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Abstract 
Price forecasting accuracy is crucially important for electricity trading and risk management. 
This paper discusses building multiple Nord Pool forecasting models for hourly day-ahead 
prices, which utilize the Python programming language. The autoregressive models are based 
on Kristiansen (2012) and the dataset ranges from January 2004 to May 2011. The targets (i.e. 
dependent variables) are the hourly day-ahead prices for a certain hour during the day and the 
features (i.e. independent variables) are the prices for the same hour the previous two days and 
the previous week, the maximum price for the previous day, and four weekday dummy 
variables including the demand and wind for the actual hour. We use an ordinary least squares 
(OLS) regression framework with cross-validation to test the models. Next, we use regularized 
regressions including Ridge and Lasso, and finally we use a Keras neural network. Evaluations 
of the models using the mean absolute percentage error (MAPE) criterion, R-square and 
scatterplots, show that the MAPE of the OLS, Ridge and Lasso regressions are 7.09%, 7.11% 
and 7.07%, respectively, the MAPE of the Keras neural network is 6.53%, and the R-square 
of the regressions and the neural network are 0.892 and 0.904, respectively. The results 
demonstrate that the autoregressive exogenous models perform well, are user-friendly and 
could add value for market players.  

Keywords: autoregressive exogenous model, Nordic power market, price forecasting, Python 
language, regressions, neural network. 

1. Introduction  

Price forecasting is a crucially important activity for electricity trading and risk management. 
Even though day-ahead price forecasts are commercially available from several analytics 
service providers, it is more advantageous for market players to build their own in-house price 
forecasting models and apply them to the input data. The literature is limited, however, on 
how to develop practical implementable models with user-friendly software such as the Python 
programming language.  

In this paper, we present an autoregressive (ARX) model with exogenous variables based on 
Weron and Misiorek (2008) to compute price predictions for all 24 hours of a given day. 
Kristiansen (2012) modified their model by reducing the estimation parameters (from 24 sets 
to 1) and including Nordic demand and Danish wind power as the exogenous variables. Prices 
were modelled across all hours in the analysis period rather than across each single 24 hour, 
which reduced the number of models and estimation parameters. Input data such as historic 
Nord Pool day-ahead prices, demand and Danish wind output are publicly available 
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information. We apply our ARX model to a dataset from January 2004 to May 2011 (see the 
Appendix for the Python source code).  

2. Day-ahead price forecasting methods 

Weron (2006), which reviews the popular approaches used to model and forecast day-ahead 
electricity prices, finds that time series models are one of the most powerful model groups.  
Weron (2006 and 2008) finds that model specifications for each hour separately have better 
forecasting properties than model specifications common for all hours. Model specifications 
include Autoregressive (AR) models, Autoregressive Moving Average (ARMA), 
Autoregressive Integrated Moving Average (ARIMA) and seasonal ARIMA models 
(Contreras et al., 2003; Zhou et al., 2006), autoregressions with heteroskedastic (Garcia et al. 
2005) or heavy-tailed innovations (Weron, 2008), AR models with exogenous (fundamental) 
variables–dynamic regression (or ARX) and transfer function (or ARMAX) models (Conejo 
et al., 2005), vector auto regressions with exogenous effects (Panagiotelis and Smith, 2008), 
threshold AR and ARX models (Misiorek et al., 2006), regime-switching regressions with 
fundamental variables (Karakatsani and Bunn, 2008) and mean-reverting jump diffusions 
(Knittel and Roberts, 2005). 

Starting in the 1990s, artificial intelligence (AI) has been deployed in load forecasting, but the 
literature on the application of artificial intelligence to electricity price forecasting is relatively 
limited. Wang and Ramsay (1998) apply neural networks to forecast the system marginal price 
in England and Wales. They achieve a mean absolute percentage error of around 9% for 
weekends and 12% for public holidays. Gareta et al. (2006) describe the application of AI to 
electricity price forecasting. The authors utilize neural networks to forecast hourly prices. The 
main advantage of neural networks is their flexible nonlinear modelling including complexity, 
a particularly useful characteristic for markets where prices exhibit volatility, spikes and 
seasonality, i.e. electricity markets. Ramos and Liu (2012) provide an overview of various AI 
techniques in power systems and energy markets. Chaabane (2014), applies Auto-Regressive 
Fractionally Integrated Moving Average (ARFIMA) and a neural network model to forecast 
Nord Pool power prices. The author tests the approach on 100 data points in November 2012 
and achieves a mean absolute percentage error of 6.5%. 

Weron (2014), a comprehensive overview of electricity price forecasting methods, points out 
that AI models are flexible and can handle complexity. Artificial neural networks (ANNs) can 
be classified in two groups: 1) feed forward networks without loops, and 2) recurrent (i.e. 
feedback) networks.  The first group is preferred in forecasting and the latter is preferred for 
classification and categorization. ANN models can also be used for prediction intervals (PIs). 
ANN-based models have gained popularity because they can map any nonlinear function with 
a high degree of accuracy. They are also capable of including exogenous factors.   

Singh et al. (2017), describe an application of a neural network to the price forecasting of New 
South Wales day-ahead electricity prices. The authors describe the process of price forecasting 
as a signal processing problem with proper estimation of model parameters and uncertainties. 
They propose a generalized neuron model where the pre-processing of parameters is 
performed by using wavelet transform and the free parameters are tuned by using an 
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environment adaption method algorithm to increase the generation ability and the efficacy of 
the model. 

3. Regressions in the Python language 

Python is an interpreted, high-level programming language for general-purpose programming 
(Python, 2018). In the Python language ordinary least squares (OLS) regression framework, 
the dependent variable is named the target and the independent variables are the features. The 
intercept and the slopes of the regression are parameters. The parameters are chosen by 
defining an error function for a given line (in case of a single feature) and choosing the line 
that minimizes the error function. A loss function is defined which, in the case of OLS, 
minimizes the squares of residuals. The regression estimates a coefficient ai for each feature 
variable. Large coefficients resulting in overfitting can be mitigated by regularization; the 
large coefficients are penalized. 

In a Ridge regression, the loss function is expressed as: 

OLS loss function	 ∑ , 

where α is the parameter to be selected and which controls model complexity. If α is zero, the 
loss function equals the OLS loss function and there is potentially overfitting, whereas a high 
α can result in underfitting. 

In a Lasso regression, the loss function is expressed as: 

OLS loss function ∑ | |. 

The Lasso regression can be used to select the significant features of a dataset. The coefficients 
of less significant features are set to zero. 

The dataset used to learn the patterns is called the training set and the training error is the loss 
function. If the model overfits on the training data, it may not generalize well on future data 
because model performance depends on how the data are split. To avoid overfitting, cross-
validation (CV) may be utilized. In this framework, various folds or splits of data may be 
applied, but more folds are computationally expensive. CV estimates the error by removing a 
group of samples from the training set and trains the model on the remaining set. 

4. Autoregressive exogenous models 

There are some naive approaches to forecasting day-ahead prices. The similar-day approach 
is based on searching historical data for days with similar characteristics to those of the 
forecasted day (Weron, 2006). Similar characteristics may include day of the week, day of the 
year or even weather properties. The price of a similar day is considered as the forecast. Instead 
of a single similar-day price, the forecast can be a linear combination or a regression procedure 
that includes several similar days. An example of a simple, yet in some cases relatively 
powerful, implementation of the similar-day or naive method is a Monday similar to the 
Monday of the previous week and applying the same rule for Saturdays and Sundays (Weron, 
2006). The similar-day approach can be used as a benchmark for more sophisticated models. 
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Around 60% of Nordic power generation is hydropower. Therefore, the supply side is 
predominantly weather dependent. A rationale for a Nord Pool forecasting model is that the 
day-ahead price should reflect all available information discounted in the historic prices. 
Likewise, the hourly profile of the day-ahead price should reflect the demand profile over the 
course of the day. The demand is typically lower in off-peak hours (hours 0–8 and 20–24) and 
on weekends. Typically, the price level is similar to the previous day’s price level adjusted for 
any changes in water values. Since hydropower generation can quickly ramp up production 
and meet demand, prices are therefore normally smooth and exhibit smaller differences 
between peak and off-peak prices compared to thermal systems which must consider the 
start/stop costs. A regression model is more suitable for a market dominated by hydropower 
than a pure thermal power system. 

Weron and Misiorek (2008) used Nord Pool data from 1998 to 1999 (a period with high water 
reservoir levels) and from 2003 to 2004 (a period with low water reservoir levels) to evaluate 
their proposed model. In this paper, we use data from 2004 to 2011 (years with both dry and 
wet periods). Unlike Weron and Misiorek (2008), which use temperatures, we use historical 
demand, and include Danish wind power and total Nordic demand. 

The natural logarithmic transformation has been applied to the price, pt=ln(Pt), the load 
zt=ln(Zt) and the wind wt=ln(Wt) to attain a more stable variance. In Weron and Misiorek 
(2008), the authors argue that since each hour displays a rather distinct price profile reflecting 
the daily variation of demand, costs and operational constraints, the modelling should be 
implemented across all 24 hours, thus producing 24 sets of parameters. Instead, we implement 
the model across all hours in the analysis period, which produces only one set of parameters. 
We note that operational forecasting should use forecasts for demand and wind power for the 
next day. We use historical data in the back testing of our model. 

The weekly seasonal behaviour is captured by a combination of (1) the autoregressive structure 
of the models, and (2) the daily dummy variables. The ln-price pt depends on the ln-prices for 
the same hour on the previous two days, and the previous week. This choice of model variables 
is motivated by the significance of the coefficients found by Weron and Misiorek (2008), who 
also use the minimum of all hourly prices on the previous day, which creates the desired link 
between bidding and price signals from the entire day. Instead, we choose the maximum price 
on the previous day as in Kristiansen (2012). We use four dummy variables (Monday, Friday, 
Saturday and Sunday) to differentiate between the two weekend days, the first business day of 
the week, the last business day of the week and the remaining business days.  

The basic autoregressive model structure is formulated as: 

 (1)        

where lagged ln-prices pt-24, pt-48 and pt-168 account for the autoregressive effects of the 
previous days (the same hour yesterday, two days ago and one week ago, respectively), mpt  
creates the link between bidding and price signals from the previous day (the maximum of the 
previous day’s 24 hourly ln-prices), dummy variables Dmon, Dfri, Dsat and Dsun (account for the 
weekly seasonality), β’s are the regression coefficients for the lagged prices, α is the regression 
coefficient for the maximum hourly price on the previous day, d's are the regression 
coefficients for the weekday dummy variables,  γ is the regression coefficient for the load and 
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δ is the regression coefficient for the wind. We assume εt's are independent and identically 
distributed with zero mean and finite variance. The model formulation states that tomorrow’s 
hourly price (forecasted) depends on the hourly day-ahead the previous same 24-hour, 48-hour 
and 168-hour including the hourly forecasted Nordic demand and Danish wind generation for 
the day-ahead. In addition, there is a link between the day-ahead price and the previous day’s 
price level, including links between different weekdays. Figure 4.1 shows the correlation map 
for the time series data. The lagged prices (t-24, t-48 and t-168) and maximum price level on 
the previous day correlate highly to the price at hour t, and demand has a higher correlation 
than the weekdays and wind.    

 

Figure 4.1. Correlation for the time series data (red-high, blue-low). 

5. Regression case studies 

The next section describes using available Python software to obtain various regressions. 

5.1. Ordinary least squares regression 

Table 5.1 shows the model intercept and coefficients of an ordinary least squares regression. 
We note that the price for a certain hour today depends mainly on the previous day’s and 
previous week’s same hourly price (i.e. 168 hours previous price) as these variables have the 
largest regression coefficients. The R-square for the regression is 0.892, the Augmented 
Dickey Fuller (ADF) statistic is -6.43 and the p-value is 0.0000. The ADF tests the null 
hypothesis that a unit root is present in the time series data.  
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Model intercept -0.6663 
Model 

coefficients  
pt-24 0.4590 
pt-48 0.1050 
pt-168 0.2874 
mpt 0.1386 
Dmon 0.0785 
Dfri -0.0157 
Dsat -0.0389 
Dsun -0.0371 

zt 0.0720 
wt -0.0136 

Table 5.1. Model intercept and coefficients for OLS regression. 

The critical values for a hypothesis test are dependent on a test statistic and the significance 
level. A significance level of 0.04 implies that the null hypothesis is rejected 4% of the time 
when it is in fact true. Thus, critical values are basically cut-off values that define regions 
where the test statistic is unlikely to be false. As shown in Table 5.2, the ADF statistic (-6.43) 
is lower than the critical values so the series exhibits stationarity. 

Critical values 
1%: -3.43 
5%: -2.862 
10%: -2.567 

Table 5.2. Critical values. 

Often, the connection between two random variables in a given stochastic process at different 
points in time is of interest. One way to measure a linear relationship is with the autocorrelation 
function (ACF), which measures the correlation between the two variables. The partial 
autocorrelation function (PACF), which yields the partial correlation for time series of shorter 
lags can be used to determine the order of the autoregressive model. 

Therefore, we apply the ACF and PACF with 50 time lags on the residuals and the squared 
residuals as shown in Figure 5.1 through Figure 5.4. The ACF residual tails off to 0 after about 
45 lags whereas the ACF squared residual tails off to 0 after about 30 lags (Figure 5.1 and 
Figure 5.2). The PACF tails off for lag 4 for both the residual and the squared residual (Figure 
5.3 and Figure 5.4). 
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Figure 5.1. The autocorrelation function for the residuals. 

 

Figure 5.2. The autocorrelation function for the squared residuals. 
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Figure 5.3. The partial autocorrelation function for the residuals. 

 

Figure 5.4. The partial autocorrelation function for the squared residuals. 

Figure 5.5 shows the scatterplot of predicted day-ahead (EUR/MWh) against the actual day-
ahead price (EUR/MWh) for an OLS. Note the strong correlation and confirmation of the 
model’s relatively high R-square value. To measure the performance of the models we use the 
mean absolute percentage error (MAPE) defined as the average absolute difference between 
the actual value and the forecast value divided by the actual value. We transform the right-
hand side of Eq. (1) by taking the exponential function of it to recreate the original prices from 
the natural logarithm of prices.  The model's MAPE is 7.09%. 
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Figure 5.5. Scatterplot of predicted day-ahead price (EUR/MWh) vs actual day-ahead price 
(EUR/MWh) for the ordinary least square regression. 

We also run the CV with 10 folds; Table 5.3 lists the R-square values. 

fold 1 0.5414
fold 2 0.7295
fold 3 0.8423
fold 4 0.8443
fold 5 0.8059
fold 6 0.7972
fold 7 0.7899
fold 8 0.4582
fold 9 0.6014
fold 10 0.8530
average 0.7263

Table 5.3.  R-square values for 10 folds in the CV. 

5.2. Ridge regression 

Next, we perform a Ridge regression with an α parameter of 0.005. Table 5.4 reports that the 
R-square for the regression is 0.892. 
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Model 
intercept -0.6721 

Model 
coefficients  

pt-24 0.4459 
pt-48 0.1139 
pt-168 0.2865 
mpt 0.1429 
Dmon 0.0773 
Dfri -0.0160 
Dsat -0.0392 
Dsun -0.0376 

zt 0.0728 
wt -0.0135 

Table 5.4. Model intercept and coefficients for the Ridge regression. 

Figure 5.6 shows the scatterplot of predicted day-ahead (EUR/MWh) against actual day-ahead 
price (EUR/MWh) for the Ridge regression. The model’s MAPE is 7.11%. 

 

Figure 5.6. Scatterplot of predicted day-ahead price (EUR/MWh) vs actual day-ahead price 
(EUR/MWh) for the Ridge regression. 

5.3. Lasso regression 

Finally, we perform a Lasso regression with an α parameter of 1.662*10-6. Table 5.5 reports 
that the R-square for the regression is 0.892. 
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Model 
intercept -0.6549 

Model 
coefficients  

pt-24 0.4591 
pt-48 0.1035 
pt-168 0.2880 
mpt 0.1385 
Dmon 0.0782 
Dfri -0.0142 
Dsat -0.0374 
Dsun -0.0356 

zt 0.0710 
wt -0.0133 

Table 5.5.  Model intercept and coefficients for the Lasso regression. 

Figure 5.7 shows the scatterplot of predicted day-ahead (EUR/MWh) against actual day-ahead 
price (EUR/MWh) for the Lasso regression.  The model’s MAPE is 7.07%. Figure 5.8 shows 
the model feature selection in the Lasso regression. The lagged prices pt-24 and pt-168 are the 
most influential features. 

 

Figure 5.7. Scatterplot of predicted day-ahead price (EUR/MWh) vs actual day-ahead price 
(EUR/MWh) for the Lasso regression.  



The Python Papers 12: 2 

 - 12 - 

 

Figure 5.8. Feature model selection in the Lasso regression. 

6. Keras neural network 

Keras is a high-level neural networks API (Keras, 2018) written in the Python language. Keras 
facilitates the organization of layers, with Sequential being the simplest model. We use the 
Sequential model with mean squared error (MSE) as a loss function, a batch size of 32 and set 
the number of epochs (a measure of the number of times all training vectors are used once to 
update the weights) to 100. Running the simulation results in a MAPE of 6.53% and a R-
square of 0.904. Figure 6.1 shows a scatterplot of the predicted day-ahead price vs the actual 
day-ahead price for the Keras neural network, Figure 6.2 shows the model loss function for 
the training and test sets as a function of epochs and Figure 6.3 shows mean squared errors, 
mean absolute error and mean absolute percentage errors as a function of epochs. 

 

Figure 6.1. Scatterplot of predicted day-ahead price (EUR/MWh) vs actual day-ahead price 
(EUR/MWh) for the Keras neural network.  
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Figure 6.2 The model loss function for the training and test sets as a function of epochs. 

 

Figure 6.3. Mean squared error, mean absolute error and mean absolute percentage error as a 
function of epochs. 

7. Conclusions 

This paper presented a simple, user-friendly regression model for the Nord Pool power market 
by utilizing various regressions available including a neural network written in Python 
programming language. The model implementation was similar to that of Kristiansen (2012).   

An ordinary least squares regression yielded a MAPE of 7.09%, which was is comparable to 
Kristiansen (2012) which had a MAPE of 8% for the full analysis period (2004–2011) and the 
MAPE of 5% for the out-of-sample period (2004–2006). A Ridge regression yielded a MAPE 
of 7.11%. Likewise, a Lasso regression yielded a MAPE of 7.07%. A Keras neural network 
regression which yielded a MAPE of 6.53%. The R-squares for the regressions and the neural 
network were 0.892 and 0.904, respectively. The results for the regressions were similar to the 
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OLS in Kristiansen (2012) but applying a Keras neural network regression improved the 
model’s accuracy because the number of training parameters was increased.  

This paper demonstrated how multiple, relatively accurate forecasting models for Nord Pool 
prices can be implemented easily in Python. Building their own in-house price forecasting 
models could give traders an edge over the competition in electricity markets. 
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Appendix A: Python source code for the models and analysis 

PYTHON CODE FOR CORRELATION MAP, ADF TEST AND PACF PLOTS 

# correlation map, ADF test, ACF and PACF plots 
import pandas as pd 
import numpy as np 
import matplotlib.pylab as plt 
from statsmodels.tsa.stattools import adfuller 
import statsmodels.tsa.api as smt 
from data_visualization import plot_correlation_map 
from sklearn import linear_model 
 
# read the time series data from a file named Nord Pool spot prices 2004-
2011 max.csv 
# column headers are date, ln p(t), ln p(t-24), ln p(t-48), ln p(t-168), 
max price, Monday, Friday, Saturday, Sunday, ln demand, ln wind 
data = pd.read_csv(r'C:\time series\Nord Pool spot prices 2004-2011 
max.csv',sep=';',index_col='date',parse_dates=['date']) 
 
# exclude NA 
data.dropna() 
 
# define all features 
X=data.drop('ln p(t)', axis=1).values 
 
# define target 
y=data['ln p(t)'].values 
 
# linear regression 
reg_all= linear_model.LinearRegression() 
 
# regression fit 
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reg_all.fit(X,y) 
 
# predict y 
y_pred = reg_all.predict(X) 
 
# difference between actual and predicted values, take exponential because 
regression is on ln of time series 
residuals=-np.exp(y)+np.exp(y_pred) 
 
# show correlation map 
plot_correlation_map(data) 
 
# AD Fuller test statistic 
result = adfuller(y) 
print('ADF Statistic: %f' % result[0]) 
print('p-value: %f' % result[1]) 
print('Critical Values:') 
for key, value in result[4].items(): 
 print('\t%s: %.3f' % (key, value)) 
  
# graph residuals of ACF and PACF with lags 50 and alpha=0.5 
print('residuals') 
 
smt.graphics.plot_acf(residuals, lags=50,alpha=0.05) 
plt.show() 
 
smt.graphics.plot_pacf(residuals, lags=50,alpha=0.05)  
plt.show() 
 
# graph squared residuals of ACF and PACF with lags 50 and alpha=0.5 
print('squared residuals') 
 
smt.graphics.plot_acf(residuals*residuals, lags=50, alpha=0.05) 
plt.show() 
 
smt.graphics.plot_pacf(residuals*residuals, lags=50,alpha=0.05)  
plt.show() 
 

PYTHON CODE FOR OLS, RIDGE AND LASSO REGRESSIONS 

# OLS, Ridge and Lasso regressions 
import pandas as pd 
import numpy as np 
import matplotlib.pylab as plt 
from sklearn import linear_model 
from sklearn.model_selection import train_test_split 
from sklearn.model_selection import cross_val_score 
from sklearn.linear_model import Ridge, Lasso 
import math  
 
# calculation of mean absolute percentage error (MAPE) 
def mape(y_true,y_pred,n): 
    tmp = 0.0 
    y_true=np.exp(y_true) 
    y_pred=np.exp(y_pred) 
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    for i in range(0,n): 
        tmp += math.fabs(y_true[i]-y_pred[i])/y_true[i] 
 
    return (tmp/n) 
 
# read time series 
data = pd.read_csv(r'C:\time series\Nord Pool spot prices 2004-2011 
max.csv',sep=';',index_col='date',parse_dates=['date']) 
 
# exclude NAs 
data.dropna() 
 
# define features 
X=data.drop('ln p(t)', axis=1).values 
 
# define target 
y=data['ln p(t)'].values 
 
# name features 
names = data.drop('ln p(t)', axis=1).columns 
 
# define train and test sets, 30% to be included in test set, random_state 
used to initializing random number generator 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, 
random_state=42) 
 
# define the linear regression 
reg_all= linear_model.LinearRegression() 
 
# perform OLS regression 
reg_all.fit(X_train,y_train) 
 
# predict dependent variable 
y_pred = reg_all.predict(X_test) 
 
# The coefficients of the OLS regression 
print("OLS model intercept:", reg_all.intercept_) 
print('OLS coefficients') 
print(pd.Series(reg_all.coef_, names)) 
 
print('score OLS') 
print(reg_all.score(X_test, y_test)) 
 
# scatterplot of OLS 
plt.scatter(np.exp(y_test),np.exp(y_pred),color='blue') 
plt.xlabel('actual day-ahead price (EUR/MWh)') 
plt.ylabel('predicted day-ahead price OLS (EUR/MWh)') 
plt.show() 
 
# OLS MAPE 
print('OLS MAPE') 
print(mape(y_test,y_pred,len(y_pred))) 
 
# cross validation of data to take into account that model performance is 
dependent on way the data is split 
cv_results = cross_val_score(reg_all, X, y, cv=10) 
 



The Python Papers 12: 2 

 - 18 - 

print('cv results') 
print(cv_results) 
print(np.mean(cv_results)) 
 
# regularization 
 
# Ridge regression 
ridge = Ridge(alpha=0.005, normalize=True) 
ridge.fit(X_train, y_train) 
ridge_pred = ridge.predict(X_test) 
print('Ridge score') 
print(ridge.score(X_test, y_test)) 
 
# The Ridge coefficients 
print("Ridge model intercept:", ridge.intercept_) 
print('Ridge Coefficients') 
print(pd.Series(ridge.coef_, names)) 
 
# scatterplot of Ridge 
plt.scatter(np.exp(y_test),np.exp(ridge_pred),color='blue') 
plt.xlabel('actual day-ahead price (EUR/MWh)') 
plt.ylabel('predicted day-ahead price (EUR/MWh)') 
plt.show() 
 
# Ridge MAPE 
print('Ridge MAPE') 
print(mape(y_test,ridge_pred,len(ridge_pred))) 
 
# Lasso 
lasso = Lasso(alpha=1.66225173363e-06, normalize=True) 
lasso.fit(X_train, y_train) 
lasso_pred = lasso.predict(X_test) 
print('Lasso score') 
print(lasso.score(X_test, y_test)) 
 
# The Lasso coefficients 
print("Lasso model intercept:", lasso.intercept_) 
print('Lasso coefficients') 
print(pd.Series(lasso.coef_, names)) 
 
# scatterplot of Lasso 
plt.scatter(np.exp(y_test),np.exp(lasso_pred),color='blue') 
plt.xlabel('actual day-ahead price (EUR/MWh)') 
plt.ylabel('predicted day-ahead price (EUR/MWh)') 
plt.show() 
 
# Lasso MAPE 
print('Lasso MAPE') 
print(mape(y_test,lasso_pred,len(lasso_pred))) 
 
#important Lasso coefficients 
names = data.drop('ln p(t)', axis=1).columns 
lasso = Lasso(alpha=0.1) 
lasso_coef = lasso.fit(X, y).coef_ 
_ = plt.plot(range(len(names)), lasso_coef) 
_ = plt.xticks(range(len(names)), names, rotation=60) 
_ = plt.ylabel('Lasso coefficients') 
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plt.show() 

PYTHON CODE FOR KERA NEURAL NETWORK 

# Keras neural network 
import pandas as pd 
import numpy as np 
import matplotlib.pylab as plt 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import r2_score 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.callbacks import EarlyStopping, ModelCheckpoint, 
ReduceLROnPlateau 
import math  
 
# calculation of mean absolute percentage error (MAPE) 
def mape(y_true,y_pred,n): 
    tmp = 0.0 
    y_true=np.exp(y_true) 
    y_pred=np.exp(y_pred) 
 
    for i in range(0,n): 
        tmp += math.fabs(y_true[i]-y_pred[i])/y_true[i] 
 
    return (tmp/n) 
 
# read the data 
data = pd.read_csv(r'C:\time series\Nord Pool spot prices 2004-2011 
max.csv',sep=';',index_col='date',parse_dates=['date']) 
 
# exclude NAs 
data.dropna() 
 
# define features 
X=data.drop('ln p(t)', axis=1).values 
 
# define target 
y=data['ln p(t)'].values 
 
# name features 
names = data.drop('ln p(t)', axis=1).columns 
 
# define train and test sets, 30% to be included in test set, random_state 
used to initializing random number generator 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, 
random_state=42) 
 
# define the sequential model with two-classification regression with 10 
features 
# the hidden dense layer has 64 neurons 
model = Sequential() 
model.add(Dense(64,activation='relu',input_dim=10))  
model.add(Dense(1)) 
 
# Compile model using adam optimizer 
model.compile(optimizer='adam', loss='mse',metrics=['mse','mae','mape']) 
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# summarize the model 
model.summary() 
 
# fix random seed for reproducibility 
seed = 7 
np.random.seed(seed) 
 
# early stopping criterion 
earlyStopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0, 
mode='min') 
 
# save model 
mcp_save = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True, 
monitor='val_loss', mode='min') 
 
# Reduce learning rate when a metric has stopped improving 
reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, 
patience=7, verbose=1, epsilon=1e-4, mode='min') 
 
# training of the neural network with 30% of the data to use as held-out 
validation data 
history=model.fit(X_train, y_train, batch_size=32, epochs=100, verbose=1, 
callbacks=[earlyStopping, mcp_save, reduce_lr_loss], 
validation_split=0.3,validation_data=(X_test,y_test)) 
 
# forecast  
predictions = model.predict(X_test) 
 
#calculate R-square 
print('R-square') 
print(r2_score(y_test, predictions, sample_weight=None, 
multioutput='uniform_average')) 
 
# MAPE 
print('MAPE') 
print(mape(y_test,predictions,len(predictions))) 
 
#scatter plot 
plt.scatter(np.exp(y_test),np.exp(predictions),color='blue') 
plt.xlabel('actual day-ahead price (EUR/MWh)') 
plt.ylabel('predicted day-ahead price (EUR/MWh)') 
plt.show() 
 
plt.plot(history.history['loss']) 
plt.plot(history.history['val_loss']) 
plt.title('model loss') 
plt.ylabel('loss') 
plt.xlabel('epoch') 
plt.legend(['train', 'test'], loc='upper right') 
plt.show() 
 
# plot performance metrics 
plt.plot(history.history['mean_squared_error']) 
plt.plot(history.history['mean_absolute_error']) 
plt.plot(history.history['mean_absolute_percentage_error']) 
plt.ylabel('measure') 
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plt.xlabel('epoch') 
plt.legend(['mean_squared_error', 
'mean_absolute_error','mean_absolute_percentage_error'], loc='upper 
right') 
plt.show() 

 

 


