4.8 Bruce Schneier’s Algorithm (7 passes)

This method offers a seven pass overwriting algorithm. The first pass with all ones, the

second pass with all with zeroes and then five more passes with a cryptographically secure

pseudo-random sequence (Schneier, 1996).

The Python Papers 7: 2

 - 7 -

4.9 Peter Gutmann’s Algorithm (35 passes)

Peter Gutmann suggested this method to ensure that the recovery of data can be made as

difficult as possible for an attacker by offering the 35 overwrite passes algorithm (Gutmann,

1996). Table 4.1 shows a series of wipe patterns in binary and hexadecimal notations. This

algorithm is slow, but extremely reliable. It requires a lot of patience on the part of the user.

Pass

Overwritten data

Pass

Overwritten Data

Binary Notation Hex Notation

Binary Notation Hex Notation

1 Random Random

19 10011001 10011001 10011001 99 99 99

2 Random Random

20 10101010 10101010 10101010 AA AA AA

3 Random Random

21 10111011 10111011 10111011 BB BB BB

4 Random Random

22 11001100 11001100 11001100 CC CC CC

5 01010101 01010101 01010101 55 55 55

23 11011101 11011101 11011101 DD DD DD

6 10101010 10101010 10101010 AA AA AA

24 11101110 11101110 11101110 EE EE EE

7 10010010 01001001 00100100 92 49 24

25 11111111 11111111 11111111 FF FF FF

8 01001001 00100100 10010010 49 24 92

26 10010010 01001001 00100100 92 49 24

9 00100100 10010010 01001001 24 92 49

27 01001001 00100100 10010010 49 24 92

10 00000000 00000000 00000000 00 00 00

28 00100100 10010010 01001001 24 92 49

11 00010001 00010001 00010001 11 11 11

29 01101101 10110110 11011011 6D B6 DB

12 00100010 00100010 00100010 22 22 22

30 10110110 11011011 01101101 B6 DB 6D

13 00110011 00110011 00110011 33 33 33

31 11011011 01101101 10110110 DB 6D B6

14 01000100 01000100 01000100 44 44 44

32 Random Random

15 01010101 01010101 01010101 55 55 55

33 Random Random

16 01100110 01100110 01100110 66 66 66

34 Random Random

17 01110111 01110111 01110111 77 77 77

35 Random Random

18 10001000 10001000 10001000 88 88 88

- -
-

Table 4.2. A series of wipe patterns in Peter Gutmann’s algorithm

4.10 Custom Setting

This option allows users to define their own method to erase a drive. Users may select any of

the 4 different predefined bit patterns (0x00, 0xFF, pseudo-random numbers or LBA) to be

used, or they could opt for custom signature up to a maximum of 30 ASCII characters.

Increasing the number of passes will increase the security of the wipe process. However, it is

unlikely that any customized method would be regarded as sufficient to sanitize the drive.

The primary purpose is to provide a quick and unique data destruction solution for users with

unclassified data.

The Python Papers 7: 2

 - 8 -

5. Generating Pseudo-random Numbers

It is interesting to note that the US Department of Defense had stipulates physical

destruction of magnetic media containing highly confidential data in DoD 5220.22-M

NISPOM in 2006 (DoD, 2006). The algorithms mentioned in Sections 4.1 – 4.10 overwrite

the sectors once or multiple times with specific data patterns. In order to generate genuinely

random data, and to make it impossible to subtract this data from the read signals, most

approaches use random number generation.

Listing 5.1. An example of Python script that could wipe a SATA hard drive in 3 passes

Linux operating system gives application developers a high level of security based on special

device files such as /dev/urandom, which creates simple random data. /dev/zero file

gives developers any number of null bytes (0x00). The Python script shown in Listing 5.1

first fills the disk with zeros, then with random data, and lastly with zeros again. For home

users, running this script should be more than sufficient. However, military and corporate

data will typically require at least 7 or more passes in order to elude any possibility of data

remenance (Gutmann, 1996; Gutmann, 2001).

Instead of using special Linux device files, Python provides random.random and

numpy.random libraries for cross-platform developers to generate random numbers. Both

of these libraries use the Mersenne twister sequence to generate pseudo-random numbers,

and both methods are completely deterministic. The reasons we have adopted the

numpy.random library is because it contains a few additional probability distributions

commonly used in scientific research, as well as a couple of convenience functions for us to

generate random data. However, note that these libraries are definitely unsuitable for any

serious cryptographic usage.

6. Viewing Data Sectors

Our application provides a built-in Disk Viewer utility for data read-back verifications. For

auditing purpose, we have indulged functionality for user to view the content of any sectors

before and after data wiping. For instance, the content of Volume Boot Record (VBR) from

a 512 MB USB flash drive, as shown in Figure 6.1, can be viewed by our data shredder

software. However for security reasons, we did not provide functionality for user to edit data

at specific byte position. A better and more reliable approach to security auditing is to

compute and verify the hash value of the device after each wipe operation.

The Python Papers 7: 2

 - 9 -

Figure 6.1. Display content of FAT32 VBR in hexadecimal and ACSII encoding

For Linux operating system, reading back the content from a storage device can be rather

straight forward using the dd command. An example of Python script for LBA/sector search

and data read-back can be accomplished in Listing 6.2 below.

Listing 6.2. An example of Python script to capture the content in specific data sectors

However, rather than evoking dd command from popen(), it is more effective to read raw

data directly from disk sectors using methods available from the Python’s built-in file

objects. The following are 3 lines of Python code to acquire the sector number, seek to the

appropriate LBA and read 512 bytes of data from the precise offset.

sector = self.view.sector.GetValue()

self.disk.seek(512*sector)

data = self.disk.read(512)

7. Managing Concurrency in Data Wiping

Due to slow disk I/O incurred on individual storage device during a wipe process, we have

implemented our wipe operations using concurrency approach. In Python, multiple processes

and threads are supported by the multiprocessing, thread, or the newer threading

module. Threading is generally a technique to decouple tasks that are not sequentially

The Python Papers 7: 2

 - 10 -

dependent. We have adopted the threading module to fork multithreads so that our

application could handle its wipe operations on multiple storage devices concurrently.

Listing 7.1. Partial code for forking multithreads to handle concurrent wipe operations

8. Displaying Progress Status and Gauge Bars

Status bar is a common component found at the bottom of the main windows content area.

We have created our ProgressStatusBar class by creating a subclass of StatusBar. We

use it to display short messages or status of our wipe operation. For each storage device

discovered by the data shredding application, we create a Gauge bar to show the progress

during a long-running wipe operation, as illustrated in Figure 8.1. A timer is also used for

updating the Gauge bar.

Figure 8.1. Display of progress bar at the end of a wipe operation

The calculations to predict the estimated completion time for the wipe operation and the

percentage of task completion as indicated in the gauge bar are listed as follows:

The Python Papers 7: 2

 - 11 -

Estimate total wipe time (in seconds) = (no_of_passes *

total_sectors) / (((curr_round - 1) *

total_sectors) + curr_sector_offset) * (curr_time - start_time)

Percentage of task completed (in %) = (((curr_round - 1) *

total_sectors) + curr_sector_offset) /

(no_of_passes * total_sectors) * 100

9. Generating Reports

Our data shredder application is capable to generate 2 different reports. The first report is

inaugurated by the user’s option to log all successful wipe operations, whereas the second

report will records any errors encountered during the wipe process. Some users may find it

auspicious to keep track of their wipe frequency, thus our application provides them with an

option to generate a detailed log file after each wipe process. However, the error reports are

mandatorily generated to indicate precisely the wipe time and location of the bad sectors,

with conjecture that the P-list and G-list provided in the hard disk defects table may no

longer be accurate.

Listing 9.1. Partial code to generate log files

Our application is designed to operate on working hard disk drives with a possibility of

multiple bad sectors. The data shedder software will queries the storage device directly for

drive parameters, read a drive in 64 sectors (32 KB) block and would skip the entire 64

sectors block if an error is found. Each storage device will preserve its individual log and

error files. These files are distinct by log and err file extensions.

10. Performance Testing and Optimization

Performance testing of our initial prototype accomplished single pass with wipe time that is

5 times longer than the original version developed by CBL Data Recovery (S) Pte Ltd. We

The Python Papers 7: 2

 - 12 -

have conducted our analytical studies and identified the performance bottleneck to be at the

disk I/O. Wiping data sector-by-sector is too sluggish.

Figure 10.1. Performance of Disk I/O with various data block sizes

The experimental result of applying block buffer optimization in our newer version of the

data shredding software is shown in Figure 10.1. The wipe performance of the software

improves drastically when the buffer size escalates. However, buffer size larger than 32 KB

does not yield further improvement to the overall disk I/O performance. From these results,

we adopted the block wiping technique with 32 KB buffer in all our later implementations.

Figure 10.2. Speed up performance of selected data destruction methods on a 512 MB flash

drive using Windows 7 and Red Hat Enterprise Linux 6.2.

As indicated in Figure 10.2, adopting block buffer optimization could improve the overall

wipe performance of the DoD 5220.22-M method on a 512 MB flash drive by at least 8

The Python Papers 7: 2

 - 13 -

times, when compared with the original version of the CBL Data Shredder software that was

written in C++ and runs exclusively on only Microsoft Windows and MS-DOS.

Figure 10.3. Wipe performance of different data destruction methods on a 512 MB flash

drive using Windows 7 and Red Hat Enterprise Linux 6.2.

Beside incrementing the size of our write buffer, we have also exploited Pypy’s dynamic

translation (Just-In-Time compiler) method to improve our runtime performance. The

comparison of different data destruction methods on a 512 MB flash drive using Windows 7

and Red Hat Enterprise Linux (RHEL) 6.1 is shown in Figure 10.3.

11. Potential Impact and Exploitation

Our data shredder software works well on solid state drives, non-volatile memory

(NVRAM), USB flash drives, CD-RW/DVD-RW drives, as well as PATA/SATA/SCSI

hard disk drives resided in laptops, desktop PCs, workstations, servers, and low-cost storage

appliances. However, we are uncertain that our application works effectively on magnetic

tape drives, Fibre Channel drives, large JBODs, NAS or SAN storage systems. Further

investigations are desired if these categories of storage devices are to be addressed in the

near future.

12. Conclusion

In this paper, we have shown that advanced data destruction software can be developed in a

prolific and innovative manner using Python. We have explored a variety of different Python

libraries to assist us in creating a decent user interface, extracting system information,

managing concurrency, generating reports and optimizing disk I/O performance. Our cross-

platform application software offers a wide range of military-grade procedures

recommended by information security specialists. Our application also operates with no

limitations to the capacity of the storage media connected to the computer system, and it

could rapidly and securely expunge any existing data stored in the magnetic media, optical

disks and solid-state memories.

The Python Papers 7: 2

 - 14 -

References

Bach, Maurice (1986): The Design of the UNIX Operating System, Prentice Hall, Inc.

Deitel, Harvey et al. (2004): Operating Systems (3rd Edition), Pearson Prentice Hall.

DoD (2006): DoD 5220.22-M National Industrial Security Program Operating Manual

(NISPOM), U.S. Department of Defense.

Gutmann, Peter (1996): Secure Deletion of Data from Magnetic and Solid-State Memory, In

SSYM’96: Proceedings of the 6th Conference on USENIX Security Symposium, Berkeley,

CA, USA, USENIX Association.

Gutmann, Peter (2001): Data Renanence in Semiconductor Devices, In SSYM’01:

Proceedings of the 10
th

 Conference on USENIX Security Symposium, pages 4-4, Berkeley,

CA, USA, USENIX Association.

Morris, James (2011): Document Shredding and File Deletion, Enirtak, Inc.

NIST (2006): Guidelines for Media Sanitization, NIST Special Publication 800-88, U.S.

National Institute of Standards and Technology.

Precord, Cody (2010): wxPython 2.8 Application Development Cookbook, Packt Publishing

Ltd.

RCMP (2003): Hard Drive Secure Information Removal and Destruction Guidelines,

Information Technology Security Guide, Lead Agency Publication G2-003, Royal Canadian

Mounted Police.

Roebuck, Kevin (2011): Data Wiping and Destruction, Tebbo.

Schneier, Bruce (1996): Applied Cryptography (Second Edition), John Wiley & Sons, Inc.

Schneier, Bruce (2000): Secret & Lies: Digital Security in a Networked World, Wiley

Publishing, Inc.

Wei, Michael et al. (2011): Reliably Erasing Data from Flash-Based Solid State Drives, In

FAST'11: Proceedings of the 9th USENIX Conference on File and Storage Technologies,

San Jose, CA, USA, USENIX Association.

