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Abstract 

Genetic algorithm (GA) is inspired by biological evolution of genetic organisms by 

optimizing the genotypic combinations encoded within each individual with the help of 

evolutionary operators, suggesting that GA may be a suitable model for studying real-life 

evolutionary processes. This paper describes the design of a Python library for artificial life 

simulation, Digital Organism Simulation Environment (DOSE), based on GA and biological 

hierarchy starting from genetic sequence to population. A 3-character instruction set that 

does not take any operand is introduced as genetic code for digital organism. This mimics 

the 3-nucleotide codon structure in naturally occurring DNA. In addition, the context of a 3-

dimensional world composing of ecological cells is introduced to simulate a physical 

ecosystem. Using DOSE, an experiment to examine the changes in genetic sequences with 

respect to mutation rates is presented. 

Keywords: Genetic algorithm, Artificial life, Digital organism, Simulation environment 

1. Introduction  

Life can be viewed as an optimization to the surrounding environment. The atomic unit for 

life is a cell. Central to a cell is the genetic code, which can be visualized as a complex set of 

instructions for the cell to interact with the environment. A large number of biological 

research into evolution had demonstrated that mutation or changes in the genetic code occurs 

as the organism in question adapts to a new environment (Cooper et al., 2008) or gains new 

properties (Goh et al., 2012; How et al., 2012). These may include resistance to drugs and 

medical treatments (Bibbal et al., 2009), or adaptation to different chemicals (Lee et al., 

2012) and temperatures (Tosun and Gonul, 2005). These have inspired a class of heuristics 

known as genetic algorithms (GA).  

 

GA is where the solution of a problem is encoded into a string (Engelbrecht, 2007), known 

as a chromosome. These are operated on, using biologically equivalent operations, such as 

mutations and translocations. A cell can have one or more chromosomes, forming a genome. 

The process of mating in sexual organisms is then an assortment and combination of the 

genetic information in the chromosome to form a new generation. This is known as the law 

of independent assortment or the inheritance law in classical Mendelian genetics. GA had 
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been used successfully in a number of applications (see Shiekh et al. (2008) for a review), 

including simulation of evolutionary processes of biological genomes (Dalquen et al., 2011).   

 

The biggest issue in studying evolution is time. The generation time for most multicellular 

organisms can range from days (such as insects) to years (such as humans). Even using fast-

growing bacterium, such as Escherichia coli, only a small number of generations can be 

studied in a day. Recent publications suggest about 7 generations of Escherichia coli can be 

achieved in standard laboratory conditions (Goh et al., 2012; Lee et al., 2012). On the other 

hand, modern computers are able to simulate thousands of generations within hours. Hence, 

there is a significant time advantage in studying evolutionary processes in silico.  

 

Christopher Langton (1986) had conceptualized that by casting chemical reactions, reactants, 

and products into computable operations, operands, and outputs respectively, it may be 

possible to simulate artificial life (organisms in the digital world, or digital organisms) as 

cellular automata “living” on artificial chemistries. Thus, the field of artificial life (ALife) is 

created and had been used in many different domains (Ward et al., 2011; Kim and Cho, 

2006). In the field of biology, Bersini (2009) argued that artificial life and theoretical 

biology shared many common grounds and presented GA as an important model to bridge 

the two fields. GA was used to study microbial genetics and evolution (Harvey, 2011). This 

corroborates another study arguing that evolution by natural selection is the algorithm of 

biological evolution (Watson, 2012). 

 

A number of ALife simulators had been developed over the years (Bornhofen and Lattard, 

2006; Komosinski and Adamatzky, 2009). Common ALife simulators include Tierra (Ray, 

1992), Echo (Holland, 1992), Polyworld (Yaeger, 1994), Framesticks (Komosinski, and 

Ulatowski, 1999), Avida (Ofria and Wilke, 2004), and EcoSim (Gras et al., 2009). Recently, 

a Python GA framework conforming to biological hierarchy starting from gene to 

chromosome to genome (as organism) to population had been developed (Lim et al., 2010), 

which may help interpreting GA results to biological context.  

 

In this study, the GA framework (Lim et al., 2010) is expanded into a digital organism 

simulation environment (DOSE) by formalizing a 3-character genetic language to 

correspond the codon (which comprises of 3 nucleotides) in naturally occurring DNA and 

incorporating a 3-dimensional “world”. The organization of this paper is as follows: Section 

2 presents an architectural description of DOSE and its biological context. Section 3 

discusses the artificial chemistry of DOSE. Section 4 presents two experiments using DOSE 

to illustrate its use. Section 5 concludes this paper by discussion on the strengths and 

limitations of DOSE and its future work. 

2. DOSE Architecture 

DOSE is based on the hierarchical structure of Lim et al. (2010) and designed as a library for 

importation into a simulation driver program. Data propagates from the world, at the highest 

level, to the chromosome in each organism at the lowest level where the genomic 

instructions are interpreted and the results propagates back to the world via organism and 

population layers (Figure 1). Another example of an ALife simulator that uses a hierarchical 

architecture is that of Curran and O’Riordan (2003). 
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DOSE comprises of 3 distinct components – a GA framework (Lim et al., 2010) providing 

for chromosome, genome, organism and population hierarchy, a 3-dimensional world in 

which the population exist within, and a set of 3-character known as Ragaraja instruction set 

which acts as genetic code and an interpreter to execute Ragaraja instruction. Hence, at the 

core of DOSE is executable DNA, which is a common design, used in a number of ALife 

simulators including Avida (Ofria and Wilke, 2004).  

 

 
 
Figure 1. Architecture of DOSE. The yellow boxes represent the entities while the green boxes represent 

user-defined functions as point of control that regulates various aspects of the digital organism and the ecology 

in which the organisms are in. Table 1 provides a summary of the user-defined functions and examples of its 

use. 

 

In the GA framework (Lim et al., 2010), the most important object is an Organism. The 

status of an organism is logged within its status dictionary and consists of one chromosome 

as genome. It is not essential for an organism to have a genome. In the case of a genome-less 

organism, the fitness function, provided by the user, will evaluate the fitness of the organism 

based on its status. In an organism with a genome, the user can provide a mutation scheme 

that will be activated once per generation by default. The concept of an organism is 

unicellular. A population can simulate a multicellular organism. At the population level, the 

user can provide a number of functions, such as pre-population control, to manage the 

population before mating; mating scheme, for mate choices and reproduction; post-
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population control, to manage the population after mating; and generational events, as a 

catch-all for any other events defined by the user. For example, one mutational event per 

generation default can be over-rode at this step by calling Organism.mutation_scheme 

function once or more times. At each generation, the user can define a report function to 

report the fitness and conditions of the population.  

 

Naturally occurring DNA comprises of 4 nucleotides – adenine, thymine, guanine, and 

cytosine – commonly abbreviated as “A”, “T”, “G”, and “C” respectively. A protein chain is 

made up of 20 possible amino acids. Using only 4 nucleotides to code for 20 possible amino 

acids, the nucleotides are read in triplets (known as codon) which results in 64 (4
3
) different 

codons. The resultant protein chain will fold into a 3-dimensional structure, known as a 

tertiary structure, and may bind with other protein chain to form a quaternary structure. 

These structures determine the activity of the proteins. The site of activity is known as a 

protein domain. Using these biological concepts as basis, Ragaraja
1
 is an esoteric 

programming language comprising of a set of 3-character instructions to mimic a codon. As 

a derivative of BrainFuck, Ragaraja uses 3 numbers as an instruction instead of symbols of 

alphabets. This simplified the implementation of a mutation scheme. Conceptually, a 

Ragaraja-encoded genome may be visualized as having 10 nucleotides instead of 4. Thus, 

there are a total of 1000 possible instructions in Rajaraga but only 347 are defined and used 

in this current version, Version 1 (see Appendix A for description of each instruction). In 

addition, all instruction are atomic and do not take on any operand which mimics natural 

DNA. However, there is no equivalence of a 3-dimensional protein structure in Ragaraja. 

Despite so, each Ragaraja instruction is an operation and in biological terms, an operation 

can be deemed as a protein domain. Hence, it can be seen that protein domains are encoded 

directly in the genome of DOSE organism and there is a possible to define up to 1000 

protein domains in the current 3 number encoding. 

 

 

Figure 2. Conceptual 

scheme of a Turing 
machine. The transition 

function can be 

visualized as the 

function to be computed 

or a set of rules for 

execution. Adapted 

from (Pereira et al., 

2010). 

 

BrainFuck is a Turing complete language (Kohler et al., 2005; Ling, 2010a); thus, able to 

implement any computable functions. By extension, a Turing machine is a machine capable 

                                                
1 http://esolangs.org/wiki/Ragaraja 
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of performing any computable functions. It had been suggested that Turing complete 

language and a Turing machine are essential for ALife simulation (Langton, 1986). Rajaraga 

includes the 7 computing operations of BrainFuck in its definition. Therefore, Rajaraga is a 

Turing complete language by virtue of extension. 

 

One of the most enduring images of a Turing machine (Figure 2) is a virtually infinite tape 

with a set of rules to be executed based on the information on the location of the read/write 

head on the tape (Pereira et al., 2010). Ragaraja interpreter uses 4 tapes – a source/instruction 

tape to contain the operations to be executed, an event tape to represent the theoretically 

infinite tape where computations are carried out, an input tape to fed input into the system, 

and an output tape to collect any output from the execution. In addition, Ragaraja interpreter 

defined a set of 99 general-purpose registers. 

 

Putting into biological context, the source/instruction tape will be equivalent to the genome. 

The event tape will be similar to the cytoplasm of a cell where all reactions take place. The 

set of 99 registers may be used to simulate the presence of compartments within the cell, 

such as organelles. However, these registers are not available for fitness evaluation. The 

input and output tapes may collectively represent the extracellular matrix of the cell. More 

specifically, the input and output tapes can represent the endocytotic (molecules taken into a 

cell) and secreted components respectively. In the context of DOSE, each genome is sent for 

execution and the results are evaluated by user-defined fitness function per generation or 

time lapse.  

 

The concept of a world is defined as a 3-dimensional cellular automaton model. Therefore, 

each non-edged ecological cell has 26 neighbouring ecological cells – 6 full-face contact 

adjacent ecological cells (front, back, left, right, top, and bottom), 8 diagonal edge contact 

ecological cells (top-front, top-back, top-left, top-right, bottom-front, bottom-back, bottom-

left, and bottom-right), and 12 diagonal non-edge contact ecological cells. The term 

“ecological cell” is used to describe each cell in this 3-dimensional cellular automation 

world to prevent confusion from a “biological cell”. Each organism is mapped onto an 

ecological cell and is aware of its location in the ecosystem. Thus, each cell can have one or 

more organisms. As a result, a population of organisms can occupy one or more ecological 

cells. Although mating should only occur within an ecological cell, there is no restriction as 

cross-cell mating can be defined in the population mating (Population.mating function) 

scheme. Each ecological cell has a set of uniformed local conditions and a collection of 

ecological cells forms an ecosystem.  

 

On the world-scale, the ecosystem is controlled or regulated by user-defined ecological 

controls. The entry point of these controls is World.ecoregulate function where the user can 

define one or more controlling functions, depending on the experiment. The local conditions 

of each ecological cell are determined by the ecosystem and the input/output of each 

organism within the cell. Local conditions of each ecological cell can affect the ecosystem at 

large. The role of World.update_ecology function, given by the user, includes normalizing 

the local ecological cell condition from the input/output of each organism within the cell and 

reflecting these changes to the ecosystem. As the ecosystem is not an entity but a collection 

of ecological cells, the World.update_ecology function acts to radiate local conditions to 

adjacent or nearby cells. For example, a user can use this function to define chemical events 
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such as pheromone diffusion or heat radiation from a local ecological cell. Conversely, the 

ecosystem can affect the local condition and such effect is defined by World.update_local 

function, which is given by the user. A common scenario for this use is temperature 

gradients across the world. World.update_local function may also be used to trigger regional 

mutation events in the organisms. 

 
Functions Usage Examples of Use 

O.fitness Calculates the fitness of the organism 

and returns a fitness score. 

Determining genetic fitness of an 

organism. 

O.mutation_scheme Trigger mutation events in each 

chromosome. Helper functions are 

Chromosome.rmutate (for random 

mutation throughout the genome) and 

Chromosome.kmutate (specific 

mutation within a segment of the 

genome). 

Simulate mutation events. 

P.prepopulation_control Trigger population control events 

before mating event in each generation. 

Simulates pre-puberty (childhood) 

death. 

P.mating Trigger mating events in each 

generation. Helper function is crossover 

function in Lim et al. (2010) 

Simulates mate choices and progeny 

size. 

P.postpopulation_control Trigger population control events after 

mating event in each generation. 

Simulates old-age death. 

P.generation_events Trigger other defined events in each 

generation. 

Simulates catastrophe or epidemic that 

does not occur regularly. 

Simulates unusual occurrences of 

multiple mutation events. 

P.report Report the status of each generation. Produce output for analyses between 

generations. 

W.organism_movement Movement of organisms within the 

world. 

Simulates foraging or nomadic 

behaviour. 

W.organism_location Simulates long distance migration, such 

as air travel. 

W.ecoregulate Simulate events to the entire ecosystem. Simulates temperature and resource 

gradients. 

W.update_ecology Process the input and output from the 

activities of the organisms in the current 

ecological cell into a local ecological 

cell condition, and update the 

ecosystem. 

Simulates secretion of chemicals or use 

of resources (such as food) by 

organisms, and diffusion of secretions 

to the neighbouring ecological cells. 

W.update_local Update local ecological cell condition 

from the ecosystem. 

Simulates movement or diffusion of 

resources from the ecosystem to local. 

W.report Report status of the world (ecosystem) Produce output for analyses between 

generations. 

Table 1. Summary of user-defined functions. “O” in O.fitness function represents organism. “P” represents 

population. “W” represents world. 

 

DOSE world support 2 additional functions, which can be used to simulate the movement of 

organisms within the world – World.organism_movement and World.organism_location 

functions. The World.organism_movement can be used to simulate migration based on 

immediate and neighbour ecological cell location. A possible use may be to simulate an 

organism in search of greener pastures or dealing with over-population or under-population. 
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The World.organism_location can be used for long distance migration. Table 1 provides a 

summary of the 13 user-defined functions and examples of its use. 

 

However, this does not mean that it is essential to use the world as part of the simulation. In 

the simplest scenario, the world can be defined as just a single ecological cell and the entire 

population exist within a single ecological cell. In this case, only the World.update_ecology 

function needs to be defined to normalizing the local cell condition from the input/output of 

each organism.  

 

In order to execute the simulation, the following default simulation driver is provide to 

execute the simulation, given one or more pre-allocated populations in the world: 

 
Run World.ecoregulate function 

For each ecological cell 

 Run World.update_ecology function 

 Run World.update_local function 

For each organism 

Execute genome by Ragaraja interpreter using 

 existing cytoplasm, local conditions as input 

Update cytoplasm (Organism.cytoplasm) 

Add input/output from organism temporary conditions  

of local cell 

For each population 

 Run Population.prepopulation_control function 

 Run Population.mating function and  

add new organisms to cell 

 For each organism, run Organism.mutation_scheme function 

 Run Population.generation_events function 

 Add 1 to generation count 

 Run Population.report function 

 Fossilize population if needed (save into file) 

For each ecological cell 

 Run World.organism_movement function 

 Run World.organism_location function 

     Run World.report function 

Bury ecosystem if needed (save into file) 

Repeat simulation until maximum_generation is reached 

3. Artificial Chemistry 

Biochemistry is the study of the molecular basis of life whereby each individual component 

of a biochemical reaction is inanimate but together, forms a set of self-sustaining and self-

regulatory chemical system, which appears more than the sum of its inanimate parts. 

Philosophers thought that living organisms are endowed with a divine life-force to “organic-

ize” its inorganic chemistry. This doctrine, which came to be known as vitalism, had been 

rejected by modern science when Friedrich Wohler synthesized urea from silver isocyanate 

and ammonium chloride in 1828; thus, producing an organic compound (urea) without a 
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kidney even though the term “organic chemistry” remain in use today. On the basis that 

biochemistry is a set of inanimate chemical reactions, Christopher Langton (1986) defined 

artificial chemistry as a man-made system of interactions between artificial molecules, which 

can be states on a Turing machine and the rules for changing the states are equivalent to 

artificial chemical reactions. Formally, Dittrich et al. (2001) defined artificial chemistry as a 

triple of (S, I) where S is the set of possible molecules, and I is the set of interactions or 

reactions between molecules.  

 

There are different levels of artificial chemistry in DOSE. At the organism level, the 

artificial chemistry in DOSE is of machine-tape interaction as defined by Ikegami and 

Hashimoto (1995). In this setup, the set of tapes (cytoplasm and genome) and arrays (input 

and output) form the molecules while the genome forms the set of interactions in the form 

of: 

��������	 + ��
�	� + �
��� + ������	
�����������
���������	 

��������	′ + ��
�	�′ + �
���′ + ������′	 
 

where the interaction is defined by each Ragaraja instruction. All Ragaraja instructions do 

not take any operand but defines the changes to the event tape (cytoplasm), source tape 

(genome), input and output arrays. There are a number of mathematical operations within 

Ragaraja instruction set. For example, instruction ‘010’ adds the 10 to the value of the 

current cell in the event tape (cytoplasm). At this level, the artificial chemistry can be simply 

defined by arithmetic chemistry where the molecules are natural numbers and the reaction is 

a mathematical operation, 

��������	�� + 	10	
#$#
�� 	��������	��  

 

However, chemical reactions exist within a context. For example, biochemistry exists within 

a watery solution where certain ions such as proton (H
+
) or hydroxyl ions (OH

-
) are assumed 

to be of unlimited supply. To cater to this, Dittrich et al. (2001) defined a third component in 

artificial chemistry – the reactor algorithm or dynamics (A), which is the rule or a set of rules 

applying to the collection of molecules. This defines the availability and concentrations of 

each molecule. In the context of DOSE, only molecules of limited supply is modelled by the 

input and output arrays. Therefore, each ecological cell can represent the availability of 

various molecules of limited supply. The concentrations of these molecules can be simply 

modelled as the relative quantities of these molecules. In addition, the spatial topology, flow 

and diffusion of such molecules across adjacent ecological cells in the world can be defined 

by World.update_ecology and World.update_local functions. 

4. Experiment  

An experiment was carried out to test the operations of DOSE. The biological significance is 

to examine the changes in genetic sequences with respect to mutation rates. Four point 

mutation rates were used (2%, 3%, 4%, and 5%) across the entire genome using a random 

mutation operator. Two populations were simulated. Each population consists of 100 

organisms and the cytoplasm size is set between 50 and 200. The ancestor organism has a 

genetic sequence of “00000000000000000000000000000000000000000000000000000000 

0000” (60 zeros). In each generation, a clean cytoplasm is used. Using the 10
th

 generation as 
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a standard, the genetic sequence distances at intervals of 10 generations were calculated as 

Hamming distances (Ling, 2010b). Code for the entities used in this experiment is given in 

Appendix E. 

 

The results show that the Hamming distances are not proportional to the mutation rates 

(Figure 3). However, the Hamming distances at the same mutation rate are highly correlated 

with each other (r > 0.999). This is interesting as only random point mutations were used in 

this experiment; hence, a correlation between mutation rates and sequence divergence should 

be expected. However, results show no difference in average sequence divergence between 

2% and 3% mutation rate but a noted difference between 3% and 4% mutation rate. This 

phenomenon had also been observed in nature (Ellegren, 2007). A possible explanation for 

this may be repeated mutation on the same nucleotide.  

 

A. 

 
B. 

 
Figure 3. Sequence distance across generations comparing with generation 10. Panel A and B show data 

from Population 1 and Population 2 respectively. Four different mutation rates were used – 2%, 3%, 4%, and 

5%. High correlations between the sequence distances of the same mutation rate in different population are 

observed (r > 0.999). 

 

Using a subset of Ragaraja (NucleotideBF, see Appendix A) as the instruction set (Ragaraja 

version 0.l), cytoplasmic values were analysed. The results show that the average 

cytoplasmic value of the 100 organism approaches zero after about 80 generations and 
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centred at zero for the rest of the simulation (Figure 4A). This is expected as there are only 2 

increment and decrement operators in NucleotideBF. Hence, it can be expected that over the 

course of random mutations, the number of increments and decrements approaches the same 

number. However, there is no correlation between the average cytoplasmic values between 

the 2 populations (Figure 4C, r
2
 = 0.003). This may suggest that the 2 populations are 

evolving independently from each other. 

 

A. 

 
B. 

 
C. 

 
Figure 4. Average cytoplasmic value across generations and the correlation of average cytoplasmic 

values between the 2 populations. Panel A shows the average cytoplasmic value of Population 1 fluctuates 

around zero after generation 80 regardless of mutation rates. Panel B shows the correlation between average 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

10 110 210 310 410

A
v

e
ra

g
e

 C
y

to
p

la
sm

ic
 V

a
lu

e

Number of Generations

0.02

0.03

0.04

0.05

R² = 0.7611

-0.1

0

0.1

0.2

0.3

0.4

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6A
v

e
ra

g
e

 C
y

to
p

la
sm

ic
 V

a
lu

e

(P
o

p
u

la
ti

o
n

 1
)

Average Cytoplasmic Value (Population 2)

R² = 0.0032

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

A
v

a
e

ra
g

e
 C

y
to

p
la

sm
ic

 V
a

lu
e

(P
o

p
u

la
ti

o
n

 1
)

Average Cytoplasmic Value (Population 2)



The Python Papers 7: 5 

 - 11 - 

cytoplasmic value of Population 1 and Population 2, paired by number of generations. Although a correlation 

coefficient is high (r
2
 = 0.76), there is a clustering of points near to zero. As such, the values are not evenly 

distributed. Panel C expands on the near zero values of Panel B (in red box) and shows low correlation (r
2
 = 

0.003). 

 

5. Discussion and Future Work  

Resources and the generation time of the organisms of interest hinder the study of evolution 

on a biological platform. On the other hand, advances in computing capabilities may be 

reaching the point of simulating the evolution of entire genome in silico (Dalquen et al., 

2012); thus, creating biologically equivalence of digital organisms or artificial life. No 

surprises that the crucial link between field of biology and artificial life (Bersini, 2009) came 

from a bio-inspired computing model, genetic algorithms (GA), which modeled evolutionary 

processes in the computer. Recent studies had also suggested that artificial ecosystems 

exhibit characteristics that are similar to natural ecosystems (Dorin et al., 2008; Ronkko, 

2007). In this study, the GA framework of Lim et al. (2010) was extended into Digital 

Organism Simulation Environment (DOSE) by providing an artificial ecosystem and a 

language to execute the DNA of the digital organisms.  

 

Biological relevance is the main strength of DOSE. Each component and function is given a 

biological meaning. Most importantly, the genetic language, Ragaraja, is a 3-character 

instruction code and does not take on any operands. This is almost identical to the operations 

of natural DNA. However, there are two weaknesses of DOSE. Firstly, it is not able to 

simulate the 3-dimensional structure of protein molecules from Ragaraja code. Secondly, the 

current version of DOSE will require the user to be versed in Python programming as it is 

presented as a simulation library. 

 

Future work in advancing DOSE may be the following – firstly, implementing a graphical 

user interface to ease construction of a simulation and to provide statistical tools to analyze 

results of the simulation. This will be useful to biologists using DOSE for their studies. 

Secondly, the execution of genome may be parallelized. This will allow DOSE to maximize 

the capabilities of multicore processors and cluster systems to increase simulation speed. 
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Appendix A: Ragaraja instruction set (Version 1) 

The following table describes the action of each Ragaraja instructions. Of the 1000 possible 

instructions, 347 is defined, tested and used in this current version. 

 
Command Description  

000 Move forward by one cell on tape. Equivalent to ">" in BrainFuck. 

001 Move forward by 5 cells on tape. Equivalent to 5 times of "000".  

002 Move forward by 10 cells on tape. Equivalent to 10 times of "000".  

003 

Move forward by NxN cells on tape where N is the value of the current cell. If N is a decimal, it will move 

forward by the floor of NxN. For example, if N is 4.2, this operation will tape pointer forward by 17 cells. As 

NxN is always a positive number, it does not matter if the value of the current cell is positive or negative.  

004 Move backward by one cell on tape. Equivalent to "<" in BrainFuck. 

005 Move backward by 5 cells on tape. Equivalent to 5 times of "004".  

006 Move backward by 10 cells on tape. Equivalent to 10 times of "004".  

007 
Move backward by NxN cells on tape where N is the value of the current cell. If N is a decimal, it will move 

backward by the floor of NxN. For example, if N is 4.2, this operation will tape pointer backward by 17 cells. 
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As NxN is always a positive number, it does not matter if the value of the current cell is positive or negative.  

008 Increase value of cell by 1. Equivalent to "+" in BrainFuck. 

009 Increase value of cell by 5. Equivalent to 5 times of "008".  

010 Increase value of cell by 10. Equivalent to 10 times of "008".  

011 Decrease value of cell by 1. Equivalent to "-" in BrainFuck. 

012 Decrease value of cell by 5. Equivalent to 5 times of "011".  

013 Decrease value of cell by 10. Equivalent to 10 times of "011".  

016 Add one cell to the end of the tape.  

017 Add 10 cells to the end of the tape.  

018 
Remove one cell from the end of the tape. If original tape pointer is at the last cell before removal operation, 

the tape pointer will point to the last cell after removal.  

019 
Remove 10 cells from the end of the tape. If original tape pointer is at the last cell before removal operation, 

the tape pointer will point to the last cell after removal.  

020 Output current tape cell value and append to the end of the output list. Equivalent to "." in BrainFuck. 

021 Output current tape cell location and append to the end of the output list.  

022 Output current source location and append to the end of the output list.  

023 
Move source pointer forward by one instruction without execution if the source pointer does not point beyond 

the length of the source after the move, otherwise, does not move the source pointer.  

024 
Move source pointer forward by 5 instructions without execution if the source pointer does not point beyond 

the length of the source after the move, otherwise, does not move the source pointer.  

025 
Move source pointer forward by 10 instructions without execution if the source pointer does not point beyond 

the length of the source after the move, otherwise, does not move the source pointer.  

032 Double current tape cell value.  

033 Half current tape cell value.  

034 
Insert a cell after the current tape cell. For example, if current tape cell is 35, a cell initialized to zero will be 

added as cell 36. As a result, the tape is 1 cell longer.  

035 Delete the current cell. As a result, the tape is 1 cell shorter.  

036 Delete the current and append to the end of the output list. As a result, the tape is 1 cell shorter.  

037 
Replace the current tape cell value with the last value of the output list, and delete the last value from the 

output list.  

038 
Replace the current tape cell value with the last value of the output list, without deleting the last value from 

the output list.  

039 
Replace the current tape cell value with the first value of the output list, and delete the first value from the 

output list.  

040 
Replace the current tape cell value with the first value of the output list, without deleting the first value from 

the output list.  

041 Remove first value from the output list.  

042 Remove last value from the output list.  

043 Move the tape cell pointer to the first cell.  

044 Move the tape cell pointer to the last cell.  

045 

Move the tape cell pointer to the location determined by the last value of the output list. If the last value of the 

output list is more than the length of the tape, it will take the modulus of the length of the tape. For example, 

the last value of the output list is 5, the tape cell pointer will point to the 5th cell on the tape.  

046 Flip the tape. The original first cell becomes the last cell but the tape pointer does not flip in location.  

047 Flip the output list.  

050 Randomly execute "008" (increment by 1) or "000" (move forward by 1). 

051 Randomly execute "011" (decrement by 1) or "004" (move backward by 1).  

052 Randomly execute "000" (move forward by 1) or "004" (move backward by 1).  

053 Randomly execute "008" (increment by 1) or "011" (decrement by 1).  

054 Randomly execute "000" (move forward by 1) or "011" (decrement by 1).  

055 Randomly execute "004" (move backward by 1) or "008" (increment by 1).  

056 Randomly execute "000" (move forward by 1) or "004" (move backward by 1) or "011" (decrement by 1).  

057 Randomly execute "000" (move forward by 1) or "008" (increment by 1) or "011" (decrement by 1).  

058 Randomly execute "004" (move backward by 1) or "008" (Increment by 1) or "011" (decrement by 1).  

059 Randomly execute "000" (move forward by 1) or "004" (move backward by 1) or "008" (increment by 1).  

060 
Randomly execute "000" (move forward by 1) or "004" (move backward by 1) or "008" (increment by 1) or 

"011" (decrement by 1).  

061 Move forward by the number of cells signified by the current cell.  

062 Move backward by the number of cells signified by the current cell.  

063 Writes the first value of the input list into the current cell and remove the value from the input list. If input list 
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is empty, "0" will be written.  

064 
Writes the first value of the input list into the current cell and without removing the value from the input list. 

If input list is empty, "0" will be written.  

065 
Add the value of the current cell (n) and (n+1)th cell, and store the value in the current cell.  
Array[n] = Array[n] + Array[n+1]  

066 Add the value of the current cell (n) and first of the input list, and store the value in the current cell.  

067 Add the value of the current cell (n) and last of the input list, and store the value in the current cell.  

068 
Subtract the value of the current cell (n) from (n+1)th cell, and store the value in the current cell.  
Array[n] = Array[n+1] - Array[n]  

069 
Subtract the value of the current cell (n) from the first of the input list, and store the value in the current cell. 
Array[n] = InputList[0] - Array[n]  

070 
Subtract the value of the current cell (n) from the last of the input list, and store the value in the current cell. 
Array[n] = InputList[-1] - Array[n]  

071 
Multiply the value of the current cell (n) and (n+1)th cell, and store the value in the current cell.  
Array[n] = Array[n+1] * Array[n]  

072 Multiply the value of the current cell (n) and first of the input list, and store the value in the current cell.  

073 Multiply the value of the current cell (n) and last of the input list, and store the value in the current cell.  

074 
Divide the value of the current cell (n) from (n+1)th cell, and store the value in the current cell.  
Array[n] = Array[n+1] / Array[n]  

075 
Divide the value of the current cell (n) from the first of the input list, and store the value in the current cell. 
Array[n] = InputList[0] / Array[n]  

076 
Divide the value of the current cell (n) from the last of the input list, and store the value in the current cell. 
Array[n] = InputList[-1] - Array[n]  

077 
Modulus (remainder after division) the value of the current cell (n) from (n+1)th cell, and store the value in 

the current cell. Array[n] = Array[n+1] % Array[n]  

078 
Modulus (remainder after division) the value of the current cell (n) from the first of the input list, and store the 

value in the current cell. Array[n] = InputList[0] % Array[n]  

079 
Modulus (remainder after division) the value of the current cell (n) from the last of the input list, and store the 

value in the current cell. Array[n] = InputList[-1] % Array[n]  

080 Floor the value of the current cell. For example, if the value of the current cell is 6.7, it will become 6.  

081 Swap the value of the current cell (n) and (n+1)th cell.  

084 Set current tape cell to "0".  

085 Set current tape cell to "-1".  

086 Set current tape cell to "1".  

087 Negate the value of the current cell. Positive value will be negative. Negative value will be positive. 

088 
Calculate the sine of the value of the current cell (measured in radians) and replace.  
Array[n] = sine(Array[n])  

089 
Calculate the cosine of the value of the current cell (measured in radians) and replace.  
Array[n] = cosine(Array[n])  

090 
Calculate the tangent of the value of the current cell (measured in radians) and replace.  
Array[n] = tangent(Array[n])  

091 
Calculate the arc sine of the value of the current cell (measured in radians) and replace.  
Array[n] = arcsine(Array[n])  

092 
Calculate the arc cosine of the value of the current cell (measured in radians) and replace.  
Array[n] = arccosine(Array[n])  

093 
Calculate the arc tangent of the value of the current cell (measured in radians) and replace.  
Array[n] = arctangent(Array[n])  

094 
Calculate the reciprocal of the value of the current cell (measured in radians) and replace.  
Array[n] = 1/Array[n]  

095 
Calculate the square root of the value of the current cell (measured in radians) and replace.  
Array[n] = sqrt(Array[n])  

096 
Calculate the natural logarithm of the value of the current cell (measured in radians) and replace.  
Array[n] = ln(Array[n])  

097 Set the value of the current cell to pi (3.14159265358979323846)  

098 Set the value of the current cell to e (2.718281828459045)  

099 
Calculate the hyperbolic sine of the value of the current cell (measured in radians) and replace.  
Array[n] = sinh(Array[n])  

100 
Calculate the hyperbolic cosine of the value of the current cell (measured in radians) and replace.  
Array[n] = cosh(Array[n])  

101 
Calculate the hyperbolic tangent of the value of the current cell (measured in radians) and replace. 
Array[n] = tanh(Array[n])  
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102 
Calculate the hyperbolic arc sine of the value of the current cell (measured in radians) and replace. 
Array[n] = arcsinh(Array[n])  

103 
Calculate the hyperbolic arc cosine of the value of the current cell (measured in radians) and replace. 
Array[n] = arccosh(Array[n])  

104 
Calculate the hyperbolic arc tangent of the value of the current cell (measured in radians) and replace. 
Array[n] = arctanh(Array[n])  

105 Convert the value of the current cell (measured in radians) to degrees and replace.  

106 Convert the value of the current cell (measured in degrees) to radians and replace.  

107 
Raise the value of the current cell (n) to e, and store the value in the current cell.  
Array[n] = Array[n]^e  

108 
Raise e to the value of the current cell (n), and store the value in the current cell.  
Array[n] = e^Array[n]  

109 
Raise 10 to the value of the current cell (n), and store the value in the current cell. 
 Array[n] = 10^Array[n]  

110 
Raise the value of the current cell (n) to the value of (n+1)th cell, and store the value in the current cell. 
Array[n] = Array[n]^Array[n+1]  

111 
Calculate the n-th root of the value of the current cell (n) where n is the value of (n+1)th cell, and store the 

value in the current cell. Array[n] = Array[n]^(1/Array[n+1])  

112 Calculate the error function of the value of the current cell and replace. Array[n] = erf(Array[n])  

113 
Calculate the complementary error function of the value of the current cell and replace.  
Array[n] = erfc(Array[n])  

114 
Calculate the factorial of the integer value of the current cell (if the integer value is positive) and replace. 
Array[n] = factorial(Array[n])  

115 
Calculate the factorial of the absolute integer value of the current cell and replace. 
 Array[n] = factorial(abs(Array[n]))  

116 

Calculate the Euclidean distance (hypotenuse) value of the current cell (n) to the value of (n+1)th cell, and 

store the value in the current cell.  
Array[n] = sqrt(Array[n]*Array[n] + Array[n+1]*Array[n+1])  

117 
Calculate the logarithm value of the current cell (n) to the base of the value of (n+1)th cell, and store the value 

in the current cell. Array[n] = log(Array[n], base=Array[n+1])  

120 
AND operator: Given positive numbers (>0) as True and zero or negative numbers (<=0)as False, store 

Array[current] AND Array[current+1] in the current cell (Array[current]) where "0" is False and "1" is True.  

121 
OR operator: Given positive numbers (>0) as True and zero or negative numbers (<=0)as False, store 

Array[current] OR Array[current+1] in the current cell (Array[current]) where "0" is False and "1" is True.  

122 
NOT operator: Given positive numbers (>0) as True and zero or negative numbers (<=0)as False, store NOT 

Array[current] in the current cell (Array[current]) where "0" is False and "1" is True.  

123 
LESS-THAN operator: Store Array[current] < Array[current+1] in the current cell (Array[current]) where "0" 

is False and "1" is True.  

124 
MORE-THAN operator: Store Array[current] > Array[current+1] in the current cell (Array[current]) where 

"0" is False and "1" is True.  

125 
EQUAL operator: Store Array[current] = Array[current+1] in the current cell (Array[current]) where "0" is 

False and "1" is True.  

126 
NOT-EQUAL operator: Store Array[current] != Array[current+1] in the current cell (Array[current]) where 

"0" is False and "1" is True.  

127 
LESS-THAN-OR-EQUAL operator: Store Array[current] <= Array[current+1] in the current cell 

(Array[current]) where "0" is False and "1" is True.  

128 
MORE-THAN-OR-EQUAL operator: Store Array[current] => Array[current+1] in the current cell 

(Array[current]) where "0" is False and "1" is True.  

140 

Move tape pointer to the centre of the tape. If the tape has odd number cells, it will move to the lower cell. 

For example, this instruction will move the tape pointer to the 500th cell of a 1000-cell tape, or 142nd of a 

285-cell tape.  

141 

Move tape pointer to 1/4 the position of the tape. If the tape has odd number cells, it will move to the lower 

cell. For example, this instruction will move the tape pointer to the 250th cell of a 1000-cell tape, or 71st of a 

285-cell tape.  

142 

Move tape pointer to 3/4 the position of the tape. If the tape has odd number cells, it will move to the lower 

cell. For example, this instruction will move the tape pointer to the 750th cell of a 1000-cell tape, or 213rd of 

a 285-cell tape.  

143 
Move tape pointer to the position as the integer value in the current cell. If the value of the cell is larger than 

the length of the tape, it will move to the modulus of the integer value in the current cell.  

144 Divide current cell value by 10.  

145 Multiply current cell value by 10.  



The Python Papers 7: 5 

 - 17 - 

146 
Add all cell values from (n+1)th cell to the end of the tape and store result in current cell (n).  
Array[n] = sum(Array[n+1:])  

147 
Add all cell values from n-th cell to the end of the tape and store result in current cell (n). 
 Array[n] = sum(Array[n:])  

150 Add all cell values in the tape and store result in current cell (n). Array[n] = sum(Array[:])  

151 
Average all cell values from (n+1)th cell to the end of the tape and store result in current cell (n). 
 Array[n] = average(Array[n+1:])  

152 
Average all cell values from n-th cell to the end of the tape and store result in current cell (n).  
Array[n] = average(Array[n:])  

153 
Average all cell values from first cell to the cell before n-th cell and store result in current cell (n). 
Array[n] = average(Array[0:n])  

154 
Average all cell values from first cell to n-th cell (inclusive) and store result in current cell (n).  
Array[n] = average(Array[0:n+1])  

155 Half every cell value in tape.  

156 Double every cell value in tape.  

157 Divide every cell value in tape by 10.  

158 Multiply every cell value in tape by 10.  

159 Divide every cell value in tape by 100.  

160 Multiply every cell value in tape by 100.  

161 
Cut the tape before the current cell (n) and append it to the end of the tape and set tape pointer to 0.  

<---A--->n<---B---> � n<---B---><---A--->  

162 
Cut the tape after the current cell (n) and append it to the start of the tape and set tape pointer to the last cell. 

<---A--->n<---B---> � <---B---><---A--->n  

163 
Cut out the current cell and append it to the front of the tape and set tape pointer to 0.  

<---A--->n<---B---> � n<---A---><---B--->  

164 
Cut out the current cell and append it to the end of the tape and set tape pointer to the last cell.  

<---A--->n<---B---> � <---A---><---B--->n  

165 Multiply every cell value in tape by -1.  

166 Square all the cell values in the cells after the current cell (current cell value is not affected).  

167 Square all the cell values in the cells before the current cell (current cell value is not affected).  

168 Square every cell value in tape.  

169 Square root every cell value in tape.  

170 Square root all the cell values in the cells after the current cell (current cell value is not affected).  

171 Square root all the cell values in the cells before the current cell (current cell value is not affected).  

189 Set all values in tape to "0".  

196 Set the value of the current cell to the standard deviation of the values in the tape.  

197 Set the value of the current cell to the geometric mean of the values in the tape.  

198 Set the value of the current cell to the harmonic mean of the values in the tape.  

201 Store value of current tape cell to register #1  

202 Store value of current tape cell to register #2  

203 Store value of current tape cell to register #3  

204 Store value of current tape cell to register #4  

205 Store value of current tape cell to register #5  

206 Store value of current tape cell to register #6  

207 Store value of current tape cell to register #7  

208 Store value of current tape cell to register #8  

209 Store value of current tape cell to register #9  

210 Store value of current tape cell to register #10  

211 Store value of current tape cell to register #11  

212 Store value of current tape cell to register #12  

213 Store value of current tape cell to register #13  

214 Store value of current tape cell to register #14  

215 Store value of current tape cell to register #15  

216 Store value of current tape cell to register #16  

217 Store value of current tape cell to register #17  

218 Store value of current tape cell to register #18  

219 Store value of current tape cell to register #19  

220 Store value of current tape cell to register #20  

221 Store value of current tape cell to register #21  

222 Store value of current tape cell to register #22  
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223 Store value of current tape cell to register #23  

224 Store value of current tape cell to register #24  

225 Store value of current tape cell to register #25  

226 Store value of current tape cell to register #26  

227 Store value of current tape cell to register #27  

228 Store value of current tape cell to register #28  

229 Store value of current tape cell to register #29  

230 Store value of current tape cell to register #30  

231 Store value of current tape cell to register #31  

232 Store value of current tape cell to register #32  

233 Store value of current tape cell to register #33  

234 Store value of current tape cell to register #34  

235 Store value of current tape cell to register #35  

236 Store value of current tape cell to register #36  

237 Store value of current tape cell to register #37  

238 Store value of current tape cell to register #38  

239 Store value of current tape cell to register #39  

240 Store value of current tape cell to register #40  

241 Store value of current tape cell to register #41  

242 Store value of current tape cell to register #42  

243 Store value of current tape cell to register #43  

244 Store value of current tape cell to register #44  

245 Store value of current tape cell to register #45  

246 Store value of current tape cell to register #46  

247 Store value of current tape cell to register #47  

248 Store value of current tape cell to register #48  

249 Store value of current tape cell to register #49  

250 Store value of current tape cell to register #50  

251 Store value of current tape cell to register #51  

252 Store value of current tape cell to register #52  

253 Store value of current tape cell to register #53  

254 Store value of current tape cell to register #54  

255 Store value of current tape cell to register #55  

256 Store value of current tape cell to register #56  

257 Store value of current tape cell to register #57  

258 Store value of current tape cell to register #58  

259 Store value of current tape cell to register #59  

260 Store value of current tape cell to register #60  

261 Store value of current tape cell to register #61  

262 Store value of current tape cell to register #62  

263 Store value of current tape cell to register #63  

264 Store value of current tape cell to register #64  

265 Store value of current tape cell to register #64  

266 Store value of current tape cell to register #66  

267 Store value of current tape cell to register #67  

268 Store value of current tape cell to register #68  

269 Store value of current tape cell to register #69  

270 Store value of current tape cell to register #70  

271 Store value of current tape cell to register #71  

272 Store value of current tape cell to register #72  

273 Store value of current tape cell to register #73  

274 Store value of current tape cell to register #74  

275 Store value of current tape cell to register #75  

276 Store value of current tape cell to register #76  

277 Store value of current tape cell to register #77  

278 Store value of current tape cell to register #78  

279 Store value of current tape cell to register #79  

280 Store value of current tape cell to register #80  

281 Store value of current tape cell to register #81  

282 Store value of current tape cell to register #82  
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283 Store value of current tape cell to register #83  

284 Store value of current tape cell to register #84  

285 Store value of current tape cell to register #85  

286 Store value of current tape cell to register #86  

287 Store value of current tape cell to register #87  

288 Store value of current tape cell to register #88  

289 Store value of current tape cell to register #89  

290 Store value of current tape cell to register #90  

291 Store value of current tape cell to register #91  

292 Store value of current tape cell to register #92  

293 Store value of current tape cell to register #93  

294 Store value of current tape cell to register #94  

295 Store value of current tape cell to register #95  

296 Store value of current tape cell to register #96  

297 Store value of current tape cell to register #97  

298 Store value of current tape cell to register #98  

299 Store value of current tape cell to register #99  

301 Put value from register #1 to current tape cell  

302 Put value from register #2 to current tape cell  

303 Put value from register #3 to current tape cell  

304 Put value from register #4 to current tape cell  

305 Put value from register #5 to current tape cell  

306 Put value from register #6 to current tape cell  

307 Put value from register #7 to current tape cell  

308 Put value from register #8 to current tape cell  

309 Put value from register #9 to current tape cell  

310 Put value from register #10 to current tape cell  

311 Put value from register #11 to current tape cell  

312 Put value from register #12 to current tape cell  

313 Put value from register #13 to current tape cell  

314 Put value from register #14 to current tape cell  

315 Put value from register #15 to current tape cell  

316 Put value from register #16 to current tape cell  

317 Put value from register #17 to current tape cell  

318 Put value from register #18 to current tape cell  

319 Put value from register #19 to current tape cell  

320 Put value from register #20 to current tape cell  

321 Put value from register #21 to current tape cell  

322 Put value from register #22 to current tape cell  

323 Put value from register #23 to current tape cell  

324 Put value from register #24 to current tape cell  

325 Put value from register #25 to current tape cell  

326 Put value from register #26 to current tape cell  

327 Put value from register #27 to current tape cell  

328 Put value from register #28 to current tape cell  

329 Put value from register #29 to current tape cell  

330 Put value from register #30 to current tape cell  

331 Put value from register #31 to current tape cell  

332 Put value from register #32 to current tape cell  

333 Put value from register #33 to current tape cell  

334 Put value from register #34 to current tape cell  

335 Put value from register #35 to current tape cell  

336 Put value from register #36 to current tape cell  

337 Put value from register #37 to current tape cell  

338 Put value from register #38 to current tape cell  

339 Put value from register #39 to current tape cell  

340 Put value from register #40 to current tape cell  

341 Put value from register #41 to current tape cell  

342 Put value from register #42 to current tape cell  

343 Put value from register #43 to current tape cell  
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344 Put value from register #44 to current tape cell  

345 Put value from register #45 to current tape cell  

346 Put value from register #46 to current tape cell  

347 Put value from register #47 to current tape cell  

348 Put value from register #48 to current tape cell  

349 Put value from register #49 to current tape cell  

350 Put value from register #50 to current tape cell  

351 Put value from register #51 to current tape cell  

352 Put value from register #52 to current tape cell  

353 Put value from register #53 to current tape cell  

354 Put value from register #54 to current tape cell  

355 Put value from register #55 to current tape cell  

356 Put value from register #56 to current tape cell  

357 Put value from register #57 to current tape cell  

358 Put value from register #58 to current tape cell  

359 Put value from register #59 to current tape cell  

360 Put value from register #60 to current tape cell  

361 Put value from register #61 to current tape cell  

362 Put value from register #62 to current tape cell  

363 Put value from register #63 to current tape cell  

364 Put value from register #64 to current tape cell  

365 Put value from register #65 to current tape cell  

366 Put value from register #66 to current tape cell  

367 Put value from register #67 to current tape cell  

368 Put value from register #68 to current tape cell  

369 Put value from register #69 to current tape cell  

370 Put value from register #70 to current tape cell  

371 Put value from register #71 to current tape cell  

372 Put value from register #72 to current tape cell  

373 Put value from register #73 to current tape cell  

374 Put value from register #74 to current tape cell  

375 Put value from register #75 to current tape cell  

376 Put value from register #76 to current tape cell  

377 Put value from register #77 to current tape cell  

378 Put value from register #78 to current tape cell  

379 Put value from register #79 to current tape cell  

380 Put value from register #80 to current tape cell  

381 Put value from register #81 to current tape cell  

382 Put value from register #82 to current tape cell  

383 Put value from register #83 to current tape cell  

384 Put value from register #84 to current tape cell  

385 Put value from register #85 to current tape cell  

386 Put value from register #86 to current tape cell  

387 Put value from register #87 to current tape cell  

388 Put value from register #88 to current tape cell  

389 Put value from register #89 to current tape cell  

390 Put value from register #90 to current tape cell  

391 Put value from register #91 to current tape cell  

392 Put value from register #92 to current tape cell  

393 Put value from register #93 to current tape cell  

394 Put value from register #94 to current tape cell  

395 Put value from register #95 to current tape cell  

396 Put value from register #96 to current tape cell  

397 Put value from register #97 to current tape cell  

398 Put value from register #98 to current tape cell  

399 Put value from register #99 to current tape cell  
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For direct simulation of naturally occurring DNA sequences, a subset of Ragaraja is defined 

based on IUPAC nucleotide codes, known as NucleotideBF
2
, which can be set in DOSE 

parameters as Ragaraja version 0.1. Guanine (G) and cytosine (C) are paired to move left 

and right of the tape respectively, while adenine (A) and thymine (T) are paired for 

increment and decrement respectively. Alternatively, user can define their set of instruction 

usage by toggling each instruction in ragaraja_instructions.txt file, “Y” for use and “N” for 

not used, and setting Ragaraja version as 0.  

 
Instructions 

Description 
NucleotideBF Ragaraja BrainFuck  

G 000 > Move the pointer to the right. 

C 004 < Move the pointer to the left. 

A 008 + Increment the memory cell under the pointer. 

T 011 - Decrement the memory cell under the pointer. 

. 020 . Full stop. Output the character signified by the cell at the pointer. 

R 050 
 

Random between A or G. 

Y 051 
 

Random between C or T. 

S 052 
 

Random between G or C. 

W 053 
 

Random between A or T. 

K 054 
 

Random between G or T. 

M 055 
 

Random between A or C. 

B 056 
 

Random between C or G or T. 

D 057 
 

Random between A or G or T. 

H 058 
 

Random between A or C or T. 

V 059 
 

Random between A or C or G. 

N 060 
 

Random between A or T or C or G. 

Appendix B: DOSE world code (file name: dose_world.py) 

''' 

World structure for DOSE (digital organism simulation environment) 

Date created: 13th September 2012 

Licence: Python Software Foundation License version 2  

''' 

import copy 

import cPickle 

 

class World(object): 

    ''' 

    Representation of a 3-dimensional ecological world. 

     

    The ecosystem is made up of ecological cells. Each ecological cell is 

    modelled as a dictionary of  

- local_input: A list containing processed input, representing the  

partial local ecological condition, to be used as input to the organisms in 

the current ecological cell. This is updated by World.update_local 

function. 

- local_output: A list containing processed output, representing the  

partial local ecological condition. This is updated by World.update_local 

function. 

- temporary_input: A list acting as temporary holding for input after   

being fed to the organisms in the current ecological cell, which is to be 

used to update local_input and local_output lists by World.update_local and 

World.update_ecology functions. 

- temporary_output: A list acting as temporary holding for output from the 

                                                
2
 http://esolangs.org/wiki/NucleotideBF_(nBF) 
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organisms in the current ecological cell, which is to be used to update 

local_input and local_output lists by World.update_local and 

World.update_ecology functions. 

- organisms: The number of organisms in the current ecological cell  

which is updated by World.organism_movement and World.organism_location 

functions. 

    ''' 

    ecosystem = {} 

     

    def __init__(self, world_x, world_y, world_z): 

        ''' 

        Setting up the world and ecosystem 

         

        @param world_x: number of ecological cells on the x-axis 

        @type world_x: integer 

        @param world_y: number of ecological cells on the y-axis 

        @type world_y: integer 

        @param world_z: number of ecological cells on the z-axis 

        @type world_z: integer 

        ''' 

        eco_cell = {'local_input': [], 'local_output': [], 

                    'temporary_input': [], 'temporary_output': [], 

                    'organisms': 0} 

        self.world_x = int(world_x) 

        self.world_y = int(world_y) 

        self.world_z = int(world_z) 

        for x in range(self.world_x): 

            eco_x = {} 

            for y in range(self.world_y): 

                eco_y = {} 

                for z in range(self.world_z):  

                    eco_y[z] = copy.deepcopy(eco_cell) 

                eco_x[y] = copy.deepcopy(eco_y) 

            self.ecosystem[x] = copy.deepcopy(eco_x) 

     

    def eco_burial(self, filename): 

        ''' 

        Function to preserve the entire ecosystem. 

         

        @param filename: file name of preserved ecosystem. 

        ''' 

        f = open(filename, 'w') 

        cPickle.dump(self.ecosystem, f) 

        f.close() 

         

    def eco_excavate(self, filename): 

        ''' 

        Function to excavate entire ecosystem. 

         

        @param filename: file name of preserved ecosystem. 

        ''' 

        self.ecosystem = cPickle.load(open(filename, 'r'))     

 

    def ecoregulate(self): 

        ''' 

        Function to simulate events to the entire ecosystem. B{This  

        function may be over-ridden by the inherited class or substituted  

        to cater for ecological schemes but not an absolute requirement to  

        do so.} 

        ''' 

        pass 

         

    def organism_movement(self, x, y, z):  

        ''' 
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        Function to trigger organism movement from current ecological cell 

        to an adjacent ecological cell. B{This function may be over-ridden  

        by the inherited class or substituted to cater for mobility  

        schemes but not an absolute requirement to do so.} 

         

        @param x: location of current ecological cell on the x-axis 

        @type x: integer 

        @param y: location of current ecological cell on the y-axis 

        @type y: integer 

        @param z: location of current ecological cell on the z-axis 

        @type z: integer 

        ''' 

        pass 

    def organism_location(self, x, y, z):  

        ''' 

        Function to trigger organism movement from current ecological cell 

        to a distant ecological cell. B{This function may be over-ridden  

        by the inherited class or substituted to cater for mobility  

        schemes but not an absolute requirement to do so.} 

         

        @param x: location of current ecological cell on the x-axis 

        @type x: integer 

        @param y: location of current ecological cell on the y-axis 

        @type y: integer 

        @param z: location of current ecological cell on the z-axis 

        @type z: integer 

        ''' 

        pass 

     

    def update_ecology(self, x, y, z):  

        ''' 

        Function to process temporary_input and temporary_output from the  

        activities of the organisms in the current ecological cell into a  

        local ecological cell condition, and update the ecosystem. 

        B{This function may be over-ridden by the inherited class or  

        substituted to cater for ecological schemes but not an absolute  

        requirement to do so.} 

         

        @param x: location of current ecological cell on the x-axis 

        @type x: integer 

        @param y: location of current ecological cell on the y-axis 

        @type y: integer 

        @param z: location of current ecological cell on the z-axis 

        @type z: integer 

        ''' 

        pass 

         

    def update_local(self, x, y, z):  

        ''' 

        Function to update local ecological cell condition from the  

        ecosystem. 

        B{This function may be over-ridden by the inherited class or  

        Substituted to cater for ecological schemes but not an absolute  

        requirement to do so.} 

         

        @param x: location of current ecological cell on the x-axis 

        @type x: integer 

        @param y: location of current ecological cell on the y-axis 

        @type y: integer 

        @param z: location of current ecological cell on the z-axis 

        @type z: integer 

        ''' 

        pass 
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    def report(self): 

        ''' 

        Function to report the status of the world and ecosystem. B{This  

        function may be over-ridden by the inherited class or substituted  

        to cater for specific reporting schemes but not an absolute  

        requirement to do so.}  

         

        @return: dictionary of status describing the current generation 

        ''' 

        pass 

Appendix C: Boilerplate codes for DOSE simulation 

A DOSE simulation consists of 2 main files – dose_parameters.py, which contains the 

essential parameters needed for the simulation, and dose_entities.py, which contains the 

inherited classes to over-ride the 12 user-defined functions listed in Table 1. These files will 

be used by run_dose.py, which contains the default simulation driver. 

 

File name: dose_parameters.py 
''' 

Initial chromosome (list) for the ancestor organism 

''' 

initial_chromosome = ['0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',  

'0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',  

'0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',  

'0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',  

'0', '0', '0', '0'] 

 

''' 

Probability of number of mutations per base. For example, 0.1 means 10% of  

the chromosome will be mutated per generation. 

''' 

background_mutation_rate = 0.1 

 

''' 

Probability of mutation per base above additional_mutation_rate. No mutation  

event will ever happen if (additional_mutation_rate + additional_mutation_rate)  

is less than zero. 

''' 

additional_mutation_rate = 0 

 

''' 

Size of cytoplasm (length of list) for the ancestor organism. 

''' 

cytoplasm_size = 50 

 

''' 

Maximum size of cytoplasm (length of list) allowable. Some Ragaraja instructions 

can increase cytoplasms size, equivalent to cell enlargement. 

''' 

max_cytoplasm_size = 200 

 

''' 

If 'True', a clean cytoplasm will be used to execute the genome. If 'False', 

the cytoplasm will be reused in the next generation. 

''' 

clean_cytoplasm = True 

 

''' 

Maximum number of codons to evaluate. Therfore, the maximum evaluated genome 
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is 3*max_codon bases. 

''' 

max_codon = 2000 

 

''' 

List containing name(s) of population. The number of names = the number of  

populations to create.  

''' 

population_names = ['pop1', 'pop2'] 

 

''' 

Number of organism per population. 

''' 

population_size = 100 

 

''' 

Number of ecological cells in the world in (x,y,z) coordinate as  

(world_x, world_y, world_z). 

''' 

world_x = 5 

world_y = 5 

world_z = 5 

 

''' 

List of tuple indicating the location on ecosystem to map the population(s) and 

will be mapped in the same order as population_names. For example, if  

population_names = ['pop1', 'pop2'] and  

population_locations = [(0,0,0), (4,4,4)], 

population 'pop1' will be in (0,0,0) and population 'pop2' will be in (4,4,4). 

''' 

population_locations = [(0,0,0), (4,4,4)] 

 

''' 

Maximum number of generations to simulate. 

''' 

maximum_generations = 500 

 

''' 

Number of generations between each freezing/fossilization event. 

Freezing/fossilization event is similar to glycerol stocking in microbiology. 

''' 

fossilized_frequency = 100 

 

''' 

Proportion of population to freeze/fossilize. If the population size or the 

preserved proportion is below 100, the entire population will be preserved. 

''' 

fossilized_ratio = 0.01 

 

''' 

Dictionary containing prefix of file names for freezing/fossilization. The  

preserved sample will be written into a file with name in the following  

format - <prefix>_<generation count>_<sample size>.gap 

''' 

fossil_files = {'pop1': 'pop1', 'pop2': 'pop2'} 

 

''' 

Number of generations between printing of reports (based on Population.report 

function) into files. The result file format is <UTC date time stamp> 

<current generation count> <output from Population.report function>. 

''' 

print_frequency = 10 

 

''' 
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Dictionary containing file names for result files. File name will be 

<file names>.result 

''' 

result_files = {'pop1': 'pop1', 'pop2': 'pop2'} 

 

''' 

Version of Ragaraja instruction set to use. 

''' 

ragaraja_version = 0.1 

 

''' 

File containing Ragaraja instruction set to be used. This option is only 

effective when ragaraja_version = 0. Format of file is <instruction>={Y|N} 

where "Y" = instruction to be used and "N" = instruction not to be used. 

''' 

user_defined_instructions = 'ragaraja_instructions.txt' 

 

''' 

Number of generations between each burial/preservation of ecosystem. 

''' 

eco_buried_frequency = 500 

 

''' 

Prefix of file name for ecosystem burial/preservation. The preserved ecosystem  

will be written into a file with name in the following format -  

<prefix>_<generation count>.eco 

''' 

eco_burial_file = 'eco' 

 

File name: dose_entities.py 
''' 

Boiler-plate codes for DOSE (digital organism simulation environment) entities 

Date created: 13th September 2012 

Licence: Python Software Foundation License version 2  

''' 

 

import genetic as g 

import dose_world as w 

from dose_parameters import initial_chromosome, background_mutation_rate 

from dose_parameters import cytoplasm_size, population_size 

from dose_parameters import maximum_generations 

from dose_parameters import world_x, world_y, world_z 

 

Chromosome = g.Chromosome(initial_chromosome,  

                          ['0','1','2','3','4','5','6','7','8','9'],  

                          background_mutation_rate) 

                           

class Organism(g.Organism): 

     

    cytoplasm = [0]*cytoplasm_size 

     

    def __init__(self): self.genome = [Chromosome.replicate()] 

    def get_cytoplasm(self):  

        return ','.join([str(x) for x in self.cytoplasm]) 

    def fitness(self): pass 

    def mutation_scheme(self): pass 

         

class Population(g.Population): 

     

    def __init__(self, pop_size=population_size,  

                 max_gen=maximum_generations): 

        self.agents = [Organism() for x in xrange(pop_size)] 

        self.generation = 0 
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        self.maximum_generations = max_gen 

    def prepopulation_control(self): pass 

    def mating(self): pass 

    def postpopulation_control(self): pass 

    def generation_events(self): pass 

    def report(self): pass 

     

class World(w.World): 

    def __init__(self, world_x=world_x, world_y=world_y, world_z=world_z): 

        super(World, self).__init__(world_x, world_y, world_z) 

    def organism_movement(self, x, y, z): pass 

    def organism_location(self, x, y, z): pass 

    def ecoregulate(self): pass 

    def update_ecology(self, x, y, z): pass 

    def update_local(self, x, y, z): pass 

    def report(self): pass 

Appendix D: Default simulation driver (file name: run_dose.py) 

import sys 

from datetime import datetime 

import ragaraja as N 

import register_machine as r 

from dose_parameters import * 

 

# Set Ragaraja instruction version 

if ragaraja_version == 0: 

    f = open(user_defined_instructions, 'r').readlines() 

    f = [x[:-1].split('=') for x in f] 

    f = [x[0] for x in f if x[1] == 'Y'] 

    ragaraja_instructions = f 

if ragaraja_version == 0.1: 

    ragaraja_instructions = N.nBF_instructions 

if ragaraja_version == 1: 

    ragaraja_instructions = N.ragaraja_v1 

for instruction in N.ragaraja: 

    if instruction not in ragaraja_instructions: 

        N.ragaraja[instruction] = N.not_used 

 

# Write DOSE parameters into result files 

for name in population_names: 

    f = open(result_files[name] + '.result.txt', 'a') 

    f.write('STARTING SIMULATION - ' + str(datetime.utcnow()) + '\n') 

    f.write('DOSE parameters:' + '\n') 

    f.write('initial_chromosome = ' + str(initial_chromosome) + '\n') 

    f.write('chromosome_size = ' + str(len(initial_chromosome)) + '\n') 

    f.write('cytoplasm_size = ' + str(cytoplasm_size) + '\n') 

    f.write('population_size = ' + str(population_size) + '\n') 

    f.write('population_names = ' + str(population_names) + '\n') 

    f.write('world_x = ' + str(world_x) + '\n') 

    f.write('world_y = ' + str(world_y) + '\n') 

    f.write('world_z = ' + str(world_z) + '\n') 

    f.write('population_locations = ' + str(population_locations) + '\n') 

    f.write('background_mutation_rate = ' + str(background_mutation_rate) + '\n') 

    f.write('additional_mutation_rate = ' + str(additional_mutation_rate) + '\n') 

    f.write('maximum_generations = ' + str(maximum_generations) + '\n') 

    f.write('fossilized_ratio = ' + str(fossilized_ratio) + '\n') 

    f.write('fossilized_frequency = ' + str(fossilized_frequency) + '\n') 

    f.write('fossil_files = ' + str(fossil_files) + '\n') 

    f.write('print_frequency = ' + str(print_frequency) + '\n') 

    f.write('result_files = ' + str(result_files) + '\n') 

    f.write('ragaraja_version = ' + str(ragaraja_version) + '\n') 
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    f.write('instruction_set = ' + str(ragaraja_instructions) + '\n') 

    f.close() 

     

def simulate(entity_module): 

    exec('from %s import World, Population' % entity_module) 

     

    populations = {} 

    world = World() 

     

    for i in range(len(population_names)):  

        populations[population_names[i]] = Population() 

        L = population_locations[i] 

        world.ecosystem[L[0]][L[1]][L[2]]['organisms'] = \ 

            len(populations[population_names[i]].agents) 

        for x in range(len(populations[population_names[i]].agents)): 

            populations[population_names[i]].agents[x].status['location'] = L 

     

    ######################################################################## 

    # Default Simulation Driver                                            # 

    # (do not change anything above this line)                             # 

    ######################################################################## 

    generation_count = 0 

    while generation_count < maximum_generations: 

        generation_count = generation_count + 1 

        ''' 

        Run World.ecoregulate function 

        ''' 

        world.ecoregulate() 

         

        ''' 

        For each ecological cell, run World.update_ecology and  

        World.update_local functions 

        ''' 

        for x in range(world.world_x): 

            for y in range(world.world_y): 

                for z in range(world.world_z): 

                    world.update_ecology(x, y, z) 

                    world.update_local(x, y, z)   

                     

        ''' 

        For each organism 

            Execute genome by Ragaraja interpreter using  

               existing cytoplasm, local conditions as input 

            Update cytoplasm (Organism.cytoplasm) 

            Add input/output from organism intermediate condition of local cell 

        ''' 

        for name in population_names: 

            for i in range(len(populations[name].agents)): 

                source = populations[name].agents[i].genome[0].sequence 

                source = ''.join(source) 

                if clean_cytoplasm: 

                    array = [0]*cytoplasm_size 

                else: 

                    array = populations[name].agents[i].cytoplasm 

                L = populations[name].agents[i].status['location'] 

                inputdata = world.ecosystem[L[0]][L[1]][L[2]]['local_input'] 

                try: (array, apointer, inputdata, 

                      output, source, spointer) = \ 

                        r.interpret(source, N.ragaraja, 3, 

                                    inputdata, array, 

                                    max_cytoplasm_size, 

                                    max_codon) 

                except IndexError: pass 

                except ZeroDivisionError: pass 
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                except OverflowError: pass 

                except ValueError: pass 

                populations[name].agents[i].cytoplasm = array 

                world.ecosystem[L[0]][L[1]][L[2]]['temporary_input'] = inputdata 

                world.ecosystem[L[0]][L[1]][L[2]]['temporary_output'] = output 

         

        '''         

        For each population 

            Run Population.prepopulation_control function 

            Run Population.mating function and add new organisms to cell 

            For each organism, run Organism.mutation_scheme function 

            Run Population.generation_events function 

            Add 1 to generation count 

            Run Population.report function 

            Fossilize population if needed 

        ''' 

        for name in population_names: 

            report = populations[name].generation_step() 

            if generation_count % int(fossilized_frequency) == 0: 

                ffile = fossil_files[name] + '_' 

                populations[name].freeze(ffile, fossilized_ratio) 

            if generation_count % int(print_frequency) == 0: 

                print str(generation_count), str(report) 

                f = open(result_files[name] + '.result.txt', 'a') 

                dtstamp = str(datetime.utcnow()) 

                f.write('\t'.join([dtstamp, str(generation_count), 

                                   str(report)])) 

                f.write('\n') 

                f.close() 

                 

        ''' 

        For each ecological cell 

            Run World.organism_movement function 

            Run World.organism_location function 

            Run World.report function 

        ''' 

        for x in range(world.world_x): 

            for y in range(world.world_y): 

                for z in range(world.world_z): 

                    world.organism_movement(x, y, z) 

                    world.organism_location(x, y, z) 

                    world.report() 

         

        ''' 

        Bury ecosystem if needed 

        ''' 

        if generation_count % int(eco_buried_frequency) == 0: 

            filename = eco_burial_file + '_' + str(generation_count) + '.eco' 

            world.eco_burial(filename) 

             

if __name__ == "__main__": 

    entity_module = sys.argv[1] 

    simulate(entity_module) 

Appendix E: DOSE entities used for experiment 

import random 

import genetic as g 

import dose_world as w 

from dose_parameters import initial_chromosome, background_mutation_rate 

from dose_parameters import cytoplasm_size, population_size 

from dose_parameters import maximum_generations 
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from dose_parameters import world_x, world_y, world_z 

 

Chromosome = g.Chromosome(initial_chromosome,  

                          ['0','1','2','3','4','5','6','7','8','9'],  

                          background_mutation_rate) 

                           

class Organism(g.Organism): 

     

    cytoplasm = [0]*cytoplasm_size 

     

    def __init__(self): self.genome = [Chromosome.replicate()] 

    def get_cytoplasm(self):  

        return ','.join([str(x) for x in self.cytoplasm]) 

    def fitness(self): pass 

    def mutation_scheme(self): 

        self.genome[0].rmutate('point', 0) 

         

class Population(g.Population): 

     

    def __init__(self, pop_size=population_size,  

                 max_gen=maximum_generations): 

        self.agents = [Organism() for x in xrange(pop_size)] 

        self.generation = 0 

        self.maximum_generations = max_gen 

    def prepopulation_control(self): pass 

    def mating(self): pass 

    def postpopulation_control(self): pass 

    def generation_events(self): pass 

    def report(self): 

        sequences = [''.join(org.genome[0].sequence)  

                     for org in self.agents] 

        return '\t'.join(sequences) 

     

class World(w.World): 

    def __init__(self, world_x=world_x, world_y=world_y, world_z=world_z): 

        super(World, self).__init__(world_x, world_y, world_z) 

    def organism_movement(self, x, y, z): pass 

    def organism_location(self, x, y, z): pass 

    def ecoregulate(self): pass 

    def update_ecology(self, x, y, z): pass 

    def update_local(self, x, y, z): pass 

    def report(self): pass 


