The Python Papers 6(3): 3

Evaluation of aspect-oriented frameworksin Python for extending a
project with provenance documentation features

Arne Bachmann
Deutsches Zentrum fur Luft- und Raumfahrt
arne.bachmann@dir.de

Henning Bergmeyer
Attensity Empolis Europe GmbH
henning.bergmeyer@gmx.de

Andreas Schreiber
Deutsches Zentrum fur Luft- und Raumfahrt
andreas.schreiber@dlr.de

Abstract

In this paper we describe two sides of a realuse case of introducing an aspect-oriented
framework into an industrial-grade project. Thip@ais divided into two parts: the selection
process for an AOP framework in the Python programgmanguage, and its use for
modularized non-invasive recording of provenance da a distributed data management
tool. Criteria for the choice of such a framewonke aliscussed and the background of
provenance documentation is laid out.

Keywords. Aspect-oriented programming, Aspyct, framewopksyenance recording.

1. Introduction

In most industrial disciplines, software systenmaymn import role for research, design, and
production. Software is used by engineers for adbreariety of tasks, for example, for
complex simulations or data management. Softwas&er)s, such as the data management
tool DataFinder (Schlauch and Schreiber, 2007) are complex systgnthemselves. The
development of such tools usually involves usageuwfent software technologies, in our
case aspect-oriented (AO) programming. Certaitlg, mhain focus of industrial-grade tools
is to support engineers and other users in thaly aeork in a reliable and convenient
manner, but often they offer a chance to employ evaluate recent methodologies and
technologies from computer science and softwarkitecture to stay in the vanguard of the
market.

Aspect-oriented programming (AOP, Kiczales et H897) has for at least a decade closed
the gap between modular decomposition on objedl laud the lack of decomposition on
system level by extracting many of system-wide simstting concerns (CCC) into a single
maintainable and modular entity. These are conctrat cannot be factored out without
code scattering (repetition of code in many placsl code tangling (intermingling of

-1-

The Python Papers 6(3): 3

different domains' responsibilities in one pladegcause of the decompositional approach
taken. If one was to take another approach to agpatoncerns in an object-oriented
software system, it would lead to a potentiallyestistratification and interdependency of
responsibilities, but inevitably have again CCC &ory but the simplest systems to create.
Thus AOP not only allows condensing orthogonal epit into one code unit which
simplifies testability, evolution and concisene#salso allows for dynamic switching of
complete features in a unified way and effortleay.w

Although the object-based approach is in principdduable for the decomposition of
complex systems into smaller maintainable parts,atioption of AOP is still hesitating in
many industry areas. A reason for this may bedbpecially in highly standardized business
environments optimized for throughput and relidyjlthere are already a lot of powerful
frameworks (FWs) at hand that work around mostgingsCCC and relieve the developer
from writing scattered and tangled code by prowdimeans like framework-managed
dependency and data injection (IoC, inversion oftie®). This is often done by a modular
configurational approach, where often-needed cascdike logging, persistence, error
handling or security are already supported by tlaenéwork and extracted into settings
choices for the developer, cf. e.glava Platform, Enterprise Editiorthttp://www.-
oracle.com/technetwork/java/javaee/overviewdr where a conventionalist approach to
component separation is mandatory, cf., &ghy on Railghttp://rubyonrails.oryfor web
development o6Griffon (http://griffon.codehaus.ojgor rich client applications. This again
shows the need for the tackling of those recurdogcerns and gives reason why powerful
frameworks like for example th8pring framework(http://www.springsource.ojgor the
Python Enterprise Application Kithttp://peak.telecommunity.conmand similar exist and
have thriven over many years.

Nevertheless those heavyweight enterprise FWs taciose all decompositional gaps
introduced by tangled code in object-oriented progning (OOP) and aren't always a
reasonable or merely applicable solution, thuspareé” academic AOP FW providing
lightweight AO features might prove to be the ksl inevitable solution.

In this paper we show an industry-strength use vdse the adoption of an AO FW was
not only the logical and fastest way to tackle difécult problem of integrating provenance
recording as presented here, but also the onlybleaway for the constraints given which
are, in this case, the programming language, tfievae environment and the distributed
infrastructure.

This paper is organized as follows: Section 2 showeent research state in Python FWs for
AOP and introduces criteria for the FW selectiomyualitative comparison between the FW
candidates closes the section. Section 3 introdtivesuse case where we applied our
selection process and presents integration of paowee features into a data management
system by using an AOP Python FW. Section 4 dréasconclusion and gives and outlook
to future work.

The Python Papers 6(3): 3

2. Frameworks

In this section we will provide an exemplary comgan of AOP frameworks for the

programming language Pythonttf://www.python.oryy which is the target language of the
use case exemplification in the following chaptBy frameworkswe mean those that

provide aspect-oriented functionality for the claneguage, not FWssingAO approaches to

support their work (e.g., the aforementioned emiseegF\Ws).

2.1. AOP in Python

Python is an interesting language choice becausseédims to simplify and spur the
development of a lot of FWs due to its dynamic abter, but is by no means the only
dynamic language in this regard, cf. JavaScriphwispect]S ahttp://www.aspectjs.com
jQuery AOP http://code.google.com/p/jquery-apphd AOJS (Washizaki et al., 2009).

When laying out the decision-making fundamentalsfifeding a suitable AOP solution in
Python, we will, for the sake of brevity, compamdyothose three FWs that seem to have
been most active during the last year's time: Rytho Aspects
(http://www.cs.tut.fi/~ask/aspec}s/ Aspyct fttp://www.aspyct.org and Logilab Aspects
(http://www.logilab.org/project/logilab-aspeftd here are a lot of other — mostly dormant —
FWs available: Pythiush{tp://pythius.sourceforge.net inactive since 2002, AOPython
(http://pypi.python.org/pypi/AOPython/1.0.3— inactive since 2007, Spring Python
(http://springpython.webfactional.com — active, Transwarp/PEAK hitp://peak.-
telecommunity.comn — inactive since 2007; the PyPy project uses labg AOP
implementation (Rigo and Pedroni, 2007; Fayollalgt2007).

In this paper, we will concentrate our study on¢benparison of the former three. The next
paragraph gives an overview over typical applicatmd use cases of AOP to prepare for
the comparison of the FWs.

2.2. Typical cross-cutting concerns

The choice for an aspect-oriented solution in safevdevelopment (SD) is guided by the
need to reduce implementation complexity of cert@@Cs, i.e., persistence, logging,
tracing, monitoring, provenance, security, validafi contract enforcement, functional
correctness checking, layered systems modelling.,(eexception translation, layer-
bypassing) and transaction handling. All these @mecerns usually not connected with
implementation on the component level, but haveafbn a system wide scope, which
explains the difficulties of implementing them inethodologies emphasizing smaller
encapsulation levels like the decomposition in OOP.

2.3. Classification of AOP frameworks in Python

An interesting side of AOP implementations in Pythis the dynamic nature of the
language. Thus most implementations work by anniecte calledmonkey-patchingcf.
http://en.wikipedia.org/wiki/Monkey-patchingvhich is actually just the replacement of a
function reference by another. The replacementtfongs called aradvice and it may add
newly introduced behaviour or take a potentiallyidéng action when the original function
is called.

The Python Papers 6(3): 3

One advantage of using a dynamic language likedPytbr implementing AO capabilities is
the fact that no second "aspect" language foAE semantics must be learned, since the
behaviour of built-in functions and objects caneléended and modified dynamically (even
more so in classless/prototype-based languagesJik@script). Note however, that for
statically-typed languages like Java approachest ¢ixat involve a new syntax for aspect
description, e.g., AspectJ attp://www.eclipse.org/aspectjbut also approaches that use
only plain Java code, e.g., Java Nanningtit://nanning.codehaus.org

It's interesting to observe that for a long time awmpile-time or load-time weaving AO
FWs (also known as out-of-band instrumentationroggam transformation) had existed for
Python the way they have for Java, thus until rdgeib hadn't been possible to weave
aspects into Python bytecode files beforehand (Maku2009a).

All implemented solutions work dynamically from Wwih Python code, the reason for this
may be that Python implementations and bytecode eay, vary in word width and other
deployment machine dependent aspects.

Also, how the aspeatreavingis performed programmatically needs to be comp&asedie
FWs provide a set ofAspect and Poi ntcut classes that build logical units for the
developer, while other FWs provide static (or sétgh) module-level functions for
wrapping program entities.

2.4. Feature completeness

When asking for features in an aspect-oriented #é&te are many dimensions to consider;
we chose strategy, expressiveness, dynamics, Wigysaitd constraints related to the system
environment. For our comparison, we will focus badge five topics to provide a solid base
for the decision over the framework selection.

» Strategydetermines the technical realization of implemem#OP in Python,

Environment constraints are hard requirements to consider,, atgg allowed
operating systems, platforms, virtual machinesuto ¢ode in and also how aspects
are applied to code in a build process. This infdram is useful when making a
decision upon instating a certain FW for aspeatigd programming,

Expressivenesgs mainly considered for the pointcut definitiomnguage and the

advice predicates. To consider here are, e.galiiiy to supply regular expressions
(RE) for matching code entities (method names, a&iges, classes or variables
accessed), as well as the choice of advices swggp@oefore/after, around/proceed,
call hierarchy and exception handling in advices),

Dynamicscomprises several concepts, too: Being able tblefthsable advices at
runtime, to create and modify pointcut definiticatsruntime, but also to access and
modify the runtime context of a join point duringeeution,

Versatility contains aspects of the aforementioned two: Thge@f programmatical
situations in which AOP is supported by the FW.sTincludes the number of entities

-4 -

The Python Papers 6(3): 3

that can be detected by a join point, e.g., infgioa of object creation and
destruction, distinction between a method call amdethod execution, or the ability
to apply aspects on classes or objects and siisilaes.

2.5. Framework comparison

As a pragmatic way to compare the three selecte® AW/s for Python, the following
approach has been taken: All capabilities of the Ewler test were hand-coded into test
cases and automatically = checked by using theoctest module
(http://docs.python.org/library/doctest.h)fmla unit testing FW similar tani tt est, also
available in the standard library since Python ieers 2.1, cf.
http://docs.python.org/library/unittest.htnfihe test cases are designed in such a way that if
the testing procedure doest produce any output warnings, all tests have paasédthe
tested properties with regards to AO features eweked as expected. Note however, that
for Aspyct we had to adapt the code slightly foe wgth Python version 3.0, because with
earlier versions of Python tlimct est module didn't work well with Aspyct. Nevertheless
we have used Aspyct with Python 2.5, which, forregke, already provides decorators
(annotations).

2.5.1. Strategy

According to Matusiak (2009a) the implementationA@ functionality in Python can be
classified intoin-source modificationsexternal invocationsand program transformations
The former two can be applied statically (modifyimgeta-classes) and dynamically
(changing method references):

Metaclass as hook relies on the static modification of a metaclassensure object
modification before its initialization; this is ubdn Pythius. This requires at least one
additional line of code for any advised Python slas

Dynamic mutation — informally known asnonkey-patching intermingles object code with
aspect code to explicitly "weave" and "unweaspects into objects. This approach is most
widely used, e.g., in Aspyct, Python Aspects, LalgiAspects and PEAK. Note, however,
that the widely knownProxy-approach to AOP as in Spring Python could be rathe
perceived as a "middleware than an aspect ori¢rgadformation” (Matusiak 2009a, p.11).

Program transformation on the other hand doesn't require any changeetingtrumented
Python code at all (no import, no metaclass assagnt)nThe only known FW to support this
approach which is much closer to the original id¢aAOP as defined in Kiczales et al.
(1997) and implemented ispectJisaopy Matusiak (2009b).

! Proposal fodocstring-driven testingn 1999:http://groups.google.com/group/comp.lang.python/

browse thread/thread/0Odfcc7e4daedd391/ 1c57ctb AT®B7

-5-

The Python Papers 6(3): 3

2.5.2. Environment

The Python portlython (Pedroni and Rappin, 2008itp://www.jython.ord for the Java
Virtual Machine (JVM) has been proven to be vergfuk when combining the rapid
prototyping abilities (Bill, 2001) of the dynamio-salledduck-typedanguage Python with
the reliable stability and enterprise integratiof the JVM (Bagwell, 2009), i.e.,
http://code.google.com/p/robotframewaorkrherefore the wish to use AO Python FWs
directly from within Jython code is a desirabletéea to consider.

In our tests|l ogilab Aspectsvorked very well with Jython version 2.5.0, Iitytthon Aspects
wouldn't compile because of illicit parameters witthe aspects library itself, plus our test
suite failed because Jython seems to have nonastamadterfaces in its built-in functions.
The Aspycttest suite was designed for Python 3 and therefovédn't be tested at all with
Jython, because it hasn't been upgraded to veBsiat, as of the time writing. These tests
need to be repeated as soon as more recent veo$idython become available.

Table 1 shows some basic information about the FMWaas, licensing and environment
compatibility.

Framework | Python Aspects Aspyct L ogilab Aspects
Author(s)| Antti Kervinen | Antoine d'Otreppe Logilab S.A. (France
Website
Version 1.3 3.0 beta4 0.14
Lizenz LGPL 2.1 LGPL GPL?
Since 2003 2008 2006
Last updatg 2008-10-11 2009-04-01 2008-09-19
Python version (pas| 2.4/2.5(2.1 2.4/3.((2.x+3.X 2.1/2.¢
Jython version (pass) 2.5/- - 2.5/2.5

Table 1: General framework overview. Values in p#resis are official values. Versions
given show the minimal version able to install BFW and to pass the test cases.

In the following subsections we will compare the &Wi detail according to the very
specific properties of AO FWs enumerated above.

2.5.3. Expressiveness

The expressive power of join point definitions hetgiven implementations doesn't vary
much: All FWs support method interception and wiagp

With regards to encompassing several join poindifé¢rent source code locations (called
join point shadows), i.e., to capture not only £&dl different objects, but also executions of
different methods with only one expression to buifda pointcut, there is only Aspyct that
supports pattern matching with the Pointcut cladésthe same time being the only FW
having a pointcut class at all. Logilab supportsatch-all" mechanism for all class methods
when advising a class or object, which can be lisefsome cases, but is really coarse-
grained compared to the powerful semantics of, &gpectJ. When wrapping a complete
class or object instance, for Python Aspects angyétsthis works as an initialization
wrapper (calls to_i ni t __ become advised).

-6 -

The Python Papers 6(3): 3

When searching for differences between old-stylé aew-style classes, we couldn't find
any harmful differences for applying aspects tdhméass types.

Exception handling within aspects is supportedlifr@/s by some degree.

The built-in advices supported by the FWs are aswvaigherbef ore andafter and/or
around (wrapping), which can be used to emulate the fortwe. In Aspyct aspects are
implented as classes, thus it's possible to ematatround advice by using before and after
advices (calledt Cal | andat Ret ur n/at Rai se), cf. Figure 1.

/ avoid \

exit

—1— enter »{ atCall)—»[Function

\ Aspect /

Figure 1: Call interception model of the Aspyctnfirawork.

A proceed can be decided upon at runtime, in Aspyct by igléivoi d on the call-data
object to not proceed and in Python Aspects by vyielding theicsthbrary functions
proceed, return_stop orreturn_cont.

For consideration of the call hierarchy there isexpressive syntax in any of the FWs
available, only Python Aspects provides some rudiarg support for constraining an
advice to calls from specific objects, which coblel considered a simple version of, e.g.,
Aspect)'scf | ow predicate. Nevertheless it is still possible te ugrospection (reflection)
mechanisms to access calling objects on the progtaok for further investigation within
the advice, as will be layed out in Section 3.

2.5.4. Dynamics

Dynamic disabling and enabling of woven aspectsnduruntime is only supported by
Python Aspects, but can be straightforwardly imm@ated in the aspect classes supported by
Aspyct and Logilab Aspects.

The Python Papers 6(3): 3

Removing the weaving itself is in most cases veagilg possible, because method call
interception is usually performed by simply bendthg method or function reference to a
dynamic proxy object that contains the advice lagic a reference to the original object;
this arrangement is called monkey-patch. In Pyti@pects and Logilab Aspects all
wrapping calls are symmetric with unwrapping cails,Aspyct one can simply save the
reference to the unwrapped object and restore dfexrence when needed, a more global
solution for removing aspects is scheduled forrtagt release (3.0 beta 5), although there
hasn't been much activity on the website recently.

To create pointcuts on the fly during runtime seémse uncommon among AO approaches,
not only in Python. Due to the dynamic nature ofhBwn itself, it can be done via meta
programming techniques, which would be a researeh get fully to be explored ("Meta-
Aspects" or runtime-predicated aspects).

For the considerations in Section 3, the abilityateess information of the runtime context
are of vital importance. Only Aspyct and Logilabp&sts seem to provide access to some
limited information about the wrapped object anuim@&/exception values of it from within
the join point/advice.

2.5.5. Versatility

In Python Aspects and Aspyct only classes can kspped, unlike instantiated objects.
Logilab Aspects, on the other hand, supports wrapmn the module level, applying
interception of access to all objects within thedole. Advising of classless Python
functions is supported by all FWs, while wrappindpwilt-in function not written in pure
Python but in pre-compiled C code doesn't worklirF&V/s; Logilab has the worst support
for built-in function wrapping, but this may alse belated to problems of interdependencies
with the doctest suite. For recent Python versiespgecially of the version 3 family, many
modules have been rewritten to transparently uberea pure Python implementation or an
accelerated C-version of the same module, thusinffdetter aspect interoperability, i.e.,
dat eti me, funct ool s,j son.

Wrapping of class methods in Python objects workg m Aspyct.

Unlike full-fledged AO semantics as found in Aspkcthere is no way to express the
difference of an entity beingalled and beingexecutedn any of the Python FWs.

Currently only Logilab Aspects allows removing atlvices at once with theeset
command.

2.5.6. Miscellaneous features

Aspyct and Logilab Aspects allow encapsulationsgexts in classes, while Python Aspects
provides only static wrapping function. Python Astgeworks with continuations in advices
via yi el d. Aspyct is the only FW allowing for decorators &pply aspects, which
consitutes, of course, a static dependency on @é&W used.

The Python Papers 6(3): 3

2.6. Framework selection

For the use case described in the following sectio® chose the AOP FW Aspyct. Its

advantages are as follows: Aspyct is a very ligigiveFW which can be run both on Python

version 2.5 or higher and Python 3.0 or higherertiploys a very clear call interception

model, the author provides helpful documentatioth answers technical questions regarding
the FW very fast, so Aspyct seems to be in healdwelopment as of the time writing.

The implementation of AO entities like Aspects, iouts and context information is
completely object-centered and very easy to usalmsritance of aspects. Join points can be
build up by using regular expressions, a featuresimg in the other FWs compared.
Accessing the call context from within the adviseprovided by the so-callethl | Dat a
objects that provide references to the functiomethod advised plus theel f instance of
the object invoked. Also accessible are providel aeguments, both positional and
keyword-arguments. Return or exceptional valuemftbe advised object can be inspected
too.

Aspyct allows for annotation of methods with aspeloy using decorators, a feature not
found in the other AOP FWs compared in this paper.

After all, Aspyct is a solid, well-designed andhligveight implementation providing AO
functionality for Python developers.

3. Provenance Recording using Aspyct

As an example for utilization of the aspect-orieht@rinciple we describe our
implementation of provenance-awareness (PA) iniensfic data management application
calledDataFinder(Schlauch and Schreiber, 2007) in fexoGrid project fttp://www.aero-
grid.de. We demonstrate how the lightweight librafgpycteased the development of
method observers for data-related object interastiand where additional effort was
required. Using Aspyct we have developed the apptio binding layer of a FW for
recording process documentation which is curreodgd to realize command line script
wrappers and metadata change observers in DataFinde

Before we describe our reasons for aspect-oriergingsolution we introduce the field of
application, what purpose provenance documentagoves and what technology our library
implementation is built on. We then present theriisice that the Python Provenance Client-
side Library (PyProvenance) exposes to applicatimvelopers, and how our data
management application was made PA without changmalready existing code and
without creating strict dependencies on the promeedibrary.

3.1. Provenance for scientific data management

A scientific application may produce a large volurok data as a result of complex
workflows which are carried out by various spesisli using scientific software and
hardware of various kinds. In the domains of aemospengineering and climate research
there are process steps involving parallel simatatodes running on high performance
computers, graphical applications for setup of pext@rs or analysis of results, tools for data

-9-

The Python Papers 6(3): 3

files transport through networks, metadata extactitilities, data management services and
so forth. Scientists and engineers of differentegigmce levels, domains, companies and
institute affiliations make use of these, creatimfjanging and using data products.
Sometimes between process steps periods of time ¢wasng which experts leave the
participating institutions, taking their knowledgéth them. Thus, keeping track of the
creation history of data, the so-called Data Pramem, is an important requirement to
guarantee quality of data and evaluate the comsstrand reliability of production
workflows.

One implementation of a service and client-sidealiy to incorporate this kind of
functionality into software has been developed lm tproject EU Grid Provenance
(http://www.gridprovenance.oygThis specification for provenance documentapoovides

a description format for the messages and theisatarelationships that data processing
software components exchange among each othereTdwaponents are referred to as
Actorswhich performinteractionswhich again depend on and producfrmation Itemk

In a software system these messages may be SOA$ oathod calls, subprocess
executions, file changes, but it is not far-fetchhedconsider emails, telephone calls and
sticky notes, as long as they have measurableeméer on data products. One simple
example of a causal relationship between two mess&the response of a service to a
specific request. Since in turn requests are nat sgthout a reason, modeling these
relationships allows for describing complete waolf§ as interaction chains between the
involved actors. From process documentation ofkimd not only the original processes can
be inferred that led to a piece of data, but evby they have been carried out.

One necessity for such abilities for inferencehis tomplete documentation coverage of a
process chain. Since every participating compoirettte chain must be made PA without
changing its business logic, tools for an orthogj@malementation of automatic provenance
recording functionality are a requirement. A softevasystem must become enabled to
document important interactions and collect thedusdormation items. The provenance
architecture specification recommends the impleatent of provenance wrapperaround
components whose behavior shall be documented. eThaappers expose the same
messaging interface to their interaction partnertha contained service, forward to it every
message they receive and send every response westegf the contained service to its
targets. Descriptions of all those messages armerded to dedicategrrovenance stores
including the corresponding interaction contextsshsas service state or request-response-
relationships. Since the application cases canebpg different, the provenance client-side
library from the EU project does not provide an lempentation of such a wrapper nor
specific tools to accomplish the wrapping. Whaoiniation has to be recorded and how it is
collected must be modeled specifically for eactpeetive workflow. The purpose of the
Java-based librarfPyProvenanceds focused on providing means to create documentat
records formatted to conform to the provenance iserprotocol and to send it to a
provenance store.

What remains to be accomplished by the softwarbitexats is modeling the interactions,

recognizing when they take place and describertftgration items to which to refer to in
the documentation.

-10 -

The Python Papers 6(3): 3

3.2. The DataFinder application

DataFinderis a light-weight client application for scientifiechnical data management. It
allows for distributed storage of documents on sdvbackends, e.g., WebDAV, FTP,
GridFTP, Subversion or Amazon's S3, while keepihgretadata in a structured central
repository, allowing for structured search queriBisere are three GUI applications: a web
frontent used by the larger part of our users, skibg client application and a desktop
administrative application, that allows to modetlasustomize the underlying data model.
DataFinder is open source software developed at BibRe 2005 and is used mainly by
engineers in DLR institutes with a user base oésmEhundred scientists in diverse projects
and departments. There are usually one or two dpeed working full-time on DataFinder,
while often students help in implementation of aertfeatures when writing their theses.
DataFinder has a code base of nearly 100.000 bhesde in the current version 2.2, as
reported byhttp://www.ohloh.net/p/datafinder/analyses/latest

3.3. Indicators for an aspect-oriented solution

The PrIMe Methodology (Munroe et al., 2006) desesilan analysis method for systems to
be made PA. Its aim is to identify the relevanbestinteractions and information items in a
system to determine which components have to \pribeess documentation and what they
are required to contain. Another result of the Rrllhalysis are the types of relationships
between the identified entities. From an AO poihview the join points in such a system

correspond to the interaction routes.

A natural solution is applying some kind of obsert@ each actor and let the observers
document the actor's behaviour in terms of incomaguests and returned responses. The
most important motivation for this is, that thisywae code of the actors does not have to be
altered and only an easily adjustable one-way digrery from the documentation features
to the business logic is established (and not therovay around), cinversion of control
(Fowler, 2004). Another one is that these independbservers can be arranged to exchange
information about states and behaviours of thespeetive observed actors to establish a
more complete picture of the application contesnthvould be possible from just a single
call. This latter point is of high importance toepgome availability restrictions of certain
information items within object scopes in an apgiien, such as, for instance, user session
information, which is outside the accessible scajjea data property management
component.

3.4. Issues with automatic interaction documentation

While at first glance recording provenance inforimaimay seem to be a usual logging task,
the exercise is more complex. Ordinary logging rod#h as offered for example through the
Python modulé oggi ng are just suitable to write a human readable remtasion of a few
properties that represent an execution state tgdille. A provenance system is used to
record a more context involving, machine readal@presentation ofwhat is actually
happening how, and why. A provenance model can be designed to reflect itiner
mechanics of wrapped actors through the relatigussbi the messages it receives and sends.

-11 -

The Python Papers 6(3): 3

Yet provenance recording is similar to standardgjiog methods in that it is not allowed to
interfere with the ordinary flow of the processldcuments and thus realizes a feature set
which is orthogonal to that of the business logic.

The problems described in the following sectionsrefer to the difficulty of handling
interaction contexts, for example when the docuingnéntities have a static relationship
with the actors whose behaviours they documentully faspect-oriented documentation
system can overcome these, since aspects canigeatbso remember context, for example
by retaining context information in map-like struiets (adictionary in Python lingo) until
the corresponding process is confirmed to havednde

3.4.1. Ambiguities in interactions of executables and services

When we see executables and services as closeidaigpls that we cannot or should not
change internally to enable documentation of theéractions, a feasible solution is to use
some kind of proxies. For a stand-alone executtdiidecan be a wrapper script, which calls
the original executable and records command lineamaters, exit codes, input/output
streams, file system changes and so on. For a emirs it would be a proxy service, that
receives requests to the wrapped service, delegates after recording and proceeds with
recording the response of the original serviceratieds.

Nonetheless there is a generalization problem sétivice proxies. In all but the most simple
communication cases, namely serial one-to-onedatemns, the proxy must take the inner
mechanics of the wrapped service into account teraene, which interactions of a service
are related to each other. A servigenight call another service on behalf of8's callerA.
The two interaction® — B andB — C are causally related, but are not a request-resgpon
pair. In another casB might contacitC frequently, independently from any request fram
and soB's proxy shouldnot document any such relationship, even thoBgh> C might
happen directly after a request> B.

Overcoming these ambiguities in wrappers and psoki&n be a tedious and error-prone
task, since there is usually no shared superiocwgian context, that wrappers could access
for documentation reference, unless they createeapécitly. This is accomplished by PA
components explicitly exchanging provenance-relevamformation. One form are
invocation tracers that are simply identifiers dochain of invocations. Detailed information
becomes accessible p&ilobalPAssertionKey (Groth et al.,, 2006, p. 68-69), which are
references to other recorded provenance documamtan this case of a superordinate
process.

3.4.2. Interactions between objects

Making an integrated application PA benefits frone tclear execution context of every

method within it, that can be looked up from therent call stack by using introspection.

But the proxy or wrapper approaches are not asilisefe as the AO approach we are going
to show in the following.

In any case the application has to be decomposedhia components that communicate the
important information items. These so call&aowledgable Actorsan be objects, and their

-12 -

The Python Papers 6(3): 3

interactions are carried out by invocations of rodthof one object from methods of the
other.

In our use case the data management syflamaFinder mentioned in Section 1, the
information items of interest are, e.g., meta dptaperties, the user session, storage
resources and external executables. Two compotieattsvork with these items are the GUI
layer and the facade object, which provide the miogbortant features of the data
management components to GUI and extension sagpi8ython methods. Some of these
methods cover a similar set of features as uslgasyistem operations, such@sate copy,
move delete Another important one is &ogi n method that establishes a network
connection to a meta data server using the ugedeutials.

Implementation of the documentation features agigsoor wrappers would manifest itself
in the extension of each class identified as aordny overriding the interactive methods
with provenance documenting wrapper calls. The Apreach allows for a much more
generic implementation instead.pdintcutis defined to cover the interactive methods and a
provenance recording advice is "woven" into ttegmm code, which again uses the original
method. The created aspect consisting of pointewdt advice creates documentation
according to the signature of the called methodthedparameter values. When the method
returns, its result is recorded accordingly. Beftite advice call returns, it can as well
document the relationship of the recorded messtgssrepresents the invocation of the
method and its return value. Such a generic doctatien aspect for method calls can easily
be extended to record and relate additional pietegormation according to the recognized
method which is what has been done to cover, thg.AeroGrid project provenance model
in DataFinder.

One problem that the AO model cannot inherentlyesstems from application contexts that
do not represent running processes, but just pnogtates, such as an active user session.
Since in a provenance model responsibility for pescexecution or data changes usually is a
property of high importance, any performed intacaciof the GUI must be related to the
running user session and thus requires a speaipteon of the documenter aspect by
keeping a key referring to the session documemtatio

Another requirement of process documentation afises the communication facet of the
provenance model. Two interacting actors each kiaie own view onto sent and received
messages, or at least have access to differergdaetails about any one interaction they
perform. This means that both partners would priybedrord different information about
the same interaction, for example with relationshp different context documentation. Our
presented provenance implementation provides miaasable partner services to refer to
the exact same interaction when they record, byiaty exchanging reference keys with
their messages, but this is a feature that caneaided in an aspect-oriented provenance
extension for an — any other way unmodified — stalathe application. Since the pointcut
places the execution of the documentation aspéateled the sending and the receiving of a
method invocation within the same application, #spect must be able to generate the
documentation for both sender and receiver of asawgs if necessary. While it is usual for
an aspect to have access to the context in thatalled method is going to be executed, the
reviewed Python aspect FWs of Section 2 do notigeosufficient in-depth access to the

-13 -

The Python Papers 6(3): 3

execution context of the callee method. This i®@oss issue which in this example could
only be solved by a kind of "hack" using theeefilon mechanism offered by thespect
module of the Python standard library as describede following section.

3.5. Aspect-orientation in the python provenance client-side library

The previous sections indicated some issues wibgss documentation. Aspect-orientation
can help overcome some of them, others need woekimgnd.

For the implementation of the generic method oleyeas an aspect we chose the Aspyct
framework because

* itis very lightweight,

» it provides an aspect class which enables creafitime users' own aspects by simply
overriding theat Cal | , at Ret ur n andat Rai se methods,

* it enables definition of pointcuts using regulapesssions over the names of object
properties,

* it is under active development and the module'sldger reacts quickly to support
requests.

3.5.1. Implementation of the PyProvenance library

The Python Provenance Client-side Library PyProvenance
(http://sourceforge.net/projects/provenance}asihsists of alPypebased Python wrapper
(http://jpype.sourceforge.nefor the Java client-side libraryava CSLfrom the project
Provenance-aware Service-oriented Architecture (@AFP (http://www.pasoa.ofgwhich
was extended to @lobus Toolkit 4grid service in the EU-funded proje@tid Provenance
(Foster, 2006; Jackson, 2002; Bochner et al., 2p0229-240). The Java CSL provides
means to build provenance records and send thehe teecording endpoint of a provenance
store service (Gude and Oster, 2007). Additionialgllows performing provenance queries
(Groth et al., 2006, p. 89-99).

PyProvenance increases the usability of provenesumrding for Python users by providing
more "Pythonic" methods to build and expressqmance records. There is, e.g., the abstract
utility class Docunenter and several implementations which provide seealizXML
representations for safe pickling of standard Pytbonstructs like lists and dictionaries and
also a fall-back implementation for other cases.

3.5.2. Aspect model of the library

Provenance recorder. To enable provenance store connection configuradtica PA client
application independently from observer implemeatet and to be able to handle several
connections to provenance stores, the provenamoeder class encapsulates a provenance
store URL and a reference to a Python wrapper@fldva CSL. A provenance recorder is
immutable after initialization and is used by as@ilver to create recording handles that take

-14 -

The Python Papers 6(3): 3

the documentation entries for a single event. Amdiog handle can then be sent once to the
provenance store by the provenance recorder.

Observing method calls. The functionality to observe generic method invims is
realized as an aspect nameet hodCal | Gbser ver, shown in Listing 1. Its constructor
stores the provenance recorder instance referareéoical Python property (attribute). This
of course limits the use to instance variablesenfstyle classes; old-style classes and class
variables cannot be wrapped in properties (Matug@d9a, p. 3).

cl ass Met hodCal | Cbserver (Aspect):

def __init_ (self, provRec)

def weaveToMet hod(sel f, classRef, met hodRE)

def weaveToObj ect (sel f, cl assRef)

def getCallingObject(self)

def getCall edObject(self, cd)

def isRecordi ngNecessary(self, cd)

def docunent Met hodDependenci es(sel f, cd, \
recor dhandl e, gpakOF Met hodDoc, \
met hodAr gs)

def atCall (self, cd)

def atReturn(self, cd)

def atRaise(self, cd)

Listing 1: Method signatures of the Aspect MetholiiGlaserver

Theat Ret ur n method is the only overriddedspect hook that is implemented with logic
at this point, because the method documentationldhay default only be recorded after its
successful execution. It takes the current calh dbject (CDO) and uses the implementation
of i sRecor di ngNecessary to determine whether it is going to proceed t@tng actual
process documentation. This Boolean function retufffalse’ by default but can be
overridden by specific observers to respect thdiegipn state to record the call. The
methodsreaveToMet hod andweaveToObj ect are helpers for weaving an observer either
to all public methods of an object or to those rmdthdefined by the regular expression in
parametenet hodRE. This way an application using PyProvenance iseqaired to import
Aspyct just to specify pointcuts. When the applmatprocess requires more complex
documentation than can be derived from the sigeatnd parameters of the invoked
method, Met hodCal | Cbserver can be inherited overridingdocunent Met hod-
Dependenci es. The recordhandl e stores the additional documentation items. The
parametenet hodAr gs contains a dictionary with all parameters of thetmd invocation,
while gpakOf Met hodDoc provides a global reference key to the alreadyraatically
created documentation for the current invocatianttat it can be reused in relationships
descriptions.

Using the other helper methods, the currasitf -contexts of the callee and the caller object
can be retrieved and their properties can be aedesince the Aspyct framework at the
time of writing did not provide the calling objeatontext with the CDO, the
get Cal | i ngQbj ect function retrieves it by peeling five frames frdahe interpreter stack
using the Python modulenspect, cf. http://docs.python.org/library/inspect.htmiEven
though this could be considered a "hack", thistem ran stable for all tests. It might stop
working in the future due to potential implemergatchanges of the Aspyct framework or

-15 -

The Python Papers 6(3): 3

the Python interpreter. Apart from that it is veanportant to explicitly clear any reference to
the self context of the calling object after useaincustom observer implementation to
prevent memory leaks by circular references.

3.5.3. Weaving aspects into an application

When basic documentation about interaction recgrds sufficient, the core "business"
application can begin provenance recording by agptishting the following steps:

» Configuration of a provenance recorder as describede

» Specification of all methods to be observed usitgss names and/or regular
expressions

» Initialization of a method call observer instandéwthe provenance recorder

* Weaving the observer to the specified methods thig¢tneave* methods.

As soon as more detailed documentation is requpadicularly with causal relationships,
specific observer implementations have to be cdehyeinheritingMet hodCal | Chser ver

in a module of the business application. Sincecigfizged implementations will most
probably only fit to certain methods, it is goodagtice to define and apply the regular
expressions in the overridden constructor of theeiitor. Listing 2 shows this for the user
session initialization routine in DataFinder. THeserver is woven onto the selected method
of the clas€xt er nal Facade as soon as it is initialized, which is why it iseful to create

a well-arranged central module, in which all obsesvare woven into.

def __init__(self, prov_rec):
Met hodCal | Gbserver. __init__(self, prov_rec)
sel f. weaveToMet hod(Ext er nal Facade, \
"Aper f or mBasi cDat aFi nder Set up")

Listing 2: Constructor of the user session obseiwmeDataFinder

The session observer records a special relationtathe user, who logged in using the
specific instance of a GUI callddataFinder Thei sRecor di ngNecessary function is
overridden to return 'True', when provenance reogri activated in DataFinder.

Dealing with context. Apart from recording documentation, the user sessluserver sets a
singleton with the value of the provenance key rrafg to the login interaction
documentation, which can be used by other methakrebrs to relate other recorded
activities to the responsible person. This is apnexample for a way of keeping context
information.

A way of keeping track of nested method executiontexts is implementing a context
dictionary in an observer inheritor. By overridinbe at Cal | method, any specific
information can be put into the dictionary with t&®0O as key. This information can be
made accessible by other observers who might redtuior their documentation. During the

-16 -

The Python Papers 6(3): 3

docunent Met hodDependenci es the data associated with the current CDO has to be
removed from the dictionary again.

3.6. Analysis of experiences with the implementation of AOP-based
provenance-awareness for DataFinder

For PyProvenance we have implemented a genericothetdl observer as an Aspyct aspect,
which has no dependencies on the business codecraades basic class interaction
documentation by itself based on the method sigaaparameter settings and result of the
returned method. Through this the effort of covgrall relevant DataFinder methods with
specific provenance documenters has been almospletaty reduced to modeling the
provenance expressions. This not only reduced dprednt time, it improved the legibility
of the DataFinder-specific code considerably ardliced its sensitivity to errors. Still the
most important benefit of the aspect-oriented apginois the complete independence of
DataFinder from the provenance specific loggingecddo part of the DataFinder core code
required any adaptation to enable provenance ragprdit the moment the Python
Provenance Client-side Library wraps the origiratallibrary, which requires an available
Java Virtual Machine (JVM) for the provenance reliog feature to be operational. At
startup DataFinder looks for the availability ofaficiently recent JVM and — in case none
is available — simply skips weaving of the methbdervers. At this point the only required
changes to include the provenance feature was @orinstatement for the provenance
configuration module in the DataFinder client stutipt and the insertion of a provenance
recording check box in its preferences dialog wimdo

4, Conclusion and Outlook

We showed selection criteria and feature requirésntr AOP frameworks and evaluated
three of them for the incorporation of provenaneeording features in a data management
tool for distributed applications. To compare exrigt FWs we defined a high-level
classification to evaluate the different softwaskions against and showed the current state
of development. After laying out the criteria foafework selection we explained our goals
in more detail and showed that we found the ligigveframeworkAspyctmost suitable for
our use case. Overall, aspect-oriented techniquesed out to be the best choice to
accomplish non-invasive extension of an integraeplication with process documentation
features.

In the future a more formal comparison of existthghon AOP implementations needs to be
undertaken to elaborate on the internal detailardgg the dynamicity of the Python
language and the solution strategies chosen for i@ifs language.

Further enterprise-grade applications need to laduated to determine if Aspyct can be
applied to fulfill their needs regarding AOP, too.

References

Bagwell, D. (2009):WebSphere z/OS V6.1 - WSADMIN Primer (with Jythomptéhg
lllustrated) White Paper WP101014, International Business Nmash Corporation,

217 -

The Python Papers 6(3): 3

Washington Systems Center, Jan, 19, 20@://www-03.ibm.com/support/techdocs/
atsmastr.nsf/Weblndex/WP101014

Bill, R. W. (2001):Jython for Java ProgrammerSams Publishing

Bochner, Carsten and Gude, Roland and Schreibette@s (2009):A Python Library for
Provenance Recording and Queryingolume 5272 of Lecture Notes in Computer
Science, pages 229-240, Springer

Fayolle, A. and Mascio, A. D. and Thénault, S. (B0@spect-oriented, design-by-contract
programming and rpython static checkifigechnical Report D10.1

Foster, 1. (2006)Globus toolkit version 4: Software for service-otied systemd.ecture
Notes in Computer Science, 3779:2-13

Fowler, M. (2004):Inversion of control containers and the dependeinggction pattern
http://www.itu.dk/courses/VOP/E2006/8 _injection.pdf

Groth, P. and Jiang, S. and Miles, S. and Munroegnd Tan, V. and Tsasakou, S. and
Moreau, L. (2006)An architecture for provenance systems

Gude, Roland and Oster, M. (200Provenance-CSL - A Provenance Client-Side Lihrary
Fachhochschule Bonn-Rhein-Sieg

Jackson, K. R. (2002pyGlobus: a python interface to the globus tool€bncurrency and
Computation: Practice and Experience, 14(13-15)0F5-1083

Kiczales, G. and Lamping, J. and Mendhekar, A. amkda, C. and Lopes, C. and
Loingtier, J. and Irwin, J. (1997Akspect-oriented programmingn: ECOOP. Springer

Matusiak, M. (2009a)Strategies for aspect oriented programming in pgthuatp:/www.
matusiak.eu/numerodix/blog/wp-content/uploads/atptegies. pdf

Matusiak, M. (2009b)aopy: A program transformation-based aspect oridrt@amework
for Python http://www.matusiak.eu/numerodix/blog/wp-contentasus/aopy. pdf

Munroe, S. and Miles, S. and Moreau, L. and Vazetazeda, J. (2006Rrime: a software
engineering methodology for developing provenaneara applications In:
Proceedings of the 6th international workshop oftv&re engineering and middleware,
Foundations of Software Engineering, pages 39-4E8VA

Pedroni S. and Rappin, N. (2002ython Essential®O'Reilly Media, Inc.
Rigo, A. and Pedroni, S. (2007)T compiler architectureTechnical Report D08.2

Schlauch, Tobias and Schreiber, Andreas (2dDajaFinder - a scientific data management
solution In: Ensuring the Long-Term Preservation and Valdeling to Scientific and
Technical Data

Washizaki, H. and Kubo, A. and Mizumachi, T. anduélyg, K. and Fukazawa, Y. and
Yoshioka, N. and Kanuka, H. and Kodaka, T. and ®ogd», N. and Nagai, Y. and
Yamamoto, R. (2009): AOJ®spect-oriented javascript programming framework fo
web developmentin: ACP4IS'09: Proceedings of the 8th workshop Aspects,
components, and patterns for infrastructure softwar 31-36, ACM

-18 -

