
The Python Papers 12: 2

 - 1 -

Forecasting Nord Pool day-ahead prices with Python

Tarjei Kristiansen
SINTEF Energy Research
Tarjei.Kristiansen@sintef.no

Abstract
Price forecasting accuracy is crucially important for electricity trading and risk management.
This paper discusses building multiple Nord Pool forecasting models for hourly day-ahead
prices, which utilize the Python programming language. The autoregressive models are based
on Kristiansen (2012) and the dataset ranges from January 2004 to May 2011. The targets (i.e.
dependent variables) are the hourly day-ahead prices for a certain hour during the day and the
features (i.e. independent variables) are the prices for the same hour the previous two days and
the previous week, the maximum price for the previous day, and four weekday dummy
variables including the demand and wind for the actual hour. We use an ordinary least squares
(OLS) regression framework with cross-validation to test the models. Next, we use regularized
regressions including Ridge and Lasso, and finally we use a Keras neural network. Evaluations
of the models using the mean absolute percentage error (MAPE) criterion, R-square and
scatterplots, show that the MAPE of the OLS, Ridge and Lasso regressions are 7.09%, 7.11%
and 7.07%, respectively, the MAPE of the Keras neural network is 6.53%, and the R-square
of the regressions and the neural network are 0.892 and 0.904, respectively. The results
demonstrate that the autoregressive exogenous models perform well, are user-friendly and
could add value for market players.

Keywords: autoregressive exogenous model, Nordic power market, price forecasting, Python
language, regressions, neural network.

1. Introduction

Price forecasting is a crucially important activity for electricity trading and risk management.
Even though day-ahead price forecasts are commercially available from several analytics
service providers, it is more advantageous for market players to build their own in-house price
forecasting models and apply them to the input data. The literature is limited, however, on
how to develop practical implementable models with user-friendly software such as the Python
programming language.

In this paper, we present an autoregressive (ARX) model with exogenous variables based on
Weron and Misiorek (2008) to compute price predictions for all 24 hours of a given day.
Kristiansen (2012) modified their model by reducing the estimation parameters (from 24 sets
to 1) and including Nordic demand and Danish wind power as the exogenous variables. Prices
were modelled across all hours in the analysis period rather than across each single 24 hour,
which reduced the number of models and estimation parameters. Input data such as historic
Nord Pool day-ahead prices, demand and Danish wind output are publicly available

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Python Papers Anthology

https://core.ac.uk/display/230921024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Python Papers 12: 2

 - 2 -

information. We apply our ARX model to a dataset from January 2004 to May 2011 (see the
Appendix for the Python source code).

2. Day-ahead price forecasting methods

Weron (2006), which reviews the popular approaches used to model and forecast day-ahead
electricity prices, finds that time series models are one of the most powerful model groups.
Weron (2006 and 2008) finds that model specifications for each hour separately have better
forecasting properties than model specifications common for all hours. Model specifications
include Autoregressive (AR) models, Autoregressive Moving Average (ARMA),
Autoregressive Integrated Moving Average (ARIMA) and seasonal ARIMA models
(Contreras et al., 2003; Zhou et al., 2006), autoregressions with heteroskedastic (Garcia et al.
2005) or heavy-tailed innovations (Weron, 2008), AR models with exogenous (fundamental)
variables–dynamic regression (or ARX) and transfer function (or ARMAX) models (Conejo
et al., 2005), vector auto regressions with exogenous effects (Panagiotelis and Smith, 2008),
threshold AR and ARX models (Misiorek et al., 2006), regime-switching regressions with
fundamental variables (Karakatsani and Bunn, 2008) and mean-reverting jump diffusions
(Knittel and Roberts, 2005).

Starting in the 1990s, artificial intelligence (AI) has been deployed in load forecasting, but the
literature on the application of artificial intelligence to electricity price forecasting is relatively
limited. Wang and Ramsay (1998) apply neural networks to forecast the system marginal price
in England and Wales. They achieve a mean absolute percentage error of around 9% for
weekends and 12% for public holidays. Gareta et al. (2006) describe the application of AI to
electricity price forecasting. The authors utilize neural networks to forecast hourly prices. The
main advantage of neural networks is their flexible nonlinear modelling including complexity,
a particularly useful characteristic for markets where prices exhibit volatility, spikes and
seasonality, i.e. electricity markets. Ramos and Liu (2012) provide an overview of various AI
techniques in power systems and energy markets. Chaabane (2014), applies Auto-Regressive
Fractionally Integrated Moving Average (ARFIMA) and a neural network model to forecast
Nord Pool power prices. The author tests the approach on 100 data points in November 2012
and achieves a mean absolute percentage error of 6.5%.

Weron (2014), a comprehensive overview of electricity price forecasting methods, points out
that AI models are flexible and can handle complexity. Artificial neural networks (ANNs) can
be classified in two groups: 1) feed forward networks without loops, and 2) recurrent (i.e.
feedback) networks. The first group is preferred in forecasting and the latter is preferred for
classification and categorization. ANN models can also be used for prediction intervals (PIs).
ANN-based models have gained popularity because they can map any nonlinear function with
a high degree of accuracy. They are also capable of including exogenous factors.

Singh et al. (2017), describe an application of a neural network to the price forecasting of New
South Wales day-ahead electricity prices. The authors describe the process of price forecasting
as a signal processing problem with proper estimation of model parameters and uncertainties.
They propose a generalized neuron model where the pre-processing of parameters is
performed by using wavelet transform and the free parameters are tuned by using an

The Python Papers 12: 2

 - 3 -

environment adaption method algorithm to increase the generation ability and the efficacy of
the model.

3. Regressions in the Python language

Python is an interpreted, high-level programming language for general-purpose programming
(Python, 2018). In the Python language ordinary least squares (OLS) regression framework,
the dependent variable is named the target and the independent variables are the features. The
intercept and the slopes of the regression are parameters. The parameters are chosen by
defining an error function for a given line (in case of a single feature) and choosing the line
that minimizes the error function. A loss function is defined which, in the case of OLS,
minimizes the squares of residuals. The regression estimates a coefficient ai for each feature
variable. Large coefficients resulting in overfitting can be mitigated by regularization; the
large coefficients are penalized.

In a Ridge regression, the loss function is expressed as:

OLS loss function	 ∑ ,

where α is the parameter to be selected and which controls model complexity. If α is zero, the
loss function equals the OLS loss function and there is potentially overfitting, whereas a high
α can result in underfitting.

In a Lasso regression, the loss function is expressed as:

OLS loss function ∑ | |.

The Lasso regression can be used to select the significant features of a dataset. The coefficients
of less significant features are set to zero.

The dataset used to learn the patterns is called the training set and the training error is the loss
function. If the model overfits on the training data, it may not generalize well on future data
because model performance depends on how the data are split. To avoid overfitting, cross-
validation (CV) may be utilized. In this framework, various folds or splits of data may be
applied, but more folds are computationally expensive. CV estimates the error by removing a
group of samples from the training set and trains the model on the remaining set.

4. Autoregressive exogenous models

There are some naive approaches to forecasting day-ahead prices. The similar-day approach
is based on searching historical data for days with similar characteristics to those of the
forecasted day (Weron, 2006). Similar characteristics may include day of the week, day of the
year or even weather properties. The price of a similar day is considered as the forecast. Instead
of a single similar-day price, the forecast can be a linear combination or a regression procedure
that includes several similar days. An example of a simple, yet in some cases relatively
powerful, implementation of the similar-day or naive method is a Monday similar to the
Monday of the previous week and applying the same rule for Saturdays and Sundays (Weron,
2006). The similar-day approach can be used as a benchmark for more sophisticated models.

The Python Papers 12: 2

 - 4 -

Around 60% of Nordic power generation is hydropower. Therefore, the supply side is
predominantly weather dependent. A rationale for a Nord Pool forecasting model is that the
day-ahead price should reflect all available information discounted in the historic prices.
Likewise, the hourly profile of the day-ahead price should reflect the demand profile over the
course of the day. The demand is typically lower in off-peak hours (hours 0–8 and 20–24) and
on weekends. Typically, the price level is similar to the previous day’s price level adjusted for
any changes in water values. Since hydropower generation can quickly ramp up production
and meet demand, prices are therefore normally smooth and exhibit smaller differences
between peak and off-peak prices compared to thermal systems which must consider the
start/stop costs. A regression model is more suitable for a market dominated by hydropower
than a pure thermal power system.

Weron and Misiorek (2008) used Nord Pool data from 1998 to 1999 (a period with high water
reservoir levels) and from 2003 to 2004 (a period with low water reservoir levels) to evaluate
their proposed model. In this paper, we use data from 2004 to 2011 (years with both dry and
wet periods). Unlike Weron and Misiorek (2008), which use temperatures, we use historical
demand, and include Danish wind power and total Nordic demand.

The natural logarithmic transformation has been applied to the price, pt=ln(Pt), the load
zt=ln(Zt) and the wind wt=ln(Wt) to attain a more stable variance. In Weron and Misiorek
(2008), the authors argue that since each hour displays a rather distinct price profile reflecting
the daily variation of demand, costs and operational constraints, the modelling should be
implemented across all 24 hours, thus producing 24 sets of parameters. Instead, we implement
the model across all hours in the analysis period, which produces only one set of parameters.
We note that operational forecasting should use forecasts for demand and wind power for the
next day. We use historical data in the back testing of our model.

The weekly seasonal behaviour is captured by a combination of (1) the autoregressive structure
of the models, and (2) the daily dummy variables. The ln-price pt depends on the ln-prices for
the same hour on the previous two days, and the previous week. This choice of model variables
is motivated by the significance of the coefficients found by Weron and Misiorek (2008), who
also use the minimum of all hourly prices on the previous day, which creates the desired link
between bidding and price signals from the entire day. Instead, we choose the maximum price
on the previous day as in Kristiansen (2012). We use four dummy variables (Monday, Friday,
Saturday and Sunday) to differentiate between the two weekend days, the first business day of
the week, the last business day of the week and the remaining business days.

The basic autoregressive model structure is formulated as:

 (1)

where lagged ln-prices pt-24, pt-48 and pt-168 account for the autoregressive effects of the
previous days (the same hour yesterday, two days ago and one week ago, respectively), mpt
creates the link between bidding and price signals from the previous day (the maximum of the
previous day’s 24 hourly ln-prices), dummy variables Dmon, Dfri, Dsat and Dsun (account for the
weekly seasonality), β’s are the regression coefficients for the lagged prices, α is the regression
coefficient for the maximum hourly price on the previous day, d's are the regression
coefficients for the weekday dummy variables, γ is the regression coefficient for the load and

The Python Papers 12: 2

 - 5 -

δ is the regression coefficient for the wind. We assume εt's are independent and identically
distributed with zero mean and finite variance. The model formulation states that tomorrow’s
hourly price (forecasted) depends on the hourly day-ahead the previous same 24-hour, 48-hour
and 168-hour including the hourly forecasted Nordic demand and Danish wind generation for
the day-ahead. In addition, there is a link between the day-ahead price and the previous day’s
price level, including links between different weekdays. Figure 4.1 shows the correlation map
for the time series data. The lagged prices (t-24, t-48 and t-168) and maximum price level on
the previous day correlate highly to the price at hour t, and demand has a higher correlation
than the weekdays and wind.

Figure 4.1. Correlation for the time series data (red-high, blue-low).

5. Regression case studies

The next section describes using available Python software to obtain various regressions.

5.1. Ordinary least squares regression

Table 5.1 shows the model intercept and coefficients of an ordinary least squares regression.
We note that the price for a certain hour today depends mainly on the previous day’s and
previous week’s same hourly price (i.e. 168 hours previous price) as these variables have the
largest regression coefficients. The R-square for the regression is 0.892, the Augmented
Dickey Fuller (ADF) statistic is -6.43 and the p-value is 0.0000. The ADF tests the null
hypothesis that a unit root is present in the time series data.

The Python Papers 12: 2

 - 6 -

Model intercept -0.6663
Model

coefficients
pt-24 0.4590
pt-48 0.1050
pt-168 0.2874
mpt 0.1386
Dmon 0.0785
Dfri -0.0157
Dsat -0.0389
Dsun -0.0371

zt 0.0720
wt -0.0136

Table 5.1. Model intercept and coefficients for OLS regression.

The critical values for a hypothesis test are dependent on a test statistic and the significance
level. A significance level of 0.04 implies that the null hypothesis is rejected 4% of the time
when it is in fact true. Thus, critical values are basically cut-off values that define regions
where the test statistic is unlikely to be false. As shown in Table 5.2, the ADF statistic (-6.43)
is lower than the critical values so the series exhibits stationarity.

Critical values
1%: -3.43
5%: -2.862
10%: -2.567

Table 5.2. Critical values.

Often, the connection between two random variables in a given stochastic process at different
points in time is of interest. One way to measure a linear relationship is with the autocorrelation
function (ACF), which measures the correlation between the two variables. The partial
autocorrelation function (PACF), which yields the partial correlation for time series of shorter
lags can be used to determine the order of the autoregressive model.

Therefore, we apply the ACF and PACF with 50 time lags on the residuals and the squared
residuals as shown in Figure 5.1 through Figure 5.4. The ACF residual tails off to 0 after about
45 lags whereas the ACF squared residual tails off to 0 after about 30 lags (Figure 5.1 and
Figure 5.2). The PACF tails off for lag 4 for both the residual and the squared residual (Figure
5.3 and Figure 5.4).

The Python Papers 12: 2

 - 7 -

Figure 5.1. The autocorrelation function for the residuals.

Figure 5.2. The autocorrelation function for the squared residuals.

The Python Papers 12: 2

 - 8 -

Figure 5.3. The partial autocorrelation function for the residuals.

Figure 5.4. The partial autocorrelation function for the squared residuals.

Figure 5.5 shows the scatterplot of predicted day-ahead (EUR/MWh) against the actual day-
ahead price (EUR/MWh) for an OLS. Note the strong correlation and confirmation of the
model’s relatively high R-square value. To measure the performance of the models we use the
mean absolute percentage error (MAPE) defined as the average absolute difference between
the actual value and the forecast value divided by the actual value. We transform the right-
hand side of Eq. (1) by taking the exponential function of it to recreate the original prices from
the natural logarithm of prices. The model's MAPE is 7.09%.

The Python Papers 12: 2

 - 9 -

Figure 5.5. Scatterplot of predicted day-ahead price (EUR/MWh) vs actual day-ahead price
(EUR/MWh) for the ordinary least square regression.

We also run the CV with 10 folds; Table 5.3 lists the R-square values.

fold 1 0.5414
fold 2 0.7295
fold 3 0.8423
fold 4 0.8443
fold 5 0.8059
fold 6 0.7972
fold 7 0.7899
fold 8 0.4582
fold 9 0.6014
fold 10 0.8530
average 0.7263

Table 5.3. R-square values for 10 folds in the CV.

5.2. Ridge regression

Next, we perform a Ridge regression with an α parameter of 0.005. Table 5.4 reports that the
R-square for the regression is 0.892.

The Python Papers 12: 2

 - 10 -

Model
intercept -0.6721

Model
coefficients

pt-24 0.4459
pt-48 0.1139
pt-168 0.2865
mpt 0.1429
Dmon 0.0773
Dfri -0.0160
Dsat -0.0392
Dsun -0.0376

zt 0.0728
wt -0.0135

Table 5.4. Model intercept and coefficients for the Ridge regression.

Figure 5.6 shows the scatterplot of predicted day-ahead (EUR/MWh) against actual day-ahead
price (EUR/MWh) for the Ridge regression. The model’s MAPE is 7.11%.

Figure 5.6. Scatterplot of predicted day-ahead price (EUR/MWh) vs actual day-ahead price
(EUR/MWh) for the Ridge regression.

5.3. Lasso regression

Finally, we perform a Lasso regression with an α parameter of 1.662*10-6. Table 5.5 reports
that the R-square for the regression is 0.892.

The Python Papers 12: 2

 - 11 -

Model
intercept -0.6549

Model
coefficients

pt-24 0.4591
pt-48 0.1035
pt-168 0.2880
mpt 0.1385
Dmon 0.0782
Dfri -0.0142
Dsat -0.0374
Dsun -0.0356

zt 0.0710
wt -0.0133

Table 5.5. Model intercept and coefficients for the Lasso regression.

Figure 5.7 shows the scatterplot of predicted day-ahead (EUR/MWh) against actual day-ahead
price (EUR/MWh) for the Lasso regression. The model’s MAPE is 7.07%. Figure 5.8 shows
the model feature selection in the Lasso regression. The lagged prices pt-24 and pt-168 are the
most influential features.

Figure 5.7. Scatterplot of predicted day-ahead price (EUR/MWh) vs actual day-ahead price
(EUR/MWh) for the Lasso regression.

The Python Papers 12: 2

 - 12 -

Figure 5.8. Feature model selection in the Lasso regression.

6. Keras neural network

Keras is a high-level neural networks API (Keras, 2018) written in the Python language. Keras
facilitates the organization of layers, with Sequential being the simplest model. We use the
Sequential model with mean squared error (MSE) as a loss function, a batch size of 32 and set
the number of epochs (a measure of the number of times all training vectors are used once to
update the weights) to 100. Running the simulation results in a MAPE of 6.53% and a R-
square of 0.904. Figure 6.1 shows a scatterplot of the predicted day-ahead price vs the actual
day-ahead price for the Keras neural network, Figure 6.2 shows the model loss function for
the training and test sets as a function of epochs and Figure 6.3 shows mean squared errors,
mean absolute error and mean absolute percentage errors as a function of epochs.

Figure 6.1. Scatterplot of predicted day-ahead price (EUR/MWh) vs actual day-ahead price
(EUR/MWh) for the Keras neural network.

The Python Papers 12: 2

 - 13 -

Figure 6.2 The model loss function for the training and test sets as a function of epochs.

Figure 6.3. Mean squared error, mean absolute error and mean absolute percentage error as a
function of epochs.

7. Conclusions

This paper presented a simple, user-friendly regression model for the Nord Pool power market
by utilizing various regressions available including a neural network written in Python
programming language. The model implementation was similar to that of Kristiansen (2012).

An ordinary least squares regression yielded a MAPE of 7.09%, which was is comparable to
Kristiansen (2012) which had a MAPE of 8% for the full analysis period (2004–2011) and the
MAPE of 5% for the out-of-sample period (2004–2006). A Ridge regression yielded a MAPE
of 7.11%. Likewise, a Lasso regression yielded a MAPE of 7.07%. A Keras neural network
regression which yielded a MAPE of 6.53%. The R-squares for the regressions and the neural
network were 0.892 and 0.904, respectively. The results for the regressions were similar to the

The Python Papers 12: 2

 - 14 -

OLS in Kristiansen (2012) but applying a Keras neural network regression improved the
model’s accuracy because the number of training parameters was increased.

This paper demonstrated how multiple, relatively accurate forecasting models for Nord Pool
prices can be implemented easily in Python. Building their own in-house price forecasting
models could give traders an edge over the competition in electricity markets.

References

Chaabane N. (2014): A hybrid ARFIMA and neural network model for electricity price
prediction, Electrical Power and Energy Systems 55, pp. 187–194.

Conejo A.J., Contreras J., Espınola R. and Plazas M.A. (2005): Forecasting electricity prices
for a day-ahead pool-based electric energy market, International Journal of Forecasting,
vol. 21 (3), pp. 435-462.

Contreras J., Espınola R., Nogales F.J. and Conejo A.J. (2003): ARIMA models to predict next-
day electricity prices, IEEE Transactions on Power Systems, vol. 18 (3), pp. 1014-1020.

Garcia R.C., Contreras J., van Akkeren M. and Garcia J.B.C. (2005): A GARCH forecasting
model to predict day-ahead electricity prices, IEEE Transactions on Power Systems, vol.
20 (2), pp. 867-874.

Gareta G., Romeo L. M. and Gil. A. (2006): Forecasting of electricity prices with neural
networks, Energy Conversion and Management 47, pp. 1770–1778.

Karakatsani N. and Bunn D. (2008): Forecasting electricity prices: the impact of fundamentals
and time-varying coefficients, International Journal of Forecasting, vol 24 (4), pp. 764-
785.

Keras, documentation, https://keras.io, accessed on Jan 18, 2018.

Knittel C.R. and Roberts M.R. (2005): An empirical examination of restructured electricity
prices, Energy Economics, vol. 27 (5), pp. 791-817.

Kristiansen T. (2012): Forecasting Nord Pool day-ahead prices with an autoregressive model,
Energy Policy, vol. 49, pp. 328-332, Oct.

Misiorek A., Truck S. and Weron R. (2006): Point and interval forecasting of spot electricity
prices: linear vs. non-linear time series models, Studies in Nonlinear Dynamics and
Econometrics 10 (3).

Panagiotelis A. and Smith M. (2008): Bayesian forecasting of intraday electricity prices using
multivariate skew-elliptical distributions, International Journal of Forecasting, vol. 24 (4),
pp. 710-727.

Python, https://www.python.org/, accessed on Jan 18, 2018.

Ramos C. and Liu C. (2012): AI in Power Systems and Energy Markets, Intelligent Systems,
IEEE, May.

Singh N., Mohanty S. R. and Shukla R. D. (2017): Short term electricity price forecast based
on environmentally adapted generalized neuron, Energy, Volume 125, 15 April, pp. 127-
139.

The Python Papers 12: 2

 - 15 -

Wang, A.J. and Ramsay B. (1998): A neural network based estimator for electricity spot-
pricing with particular reference to weekend and public holidays, Neurocomputing,
Volume 23, Issues 1–3, 7 December, pp. 47-57.

Weron R. (2006): Modeling and Forecasting Electricity Loads and Prices: A Statistical
Approach, Wiley, Chichester.

Weron R. (2008): Forecasting wholesale electricity prices: a review of time series models. In:
Financial Markets: Principles Of Modeling, Forecasting and Decision-Making, W. Milo,
P. Wdowinski (Eds.), FindEcon Monograph Series, WU L, Lodz.

Weron R. (2014): Electricity price forecasting: A review of the state-of-the-art with a look
into the future, International Journal of Forecasting, 30, pp. 1030–1081.

Weron R. and Misiorek A. (2008): Forecasting spot electricity prices: a comparison of
parametric and semiparametric time series models, International Journal of Forecasting,
24, pp. 744-763.

Zhou M., Yan Z., Ni Y., Li G. and Nie Y. (2006): Electricity price forecasting with confidence-
interval estimation through an extended ARIMA approach, IEE Proceedings Generation,
Transmission and Distribution, vol. 153 (2), pp. 233-238.

Appendix A: Python source code for the models and analysis

PYTHON CODE FOR CORRELATION MAP, ADF TEST AND PACF PLOTS

correlation map, ADF test, ACF and PACF plots
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from statsmodels.tsa.stattools import adfuller
import statsmodels.tsa.api as smt
from data_visualization import plot_correlation_map
from sklearn import linear_model

read the time series data from a file named Nord Pool spot prices 2004-
2011 max.csv
column headers are date, ln p(t), ln p(t-24), ln p(t-48), ln p(t-168),
max price, Monday, Friday, Saturday, Sunday, ln demand, ln wind
data = pd.read_csv(r'C:\time series\Nord Pool spot prices 2004-2011
max.csv',sep=';',index_col='date',parse_dates=['date'])

exclude NA
data.dropna()

define all features
X=data.drop('ln p(t)', axis=1).values

define target
y=data['ln p(t)'].values

linear regression
reg_all= linear_model.LinearRegression()

regression fit

The Python Papers 12: 2

 - 16 -

reg_all.fit(X,y)

predict y
y_pred = reg_all.predict(X)

difference between actual and predicted values, take exponential because
regression is on ln of time series
residuals=-np.exp(y)+np.exp(y_pred)

show correlation map
plot_correlation_map(data)

AD Fuller test statistic
result = adfuller(y)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
print('Critical Values:')
for key, value in result[4].items():
 print('\t%s: %.3f' % (key, value))

graph residuals of ACF and PACF with lags 50 and alpha=0.5
print('residuals')

smt.graphics.plot_acf(residuals, lags=50,alpha=0.05)
plt.show()

smt.graphics.plot_pacf(residuals, lags=50,alpha=0.05)
plt.show()

graph squared residuals of ACF and PACF with lags 50 and alpha=0.5
print('squared residuals')

smt.graphics.plot_acf(residuals*residuals, lags=50, alpha=0.05)
plt.show()

smt.graphics.plot_pacf(residuals*residuals, lags=50,alpha=0.05)
plt.show()

PYTHON CODE FOR OLS, RIDGE AND LASSO REGRESSIONS

OLS, Ridge and Lasso regressions
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import Ridge, Lasso
import math

calculation of mean absolute percentage error (MAPE)
def mape(y_true,y_pred,n):
 tmp = 0.0
 y_true=np.exp(y_true)
 y_pred=np.exp(y_pred)

The Python Papers 12: 2

 - 17 -

 for i in range(0,n):
 tmp += math.fabs(y_true[i]-y_pred[i])/y_true[i]

 return (tmp/n)

read time series
data = pd.read_csv(r'C:\time series\Nord Pool spot prices 2004-2011
max.csv',sep=';',index_col='date',parse_dates=['date'])

exclude NAs
data.dropna()

define features
X=data.drop('ln p(t)', axis=1).values

define target
y=data['ln p(t)'].values

name features
names = data.drop('ln p(t)', axis=1).columns

define train and test sets, 30% to be included in test set, random_state
used to initializing random number generator
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,
random_state=42)

define the linear regression
reg_all= linear_model.LinearRegression()

perform OLS regression
reg_all.fit(X_train,y_train)

predict dependent variable
y_pred = reg_all.predict(X_test)

The coefficients of the OLS regression
print("OLS model intercept:", reg_all.intercept_)
print('OLS coefficients')
print(pd.Series(reg_all.coef_, names))

print('score OLS')
print(reg_all.score(X_test, y_test))

scatterplot of OLS
plt.scatter(np.exp(y_test),np.exp(y_pred),color='blue')
plt.xlabel('actual day-ahead price (EUR/MWh)')
plt.ylabel('predicted day-ahead price OLS (EUR/MWh)')
plt.show()

OLS MAPE
print('OLS MAPE')
print(mape(y_test,y_pred,len(y_pred)))

cross validation of data to take into account that model performance is
dependent on way the data is split
cv_results = cross_val_score(reg_all, X, y, cv=10)

The Python Papers 12: 2

 - 18 -

print('cv results')
print(cv_results)
print(np.mean(cv_results))

regularization

Ridge regression
ridge = Ridge(alpha=0.005, normalize=True)
ridge.fit(X_train, y_train)
ridge_pred = ridge.predict(X_test)
print('Ridge score')
print(ridge.score(X_test, y_test))

The Ridge coefficients
print("Ridge model intercept:", ridge.intercept_)
print('Ridge Coefficients')
print(pd.Series(ridge.coef_, names))

scatterplot of Ridge
plt.scatter(np.exp(y_test),np.exp(ridge_pred),color='blue')
plt.xlabel('actual day-ahead price (EUR/MWh)')
plt.ylabel('predicted day-ahead price (EUR/MWh)')
plt.show()

Ridge MAPE
print('Ridge MAPE')
print(mape(y_test,ridge_pred,len(ridge_pred)))

Lasso
lasso = Lasso(alpha=1.66225173363e-06, normalize=True)
lasso.fit(X_train, y_train)
lasso_pred = lasso.predict(X_test)
print('Lasso score')
print(lasso.score(X_test, y_test))

The Lasso coefficients
print("Lasso model intercept:", lasso.intercept_)
print('Lasso coefficients')
print(pd.Series(lasso.coef_, names))

scatterplot of Lasso
plt.scatter(np.exp(y_test),np.exp(lasso_pred),color='blue')
plt.xlabel('actual day-ahead price (EUR/MWh)')
plt.ylabel('predicted day-ahead price (EUR/MWh)')
plt.show()

Lasso MAPE
print('Lasso MAPE')
print(mape(y_test,lasso_pred,len(lasso_pred)))

#important Lasso coefficients
names = data.drop('ln p(t)', axis=1).columns
lasso = Lasso(alpha=0.1)
lasso_coef = lasso.fit(X, y).coef_
_ = plt.plot(range(len(names)), lasso_coef)
_ = plt.xticks(range(len(names)), names, rotation=60)
_ = plt.ylabel('Lasso coefficients')

The Python Papers 12: 2

 - 19 -

plt.show()

PYTHON CODE FOR KERA NEURAL NETWORK

Keras neural network
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import EarlyStopping, ModelCheckpoint,
ReduceLROnPlateau
import math

calculation of mean absolute percentage error (MAPE)
def mape(y_true,y_pred,n):
 tmp = 0.0
 y_true=np.exp(y_true)
 y_pred=np.exp(y_pred)

 for i in range(0,n):
 tmp += math.fabs(y_true[i]-y_pred[i])/y_true[i]

 return (tmp/n)

read the data
data = pd.read_csv(r'C:\time series\Nord Pool spot prices 2004-2011
max.csv',sep=';',index_col='date',parse_dates=['date'])

exclude NAs
data.dropna()

define features
X=data.drop('ln p(t)', axis=1).values

define target
y=data['ln p(t)'].values

name features
names = data.drop('ln p(t)', axis=1).columns

define train and test sets, 30% to be included in test set, random_state
used to initializing random number generator
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,
random_state=42)

define the sequential model with two-classification regression with 10
features
the hidden dense layer has 64 neurons
model = Sequential()
model.add(Dense(64,activation='relu',input_dim=10))
model.add(Dense(1))

Compile model using adam optimizer
model.compile(optimizer='adam', loss='mse',metrics=['mse','mae','mape'])

The Python Papers 12: 2

 - 20 -

summarize the model
model.summary()

fix random seed for reproducibility
seed = 7
np.random.seed(seed)

early stopping criterion
earlyStopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0,
mode='min')

save model
mcp_save = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True,
monitor='val_loss', mode='min')

Reduce learning rate when a metric has stopped improving
reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1,
patience=7, verbose=1, epsilon=1e-4, mode='min')

training of the neural network with 30% of the data to use as held-out
validation data
history=model.fit(X_train, y_train, batch_size=32, epochs=100, verbose=1,
callbacks=[earlyStopping, mcp_save, reduce_lr_loss],
validation_split=0.3,validation_data=(X_test,y_test))

forecast
predictions = model.predict(X_test)

#calculate R-square
print('R-square')
print(r2_score(y_test, predictions, sample_weight=None,
multioutput='uniform_average'))

MAPE
print('MAPE')
print(mape(y_test,predictions,len(predictions)))

#scatter plot
plt.scatter(np.exp(y_test),np.exp(predictions),color='blue')
plt.xlabel('actual day-ahead price (EUR/MWh)')
plt.ylabel('predicted day-ahead price (EUR/MWh)')
plt.show()

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper right')
plt.show()

plot performance metrics
plt.plot(history.history['mean_squared_error'])
plt.plot(history.history['mean_absolute_error'])
plt.plot(history.history['mean_absolute_percentage_error'])
plt.ylabel('measure')

The Python Papers 12: 2

 - 21 -

plt.xlabel('epoch')
plt.legend(['mean_squared_error',
'mean_absolute_error','mean_absolute_percentage_error'], loc='upper
right')
plt.show()

