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Abstract
Python  implementation  of  Algorithm  X  by  Knuth  is  presented.  Algorithm  X  finds  all 
solutions to the exact cover problem. The exemplary results for pentominoes, Latin squares 
and Sudoku are given.

1. Introduction 
Python is  a  powerful  dynamic  programming  language  that  is  used  in  a  wide  variety  of 
application domains (Lutz, 2007). Its high level data structures and clear syntax make it an 
ideal first programming language (Downey, 2008) or a language for easy gluing together 
tools from different domains to solve complex problems (Langtangen, 2006). The Python 
standard library and third party modules can speed up programs development and that is why 
Python is used in thousands of real-world business applications around the world, Google 
and YouTube, for instance. The Python implementation is under an opes source licence that 
make it freely usable and distributable, even for commercial use.

Python is a useful language for teaching even if students have no previous experience with it. 
They can explore complete documentation, both integrated into the language and as separate 
web pages. Since Python is interpreted, students can learn the language by executing and 
analysing individual commands. Python is sometimes called "working pseudocode" because 
it is possible to explain an algorithm by means of Python code and next to run a program in 
order to check if it is correct. Our aim is to use Python to implement an algorithm of solving 
the exact cover problem. We prove that Python code is readable and can be used to solve 
many medium size problems in reasonable time.

The paper  is  organized  as  follows.  In  Section  2 the  exact  cover  problem is  defined.  In 
Section 3 Python implementation  of Algorithm X is presented.  Sections 4,  5,  and 6 are 
devoted  to  pentominoes,  Latin  squares,  and  Sudoku,  respectively.  A  summary  and 
conclusions are contained in Section 7.

2. The Exact Cover Problem
In mathematics, given a collection S of subsets of a set X, an exact cover is a subcollection 
S* of S such that each element in X is contained in exactly one subset in S*. In computer 
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science,  the  exact  cover  problem is  a  decision  problem to  find  an  exact  cover  or  else 
determine none exists. The exact cover problem is NP-complete (Wikipedia, 2010b).

The relation "contains" can be represented by an incidence matrix A. The matrix includes 
one row for each subset in S and one column for each element in X. The entry in a particular 
row and column is 1 if the corresponding subset contains the corresponding element, and is 0 
otherwise. In the matrix representation, an exact cover is a selection of rows such that each 
column contains a 1 in exactly one selected row.

Interesting examples of exact cover problems are: finding Pentomino tilings, finding Latin 
squares,  and  solving  Sudoku.  The  standard  exact  cover  problem  can  be  generalized  to 
involve not only "exactly-one" constraints but also "at-most-one" constraints. The N queens 
problem is an example of such generalization.

3. Python Implementation of Algorithm X
Algorithm X is a recursive, nondeterministic, backtracking algorithm (depth-first search) that 
finds all solutions to the exact cover problem. Knuth efficiently implemented his Algorithm 
X by means of the technique called Dancing Links (Knuth, 2000). Algorithm X functions as 
follows.

If the matrix A is empty, the problem is solved; terminate successfully.
Otherwise choose a column c (deterministically).
Choose a row r such that A[r,c] = 1 (nondeterministically).
Include row r in the partial solution.
For each column j such that A[r, j] = 1,

delete column j from matrix A;
for each row i such that A[i, j] = 1,
delete row i from matrix A.

Repeat this algorithm recursively on the reduced matrix A.

Now we would like to present Python implementation of the Algorithm X. Extensive use of 
list comprehensions is present. The program was tested under Python 2.5. Let us define the 
exception CoverError and the function to read the incident matrix from a text file to the 
table A. The table A is represented by the list of nodes, where a node is a pair (row, column) 
for a 1 in the incident matrix.  Any line of the text file should contain labels of incident 
matrix columns with 1 in a given row.

class CoverError(Exception):
    """Error in cover program."""
    pass

def read_table(filename):
    """Read the incident matrix from a file."""
    f = open(filename,"r")
    table = []
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    row = 0
    for line in f:
        row = row + 1
        for col in line.split():
            table.append((row, col))
    f.close()
    return table

A = read_table("start.dat")

Let us define some useful global variables:  B to keep the solution (selected rows of the 
incident  matrix),  updates to  count  deleted  nodes  on  each  level,  covered_cols to 
remember if a given column is covered. The number of removed nodes is proportional to the 
number of elapsed seconds. The 2 GHz Intel Centrino Duo laptop did from 20 to 40 kilo-
updates per second.

B = {}
updates = {}
covered_cols = {}
for (r, c) in A: covered_cols[c] = False

Here are some functions to print the solution and to choose the next uncovered column. In 
our program a column with the minimal number of rows is returned because it leads to the 
fewest branches.

def print_solution():
    """Print the solution - selected rows."""
    print "SOLUTION", updates
    for k in B:
        for node in B[k]:
            print node[1],
        print

def choose_col():
    """Return an uncovered column with the minimal number of rows."""
    cols = [c for c in covered_cols if not covered_cols[c]]
    if not cols:
        raise CoverError("all columns are covered")
    # Some columns can have no rows.
    tmp = dict([(c,0) for c in cols])
    for (r,c) in A:
        if c in cols:
            tmp[c] = tmp[c] + 1
    min_c = cols[0]
    for c in cols:
        if tmp[c] < tmp[min_c]:
            min_c = c
    return min_c

The most important is a recursive function search(k) which is invoked initially with k=0.
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def search(k):
    """Search the next row k in the table A."""
    if not A:   # A is empty
        for c in covered_cols:
            if not covered_cols[c]:   # blind alley
                return
        print_solution()
        return
    c = choose_col()
    # Choose rows such that A[r,c]=1.
    rows = [node[0] for node in A if node[1]==c]
    if not rows:   # blind alley
        return
    for r in rows:
        box = []         # a place for temporaly removed rows
        # Include r in the partial solution.
        B[k] = [node for node in A if node[0]==r]
        # Remove row r from A.
        for node in B[k]:
            box.append(node)
            A.remove(node)
            updates[k] = updates.get(k,0) + 1
        # Choose columns j such that A[r,j]==1 (c is included).
        cols = [node[1] for node in B[k]]
        for j in cols:
            covered_cols[j] = True
            # Choose rows i such that A[i,j]==1.
            rows2 = [node[0] for node in A if node[1]==j]
            # Remove rows i from A to box.
            tmp = [node for node in A if node[0] in rows2]
            for node in tmp:
                box.append(node)
                A.remove(node)
                updates[k] = updates.get(k,0) + 1
        search(k+1)
        # Restore deleted rows.
        for node in box:
            A.append(node)
        del box
        del B[k]
        # Uncover columns.
        for j in cols:
            covered_cols[j] = False
    return

The program can be saved to the file  cover.py. Next sections are devoted to the selected 
applications of the program.

4. Pentomino
Polyominoes are shapes made by connecting certain numbers of equal-sized squares, each 
joined together with at least one other square along an edge (Golomb, 1994). Pentominoes 
are made from five squares and they can form twelve distinctive patterns. Some letter names 
are recommended for them according to the shapes. All pentominoes can fill a board with 60 
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squares and of different shapes. The standard boards are rectangles of 6  10, 5  12, 4  
15, and 3  20, but we can try a cross or a chessboard without the center four squares, see 
Figure 1. Pentominoes can be rotated (turned 90, 180, or 270 degrees) or reflected (flipped 
over).  Note  that  one-side  pentominoes  can  be  also  considered,  where  the  reflection  in 
forbidden.

Figure 1.  The 12 pentominoes form a cross. 
There  are  21  unique  solutions.  The  naming 
convention is also shown.

The problem of forming a 60 square board with twelve pentominos involves two kinds of 
constraints:

● Pentomino.  For  each  of  the  12  pentominoes,  it  must  be  placed  exactly  once. 
Columns names correspond to the pentominos: F, I, L, P, N, T, U, V, W, X, Y, Z.

● Square. For each of the 60 squares, it must be covered by a pentomino exactly once. 
A square name can be its successive number.

Thus there are 12+60 = 72 constraints in all. Our results are collected in Table 1.

Board Input Solutions Unique Updates
3  20 1100  72 8 2 9,770,304

4  15 1558  72 1472 368 237,324,570

5  12 1806  72 4040 1010 682,909,158
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6  10 1928  72 9356 2339 1,296,313,446

Cross 1413  72 42 21 15,806,634

Chess 1568  72 520 65 127,145,172

8  8 2357  77 129,168 16,146 15,142,060,397
Table 1.  Results  for different  pentomino boards. Input is the size of the incident  matrix, 
Solutions are all solutions found by the program, Unique are different solutions, and Updates 
are numbers of temporaly removed nodes. The Cross board is shown in Figure 1. The Chess 
board  is  8   8  without  the  center  four  squares.  The  8   8  board  includes  the  square 
tetromino.

There are many other problems connected with pentominoes that can be solved by means of 
the cover program. Some of them were collected by G. E. Martin in his book (Martin, 1996): 
the Double Duplication Problem, the Triplication Problem, for instance.

5. Latin Squre
Latin square is an n  n table filled with n different symbols (for example, numbers from 1 
to n) in such a way that each symbol occurs exactly once in each row and exactly once in 
each column. An exemplary Latin square 4  4 is shown in Figure 2. Latin squares are used 
in the design of experiments and error correcting codes (Wikipedia, 2010c).

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

Figure 2.1. Latin square 4      4 normalized.   There are 4 unique solutions.

The problem of finding Latin squares involves three kinds of constraints:

● Square. Each square must contain exactly one number (column name ij).

● Row-Number. Each  row must  contain  each  number  exactly  once  (column name 
RxNy).

● Column-Number. Each column must contain each number exactly  once (column 
name CxNy).

There are 3n^2 constrains and the incident matrix is n^3  3 n^2. The rows describing the 
Latin square shown in Figure 2 are

11 R1N1 C1N1 12 R1N2 C2N2
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13 R1N3 C3N3
14 R1N4 C4N4
21 R2N2 C1N2
22 R2N3 C2N3
23 R2N4 C3N4
24 R2N1 C4N1
31 R3N3 C1N3

32 R3N4 C2N4
33 R3N1 C3N1
34 R3N2 C4N2
41 R4N4 C1N4
42 R4N1 C2N1
43 R4N2 C3N2
44 R4N3 C4N3

A Latin square is normalized if its fist row and first column are in natural order. For each n, 
the number of all Latin squares is n!(n-1)! times the number of normalized Latin squares. 
The exact values are known up to n=11 (McKay, 2005). Our results for normalized Latin 
squares are collected in Table 2.

Board Input Solutions Updates
1  1 1  1 1 1

2  2 5  12 1 12

3  3 17  27 1 33

4  4 43  48 4 216

5  5 89  75 56 3,909

6  6 161  108 9,408 675,513

7  7 265  147 16,942,080 1,307,277,285

8  8 407  192 535,281,401,856 ?

9  9 593  243 377,597,570,964,258,816 ?
Table  2.  Results  for  normalized  Latin  squares. Input  is  the  size  of  the  incident  matrix, 
Solutions are all solutions found by the program, and Updates are numbers of temporaly 
removed nodes.

6. Sudoku
A standard Sudoku is like an order-9 Latin square, differing only in its added requirement 
that  each subgrid (box)  contain  the numbers  1 through 9 (Delahaye,  2006).  Generaly,  a 
Sudoku of order k (n=k^2) is an n  n table which is subdivided into n k  k boxes. Each 
raw, column, and box must contain each of the numbers 1 through n exactly once. Any valid 
Sudoku is a valid Latin square. An exemplary Sudoku 4  4 is shown in Figure 3. 

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

Figure 3. Sudoku 4      4.   There are 288 unique solutions.
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Note that the Latin square shown in Figure 2 is not a valid Sudoku.

A Sudoku delivers many interesting and sometimes difficult logic-based problems. Let us 
start from the problem of counting the number of valid Sudoku tables. The problem involves 
four kinds of constraints:

● Square. Each square must contain exactly one number (column name ij).

● Row-Number. Each  row must  contain  each  number  exactly  once  (column name 
RxNy).

● Column-Number. Each column must contain each number exactly  once (column 
name CxNy).

● Box-Number. Each  box  must  contain  each  number  exactly  once  (column  name 
BxNy).

For the Sudoku board n  n, there are 4 n^2 constrains and the incident matrix is n^3  4 
n^2. The exemplary rows for the Sudoku shown in Figure 3 are

11 R1N1 C1N1 B1N1
12 R1N2 C2N2 B1N2
13 R1N3 C3N3 B2N3
14 R1N4 C4N4 B2N4
21 R2N3 C1N3 B1N3
22 R2N4 C2N4 B1N4
23 R2N1 C3N1 B2N1
24 R2N2 C4N2 B2N2

31 R3N2 C1N2 B3N2
32 R3N1 C2N1 B3N1
33 R3N4 C3N4 B4N4
34 R3N3 C4N3 B4N3
41 R4N4 C1N4 B3N4
42 R4N3 C2N3 B3N3
43 R4N2 C3N2 B4N2
44 R4N1 C4N1 B4N1

Our results are collected in Table 3. A detailed calculation of the number of classic 9   9 
Sudoku solutions was provided by Felgenhauer and Jarvis in 2005 (Felgenhauer and Jarvis, 
2005) and the number is approximately 6.7  10^21. This is 1.2  10^(-6) times the number 
of 9   9 Latin squares. Felgenhauer and Jarvis identified 44 classes of different solutions, 
where first three rows are fixed for a given class when we are looking for solutions.

Board Input Solutions Updates
1  1 1  1 1 1

4  4 64  64 288 21,712

9  9 729  324 6,670,903,752,021,072,936,960 ?

16  16 4096  1024 ? ?
Table  3.  Results  for  Sudoku. Input  is  the  size  of  the  incident  matrix,  Solutions  are  all 
solutions found by the program, and Updates are numbers of temporaly removed nodes. 
Solutions for the 9  9 board are cited from the paper by Felgenhauer and Jarvis (2005).
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A Sudoku puzzle is a partially completed table, which has a unique solution and has to be 
completed by a player. The problem of the fewest givens that render a unique solution is 
unsolved, although the lowest number yet found is 17. There are collected more than 38,000 
17-Clou puzzles and there is one known 16-Clue puzzle with two solutions. Our program 
can easily complete a puzzle or can check that the unique solution exists in few seconds. 
Many puzzle enthusiasts are looking for the hardest Sudoku, i.e. the  Sudoku which is the 
most difficult to solve for some solver programs. The hardest Sudoku for our program was 
21-Clue Sudoku called col-02-08-071 (Wikipedia, 2010c) shown in Figure 4. Peter Norvig 
(Norvig, 2011) presented a Python program solving Sudoku puzzle which is based on two 
ideas: constraint propagation and search. The program is based on two mutually-recursive 
functions.  Ali  Assaf  (Assaf,  2011)  implemented  the  Algorithm  X in  Python  using  sets 
instead of doubly-linked lists.

. 2 . 4 . 3 7 . .

. . . . . . . 3 2

. . . . . . . . 4

. 4 . 2 . . . 7 .
8 . . . 5 . . . .
. . . . . 1 . . .
5 . . . . . 9 . .
. 3 . 9 . . . . 7
. . 1 . . 8 6 . .

Figure 4. The hardest Sudoku 9      9.   There are 113,072 updates in our program.

A Sudoku  solution  is  a  special  case  of  a  gerechte  design  (Bailey  et  al.,  2008)  used  in 
agricultural  experiments.  The  existence  of  k^2   k^2  Sudoku  squares  for  any  positive 
integer k was proved by Herzberg and Murty (2007). Is also possible to construct k^2  k^2 
Sudoku squares with distinct entries on each of the two diagonals for any k (Keedwell, 2007; 
Akman, 2008).

7. Conclusions
In this paper, we presented Python implementation of Algorithm X solving the exact cover 
problem. It has less than one hundred lines, counting comments. The program can be used to 
solve any medium size problem that can be formulated as the exact cover problem. It can 
handle the cases without solutions or with multiple solutions.

The program was used to solve some puzzles, to generate Latin squares or Sudoku boards. 
The  problems  can  be  analysed  according  to  different  criteria:  the  incident  matrix  size, 
number  of  1  in  a  row,  number  of  solutions,  or  a  number  of  updates  on  any  level  of 
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backtracking. The number of 1 in a row of the incident matrix can be constant (3 for Latin 
square;  4 for Sudoku) or changing (5 and 6 for pentomino with tetromino; 4, 5 or 6 for 
Sudoku with distinct entries on the two diagonals).

The  total  number  of  updates  (and  computing  time)  strongly  depends  on  the  rules  for 
choosing  an  uncovered  column.  The  problem  is  how to  limit  a  search  tree  during  the 
backtracking. In our program the column with the minimum number of rows is taken. It is 
important that the column selection should be done efficiently. Sometimes there are problem-
specific hints how to choose a column. In the case of the N queens problem, it is better to 
place queens near the middle of the board first (Knuth, 2000).

A backtrack program usually spends most of its time on only a few levels of the search tree 
(Knuth, 2000). In the case of normalized Latin squares, the sumarized number of updates on 
the corresponding levels is shown in Figure 5. On increasing the table size, the number of 
updates on the higher levels is increasing.

The presented implementation of Algorithm X can be easily extended to the case of "at-
most-one" constraints. We hope that the presented program will be used for teaching or just 
for fun.

Figure 5. The sumarized number of updates on different levels of backtracking (percents) in 
the case of normalized Latin squares. Results for tables from 2  2 to 7  7 are shown.
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