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Abstract 
Modeling and simulation are now topics with major interest for researchers and practitioners. 
Markov chain is a powerful approach of modeling that could be used in multiple areas. For 
example, in management this approach can give numerous opportunities to better understand 
phenomena. Thus we ask the question: “How can Markov chains be useful for modeling 
processes? “. This paper is our answer. With Markov chains we show the possibilities to 
better understand management project. We also propose two programs which explain how to 
implement these models based on Markov chains. The results show that Markov chains 
approach of modeling can be useful for teaching and explaining processes. Modeling gives 
data to analyze what can be compared with empirical data or tested for coherence. Modeling 
with Markov chains can be interpreted and give insights on real causes of complex 
phenomena.  

Keywords: Markov chains, modeling, process, simulation, program 

1. Introduction  

Markov chain is a probabilistic approach that gives computationally fast results. Modeling 
can be done with the Markov chains. This kind of approach has been used in many fields, for 
explanation of behaviors, cycles of a machine, biology, etc. Creating models from Markov 
chains is simple, the matrix is just an integration of all values of the model. Markov chains 
make it possible to model probabilistic systems as changes from one state to the next where 
the probability is only dependent on the current state, not the previous ones (Grinstead and 
Snell, 2003). 

There is an important number of libraries for Markov chains in PYTHON. The “pip search 
markov” command gives a great number of outputs (more than 100). There are dozens of 
libraries specifically on Markov chains. Many are for specific use like speech generation. 
But in this paper we will use only numpy library. We intend to use these chains for calculus 
because, we want to explain the capacities of these chains with PYTHON. In this paper we 
shall use PYTHON 2.7. 

Andreï Markov studied the chains of events around the 1900s and published a first paper in 
1906 (Senata, 2006). These events are now named Markov chains because he established 
laws and proposed the foundations of the Markovian process. A characteristic of a Markov 
chain is that: “it is historyless in that the next state depends only on the current state, not on 
any prior ones” (Hefferon, 2017, p.306). Representing Markov chains can be done in the 
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form of a diagram or in the form of a matrix. This kind of diagram is interesting to easily 
show how the process works. This is why we have some diagrams, called transition 
diagrams in our paper. But in our program we need to use the matrix form which is another 
way to present the same thing. 

We present three types of Markov chains: (1) regular Markov chain, (2) absorbing Markov 
chain and (3) ergodic Markov chain. For the regular Markov chain: “long-range predictions 
are independent of the starting state” (Grinstead and Snell, 2003, p.407). Therefore, after 
numerous steps the probability distribution is stable (convergence). We propose the example 
below that shows the probabilities of the weather in a simulated world. This chain has 3 
states: rainy, cloudy and sunny. 


















5.025.025.0

5.00.05.0

25.05.025.0

P  

To simulate the next days, we calculate the successive powers of P from 1 to 9 (the program 
is provided in appendix 1). Then we can say that after nine days the predictions are 
independent of the starting state (today weather). 


















421.0263.0316.0

421.0263.0316.0

421.0263.0316.0
6P

 

This way we found the limiting vector but it can be calculated solving the following 
equations: 
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The limiting vector is in accordance with the previous results with the algorithmic approach 
of successive powers. 

 421.0263.0316.0V  

Another kind is the absorbing Markov chain, which has at least one absorbing state with 
probability at 1. So when this state happens, it is impossible to leave it. Grinstead and Snell 
(2003) precise that in an absorbing Markov chain, a state which is not absorbing is called 
transient. This kind of Markov chain is particularly useful to answer the question of the 
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probability that the process eventually reaches an absorbing state. The following example is 
about a mission order. The proposition of mission order is sent by the employee to his 
supervisor. If this latter doesn’t agree, he sends the order back to the employee (0.7). But if 
he agrees, he sends the order to the director which signs the order (0.3). There is no further 
step in this process (example below). 


















0.10.00.0

3.00.07.0

0.00.10.0

P  

We calculate the successive powers of P. The values of the matrix converge to a steady state 
value by P44 (Markov chains converge on a value, but computationally, what seems to be no 
change is frequently that the convergence is within the digits of precision that is printed or 
that the computer is capable of). 


















0.10.00.0

0.10.00.0

0.10.00.0
44P  

As the state “1.0” appears, it represents a long run absorbing state. 

Another kind of Markov chain is the Ergodic chain in which it is possible to go from every 
state to every state. Note that every regular chain is ergodic but every ergodic chain is not 
mandatory a regular one. We propose an example (corrected 11/07/2018): the tourist walk, 
inspired of Grinstead and Snell (2003). The tourist strolls in the city, without any precise 
goal. He continues walking until he reaches the tourism office (4), or his hotel (0). Where he 
can stay or come back. 

 The transition matrix is then: 

























0.00.10.00.00.0

5.00.05.00.00.0

0.05.00.05.00.0

0.00.05.00.05.0

0.00.00.00.10.0

P
 

With Markov chains we can model numerous systems: naturals systems like viruses or 
artificial systems like computer programs, machines, supply chains, etc. But we can model 
behaviors too. For example, the behaviors of peoples, of managers/workers or the processes 
in a company. Modeling is one of the uses of Markov chains. Once you have a good model 
of a process, you can use it to explain something or use it in a simulation engine. This kind 
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of engine can be used in computer games and of course in serious games as well. Thus we 
ask the question: “How can Markov chains be useful for modeling processes? “. We 
particularly focus on the reason why this can be useful for the manager. This article is our 
answer to the question and gives an insight using PYTHON. 

2. The process for setting Markov chains 

In this section we first present modeling and Markov chains (2.1), and then the settings that 
can apply Markov chains (2.2). The interest of the manager is to model the changing state of 
a system based on probabilities. 

2.1. Modeling and Markov chains 

Simulation is a well-known method for research based on abstraction models and computer 
programs. Harrison et al. (2007, p. 1231) explain that “in the leading management and 
social science journals, about 8 percent of the published papers used simulation 
methodology”. The simulation approach is quite developed in “the academy of management 
review”. Davis et al. (2007) explain how to use simulation methods for theory development. 
These authors suggest a 7 points road map for developing theories with simulation: (1) begin 
with research question, (2) identify simple theory, (3) choose a simulation approach, (4) 
create computational representation, (5) verify computational representation, (6) experiment 
to build novel theory and (7) validate with empirical data. Simulation and modeling can give 
useful insights to researchers about events, social systems, processes in an exploratory 
approach. Furthermore, Harrison et al. (2007) proposed a process of management theory and 
simulation modeling which shows the phases of such a research (figure 1).  

 

Figure 3. The interactive process of Harrison et al. (2007) 

For example, Leroux and Berro (2010) in their exploratory simulation analyze the mutual 
adaptation dynamics developed by the agents of bioclusters.  

Markov chains are used in different types of researches. Al-Sayed et al (2016) used a 
Markov chain model monitoring the state of cloud resources. In another kind of research, 
Andernsen et al. (2017), used Markov chains models to optimize ward resources and 
patients’ relocation. 
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The Markov chains theories are clear and easy to access. It should be an interesting approach 
which is not protected by imposing technicalities and provides computationally fast results 
(Brémaud, 1999). The chain can be represented by a diagram of transitions. In the diagram, 
the sum of the probabilities from one state to each of the other states must equal 1. The 
process starts in one state and moves, by step, from this one to another. “If the chain is 
currently in state si, then it moves to state sj at the next step with a probability denoted by pij, 
and this probability does not depend upon which states the chain was in before the current 
state.” (Grinstead and Snell, 2003, p.405-406). We will study a fictional example with 
diagram: the stream pattern of students on internet. It should be noted that this chain is a 
regular Markov chain. 

In a course of computer science, researchers observe the stream pattern of students working 
on a case study. They find the following diagram: 

 

Figure 2. Markov chain of students working on case studies 

When the students begin, they start on the word processing. They have a probability of 0.2 to 
stay on this software, 0.6 going on Wikipedia and a probability of 0.2 visiting the academic 
database to find research articles. When students are on Wikipedia they have a probability of 
0.7 accessing the academic dataset because they found references, and 0.3 returning to the 
word processor software to develop their answer. When students are on the academic 
database there is equi-probability 0.5 that they stay on the academic database or that they 
access Wikipedia to have an explanation of a concept. Word processing: 0.2+0.6+0.2 =1; 
Wikipedia: 0.3+0.7=1; Academic database: 0.5+0.5=1). 

We represent this diagram in the form of a matrix, where rows represent the current state and 
columns represent the next period state. The first row and column represent use of Word 
Processing software, the second use of Wikipedia, and the third, the use of academic 
databases. 


















5.05.00.0

7.00.03.0

2.06.02.0

P  
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To see the state of the Markov chain after 5 steps we just have to calculate the 5-th exponent 
of the P matrix. Now we can do a PYTHON program to simulate the Markov chain based on 
the matrix. This was our introductive example. In the next section we are working with a 
more developed one. 

2.2. Markov Chain project management example model 

To start with we have to decide of the rules of the world we want to simulate. To do so in the 
research process we have to search over the literature or use our main research results. We 
are testing a model on project management. The outcome is to have simulation inspired from 
reality to simulate possible worlds. We can possibly use it for educational ends or else to 
develop thinking about the project cycle. 

We use a partly iterative project management cycle proposed by Duncan (1993): initiating, 
planning, executing, controlling, closing. The planning, executing and controlling are 
iterative phases. The number of phases and their name can vary. But they generally stay in 
the same concepts like for example Khang and Moe (2008): conceptualizing, planning, 
implementing and closing. For our model the iterative nature of these kind of project is 
particularly interesting because the end of the process is not clearly defined at start. Iterative 
project life cycle is perceived as more robust because of the possibility of reorganizing the 
project (de Blois, Lizarralde and De Coninck, 2016), particularly on design phase. In this 
proposition, the ratios are from a study named CHAOS research that “encompasses 18 years 
of data on why projects succeed or fail representing more than 90,000 completed IT 
projects” (Standish Group, 2013, p. IV). Please note that this model is an important 
simplification of reality, but that can give useful insights. There are great differences 
between ratios of small and big projects. We work only on the small projects in this article, 
but comparing modeling between big and small projects could be interesting too. The 
settings for small projects are: 76% succeeding (on time delivery, on budget, with required 
features), 20% challenged (late, over budget, or with less required features), and 4% failed 
(cancelled before completion or delivered but never used) (Standish Group, 2013).  

The proposed Markov chain is presented in figure 3. A project can be reorganized and then it 
can be a success or be cancelled. This adjustment is perceived in our modeling as a change 
on planning, then the project is challenged but not closed. Only success or cancellation can 
capture the token and stop the process (the sum of every row must be equal to 1): it’s an 
absorbing Markov chain. Initiating, planning and executing are controlled phases in the 
model (marked with 1). 
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Figure 3. Proposed Markov chain for Management of small projects 

 

Challenge, success and cancellation respect the ratios proposed by the study previously 
mentioned. 

The matrix of the proposed Markov chain of the project management cycle is the following: 





























100000

010000

04.076.0002.00

001000

000100

000010

P  

An initial state vector (probability vector) is used in our program to consider the long term 
behavior of the Markov chain starting in a chosen state. A probability vector is a row vector 
of non-negative values which sum to 1 (Grinstead and Snell, 2003). We set it to start at the 
initiating phase. The variable of the initial state vector is initia in the program. This way 
we consider the long-term behavior of the Markov chain in a chosen state. Note that the first 
state is mandatory for this kind of chain: we need to start by initiating the project. 

We are showing now how to program this model with PYTHON. 

3. Implementing the project management Markov Chain model 

We are using PYTHON 2.7 for programming our Markov chain (it works with PYTHON 3 
too). We are using the library numpy which allows us simple manipulation of the matrix. We 
use the IDLE code editor to code in this paper. 



The PYTHON Papers 12: 1 

 - 8 - 

The steps to go from the mathematical description of a Makov chain to the python program 
are as follows. First, create the matrix P as a numpy object. Then in the same way create the 
initialization matrix initia. Each iteration varies the value of step which corresponds to 
the value of the exponent. Finally execute the calculation: raise P to the step power and 
multiply by initia. 

We suggest the following code to analyze the results after 11 steps for 1 project. 

The codes in this article are experimental, given under BSD license, with no warranty. 

import numpy as np      #Numpy library 
#Set the P matrix  
P = np.matrix([[0.0, 1.0, 0.0, 0.0, 0.0, 0.0], 
               [0.0, 0.0, 1.0, 0.0, 0.0, 0.0], 
               [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], 
               [0.0, 0.2, 0.0, 0.0, 0.76, 0.04], 
               [0.0, 0.0, 0.0, 0.0, 1.0, 0.0], 
               [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]) 
 
# starting state : initiating 
initia = np.matrix([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0]]) 
 
# Treatment of the data for 11 phases 
for step in range(11):        
    result = initia * P ** step 
    print(result) 

 

At the end of the execution, the printed results are:  

[[1. 0. 0. 0. 0. 0.]]     # 1 st month 
[[0. 1. 0. 0. 0. 0.]]     # 2 nd  
[[0. 0. 1. 0. 0. 0.]]     # 3 rd  
[[0. 0. 0. 1. 0. 0.]]     # 4 th  
[[0.   0.2  0.   0.   0.76 0.04]]   # 5 th  
[[0.   0.   0.2  0.   0.76 0.04]]   # 6 th  
[[0.   0.   0.   0.2  0.76 0.04]]   # 7 th 
[[0.    0.04  0.    0.    0.912 0.048]]  # 8 th 
[[0.    0.    0.04  0.    0.912 0.048]]  # 9 th 
[[0.    0.    0.    0.04  0.912 0.048]]  # 10 th 
[[0.     0.008  0.     0.     0.9424 0.0496]] # 11 th 

We can interpret these results. If we have a fix duration of one month per phase we can say: 
the first month there are no doubts that the project is in Initiating phase. Likewise, we are 
almost sure that the project will be in Planning phase the second month, in the Executing 
phase the third month and in the Controlling phase the fourth month. The fifth month 
everything can change just like it has been coded in our model. We retrieve the probabilities 
linked to the ratios. It’s what happens next, the sixth month, which is interesting: we stay 
again in the loop of “planning, executing, controlling” or more likely the project is caught by 
Success (0.9424) or Cancellation (0.0496). It is possible that the project loop into Planning 
but it is not likely (0.008). That’s consistent with our model and its settings. 
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With this program we can test a large number of steps. What happens if we test on 1000 
steps? We can see that the algorithm converges, the result becomes stable and do not vary. 
With round at 3 decimals we see the convergence on the 17th step, with 0.95 for success and 
0.05 for cancellation (figure 4). To do so you may change the number of steps and add: 
result=np.asarray(result) and result=np.round(result, 
decimals=3)before printing result. 

 

Figure 4. Convergence on the 17th step 

With this modeling we can see that at the end there are only two possibilities: success or 
aborting. After a certain amount of times things become binaries at the 17th steps. It is likely 
that the project ends. This shows that most of Markov chains of this kind tend to converge to 
a long run steady state probability. Moreover, we can use that simulation in software and 
particularly in serious games or for educational purpose.  

4. Using Markov chain model to analyze output 

Now we have to generate data and show something. We propose to simulate the draws: 
generating the probabilities and showing the different values. 

4.1. Design of the solution 

We propose to do 20 steps in our Markov chain, to simulate draws. The step in which you 
are gives the entire set of possibilities for this step. This draw is done by a list of a thousand 
values that represent the probabilities of the line of the matrix. 

In this list we load the line needed and draw a value. These consecutives draws can be 
represented as a tree. At the end the token can iterate in the planning phase or can be 
captured definitively in success or cancellation. We choose this approach because it seems to 
be more realistic.  
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To show the results we will create a CSV (Coma Separated Values) file with all values of the 
draws, 20 for a project (represented by the steps) and simulate it for 100 projects. There is a 
great number of combinations on the 20 steps by project. To do the draw we select randomly 
a number inside the list. Then we use the random library to generate this random number. 

Using the CSV results can be interesting for educational purpose. The students may interpret 
the various possibilities. This puts in light the fact that a complex and long project can fail in 
the end. Although a long project can be adjusted during the process and finally can be 
successful. For a serious game use, two approaches are possible: the dynamic one and the 
static one. With the dynamic one we can integrate the program into the game and each time 
generate a “story of the project”. So that the story is generated dynamically and it may be 
different each time. With the static approach we can generate a large number of solutions, 
select the many best ones, and store them into a file. This way you don’t have to integrate 
the program, just a load CSV file. That last manner can be a solution for placing the learner 
in a specific situation. 

4.2. Programming the designed solution 

We develop two functions: createEns that use a matrix in input and executeDraw which 
use in input the number of STEPS, of type integer. This program developed in PYTHON 2.7 
uses the numpy and the random library. We define two global variables STEPS for the 
number of steps which represents the draws for a project and ITERA for the number of 
iterations which represents the number of projects. The function createEns is designed to 
return a set macroEnsemble that is a list which contains lists of draws. The function 
executeDraw proceeds to the draw between the 1000 values. That function formats the 
result in CSV in the return variable cumul. 
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import numpy as np 
import random as random 
STEPS=20 #number of STEPS 
ITERA=100 #number of iterations 
 
def createEns(mat): 
    i=0 
    sizeP=np.shape(mat) #size of the square matrix 
    ensemble=[]     # to stock the 1000 values 
    macroEnsemble=[] # list of lists 
    for val in mat: 
        while i < sizeP[0]: 
            valeur =val.item(i)* 1000 
            ensemble += int(valeur) * [i] 
            i=i+1 
        #use of list reference byval 
        macroEnsemble.append(list(ensemble)) 
        i=0 
        del ensemble[:] 
    return macroEnsemble     
 
def executeDraw(STEPS, macroEns): 
    j=1 
    draw=0  
    cumul="" 
    while j<=STEPS : 
        draw = random.choice(macroEns[draw]) #start at 0 
        print("STEPS "+str(j)+" : "+ str(draw)) 
        if j == STEPS:                # manage last separator 
            cumul= str(cumul) + str(draw) 
        else : 
            cumul= str(cumul) + str(draw) + ";" 
        j=j+1 
    cumul=cumul+"\n"     
    return(cumul) 
 
# main program v0.1 
if __name__ == '__main__': 
 
    P = np.matrix([[0.0, 1.0, 0.0, 0.0, 0.0, 0.0], 
                   [0.0, 0.0, 1.0, 0.0, 0.0, 0.0], 
                   [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], 
                   [0.0, 0.2, 0.0, 0.0, 0.76, 0.04], 
                   [0.0, 0.0, 0.0, 0.0, 1.0, 0.0], 
                   [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]) 
 
    macroEns=createEns(P) 
    k=0 
    f = open("Output.csv","w") #open file 
    while k<ITERA: 
        retour=executeDraw(STEPS, macroEns) 
        f.write(retour) 
        k=k+1  
    f.close() 

 



The PYTHON Papers 12: 1 

 - 12 - 

The principal program is operationalizing the matrix and coordinating the two functions 
presented above. The results of the simulation of the second program is a spreadsheet file 
which contains 20 columns that represent the successive draws and 100 rows that represent 
the projects. 

5. Results 

The first program, the long run behavior of the Markov chain, started in a chosen state: an 
initial state vector. This way we can simulate the future on the basis of a model. The model 
under the Markov chain is a reduction of reality and that is a limit. But it can capture 
important probabilities between the elements of the chain. We should consider our approach 
as reflecting possibilities rather than reality. Although a well configured chain could be a 
very useful decision support tool or an interesting learning tool.  

In the second program, the simulation shows with our model that projects can finish with 
different results and moreover at different speeds. We can have projects that need more 
phases on planning – executing – controlling (A and D) or project that are successful very 
quickly (like E). There are projects that fail quickly (B) or take more time (C). We tested 
them with 5000 samples and we have found coherent ratio for projects succeeded 95.04% 
and failed 4.96% at the end (theoretical 76/80 and 4/80, 95% and 5%).  

Project Draws 

A 1 2 3 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

B 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

C 1 2 3 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

D 1 2 3 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

E 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Table 1. Extract form the spreadsheet file of results. 

6. Discussion 

The main question of our research is: “How can Markov chains be useful for modeling 
processes? “. For research the utility can be seen from the validity of the results and their 
use. Cartier (2007) precise that validity of the results of a simulation is based on three 
elements: intern validity, ability of the model to be conform with the reality, and coherence 
of the model with other models. Moreover, the question refers to the epistemology and more 
precisely to the status of the researcher. 

From a first point of view on simulation and modeling, the research can be epistemologically 
positioned in post-positivism, more precisely in critical-rationalism of Karl Popper (1979). 
Hypothesis and theories from the model can be seen as the reflect of the objective reality 
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outside of the subjects. In an exploratory research we can do the model from the literature 
and then propose a theory. This latter can be tested like demanded by the falsificationism. 
For this school of thought there is no way to find whether a theory is true but we can prove 
that a theory is false. Theories can never be accepted but corroborated. 

From a second point of view on simulation and modeling, the research can be 
epistemologically positioned in constructivism, constructing an artificial world of 
interpretation that gives useful insights. The hermeneutic approach can give significations 
from the simulated material to suggest possible underlying causes. That can be enriched by 
empirical material like suggested in the roadmap of Davis et al. (2007) and the process of 
Harrison et al. (2007). 

7. Conclusion 

Modeling and simulation are now topics with an increasing interest for researchers and 
practitioners. Markov chain is a powerful approach of modeling that could be used in 
multiple area. How can Markov chains be useful for modeling processes? It’s the question 
answered in this paper. Markov chain is a quite easy way for modeling a complex 
phenomenon and simulate it through a simple computer program. We showed that Markov 
chains can be represented graphically and quickly converted in a matrix and after 
programmed with PYTHON. The quality of the model is based on prior phenomena theories 
and prior empirical researches implemented in the program. Modeling is a simplification of 
reality in an artificial world. We gave an example for project management. Markov chains 
can be useful to treat data (modeling) and to design simulations games or serious games.  
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Appendix 1 – Program of the first example 

import numpy as np      #Numpy library 
#Set the P matrix  
P = np.matrix([[0.25, 0.5, 0.25], 
               [0.5, 0.0, 0.5], 
               [0.25, 0.25, 0.5]]) 
 
# Treatment of the data for 20 phases 
for step in range(20):        
    result = P ** step 
    result= np.asarray(result) 
    result=np.round(result, decimals=3) 
    print(result) 
    print("STEP =" + str(step) + "\n") 
 
 

The outputs of the program are:  

 
[[0.25 0.5  0.25] 
 [0.5  0.   0.5 ] 
 [0.25 0.25 0.5 ]] 
STEP =1 
 
[[0.375 0.188 0.438] 
 [0.25  0.375 0.375] 
 [0.312 0.25  0.438]] 
STEP =2 
 
[[0.297 0.297 0.406] 
 [0.344 0.219 0.438] 
 [0.312 0.266 0.422]] 
STEP =3 
 
[[0.324 0.25  0.426] 
 [0.305 0.281 0.414] 
 [0.316 0.262 0.422]] 
STEP =4 
 
[[0.312 0.269 0.419] 
 [0.32  0.256 0.424] 
 [0.315 0.264 0.421]] 
STEP =5 
 
[[0.317 0.261 0.422] 
 [0.314 0.266 0.42 ] 
 [0.316 0.263 0.421]] 
STEP =6 
 
[[0.315 0.264 0.421] 
 [0.317 0.262 0.422] 
 [0.316 0.263 0.421]] 
STEP =7 

 
[[0.316 0.263 0.421] 
 [0.315 0.264 0.421] 
 [0.316 0.263 0.421]] 
STEP =8 
 
[[0.316 0.263 0.421] 
 [0.316 0.263 0.421] 
 [0.316 0.263 0.421]] 
STEP =9 
 
[[0.316 0.263 0.421] 
 [0.316 0.263 0.421] 
 [0.316 0.263 0.421]] 
STEP =10 
 
[[0.316 0.263 0.421] 
 [0.316 0.263 0.421] 
 [0.316 0.263 0.421]] 
STEP =11 
 
[[0.316 0.263 0.421] 
 [0.316 0.263 0.421] 
 [0.316 0.263 0.421]] 
STEP =12 
 
Etc. 


