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Abstract 
Python implementation of permutations is presented. Two classes are introduced: Perm for 

permutations and Group for permutation groups. The class Perm is based on Python 

dictionaries and utilize cycle notation. The methods of calculation for the perm order, parity, 

ranking and unranking are given. A random permutation generation is also shown. The class 

Group is very simple and it is also based on dictionaries. It is mainly the presentation of the 

permutation groups interface with methods for the group order, subgroups (normalizer, 

centralizer, center, stabilizer), orbits, and several tests. The corresponding Python code is 

contained in the modules perms and groups. 

 

Keywords: permutations, permutation groups, computational group theory. 

 

 

1. Introduction 

Python is a programming language that is used by many companies, universities, and single 

programmers (Lutz, 2007). Some of its key features are: very clear, readable syntax; high 

level dynamic data types; exception-based error handling; extensive standard libraries and 

third party modules; availability for all major operating systems. Python is sometimes called 

executable pseudocode, because it can be used as a prototyping or RAD (rapid application 

development) language. On the other hand, it was shown that Python can be used as the first 

language in the computer science curriculum (Zelle, 2004; Downey et al., 2008). 

 

Python can be also used to implement classic algorithms and design new problem-solving 

algorithms (Hetland, 2010). Although Python is not as fast as C or Java, in many cases it 

may be fast enough to do the job. It is important how our program scales with the input size, 

what algorithms are used. A solid understanding of algorithm design is a crucial problem and 

Python stimulates experiments and tests. Python tools as doctest and unittest can reduce the 

effort involved in code testing (Arbuckle, 2010; Turnquist, 2011). 

 

In this paper we are interested in computational group theory (CGT) and permutation (perm) 

groups algorithms (Seress, 1997). Perm groups are the oldest type of representations of 

groups and perm groups algorithms are among the best developed parts of CGT. The 

methods developed by Charles C. Sims are at the heart of most of the algorithms (Seress, 

2003). Many algorithms have been implemented in GAP, a system for computational 
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discrete algebra (GAP, 2013). GAP code is written in a high-level, Pascal-like language, and 

is freely available. 

 

There is also a Python library for symbolic mathematics called SymPy (2013). SymPy has 

the Combinatorics Module with perms and perm groups. SymPy code contains many 

advanced Python features and may be difficult to read for a novice programmer. The 

Combinatorics Module imports some objects from other modules so it is not self-contained. 

We would like to present a similar code but self-contained, readable, and avoiding the most 

advanced Python features. A Python code is a considerable part of the paper because it plays 

a role of a pseudocode and it also presents Python best practices. The code described in the 

paper is available as the perms-dict project on Google Code (2013). 

 

The paper is organized as follows. In Section 2 basic notions of groups are defined. In 

Sections 3 and 4 the implementation of perms is presented (perms module) and some usage 

examples are given. Perms are based on Python dictionaries and utilize cycle notation. In 

Sections 5 and 6 the implementation of perm groups is presented (groups module). This 

implementation is very simple and suitable only for groups of sufficiently small order. It is 

included to familiarize the reader with the perm groups interface. It is important that almost 

the same interface can be used for the advanced implementation of perm groups that will be 

published elsewhere. Conclusions are contained in Section 7. 

 

2. Basic notions of groups 

A group G is a set together with an operation * that combines any two elements from G to 

form another element from G (Wikipedia, 2013b). The operation * must satisfy four 

requirements: 

 

• Closure. For all a, b in G, a * b is in G. 

• Associativity. For all a, b, c in G, (a * b) * c = a * (b * c). 

• Identity element. There exists e in G, such that for all a in G, e * a = a * e = a. 

• Inverse element. For each a in G, there exists ~a in G, such that a * (~a) = (~a) * a = 

e. 

 

A group G is called abelian if a * b = b * a for all a, b in G. A group G is finite if the set G 

has a finite number of elements (the group order |G| is finite). In this paper, all groups are 

finite. A subset H of G is a subgroup of G if H is a group together with the operation * from 

G. H is a normal subgroup in G (H ≤ G) if a * b * (~a) is in H, for all a in G, for all b in H. 

 

If S is a subset of G, then we denote by 〈S〉 the subgroup generated by S. The commutator of 

a, b in G is [a, b] = a * b * (~a) * (~b). For subgroups H, K of G, the commutator of H and K 

is defined as [H, K] = 〈[a, b] | a in H, b in K〉. The commutator [G, G] is called the derived 

subgroup of G and it is always a normal subgroup of G. A group G is perfect if [G, G] = G. 

On the other hand, if [G, G] is trivial, then G is abelian. 
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3. Interface for permutations 

A permutation (perm) is a one-to-one mapping of a set onto itself. If p and q are perms such 

that p[i] == j and q[j] == k, the product (q * p)[i] == k. Note that many authors have the 

opposite convention (Knuth, 1991). The set of all permutations of any given set X of n 

elements forms the symmetric group Sym(X) or Sn. The order of Sn is n!. Any subgroup of a 

symmetric group Sn is called a perm group of degree n. 

 

Perms are often shown as an array with two rows. 

 
[  0    1    2  ...   n-1 ] 
[p[0] p[1] p[2] ... p[n-1]] 

 

Sometimes, only the second line is used to present a perm (array form). Note that we have X 

= {0, 1, 2, ..., n-1}. 

 

The third method of notation is cycle notation. A cycle (k-cycle) c with the length k can be 

written as a Python tuple (c[0], c[1], ..., c[k-1]) but, in fact, a Python list can be also used in 

programming perms. It corresponds to the permutation q, where 

 

q[c[i]] == c[i + 1] for 0 ≤ i < k-1, q[c[k – 1]] == c[0]. 

 

If j is not in the cycle then q[j] == j. A 2-cycle is called a transposition. Any permutation can 

be expressed as a product of disjoint cycles (1-cycles are often omitted). Any cycle can be 

expressed as a product of transpositions (c[0], c[k – 1])(c[0], c[k-2]) … (c[0], c[1]). 

 

Method name Short description 

Perm() returns the identity perm 

Perm()(*c)(*d) returns a perm from cycles 

Perm(data=[0, 2, 1, 3]) returns a perm from a list 

p.is_identity() returns True for the identity perm 

~p returns the inverse of p 

p * q returns the product p*q as a perm 

p==q returns True for the same perms 

p[k] returns the item on the position k in p 

pow(p, m), p ** m returns the m-th power of p 

p.support() returns a list of integers moved by p 

p.max() returns max(p.support()) 

p.min() returns min(p.support()) 

p.list(size) returns p in array form 

p.label(size) returns the perm string label 

p.cycles() returns a list of perm cycles 

p.order() returns the perm order 
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p.parity() returns the parity of p (0 or 1) 

p.is_even() returns True if p is even 

p.is_odd() returns True if p is odd 

p.sign() returns the perm sign (+1 or -1) 

p.commutes_with(q) returns True if p*q==q*p 

p.commutator(q) returns the commutator [p,q] 

Perm.random(size) returns a random perm 

p.inversion_vector(size) returns the inversion vector of p 

p.rank_lex(size) returns the lexicographic rank of p 

Perm.unrank_lex(size, rank) returns a perm (lexicographic unranking) 

p.rank_mr(size) returns the Myrvold and Ruskey rank of p 

Perm.unrank_mr(size, rank) returns a perm (Myrvold and Ruskey unranking) 

Table 3.1. Interface for perms; p and q are perms, c and d are cycles given as Python tuples 

or lists. 

 

Let us show some properties of perms that are listed in Table 3.1. Perms are almost always 

entered and displayed in disjoint cycle notation. The perm size n is undefined because keys 

not defined explicitly are equal to their values (p[i] == i). 

 
>>> from perms import Perm 
>>> p, q, r = Perm()(0, 1), Perm()(1, 2), Perm()(2, 3) 
>>> p.is_odd() 
True 
>>> p * q 
Perm()(0, 1, 2) 
>>> q * p 
Perm()(0, 2, 1) 
>>> p.commutes_with(q) 
False 
>>> p.commutator(q) 
Perm()(0, 2, 1) 
>>> (p * p).is_identity() 
True 
>>> (p * r).cycles() 
[[0, 1], [2, 3]] 
>>> q.list(size=4) 
[0, 2, 1, 3] 
>>> p[0], p[4], p[8] 
(1, 4, 8) 
>>> pow(p * q * r, 1234567890) 
Perm()(0, 2)(1, 3) 
>>> Perm.random(size=5) 
Perm()(0, 2)(1, 4, 3) 
>>> q.rank_lex(size=4) 
2 
>>> q.rank_lex(size=5) 
6 
>>> Perm.unrank_lex(size=4, rank=20) 
Perm()(0, 3, 2) 
>>> Perm.unrank_lex(size=5, rank=20) 
Perm()(1, 4, 3) 
>>> q.rank_mr(size=5) 
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99 
>>> Perm.unrank_mr(5, 20) 
Perm()(0, 2, 1, 3, 4) 
>>> 

 

4. Class for permutations 

Now we would like to present Python implementation of perms. The code was tested under 

Python 2.6. 

 

4.1. Basic methods 

A perm is internally a dictionary where missing keys (p[k] == k) are created when they are 

required. Initially, only the keys with p[k] != k have to be created. The code of the Perm 

class is fairly self-explanatory. It is inspired by the Cycle class from SymPy (SymPy, 2013) 

but has enhanced functionality. Note that the binary exponentiation algorithm is used for 

finding powers of perms. All integer powers are allowed. String labels will be used in perm 

groups. 

 
class Perm(dict): 
    """The class defining a perm.""" 
 
    def __init__(self, data=None): 
        """Loads up a Perm instance.""" 
        if data: 
            for key, value in enumerate(data): 
                self[key] = value 
 
    def __missing__(self, key): 
        """Enters the key into the dict and returns the key.""" 
        self[key] = key 
        return key 
 
    def __call__(self, *args): 
        """Returns the product of the perm and the cycle.""" 
        changed = {} 
        n = len(args) 
        for i in range(n): 
            changed[args[i]] = self[args[(i + 1) % n]] 
        self.update(changed) 
        return self 
 
    def is_identity(self): 
        """Test if the perm is the identity perm.""" 
        return all(self[key] == key for key in self) 
 
    def __invert__(self): 
        """Finds the inverse of the perm.""" 
        perm = Perm() 
        for key in self: 
            perm[self[key]] = key 
        return perm 
 
    def __mul__(self, other): 
        """Returns the product of the perms.""" 
        perm = Perm() 
        # Let us collect all keys. 
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        # First keys from other, because self can grow up. 
        for key in other: 
            perm[key] = self[other[key]] 
        for key in self: 
            perm[key] = self[other[key]] 
        return perm 
 
    def __eq__(self, other): 
        """Test if the perms are equal.""" 
        return (self * ~other).is_identity() 
 
    def __ne__(self, other): 
        """Test if the perms are not equal.""" 
        return not self == other 
 
    def __getitem__(self, key): 
        """Finds the item on the given position.""" 
        return dict.__getitem__(self, key) 
 
    def __pow__(self, n): 
        """Finds powers of the perm.""" 
        if n < 0: 
            return pow(~self, -n) 
        elif n == 0: 
            return Perm() 
        elif n == 1: 
            return self 
        elif n == 2: 
            return self * self 
        else:         # binary exponentiation 
            perm = self 
            res = Perm()  # identity 
            while True: 
                if n % 2 == 1: 
                    res = res * perm 
                    n = n - 1 
                    if n == 0: 
                        break 
                if n % 2 == 0: 
                    perm = perm * perm 
                    n = n / 2 
            return res 
 
    def support(self): 
        """Returns the elements moved by the perm.""" 
        return [key for key in self if self[key] != key] 
 
    def max(self): 
        """Return the highest element moved by the perm.""" 
        if self.is_identity(): 
            return 0 
        else: 
            return max(key for key in self if self[key] != key) 
 
    def min(self): 
        """Return the lowest element moved by the perm.""" 
        if self.is_identity(): 
            return 0 
        else: 
            return min(key for key in self if self[key] != key) 
 
    def list(self, size=None): 
        """Returns the perm in array form.""" 
        if size is None: 
            size = self.max() + 1 
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        elif size < self.max() + 1: 
            raise ValueError("size is too small") 
        return [self[key] for key in range(size)] 
 
    def label(self, size=None): 
        """Returns the string label for the perm.""" 
        if size is None: 
            size = self.max() + 1 
        if size > 62: 
            raise ValueError("size is too large for labels") 
        letters = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
        letters = letters + "abcdefghijklmnopqrstuvwxyz_" 
        chars = [] 
        for key in range(size): 
            chars.append(letters[self[key]]) 
        return "".join(chars) 

 

Most basic operations require O(n) time for perms from Sn. The binary exponentiation takes 

O(n log(m)) time for the power m. 

 

4.2. Cycles 

The method cycles() returns a list of cycles without 1-cycles. It is used to get the string 

representation of a perm and to compute the order of a perm via the functions lcm() and 

gdc() (SymPy, 2013). When a perm is raised to the power of its order it equals the identity 

perm, pow(p, p.order()) == Perm(). Note that the code of the method order() is exceptionally 

compact and transparent. 

 
def gcd(a, b): 
    """Computes the greatest common divisor.""" 
    while b: 
        a, b = b, a % b 
    return a 
 
def lcm(a, b): 
    """Computes the least common multiple.""" 
    return a * b / gcd(a, b) 
 
class Perm(dict): 
# ... other methods ... 
 
    def cycles(self): 
        """Returns a list of cycles for the perm.""" 
        size = self.max() + 1 
        unchecked = [True] * size 
        cyclic_form = [] 
        for i in range(size): 
            if unchecked[i]: 
                cycle = [i] 
                unchecked[i] = False 
                j = i 
                while unchecked[self[j]]: 
                    j = self[j] 
                    cycle.append(j) 
                    unchecked[j] = False 
                if len(cycle) > 1: 
                    cyclic_form.append(cycle) 
        return cyclic_form 
 
    def __repr__(self): 
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        """Computes the string representation of the perm.""" 
        words = ["Perm()"] 
        for cycle in self.cycles(): 
            words.append(str(tuple(cycle))) 
        return "".join(words) 
 
    def order(self): 
        """Returns the order of the perm.""" 
        numbers = [len(cycle) for cycle in self.cycles()] 
        return reduce(lcm, numbers, 1) 

 

4.3. Parity 

Every permutation can be expressed as a product of transpositions. There are many possible 

expressions for a given perm but the parity of the transposition number is preserved. All 

permutations are then classified as even or odd, according to the transposition number. The 

set of all even permutations from the symmetric group Sym(X) forms the alternating group 

Alt(X) or An . The order of An is n!/2. 

 
class Perm(dict): 
# ... other methods ... 
 
    def parity(self): 
        """Returns the parity of the perm (0 or 1).""" 
        size = self.max() + 1 
        unchecked = [True] * size 
        # c counts the number of cycles in the perm including 1-cycles 
        c = 0 
        for j in range(size): 
            if unchecked[j]: 
                c = c + 1 
                unchecked[j] = False 
                i = j 
                while self[i] != j: 
                    i = self[i] 
                    unchecked[i] = False 
        return (size - c) % 2 
 
    def is_even(self): 
        """Test if the perm is even.""" 
        return self.parity() == 0 
 
    def is_odd(self): 
        """Test if the perm is odd.""" 
        return self.parity() == 1 
 
    def sign(self): 
        """Returns the sign of the perm (+1 or -1).""" 
        return (1 if self.parity() == 0 else -1) 

 

4.4. Commutators and random perms 

Here we define the commutator of two perms p,q as p*q*(~p)*(~q). A random perm 

generator uses the Python random module. 

 
class Perm(dict): 
# ... other methods ... 
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    def commutes_with(self, other): 
        """Test if the perms commute.""" 
        return self * other == other * self 
 
    def commutator(self, other): 
        """Finds the commutator of the perms.""" 
        return self * other * ~self * ~other 
 
    @classmethod 
    def random(cls, size): 
        """Returns a random perm of the given size.""" 
        import random 
        alist = range(size) 
        random.shuffle(alist) 
        return cls(data=alist) 

 

4.5. Ranking and unranking permutations 

A ranking function for perms on n elements assigns a unique integer in the range from 0 to 

n!-1 to each of the n! Perms. The corresponding unranking function is the inverse (Myrvold 

and Ruskey, 2001). The algorithm for ranking perms in lexicographic order uses the 

inversion vector and it takes O(n
2
) time. The inversion vector consists of elements whose 

value indicates the number of elements in the perm that are lesser than it and lie on its right 

hand side (SymPy, 2013). The inversion vector is the same as the Lehmer encoding of a 

perm. 

 

In 2001, Myrvold and Ruskey presented simple ranking and unranking algorithms for perms 

that can be computed using O(n) arithmetic operations (Myrvold and Ruskey, 2001). It is 

inspired by the standard algorithm for generating a random perm. Myrvold and Ruskey 

algorithms are shown in functions rank_mr() and unrank_mr(). 

 

def swap(L, i, j): 
    """Exchange of two elements on the list.""" 
    L[i], L[j] = L[j], L[i] 
 
class Perm(dict): 
# ... other methods ... 
 
    def inversion_vector(self, size): 
        """Returns the inversion vector of the perm.""" 
        lehmer = [0] * size 
        for i in range(size): 
            counter = 0 
            for j in range(i + 1, size): 
                if self[i] > self[j]: 
                    counter = counter + 1 
            lehmer[i] = counter 
        return lehmer 
 
    def rank_lex(self, size): 
        """Returns the lexicographic rank of the perm.""" 
        lehmer = self.inversion_vector(size) 
        lehmer.reverse() 
        k = size - 1 
        res = lehmer[k] 
        while k > 0:   # a modified Horner algorithm 
            k = k - 1 
            res = res * (k + 1) + lehmer[k] 
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        return res 
 
    @classmethod 
    def unrank_lex(cls, size, rank): 
        """Lexicographic perm unranking.""" 
        alist = [0] * size 
        i = 1 
        while i < size: 
            i = i + 1 
            alist[i - 1] = rank % i 
            rank = rank / i 
        if rank > 0: 
            raise ValueError("size is too small") 
        alist.reverse()   # this is the inversion vector 
        E = range(size) 
        blist = [] 
        for item in alist: 
            blist.append(E.pop(item)) 
        return cls(data=blist) 
 
    def rank_mr(self, size): 
        """Myrvold and Ruskey rank of the perm.""" 
        alist = self.list(size) 
        blist = (~self).list(size)   # inverse 
        return Perm._mr_helper(size, alist, blist) 
 
    @classmethod 
    def _mr_helper(cls, size, alist, blist): 
        """A helper function for Myrvold and Ruskey ranking.""" 
        # both alist and blist are modified 
        if size == 1: 
            return 0 
        s = alist[size - 1] 
        swap(alist, size – 1, blist[size - 1]) 
        swap(blist, s, size - 1) 
        return s + size * cls._mr_helper(size – 1, alist, blist) 
 
    @classmethod 
    def unrank_mr(cls, size, rank): 
        """Myrvold and Ruskey perm unranking.""" 
        tmp = range(size) 
        while size > 0: 
            swap(tmp, size-1, rank % size) 
            rank = rank / size 
            size = size - 1 
        return cls(data=tmp) 

 

5. Interface for permutation groups 

A perm group is a finite group G whose elements are perms of a given finite set X (usually 

numbers from 0 to n-1) and whose group operation is the composition of perms (Joyner and 

Kohel, 2007). The number of elements of X is called the degree of G. 

 

Method name Short description 

Group() returns a trivial group 

G.order() returns the group order 

G.is_trivial() returns True if G is trivial 
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p in G returns True if p belongs to G 

G.insert(p) generates new perms in G from p 

G.iterperms() generates perms from G on demand 

G.iterlabels() generates perm labels on demand 

G.is_abelian() returns True if G is abelian 

G.subgroup_search(prop) returns a subgroup 

H.is_subgroup(G) returns True if H is a subgroup of G 

H.is_normal(G) returns True if H is a normal subgroup of G 

G.normalizer(H) returns the normalizer of H in G 

G.centralizer(H) returns the centralizer of H in G 

G.center() returns the center of G 

G.commutator(H, K) returns the commutator of groups 

G.derived_subgroup() returns the derived subgroup of G 

G.orbits(points) returns a list of orbits 

G.is_transitive(points) returns True if G is transitive 

G.stabilizer(point) returns a stabilizer subgroup 

G.action(points) returns an induced group 

Table 5.1. Interface for perm groups; G, H, and K are groups, p and q are perms. 

 

Let us show some computations with perm groups using methods listed in Table 5.1. We 

will find the relation 1 ≤ V4 ≤ A4 ≤ S4 , where the unity denotes the trivial group and V4 is a 

Klein four-group. 

 

 
>>> from perms import Perm 
>>> from groups import Group 
>>> s4 = Group() 
>>> s4.insert(Perm()(0, 1)) 
>>> s4.insert(Perm()(0, 1, 2, 3)) 
>>> s4.order()      # the symmetric group S_4 
24 
>>> a4 = s4.derived_subgroup() 
>>> a4.order()      # the alternating group A_4 
12 
>>> all(perm.is_even() for perm in a4.iterperms()) 
True 
>>> a4.is_normal(s4) 
True 
>>> v4 = a4.derived_subgroup() 
>>> v4.order()      # the Klein four-group V_4 
4 
>>> v4.is_abelian() 
True 
>>> v4.is_normal(a4) 
True 
>>> 
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6. Class for permutation groups 

The class Group is based on Python dictionaries. All elements of a group are kept, keys are 

string labels of perms, values are instances of the Perm class. It is clear that it is possible to 

handle only small groups because of the limited computer memory. 

 

6.1. Basic methods 

In this subsection basic group methods are presented. 

 
class Group(dict): 
    """The class defining a perm group.""" 
 
    def __init__(self): 
        """Loads up a Group instance.""" 
        perm = Perm() 
        self[perm.label()] = perm 
 
    order = dict.__len__ 
 
    def __contains__(self, perm): 
        """ Test if the perm belongs to the group.""" 
        return dict.__contains__(self, perm.label()) 
 
    def iterperms(self): 
        """The generator for perms from the group.""" 
        return self.itervalues() 
 
    def iterlabels(self): 
        """The generator for perm labels from the group.""" 
        return self.iterkeys() 
 
    def is_trivial(self): 
        """Test if the group is trivial.""" 
        return self.order() == 1 
 
    def insert(self, perm): 
        """The perm inserted into the group generates new 
        perms in order to satisfy the group properties.""" 
        label1 = perm.label() 
        if perm in self: 
            return 
        old_order = self.order() 
        self[label1] = perm 
        perms_added = {} 
        perms_added[label1] = perm 
        perms_generated = {} 
        new_order = self.order() 
        while new_order > old_order: 
            old_order = new_order 
            for label1 in perms_added: 
                for label2 in self.iterlabels(): 
                    perm3 = perms_added[label1] * self[label2] 
                    label3 = perm3.label() 
                    if perm3 not in self: 
                        perms_generated[label3] = perm3 
            self.update(perms_generated) 
            perms_added = perms_generated 
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            perms_generated = {} 
            new_order = self.order() 
 
    def is_abelian(self): 
        """Test if the group is abelian.""" 
        for perm1 in self.iterperms(): 
            for perm2 in self.iterperms(): 
                if not perm1.commutes_with(perm2): 
                    return False 
        return True  

 

6.2. Subgroups 

A group H is a subgroup of a group G if all elements of H belong to G. The centralizer of a 

subset S of G is a set CG(S) = {g in G | s * g = g * s, s in S} (Wikipedia, 2013a). It is clear 

that CG(S) = CG(〈S〉) and that is why the argument of the method centralizer() is a group. 

 

The normalizer of S in G is a set NG(S) = {g in G | g * s * (~g) in S, s in S } (Wikipedia, 

2013a). We have NG(S) = NG(〈S〉) and that is why the argument of the method normalizer() 

is a group. The centralizer and normalizer of S are both subgroups of G. The centralizer 

CG(S) is always a normal subgroup of the normalizer NG(S). 

 

The center of G is a set Z(G) = CG(G). The center of G is always a normal subgroup of G. In 

the case of the abelian group, we get Z(G) = G. On the other hand, sometimes the center can 

be trivial. 

 
class Group(dict): 
# ... other methods ... 
 
    def is_subgroup(self, other): 
        """H.is_subgroup(G) - test if H is a subgroup of G.""" 
        if other.order() % self.order() != 0: 
            return False 
        return all(perm in other for perm in self.iterperms()) 
 
    def is_normal(self, other): 
        """H.is_normal(G) - test if H is a normal subgroup in G.""" 
        for perm1 in self.iterperms(): 
            for perm2 in other.iterperms(): 
                if perm2 * perm1 * ~perm2 not in self: 
                    return False 
        return True 
 
    def subgroup_search(self, prop): 
        """Returns a subgroup of all elements satisfying the property.""" 
        newgroup = Group() 
        for perm in self.iterperms(): 
            if prop(perm): 
                newgroup.insert(perm) 
        return newgroup 
 
    def normalizer(self, other): 
        """G.normalizer(H) - returns the normalizer of H.""" 
        return self.subgroup_search(lambda perm: all( 
        (perm * perm2 * ~perm in other) for perm2 in other.iterperms())) 
 
    def centralizer(self, other): 
        """G.centralizer(H) - returns the centralizer of H.""" 
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        return self.subgroup_search(lambda perm: all( 
        perm * perm2 == perm2 * perm for perm2 in other.iterperms())) 
 
    def center(self): 
        """Returns the center of the group.""" 
        return self.centralizer(self) 
 
    def commutator(self, group1, group2): 
        """Returns the commutator of the groups.""" 
        newgroup = Group() 
        for perm1 in group1.iterperms(): 
            for perm2 in group2.iterperms(): 
                newgroup.insert(perm1.commutator(perm2)) 
        return newgroup 
 
    def derived_subgroup(self): 
        """Returns the derived subgroup of the group.""" 
        return self.commutator(self, self) 

 

The subgroup_search() method uses a property prop() that has to be callable on group 

elements and it has to return True or False. 

 
# Get A_4 from S_4. 
>>> a4 = s4.subgroup_search(lambda perm: perm.is_even()) 
 
 

6.3. Group action 

If G is a group and X is a set, then a group action of G on X is a function F: G × X → X that 

satisfies the following two axioms (Wikipedia, 2013c): 

 

• Identity. F(e, x) = x for all x in X, where e denotes the identity element of G. 

• Associativity. F(g * h, x) = F(g, F(h, x)) for all g, h in G and all x in X. 

 

The orbit of a point x in X is the set F(G, x) = {F(g, x) | g in G}. There is an equivalence 

relation defined by saying x ~ y if and only if there exists g in G with F(g, x) = y. Two 

elements x and y are equivalent if and only if their orbits are the same, F(G, x) = F(G, y). 

The group action is transitive if it has one orbit, F(G, x) = X. 

 

For every x in X, we define the stabilizer subgroup of x as a set 

 

StabG(x) = {g in G | F(g, x) = x}. 

 

For finite G and X, the orbit-stabilizer theorem states that |F(G, x)| = |G| / |StabG(x)|. 

 

In the case of a perm group G (perms from Sn) we have the standard action F(p, k) = p[k] for 

p in G, 0 ≤ k ≤ n-1. In our Python implementation, an orbit is a list of points, where the 

points ordering is inessential. 

 

Let us analyze the symmetries of a square (the D4 group) shown in Figure 6.1. The 

symmetry group will be constructed from three flips. 
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0 1 2 

3 4 5 

6 7 8 

Figure 6.1. A symmetry group for a square is D4. The elements of the group can be written 

as perms of integers from 0 to 8. 

 

>>> g8 = Group() 
>>> g8.insert(Perm()(0, 2)(3, 5)(6, 8))    # horizontal flip 
>>> g8.insert(Perm()(0, 6)(1, 7)(2, 8))    # vertical flip 
>>> g8.insert(Perm()(1, 3)(2, 6)(5, 7))    # diagonal flip 
>>> g8.order() 
8 
>>> g8.orbits(range(9)) 
[[0, 6, 8, 2], [1, 7, 3, 5], [4]] 
>>> z2 = g8.center() 
>>> [perm for perm in z2.iterperms()] 
[Perm(), Perm()(0, 8)(1, 7)(2, 6)(3, 5)] 
>>> g4 = g8.action([0, 6, 8, 2]) 
>>> g4.order()                          # the same abstract group D_4 
8 
>>> 

 

The first orbit contains the points at the corners, the second points at the edges, and the third 

contains the center. The group cannot move a point at a corner onto a point at an edge or at 

the center. The center of the group consists of a half-turn and the identity. 

 
class Group(dict): 
# ... other methods ... 
 
    def orbits(self, points): 
        """Returns a list of orbits.""" 
        used = {} 
        orblist = [] 
        for pt1 in points: 
            if pt1 in used: 
                continue 
            orb = [pt1]     # we start a new orbit 
            used[pt1] = True 
            for perm in self.iterperms(): 
                pt2 = perm[pt1] 
                if pt2 not in used: 
                    orb.append(pt2) 
                    used[pt2] = True 
            orblist.append(orb) 
        return orblist 
 
    def is_transitive(self, points): 
        """Test if the group is transitive (has a single orbit).""" 
        return len(self.orbits(points)) == 1 
 
    def stabilizer(self, pt): 
        """Returns a stabilizer subgroup.""" 
        return self.subgroup_search(lambda perm: perm[pt] == pt) 
 
    def action(self, points): 
        """Return a new group induced by the action.""" 
        if not self.is_transitive(points): 
            raise TypeError("the group is not transitive") 
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        adict = {} 
        for i, pt in enumerate(points): 
            adict[pt] = i 
        newgroup = Group() 
        for perm in self.iterperms(): 
            newdata = [adict[perm[pt]] for pt in points] 
            newgroup.insert(Perm(data=newdata)) 
        return newgroup  

 

7. Conclusions 

In this paper, we presented Python implementation of perms, the Perm class (the perms 

module), based on Python dictionaries. It is inspired by the Cycle class from SymPy (2013) 

but has enhanced functionality. The methods of calculation for the perm order, parity, 

random perms, ranking and unranking perms are given. It is interesting that classic 

algorithms, such as the Euclidean algorithm and the binary exponentiation, have found the 

natural application. 

 

The interface for perm groups is also shown by means of the Group class (the groups 

module) but the implementation is too simple (and slow) to handle large groups. The Python 

code (executable pseudocode) can serve as an introduction to the group theory and Python 

programming. We note that almost the same interface can be used for the advanced 

implementation of perm groups based on Schreier-Sims method (Seress, 2013). 
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