
The Python Papers 6(2): 4

Python for Education: The Exact Cover Problem

Andrzej Kapanowski
Marian Smoluchowski Institute of Physics, Jagiellonian University, Cracow, Poland
andrzej.kapanowski@uj.edu.pl

Abstract
Python implementation of Algorithm X by Knuth is presented. Algorithm X finds all
solutions to the exact cover problem. The exemplary results for pentominoes, Latin squares
and Sudoku are given.

1. Introduction
Python is a powerful dynamic programming language that is used in a wide variety of
application domains (Lutz, 2007). Its high level data structures and clear syntax make it an
ideal first programming language (Downey, 2008) or a language for easy gluing together
tools from different domains to solve complex problems (Langtangen, 2006). The Python
standard library and third party modules can speed up programs development and that is why
Python is used in thousands of real-world business applications around the world, Google
and YouTube, for instance. The Python implementation is under an opes source licence that
make it freely usable and distributable, even for commercial use.

Python is a useful language for teaching even if students have no previous experience with it.
They can explore complete documentation, both integrated into the language and as separate
web pages. Since Python is interpreted, students can learn the language by executing and
analysing individual commands. Python is sometimes called "working pseudocode" because
it is possible to explain an algorithm by means of Python code and next to run a program in
order to check if it is correct. Our aim is to use Python to implement an algorithm of solving
the exact cover problem. We prove that Python code is readable and can be used to solve
many medium size problems in reasonable time.

The paper is organized as follows. In Section 2 the exact cover problem is defined. In
Section 3 Python implementation of Algorithm X is presented. Sections 4, 5, and 6 are
devoted to pentominoes, Latin squares, and Sudoku, respectively. A summary and
conclusions are contained in Section 7.

2. The Exact Cover Problem
In mathematics, given a collection S of subsets of a set X, an exact cover is a subcollection
S* of S such that each element in X is contained in exactly one subset in S*. In computer

- 1 -

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Python Papers Anthology

https://core.ac.uk/display/230920551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Python Papers 6(2): 4

science, the exact cover problem is a decision problem to find an exact cover or else
determine none exists. The exact cover problem is NP-complete (Wikipedia, 2010b).

The relation "contains" can be represented by an incidence matrix A. The matrix includes
one row for each subset in S and one column for each element in X. The entry in a particular
row and column is 1 if the corresponding subset contains the corresponding element, and is 0
otherwise. In the matrix representation, an exact cover is a selection of rows such that each
column contains a 1 in exactly one selected row.

Interesting examples of exact cover problems are: finding Pentomino tilings, finding Latin
squares, and solving Sudoku. The standard exact cover problem can be generalized to
involve not only "exactly-one" constraints but also "at-most-one" constraints. The N queens
problem is an example of such generalization.

3. Python Implementation of Algorithm X
Algorithm X is a recursive, nondeterministic, backtracking algorithm (depth-first search) that
finds all solutions to the exact cover problem. Knuth efficiently implemented his Algorithm
X by means of the technique called Dancing Links (Knuth, 2000). Algorithm X functions as
follows.

If the matrix A is empty, the problem is solved; terminate successfully.
Otherwise choose a column c (deterministically).
Choose a row r such that A[r,c] = 1 (nondeterministically).
Include row r in the partial solution.
For each column j such that A[r, j] = 1,

delete column j from matrix A;
for each row i such that A[i, j] = 1,
delete row i from matrix A.

Repeat this algorithm recursively on the reduced matrix A.

Now we would like to present Python implementation of the Algorithm X. Extensive use of
list comprehensions is present. The program was tested under Python 2.5. Let us define the
exception CoverError and the function to read the incident matrix from a text file to the
table A. The table A is represented by the list of nodes, where a node is a pair (row, column)
for a 1 in the incident matrix. Any line of the text file should contain labels of incident
matrix columns with 1 in a given row.

class CoverError(Exception):
 """Error in cover program."""
 pass

def read_table(filename):
 """Read the incident matrix from a file."""
 f = open(filename,"r")
 table = []

- 2 -

The Python Papers 6(2): 4

 row = 0
 for line in f:
 row = row + 1
 for col in line.split():
 table.append((row, col))
 f.close()
 return table

A = read_table("start.dat")

Let us define some useful global variables: B to keep the solution (selected rows of the
incident matrix), updates to count deleted nodes on each level, covered_cols to
remember if a given column is covered. The number of removed nodes is proportional to the
number of elapsed seconds. The 2 GHz Intel Centrino Duo laptop did from 20 to 40 kilo-
updates per second.

B = {}
updates = {}
covered_cols = {}
for (r, c) in A: covered_cols[c] = False

Here are some functions to print the solution and to choose the next uncovered column. In
our program a column with the minimal number of rows is returned because it leads to the
fewest branches.

def print_solution():
 """Print the solution - selected rows."""
 print "SOLUTION", updates
 for k in B:
 for node in B[k]:
 print node[1],
 print

def choose_col():
 """Return an uncovered column with the minimal number of rows."""
 cols = [c for c in covered_cols if not covered_cols[c]]
 if not cols:
 raise CoverError("all columns are covered")
 # Some columns can have no rows.
 tmp = dict([(c,0) for c in cols])
 for (r,c) in A:
 if c in cols:
 tmp[c] = tmp[c] + 1
 min_c = cols[0]
 for c in cols:
 if tmp[c] < tmp[min_c]:
 min_c = c
 return min_c

The most important is a recursive function search(k) which is invoked initially with k=0.

- 3 -

The Python Papers 6(2): 4

def search(k):
 """Search the next row k in the table A."""
 if not A: # A is empty
 for c in covered_cols:
 if not covered_cols[c]: # blind alley
 return
 print_solution()
 return
 c = choose_col()
 # Choose rows such that A[r,c]=1.
 rows = [node[0] for node in A if node[1]==c]
 if not rows: # blind alley
 return
 for r in rows:
 box = [] # a place for temporaly removed rows
 # Include r in the partial solution.
 B[k] = [node for node in A if node[0]==r]
 # Remove row r from A.
 for node in B[k]:
 box.append(node)
 A.remove(node)
 updates[k] = updates.get(k,0) + 1
 # Choose columns j such that A[r,j]==1 (c is included).
 cols = [node[1] for node in B[k]]
 for j in cols:
 covered_cols[j] = True
 # Choose rows i such that A[i,j]==1.
 rows2 = [node[0] for node in A if node[1]==j]
 # Remove rows i from A to box.
 tmp = [node for node in A if node[0] in rows2]
 for node in tmp:
 box.append(node)
 A.remove(node)
 updates[k] = updates.get(k,0) + 1
 search(k+1)
 # Restore deleted rows.
 for node in box:
 A.append(node)
 del box
 del B[k]
 # Uncover columns.
 for j in cols:
 covered_cols[j] = False
 return

The program can be saved to the file cover.py. Next sections are devoted to the selected
applications of the program.

4. Pentomino
Polyominoes are shapes made by connecting certain numbers of equal-sized squares, each
joined together with at least one other square along an edge (Golomb, 1994). Pentominoes
are made from five squares and they can form twelve distinctive patterns. Some letter names
are recommended for them according to the shapes. All pentominoes can fill a board with 60

- 4 -

The Python Papers 6(2): 4

squares and of different shapes. The standard boards are rectangles of 6 10, 5 12, 4
15, and 3 20, but we can try a cross or a chessboard without the center four squares, see
Figure 1. Pentominoes can be rotated (turned 90, 180, or 270 degrees) or reflected (flipped
over). Note that one-side pentominoes can be also considered, where the reflection in
forbidden.

Figure 1. The 12 pentominoes form a cross.
There are 21 unique solutions. The naming
convention is also shown.

The problem of forming a 60 square board with twelve pentominos involves two kinds of
constraints:

● Pentomino. For each of the 12 pentominoes, it must be placed exactly once.
Columns names correspond to the pentominos: F, I, L, P, N, T, U, V, W, X, Y, Z.

● Square. For each of the 60 squares, it must be covered by a pentomino exactly once.
A square name can be its successive number.

Thus there are 12+60 = 72 constraints in all. Our results are collected in Table 1.

Board Input Solutions Unique Updates
3 20 1100 72 8 2 9,770,304

4 15 1558 72 1472 368 237,324,570

5 12 1806 72 4040 1010 682,909,158

- 5 -

The Python Papers 6(2): 4

6 10 1928 72 9356 2339 1,296,313,446

Cross 1413 72 42 21 15,806,634

Chess 1568 72 520 65 127,145,172

8 8 2357 77 129,168 16,146 15,142,060,397
Table 1. Results for different pentomino boards. Input is the size of the incident matrix,
Solutions are all solutions found by the program, Unique are different solutions, and Updates
are numbers of temporaly removed nodes. The Cross board is shown in Figure 1. The Chess
board is 8 8 without the center four squares. The 8 8 board includes the square
tetromino.

There are many other problems connected with pentominoes that can be solved by means of
the cover program. Some of them were collected by G. E. Martin in his book (Martin, 1996):
the Double Duplication Problem, the Triplication Problem, for instance.

5. Latin Squre
Latin square is an n n table filled with n different symbols (for example, numbers from 1
to n) in such a way that each symbol occurs exactly once in each row and exactly once in
each column. An exemplary Latin square 4 4 is shown in Figure 2. Latin squares are used
in the design of experiments and error correcting codes (Wikipedia, 2010c).

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

Figure 2.1. Latin square 4 4 normalized. There are 4 unique solutions.

The problem of finding Latin squares involves three kinds of constraints:

● Square. Each square must contain exactly one number (column name ij).

● Row-Number. Each row must contain each number exactly once (column name
RxNy).

● Column-Number. Each column must contain each number exactly once (column
name CxNy).

There are 3n^2 constrains and the incident matrix is n^3 3 n^2. The rows describing the
Latin square shown in Figure 2 are

11 R1N1 C1N1 12 R1N2 C2N2

- 6 -

The Python Papers 6(2): 4

13 R1N3 C3N3
14 R1N4 C4N4
21 R2N2 C1N2
22 R2N3 C2N3
23 R2N4 C3N4
24 R2N1 C4N1
31 R3N3 C1N3

32 R3N4 C2N4
33 R3N1 C3N1
34 R3N2 C4N2
41 R4N4 C1N4
42 R4N1 C2N1
43 R4N2 C3N2
44 R4N3 C4N3

A Latin square is normalized if its fist row and first column are in natural order. For each n,
the number of all Latin squares is n!(n-1)! times the number of normalized Latin squares.
The exact values are known up to n=11 (McKay, 2005). Our results for normalized Latin
squares are collected in Table 2.

Board Input Solutions Updates
1 1 1 1 1 1

2 2 5 12 1 12

3 3 17 27 1 33

4 4 43 48 4 216

5 5 89 75 56 3,909

6 6 161 108 9,408 675,513

7 7 265 147 16,942,080 1,307,277,285

8 8 407 192 535,281,401,856 ?

9 9 593 243 377,597,570,964,258,816 ?
Table 2. Results for normalized Latin squares. Input is the size of the incident matrix,
Solutions are all solutions found by the program, and Updates are numbers of temporaly
removed nodes.

6. Sudoku
A standard Sudoku is like an order-9 Latin square, differing only in its added requirement
that each subgrid (box) contain the numbers 1 through 9 (Delahaye, 2006). Generaly, a
Sudoku of order k (n=k^2) is an n n table which is subdivided into n k k boxes. Each
raw, column, and box must contain each of the numbers 1 through n exactly once. Any valid
Sudoku is a valid Latin square. An exemplary Sudoku 4 4 is shown in Figure 3.

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

Figure 3. Sudoku 4 4. There are 288 unique solutions.

- 7 -

The Python Papers 6(2): 4

Note that the Latin square shown in Figure 2 is not a valid Sudoku.

A Sudoku delivers many interesting and sometimes difficult logic-based problems. Let us
start from the problem of counting the number of valid Sudoku tables. The problem involves
four kinds of constraints:

● Square. Each square must contain exactly one number (column name ij).

● Row-Number. Each row must contain each number exactly once (column name
RxNy).

● Column-Number. Each column must contain each number exactly once (column
name CxNy).

● Box-Number. Each box must contain each number exactly once (column name
BxNy).

For the Sudoku board n n, there are 4 n^2 constrains and the incident matrix is n^3 4
n^2. The exemplary rows for the Sudoku shown in Figure 3 are

11 R1N1 C1N1 B1N1
12 R1N2 C2N2 B1N2
13 R1N3 C3N3 B2N3
14 R1N4 C4N4 B2N4
21 R2N3 C1N3 B1N3
22 R2N4 C2N4 B1N4
23 R2N1 C3N1 B2N1
24 R2N2 C4N2 B2N2

31 R3N2 C1N2 B3N2
32 R3N1 C2N1 B3N1
33 R3N4 C3N4 B4N4
34 R3N3 C4N3 B4N3
41 R4N4 C1N4 B3N4
42 R4N3 C2N3 B3N3
43 R4N2 C3N2 B4N2
44 R4N1 C4N1 B4N1

Our results are collected in Table 3. A detailed calculation of the number of classic 9 9
Sudoku solutions was provided by Felgenhauer and Jarvis in 2005 (Felgenhauer and Jarvis,
2005) and the number is approximately 6.7 10^21. This is 1.2 10^(-6) times the number
of 9 9 Latin squares. Felgenhauer and Jarvis identified 44 classes of different solutions,
where first three rows are fixed for a given class when we are looking for solutions.

Board Input Solutions Updates
1 1 1 1 1 1

4 4 64 64 288 21,712

9 9 729 324 6,670,903,752,021,072,936,960 ?

16 16 4096 1024 ? ?
Table 3. Results for Sudoku. Input is the size of the incident matrix, Solutions are all
solutions found by the program, and Updates are numbers of temporaly removed nodes.
Solutions for the 9 9 board are cited from the paper by Felgenhauer and Jarvis (2005).

- 8 -

The Python Papers 6(2): 4

A Sudoku puzzle is a partially completed table, which has a unique solution and has to be
completed by a player. The problem of the fewest givens that render a unique solution is
unsolved, although the lowest number yet found is 17. There are collected more than 38,000
17-Clou puzzles and there is one known 16-Clue puzzle with two solutions. Our program
can easily complete a puzzle or can check that the unique solution exists in few seconds.
Many puzzle enthusiasts are looking for the hardest Sudoku, i.e. the Sudoku which is the
most difficult to solve for some solver programs. The hardest Sudoku for our program was
21-Clue Sudoku called col-02-08-071 (Wikipedia, 2010c) shown in Figure 4. Peter Norvig
(Norvig, 2011) presented a Python program solving Sudoku puzzle which is based on two
ideas: constraint propagation and search. The program is based on two mutually-recursive
functions. Ali Assaf (Assaf, 2011) implemented the Algorithm X in Python using sets
instead of doubly-linked lists.

. 2 . 4 . 3 7 . .

. 3 2

. 4

. 4 . 2 . . . 7 .
8 . . . 5
. 1 . . .
5 9 . .
. 3 . 9 7
. . 1 . . 8 6 . .

Figure 4. The hardest Sudoku 9 9. There are 113,072 updates in our program.

A Sudoku solution is a special case of a gerechte design (Bailey et al., 2008) used in
agricultural experiments. The existence of k^2 k^2 Sudoku squares for any positive
integer k was proved by Herzberg and Murty (2007). Is also possible to construct k^2 k^2
Sudoku squares with distinct entries on each of the two diagonals for any k (Keedwell, 2007;
Akman, 2008).

7. Conclusions
In this paper, we presented Python implementation of Algorithm X solving the exact cover
problem. It has less than one hundred lines, counting comments. The program can be used to
solve any medium size problem that can be formulated as the exact cover problem. It can
handle the cases without solutions or with multiple solutions.

The program was used to solve some puzzles, to generate Latin squares or Sudoku boards.
The problems can be analysed according to different criteria: the incident matrix size,
number of 1 in a row, number of solutions, or a number of updates on any level of

- 9 -

The Python Papers 6(2): 4

backtracking. The number of 1 in a row of the incident matrix can be constant (3 for Latin
square; 4 for Sudoku) or changing (5 and 6 for pentomino with tetromino; 4, 5 or 6 for
Sudoku with distinct entries on the two diagonals).

The total number of updates (and computing time) strongly depends on the rules for
choosing an uncovered column. The problem is how to limit a search tree during the
backtracking. In our program the column with the minimum number of rows is taken. It is
important that the column selection should be done efficiently. Sometimes there are problem-
specific hints how to choose a column. In the case of the N queens problem, it is better to
place queens near the middle of the board first (Knuth, 2000).

A backtrack program usually spends most of its time on only a few levels of the search tree
(Knuth, 2000). In the case of normalized Latin squares, the sumarized number of updates on
the corresponding levels is shown in Figure 5. On increasing the table size, the number of
updates on the higher levels is increasing.

The presented implementation of Algorithm X can be easily extended to the case of "at-
most-one" constraints. We hope that the presented program will be used for teaching or just
for fun.

Figure 5. The sumarized number of updates on different levels of backtracking (percents) in
the case of normalized Latin squares. Results for tables from 2 2 to 7 7 are shown.

- 10 -

The Python Papers 6(2): 4

8. References
Akman, F., 2008, Partial Chromatic Polynomials and Diagonally Distinct Sudoku Squares,

arXiv:0804.0284v2 [math.CO].
Assaf, A., 2010, Algorithm X in 30 lines!, http://www.cs.mcgill.ca/

%7Eaassaf9/python/algorithm_x.html.
Bailey, R. A., Cameron, P. J., Connelly, R., 2008, Sudoku, gerechte designs, resolutions,

affine space, spreads, reguli, and Hamming codes, Amer. Math. Monthly 115, 383-
404.

Delahaye, J.-P., 2006, The Science Behind Sudoku, Scientific American magazine, June.
Downey, A. B., 2008, Think Python: How to Think Like a Computer Scientist, Green Tea

Press, Needham, Massachusetts, http://www.thinkpython.com/.
Felgenhauer, B., Jarvis, F., 2005, Enumerating possible Sudoku grids,

http://www.afjarvis.staff.shef.ac.uk/sudoku/.
Golomb, S. W., 1994, Polyominoes: Puzzles, Patterns, Problems, and Packing, Revised and

expanded second edition, Princeton, New Jersey: Princeton University Press.
Herzberg, A. M., Murty, M. R., 2007, Sudoku squares and chromatic polynomials, Notices

Amer. Math. Soc. 54, 708-717.
Keedwell, D., 2007, On Sudoku squares, Bull. ICA 50, 52-60.
Knuth, D. E., 2000, Dancing Links, arXiv:cs/0011047v1 [cs.DS].
Langtangen, H. P., 2006, Python Scripting for Computational Science, Series: Text in

Computational Science and Engineering, Vol. 3, second ed., Springer-Verlag Berlin
Heidelberg.

Lutz, M., 2007, Learnig Python, Third Edition, O'Reilly Media.
Martin, G. E., 1996, Polyominoes, a guide to puzzles and problems in tiling, The

Matematical Association of America, Cambridge University Press.
McKay, B. D., Wanless, I. M., 2005, On the Number of Latin Squares, Annals of

Combinatorics 9, 335-344.
Norvig, P., 2011, Solving Every Sudoku Puzzle, http://www.norvig.com/sudoku.html.
Wikipedia, 2010a, Algorithmics of sudoku,

http://en.wikipedia.org/wiki/Algorithmics_of_sudoku.
Wikipedia, 2010b, Exact cover, http://en.wikipedia.org/wiki/Exact_cover.
Wikipedia, 2010c, Latin square, http://en.wikipedia.org/wiki/Latin_square.

- 11 -

http://www.cs.mcgill.ca/7Eaassaf9/python/algorithm_x.html
http://www.cs.mcgill.ca/7Eaassaf9/python/algorithm_x.html
http://en.wikipedia.org/wiki/Latin_square
http://en.wikipedia.org/wiki/Exact_cover
http://en.wikipedia.org/wiki/Algorithmics_of_sudoku
http://www.norvig.com/sudoku.html
http://www.afjarvis.staff.shef.ac.uk/sudoku/
http://www.thinkpython.com/

	Abstract
	1.	Introduction
	2.	The Exact Cover Problem
	3.	Python Implementation of Algorithm X
	4.	Pentomino
	5.	Latin Squre
	6.	Sudoku
	7.	Conclusions
	8.	References

