
The PYTHON Papers 12: 1

 - 1 -

Modeling and Markov chains

Philippe Cohard
Montpellier Research in Management – MRM, University of Montpellier,
Montpellier Management, Labex Entreprendre, Montpellier, France
philippe.cohard@umontpellier.fr

Abstract
Modeling and simulation are now topics with major interest for researchers and practitioners.
Markov chain is a powerful approach of modeling that could be used in multiple areas. For
example, in management this approach can give numerous opportunities to better understand
phenomena. Thus we ask the question: “How can Markov chains be useful for modeling
processes? “. This paper is our answer. With Markov chains we show the possibilities to
better understand management project. We also propose two programs which explain how to
implement these models based on Markov chains. The results show that Markov chains
approach of modeling can be useful for teaching and explaining processes. Modeling gives
data to analyze what can be compared with empirical data or tested for coherence. Modeling
with Markov chains can be interpreted and give insights on real causes of complex
phenomena.

Keywords: Markov chains, modeling, process, simulation, program

1. Introduction

Markov chain is a probabilistic approach that gives computationally fast results. Modeling
can be done with the Markov chains. This kind of approach has been used in many fields, for
explanation of behaviors, cycles of a machine, biology, etc. Creating models from Markov
chains is simple, the matrix is just an integration of all values of the model. Markov chains
make it possible to model probabilistic systems as changes from one state to the next where
the probability is only dependent on the current state, not the previous ones (Grinstead and
Snell, 2003).

There is an important number of libraries for Markov chains in PYTHON. The “pip search
markov” command gives a great number of outputs (more than 100). There are dozens of
libraries specifically on Markov chains. Many are for specific use like speech generation.
But in this paper we will use only numpy library. We intend to use these chains for calculus
because, we want to explain the capacities of these chains with PYTHON. In this paper we
shall use PYTHON 2.7.

Andreï Markov studied the chains of events around the 1900s and published a first paper in
1906 (Senata, 2006). These events are now named Markov chains because he established
laws and proposed the foundations of the Markovian process. A characteristic of a Markov
chain is that: “it is historyless in that the next state depends only on the current state, not on
any prior ones” (Hefferon, 2017, p.306). Representing Markov chains can be done in the

The PYTHON Papers 12: 1

 - 2 -

form of a diagram or in the form of a matrix. This kind of diagram is interesting to easily
show how the process works. This is why we have some diagrams, called transition
diagrams in our paper. But in our program we need to use the matrix form which is another
way to present the same thing.

We present three types of Markov chains: (1) regular Markov chain, (2) absorbing Markov
chain and (3) ergodic Markov chain. For the regular Markov chain: “long-range predictions
are independent of the starting state” (Grinstead and Snell, 2003, p.407). Therefore, after
numerous steps the probability distribution is stable (convergence). We propose the example
below that shows the probabilities of the weather in a simulated world. This chain has 3
states: rainy, cloudy and sunny.


















5.025.025.0

5.00.05.0

25.05.025.0

P

To simulate the next days, we calculate the successive powers of P from 1 to 9 (the program
is provided in appendix 1). Then we can say that after nine days the predictions are
independent of the starting state (today weather).


















421.0263.0316.0

421.0263.0316.0

421.0263.0316.0
6P

This way we found the limiting vector but it can be calculated solving the following
equations:

33)2/1(2)4/1(1)4/1(

23)4/1(1)4/1(

13)4/1(2)2/1(1)4/1(

1321

vvvv

vvv

vvvv

vvv






The limiting vector is in accordance with the previous results with the algorithmic approach
of successive powers.

 421.0263.0316.0V

Another kind is the absorbing Markov chain, which has at least one absorbing state with
probability at 1. So when this state happens, it is impossible to leave it. Grinstead and Snell
(2003) precise that in an absorbing Markov chain, a state which is not absorbing is called
transient. This kind of Markov chain is particularly useful to answer the question of the

The PYTHON Papers 12: 1

 - 3 -

probability that the process eventually reaches an absorbing state. The following example is
about a mission order. The proposition of mission order is sent by the employee to his
supervisor. If this latter doesn’t agree, he sends the order back to the employee (0.7). But if
he agrees, he sends the order to the director which signs the order (0.3). There is no further
step in this process (example below).


















0.10.00.0

3.00.07.0

0.00.10.0

P

We calculate the successive powers of P. The values of the matrix converge to a steady state
value by P44 (Markov chains converge on a value, but computationally, what seems to be no
change is frequently that the convergence is within the digits of precision that is printed or
that the computer is capable of).


















0.10.00.0

0.10.00.0

0.10.00.0
44P

As the state “1.0” appears, it represents a long run absorbing state.

Another kind of Markov chain is the Ergodic chain in which it is possible to go from every
state to every state. Note that every regular chain is ergodic but every ergodic chain is not
mandatory a regular one. We propose an example (corrected 11/07/2018): the tourist walk,
inspired of Grinstead and Snell (2003). The tourist strolls in the city, without any precise
goal. He continues walking until he reaches the tourism office (4), or his hotel (0). Where he
can stay or come back.

 The transition matrix is then:

























0.00.10.00.00.0

5.00.05.00.00.0

0.05.00.05.00.0

0.00.05.00.05.0

0.00.00.00.10.0

P

With Markov chains we can model numerous systems: naturals systems like viruses or
artificial systems like computer programs, machines, supply chains, etc. But we can model
behaviors too. For example, the behaviors of peoples, of managers/workers or the processes
in a company. Modeling is one of the uses of Markov chains. Once you have a good model
of a process, you can use it to explain something or use it in a simulation engine. This kind

The PYTHON Papers 12: 1

 - 4 -

of engine can be used in computer games and of course in serious games as well. Thus we
ask the question: “How can Markov chains be useful for modeling processes? “. We
particularly focus on the reason why this can be useful for the manager. This article is our
answer to the question and gives an insight using PYTHON.

2. The process for setting Markov chains

In this section we first present modeling and Markov chains (2.1), and then the settings that
can apply Markov chains (2.2). The interest of the manager is to model the changing state of
a system based on probabilities.

2.1. Modeling and Markov chains

Simulation is a well-known method for research based on abstraction models and computer
programs. Harrison et al. (2007, p. 1231) explain that “in the leading management and
social science journals, about 8 percent of the published papers used simulation
methodology”. The simulation approach is quite developed in “the academy of management
review”. Davis et al. (2007) explain how to use simulation methods for theory development.
These authors suggest a 7 points road map for developing theories with simulation: (1) begin
with research question, (2) identify simple theory, (3) choose a simulation approach, (4)
create computational representation, (5) verify computational representation, (6) experiment
to build novel theory and (7) validate with empirical data. Simulation and modeling can give
useful insights to researchers about events, social systems, processes in an exploratory
approach. Furthermore, Harrison et al. (2007) proposed a process of management theory and
simulation modeling which shows the phases of such a research (figure 1).

Figure 3. The interactive process of Harrison et al. (2007)

For example, Leroux and Berro (2010) in their exploratory simulation analyze the mutual
adaptation dynamics developed by the agents of bioclusters.

Markov chains are used in different types of researches. Al-Sayed et al (2016) used a
Markov chain model monitoring the state of cloud resources. In another kind of research,
Andernsen et al. (2017), used Markov chains models to optimize ward resources and
patients’ relocation.

The PYTHON Papers 12: 1

 - 5 -

The Markov chains theories are clear and easy to access. It should be an interesting approach
which is not protected by imposing technicalities and provides computationally fast results
(Brémaud, 1999). The chain can be represented by a diagram of transitions. In the diagram,
the sum of the probabilities from one state to each of the other states must equal 1. The
process starts in one state and moves, by step, from this one to another. “If the chain is
currently in state si, then it moves to state sj at the next step with a probability denoted by pij,
and this probability does not depend upon which states the chain was in before the current
state.” (Grinstead and Snell, 2003, p.405-406). We will study a fictional example with
diagram: the stream pattern of students on internet. It should be noted that this chain is a
regular Markov chain.

In a course of computer science, researchers observe the stream pattern of students working
on a case study. They find the following diagram:

Figure 2. Markov chain of students working on case studies

When the students begin, they start on the word processing. They have a probability of 0.2 to
stay on this software, 0.6 going on Wikipedia and a probability of 0.2 visiting the academic
database to find research articles. When students are on Wikipedia they have a probability of
0.7 accessing the academic dataset because they found references, and 0.3 returning to the
word processor software to develop their answer. When students are on the academic
database there is equi-probability 0.5 that they stay on the academic database or that they
access Wikipedia to have an explanation of a concept. Word processing: 0.2+0.6+0.2 =1;
Wikipedia: 0.3+0.7=1; Academic database: 0.5+0.5=1).

We represent this diagram in the form of a matrix, where rows represent the current state and
columns represent the next period state. The first row and column represent use of Word
Processing software, the second use of Wikipedia, and the third, the use of academic
databases.


















5.05.00.0

7.00.03.0

2.06.02.0

P

The PYTHON Papers 12: 1

 - 6 -

To see the state of the Markov chain after 5 steps we just have to calculate the 5-th exponent
of the P matrix. Now we can do a PYTHON program to simulate the Markov chain based on
the matrix. This was our introductive example. In the next section we are working with a
more developed one.

2.2. Markov Chain project management example model

To start with we have to decide of the rules of the world we want to simulate. To do so in the
research process we have to search over the literature or use our main research results. We
are testing a model on project management. The outcome is to have simulation inspired from
reality to simulate possible worlds. We can possibly use it for educational ends or else to
develop thinking about the project cycle.

We use a partly iterative project management cycle proposed by Duncan (1993): initiating,
planning, executing, controlling, closing. The planning, executing and controlling are
iterative phases. The number of phases and their name can vary. But they generally stay in
the same concepts like for example Khang and Moe (2008): conceptualizing, planning,
implementing and closing. For our model the iterative nature of these kind of project is
particularly interesting because the end of the process is not clearly defined at start. Iterative
project life cycle is perceived as more robust because of the possibility of reorganizing the
project (de Blois, Lizarralde and De Coninck, 2016), particularly on design phase. In this
proposition, the ratios are from a study named CHAOS research that “encompasses 18 years
of data on why projects succeed or fail representing more than 90,000 completed IT
projects” (Standish Group, 2013, p. IV). Please note that this model is an important
simplification of reality, but that can give useful insights. There are great differences
between ratios of small and big projects. We work only on the small projects in this article,
but comparing modeling between big and small projects could be interesting too. The
settings for small projects are: 76% succeeding (on time delivery, on budget, with required
features), 20% challenged (late, over budget, or with less required features), and 4% failed
(cancelled before completion or delivered but never used) (Standish Group, 2013).

The proposed Markov chain is presented in figure 3. A project can be reorganized and then it
can be a success or be cancelled. This adjustment is perceived in our modeling as a change
on planning, then the project is challenged but not closed. Only success or cancellation can
capture the token and stop the process (the sum of every row must be equal to 1): it’s an
absorbing Markov chain. Initiating, planning and executing are controlled phases in the
model (marked with 1).

The PYTHON Papers 12: 1

 - 7 -

Figure 3. Proposed Markov chain for Management of small projects

Challenge, success and cancellation respect the ratios proposed by the study previously
mentioned.

The matrix of the proposed Markov chain of the project management cycle is the following:





























100000

010000

04.076.0002.00

001000

000100

000010

P

An initial state vector (probability vector) is used in our program to consider the long term
behavior of the Markov chain starting in a chosen state. A probability vector is a row vector
of non-negative values which sum to 1 (Grinstead and Snell, 2003). We set it to start at the
initiating phase. The variable of the initial state vector is initia in the program. This way
we consider the long-term behavior of the Markov chain in a chosen state. Note that the first
state is mandatory for this kind of chain: we need to start by initiating the project.

We are showing now how to program this model with PYTHON.

3. Implementing the project management Markov Chain model

We are using PYTHON 2.7 for programming our Markov chain (it works with PYTHON 3
too). We are using the library numpy which allows us simple manipulation of the matrix. We
use the IDLE code editor to code in this paper.

The PYTHON Papers 12: 1

 - 8 -

The steps to go from the mathematical description of a Makov chain to the python program
are as follows. First, create the matrix P as a numpy object. Then in the same way create the
initialization matrix initia. Each iteration varies the value of step which corresponds to
the value of the exponent. Finally execute the calculation: raise P to the step power and
multiply by initia.

We suggest the following code to analyze the results after 11 steps for 1 project.

The codes in this article are experimental, given under BSD license, with no warranty.

import numpy as np #Numpy library
#Set the P matrix
P = np.matrix([[0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 1.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
 [0.0, 0.2, 0.0, 0.0, 0.76, 0.04],
 [0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
 [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]])

starting state : initiating
initia = np.matrix([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0]])

Treatment of the data for 11 phases
for step in range(11):
 result = initia * P ** step
 print(result)

At the end of the execution, the printed results are:

[[1. 0. 0. 0. 0. 0.]] # 1 st month
[[0. 1. 0. 0. 0. 0.]] # 2 nd
[[0. 0. 1. 0. 0. 0.]] # 3 rd
[[0. 0. 0. 1. 0. 0.]] # 4 th
[[0. 0.2 0. 0. 0.76 0.04]] # 5 th
[[0. 0. 0.2 0. 0.76 0.04]] # 6 th
[[0. 0. 0. 0.2 0.76 0.04]] # 7 th
[[0. 0.04 0. 0. 0.912 0.048]] # 8 th
[[0. 0. 0.04 0. 0.912 0.048]] # 9 th
[[0. 0. 0. 0.04 0.912 0.048]] # 10 th
[[0. 0.008 0. 0. 0.9424 0.0496]] # 11 th

We can interpret these results. If we have a fix duration of one month per phase we can say:
the first month there are no doubts that the project is in Initiating phase. Likewise, we are
almost sure that the project will be in Planning phase the second month, in the Executing
phase the third month and in the Controlling phase the fourth month. The fifth month
everything can change just like it has been coded in our model. We retrieve the probabilities
linked to the ratios. It’s what happens next, the sixth month, which is interesting: we stay
again in the loop of “planning, executing, controlling” or more likely the project is caught by
Success (0.9424) or Cancellation (0.0496). It is possible that the project loop into Planning
but it is not likely (0.008). That’s consistent with our model and its settings.

The PYTHON Papers 12: 1

 - 9 -

With this program we can test a large number of steps. What happens if we test on 1000
steps? We can see that the algorithm converges, the result becomes stable and do not vary.
With round at 3 decimals we see the convergence on the 17th step, with 0.95 for success and
0.05 for cancellation (figure 4). To do so you may change the number of steps and add:
result=np.asarray(result) and result=np.round(result,
decimals=3)before printing result.

Figure 4. Convergence on the 17th step

With this modeling we can see that at the end there are only two possibilities: success or
aborting. After a certain amount of times things become binaries at the 17th steps. It is likely
that the project ends. This shows that most of Markov chains of this kind tend to converge to
a long run steady state probability. Moreover, we can use that simulation in software and
particularly in serious games or for educational purpose.

4. Using Markov chain model to analyze output

Now we have to generate data and show something. We propose to simulate the draws:
generating the probabilities and showing the different values.

4.1. Design of the solution

We propose to do 20 steps in our Markov chain, to simulate draws. The step in which you
are gives the entire set of possibilities for this step. This draw is done by a list of a thousand
values that represent the probabilities of the line of the matrix.

In this list we load the line needed and draw a value. These consecutives draws can be
represented as a tree. At the end the token can iterate in the planning phase or can be
captured definitively in success or cancellation. We choose this approach because it seems to
be more realistic.

The PYTHON Papers 12: 1

 - 10 -

To show the results we will create a CSV (Coma Separated Values) file with all values of the
draws, 20 for a project (represented by the steps) and simulate it for 100 projects. There is a
great number of combinations on the 20 steps by project. To do the draw we select randomly
a number inside the list. Then we use the random library to generate this random number.

Using the CSV results can be interesting for educational purpose. The students may interpret
the various possibilities. This puts in light the fact that a complex and long project can fail in
the end. Although a long project can be adjusted during the process and finally can be
successful. For a serious game use, two approaches are possible: the dynamic one and the
static one. With the dynamic one we can integrate the program into the game and each time
generate a “story of the project”. So that the story is generated dynamically and it may be
different each time. With the static approach we can generate a large number of solutions,
select the many best ones, and store them into a file. This way you don’t have to integrate
the program, just a load CSV file. That last manner can be a solution for placing the learner
in a specific situation.

4.2. Programming the designed solution

We develop two functions: createEns that use a matrix in input and executeDraw which
use in input the number of STEPS, of type integer. This program developed in PYTHON 2.7
uses the numpy and the random library. We define two global variables STEPS for the
number of steps which represents the draws for a project and ITERA for the number of
iterations which represents the number of projects. The function createEns is designed to
return a set macroEnsemble that is a list which contains lists of draws. The function
executeDraw proceeds to the draw between the 1000 values. That function formats the
result in CSV in the return variable cumul.

The PYTHON Papers 12: 1

 - 11 -

import numpy as np
import random as random
STEPS=20 #number of STEPS
ITERA=100 #number of iterations

def createEns(mat):
 i=0
 sizeP=np.shape(mat) #size of the square matrix
 ensemble=[] # to stock the 1000 values
 macroEnsemble=[] # list of lists
 for val in mat:
 while i < sizeP[0]:
 valeur =val.item(i)* 1000
 ensemble += int(valeur) * [i]
 i=i+1
 #use of list reference byval
 macroEnsemble.append(list(ensemble))
 i=0
 del ensemble[:]
 return macroEnsemble

def executeDraw(STEPS, macroEns):
 j=1
 draw=0
 cumul=""
 while j<=STEPS :
 draw = random.choice(macroEns[draw]) #start at 0
 print("STEPS "+str(j)+" : "+ str(draw))
 if j == STEPS: # manage last separator
 cumul= str(cumul) + str(draw)
 else :
 cumul= str(cumul) + str(draw) + ";"
 j=j+1
 cumul=cumul+"\n"
 return(cumul)

main program v0.1
if __name__ == '__main__':

 P = np.matrix([[0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 1.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
 [0.0, 0.2, 0.0, 0.0, 0.76, 0.04],
 [0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
 [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]])

 macroEns=createEns(P)
 k=0
 f = open("Output.csv","w") #open file
 while k<ITERA:
 retour=executeDraw(STEPS, macroEns)
 f.write(retour)
 k=k+1
 f.close()

The PYTHON Papers 12: 1

 - 12 -

The principal program is operationalizing the matrix and coordinating the two functions
presented above. The results of the simulation of the second program is a spreadsheet file
which contains 20 columns that represent the successive draws and 100 rows that represent
the projects.

5. Results

The first program, the long run behavior of the Markov chain, started in a chosen state: an
initial state vector. This way we can simulate the future on the basis of a model. The model
under the Markov chain is a reduction of reality and that is a limit. But it can capture
important probabilities between the elements of the chain. We should consider our approach
as reflecting possibilities rather than reality. Although a well configured chain could be a
very useful decision support tool or an interesting learning tool.

In the second program, the simulation shows with our model that projects can finish with
different results and moreover at different speeds. We can have projects that need more
phases on planning – executing – controlling (A and D) or project that are successful very
quickly (like E). There are projects that fail quickly (B) or take more time (C). We tested
them with 5000 samples and we have found coherent ratio for projects succeeded 95.04%
and failed 4.96% at the end (theoretical 76/80 and 4/80, 95% and 5%).

Project Draws

A 1 2 3 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4

B 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

C 1 2 3 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5

D 1 2 3 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4

E 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 1. Extract form the spreadsheet file of results.

6. Discussion

The main question of our research is: “How can Markov chains be useful for modeling
processes? “. For research the utility can be seen from the validity of the results and their
use. Cartier (2007) precise that validity of the results of a simulation is based on three
elements: intern validity, ability of the model to be conform with the reality, and coherence
of the model with other models. Moreover, the question refers to the epistemology and more
precisely to the status of the researcher.

From a first point of view on simulation and modeling, the research can be epistemologically
positioned in post-positivism, more precisely in critical-rationalism of Karl Popper (1979).
Hypothesis and theories from the model can be seen as the reflect of the objective reality

The PYTHON Papers 12: 1

 - 13 -

outside of the subjects. In an exploratory research we can do the model from the literature
and then propose a theory. This latter can be tested like demanded by the falsificationism.
For this school of thought there is no way to find whether a theory is true but we can prove
that a theory is false. Theories can never be accepted but corroborated.

From a second point of view on simulation and modeling, the research can be
epistemologically positioned in constructivism, constructing an artificial world of
interpretation that gives useful insights. The hermeneutic approach can give significations
from the simulated material to suggest possible underlying causes. That can be enriched by
empirical material like suggested in the roadmap of Davis et al. (2007) and the process of
Harrison et al. (2007).

7. Conclusion

Modeling and simulation are now topics with an increasing interest for researchers and
practitioners. Markov chain is a powerful approach of modeling that could be used in
multiple area. How can Markov chains be useful for modeling processes? It’s the question
answered in this paper. Markov chain is a quite easy way for modeling a complex
phenomenon and simulate it through a simple computer program. We showed that Markov
chains can be represented graphically and quickly converted in a matrix and after
programmed with PYTHON. The quality of the model is based on prior phenomena theories
and prior empirical researches implemented in the program. Modeling is a simplification of
reality in an artificial world. We gave an example for project management. Markov chains
can be useful to treat data (modeling) and to design simulations games or serious games.

References

Al-Sayed, M. M., Khattab, S. and Omara, F. A. (2016). Prediction mechanisms for
monitoring state of cloud resources using Markov chain model. Journal of Parallel and
Distributed Computing, 96, pp. 163–171.

Andersen, A. R., Nielsen, B. F. and Reinhardt, L. B. (2017). Optimization of hospital ward
resources with patient relocation using Markov chain modeling. European Journal of
Operational Research, 260(3), pp. 1152–1163.

de Blois, M., Lizarralde, G. and De Coninck, P. (2016). Iterative Project Processes Within
Temporary Multi-Organizations in Construction. Project Management Journal, 47(1), pp.
27–44.

Brémaud, P. (1999) Markov chains: Gibbs fields, Monte Carlo simulation, and queues. New
York, NY: Springer.

Cartier, M. (2007). Méthodes de simulation. In : R.A. Thietart, ed. 2007. Méthode de
recherche en management. Paris: Dunod, pp. 143–172.

Davis, J., Eisenhardt, K. and Bingham, C. (2007). Developing Theory Through Simulation
Methods. Academy of Management Review, 32(2), pp. 480–499.

The PYTHON Papers 12: 1

 - 14 -

Duncan, W. (1993). The process of project management. Project Management Journal,
24(3), pp. 5–10.

Grinstead, C.M. and Snell, J.L. (2003). Introduction to Probability 2nd edition, the
American Mathematical Society. [pdf] Available at: www.math.dartmouth.edu [Accessed 18
September 2018].

Harrison, J.R., Carroll, G.R. and Careley, K.M. (2007). Simulation Modeling in
Organizational and Management Research. Academy of Management Review, 32(4),
pp. 1229–1245.

Hefferon, J. (2017). Linear Algebra - third edition. Colchester: Saint Michael’s College.

Khang, D. B. and Moe, T. L. (2008) ‘Success criteria and factors for international
development projects: A life-cycle-based framework’, Project Management Journal, 39(1),
pp. 72–84. doi: 10.1002/pmj.20034.

Leroux, I. and Berro, A. (2010). Négociation public/privé et coévolution stratégique dans un
biocluster. M@n@gement, 13(1), p. 38.

Popper, K. (1979). Objective Knowledge: An Evolutionary Approach. New York: Oxford
University Press.

Senata, E. (2006). Markov and the creation of Markov chains. MAM 2006 (Markov
Anniversary Meeting), Charleston: Boson Books, pp. 1–20.

Standish Group (2013). Chaos Manifesto 2013, Think big, act small. Standish Group, p. 48.

The PYTHON Papers 12: 1

 - 15 -

Appendix 1 – Program of the first example

import numpy as np #Numpy library
#Set the P matrix
P = np.matrix([[0.25, 0.5, 0.25],
 [0.5, 0.0, 0.5],
 [0.25, 0.25, 0.5]])

Treatment of the data for 20 phases
for step in range(20):
 result = P ** step
 result= np.asarray(result)
 result=np.round(result, decimals=3)
 print(result)
 print("STEP =" + str(step) + "\n")

The outputs of the program are:

[[0.25 0.5 0.25]
 [0.5 0. 0.5]
 [0.25 0.25 0.5]]
STEP =1

[[0.375 0.188 0.438]
 [0.25 0.375 0.375]
 [0.312 0.25 0.438]]
STEP =2

[[0.297 0.297 0.406]
 [0.344 0.219 0.438]
 [0.312 0.266 0.422]]
STEP =3

[[0.324 0.25 0.426]
 [0.305 0.281 0.414]
 [0.316 0.262 0.422]]
STEP =4

[[0.312 0.269 0.419]
 [0.32 0.256 0.424]
 [0.315 0.264 0.421]]
STEP =5

[[0.317 0.261 0.422]
 [0.314 0.266 0.42]
 [0.316 0.263 0.421]]
STEP =6

[[0.315 0.264 0.421]
 [0.317 0.262 0.422]
 [0.316 0.263 0.421]]
STEP =7

[[0.316 0.263 0.421]
 [0.315 0.264 0.421]
 [0.316 0.263 0.421]]
STEP =8

[[0.316 0.263 0.421]
 [0.316 0.263 0.421]
 [0.316 0.263 0.421]]
STEP =9

[[0.316 0.263 0.421]
 [0.316 0.263 0.421]
 [0.316 0.263 0.421]]
STEP =10

[[0.316 0.263 0.421]
 [0.316 0.263 0.421]
 [0.316 0.263 0.421]]
STEP =11

[[0.316 0.263 0.421]
 [0.316 0.263 0.421]
 [0.316 0.263 0.421]]
STEP =12

Etc.

