RESEARCH ARTICLE

PRELIMINARY PHARMACOGNOSTICAL AND PHYTOCHEMICAL EVALUATION OF AROGYAVARDHINI COMPOUND- AN EMERGING FORMULATED MEDICINE FOR METABOLIC SYNDROME

Padhar Bharatkumar C¹, Dave Alankruta R², Harisha CR³, Shukla VJ⁴

¹Ph.D Scholar, Department of Kayachikitsa, I.P.G.T & R.A, Gujarat Ayurved University Jamnagar, India
²Associate Prof. & I/C Head of Department of Kayachikitsa, I.P.G.T & R.A, Gujarat Ayurved University Jamnagar, India
³Head of Pharmacognosy laboratory, I.P.G.T & R.A, Gujarat Ayurved University Jamnagar, India
⁴Head of Pharmaceutical laboratory, I.P.G.T & R.A, Gujarat Ayurved University Jamnagar, India

*Corresponding Author’s mail: dr.bharat1987@yahoo.in

Received 18 Dec 2015; Review Completed 02 Jan 2016; Accepted 04 Jan 2016, Available online 15 Jan 2016

ABSTRACT

Context: Arogyavardhini Compound is an emerging formulated herbo-mineral formulation for treatment of metabolic syndrome. Metabolic syndrome is group of risk factors like, increased waist circumference, insulin resistance, increased triglycerides, decreased high density lipoproteins and hypertension for coronary artery diseases and type 2 diabetes mellitus. Arogyavardhini compound consist equal quantity of Arogyavardhini Rasa and single bulb garlic powder. Arogyavardhini Rasa having proven anti dyslipidemic and weight reducing effect and Garlic having anti diabetic, antidylyceridemic, antihypertensive effect, the combination called Arogyavardhini Compound has been formulated for management of metabolic syndrome.

Aim: Authentication of raw drug of Arogyavardhini Compound and phytochemical evaluation of finished product.

Materials and methods: Arogyavardhini Compound was evaluated on the basis of powder microscopy and analytical parameters like pH, Ash value, acid insoluble ash, water soluble extract, methanol extract and high performance thin layer chromatography.

Results: Powder microscopy revealed the presence of Annular vessels of Musli, Starch grains of Vachha, Stone cells of Pippali, Stone cells of Chitraka, Oleoresins of Shunthi, etc. Physicochemical parameters such as total Ash value (15.91%), water soluble extract (13.5%), methanol soluble extract (17.2%) were assessed in preliminary physicochemical scanning. HPTLC revealed maximum 09 spots in short wave UV 254 nm & 07 spots were obtained in long wave UV 366 nm.

Conclusion: Pharmacognostical study revealed genuinity of raw drugs. Physico-chemical and HPTLC studies inferred that the formulation meets the minimum quality standards as reported in the API at a preliminary level. The inference from this study may be used as reference standard in the further quality control researches.

Key Words: Arogyavardhini Compound, HPTLC, Pharmacognosy, Physicochemical analysis.

INTRODUCTION

Nature is mother of mankind. It blesses us through various minerals and herbs to live a healthy and wealthy long life. Since ancient times, humanity has depended on the mixture of the plant and mineral resources for food clothing, protection and traditional medicine to cure a number of diseases. Arogyavardhini Compound is an emerging herbo-mineral formulation of thirteen ingredients (Table No.1) formulated for treatment of metabolic syndrome. In Ayurveda metabolic syndrome can be compared with Avaranjanaya Madhumeha, which is condition of excessive accumulation of Meda (Fatty tissues), Kleda and Kaptha leading Aavarana (Obstruction) of Vata resulting in excretion of Ojas (Essence of body tissues) with urine. Drugs of Arogyavardhini Compound like Kaijali (Combination of mercury and sulphur) have Yogavahi (increasing potency of formulation and not altering the pharmacological action of contents in combinations), Tamrabhasma having Lekhan and Sthaulahar properties, Abhraka Bhasma have Pramehahar properties, Lauha Bhasma have Sthaulayahara and Rasayan property, Shilajatu and Guggulu have Lekhan, Rasayan, Pramehahar properties, Triphala have Pramehahara and Rasayan properties, Katuki have Pramehahar, Medahar properties. Lasuna have Rasayan and Avaran har properties. So it can be said...
that overall effect of formulation may be Lekhan, Sthaulyahar, Pramehahar, Avaranhar and Rasayan and thus it will be useful in condition of Avaranjanya Madhumeha also called as metabolic syndrome.

There are several components of Arogyavardhini vati which are known to have hypolipidemic effects, i.e., Picrorhiza kurros, Terminalia chebula, Terminalia bellerica, Emblica officinalis, and Guggulu. Lasuna also possesses anti-hyperlipidemic, anti-diabetic and anti-hypertensive activity. So the combination of Arogyavardhini Rasa and Lasuna may exert significant effect on metabolic syndrome.

Metabolic syndrome is a disorder of energy utilization and storage, diagnosed by a co-occurrence of three out of five of the following medical conditions: abdominal (central) obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides, and low high-density cholesterol (HDL) levels. Metabolic syndrome increases the risk of developing cardiovascular disease, particularly heart failure, and diabetes. Some studies have shown the prevalence in the USA to be an estimated 34% of the adult population and the prevalence increases with age.

During the past decades there has been increasing acceptance and public interest in natural products and therapies in both developing and developed countries. So, we cannot assure drug industries insulation from adulterations and quality decrement. Therefore, quality control for efficacy and safety of herbal products is of main concern. Maintaining the quality standards of the formulation is a challenge. The development of this traditional system of medicine with the perspective of safety, efficacy and quality will help not only to preserve the traditional heritage but also to rationalize the use of the natural products in healthcare. Initial steps in quality standardization of compound formulation is to establish the presence of each ingredient in the finished product, followed by the pharmaceutical analysis. In the present study, Arogyavardhini Compound was subjected to pharmacognostical (powder microscopy), HPTLC, densitogram and pharmaceutical evaluation for various physicochemical parameters in order to prepare a preliminary profile of formulation for future.

MATERIAL AND METHODS

Collection of raw materials: All the raw drug materials were collected from the pharmacy attached with institute. The ingredients and parts used of the drugs are given in table-1.

| Table 1: Ingredients of Arogyavardhini Compound: |
|---|---|---|---|---|
| **Content** | **Latin name** | **Part used** | **Ratio** | **Form** |
| Suda Parada | Terminalia chebula Linn. | Fruit | 2 part | Churna |
| Suddha Gandhaka | Emblica officinalis Linn. | Fruit | 2 part | Churna |
| Loha Bhasma | Terminalia bellirica Roxb. | Fruit | 2 part | Churna |
| Abharaka Bhasma | Commiphora mukul Hook. | Gum | 4 part | Churna |
| Tamra Bhasma | Ricinus communis Linn | Root | 4 part | Churna |
| Haritaki | Picrorhiza kurro Roxb. | Root/Rhizome | 22 part | Churna |
| Katuki | Azadirachta indica A. Juss | Leaves Juice | 50 parts | Churna |
| Single bulb Lasuna | Allium ascalonicum Linn | Bulb | 44 part | Churna |

Pharmacognostical study: Raw drugs were identified and authenticated by the Pharmacognosy laboratory. The identification was carried out based on organoleptic characters of powder (Churna), later pharmacognostical evaluation of the powder (Churna) was carried out. Powder (Churna) was dissolved in small quantity of distilled water, filtered through filter paper, studied under the Corlzeiss trinocular microscope attached with camera, with stain and without stain. The microphotographs were also taken under the microscope.

Method of preparation of Arogyavardhini Compound: Arogyavardhini rasa was prepared by standard method mentioned in Ayurveda. Kaijali (black mercury sulphide, Loha bhasma (incinerated iron) Abhraka Bhasma (incinerated mica), Tamrabhasma (incinerated copper), Haritaki powder, Bibhitaka powder, Amalaki powder, Shuddh Shilajit (Black Bitum), Erandmula, Suddha Guggulu and Katuki powder were weighed accurately. First Kaijali and Bhasma placed in Khalva and mixed properly, then remaining powder added in this mixture and mixed thoroughly. Nimbpatra Svarasa was added till the mixture immersed completely and trituration was carried out till the mixture get semisolid form and dried. Same procedure was followed for second Bhuvana also.

Single bulb Lasuna was collected from green vegetable grocer market of local area. Lasuna was first made into...
paste and then dried in oven at 60 °C temperature for 4-5 days.

Dried paste of Lasuna was made into fine powder and sieved in mesh no.80. The equal quantity of Lasuna powder was mixed well with Arogyavardhini Rasa in mass mixing machine till the homogeneous mixture was obtained.

Pharmaceutical evaluation: Arogyavardhini Compound was analyzed by using qualitative and quantitative parameters at pharmaceutical laboratory. The common parameters mentioned for Churna in Ayurved pharmacopoeia of India and C.C.R.A.S guidelines are total Ash value, pH value, water and methanol soluble extracts. On its base the parameters were selected. Presence of more moisture contents in a sample can create preservative problems of Churna. Hence loss on drying was also selected as one of the parameter.

High performance thin layer chromatography: Methanol extract of Arogyavardhini Compound was spotted on pre-coated silica gel GF CO$_2$$_{34}$ aluminum plate as 5 mm bands, 5 mm apart and 1 cm from the edge of the plates, by means of camag, linomate V sample applicator fitted with a 100 µL Hamilton syringe was used as the mobile phase. After development, densitometry scanning was performed with a camage TLC scanner III reflectance absorbance mode at 254 nm and 366 nm under control of win CATS software (V 1.2.1 manufactured by CAMAGE Switzerland). The slit dimensions were 6.00 x 0.45 mm and the scanning speed was 20 mm per second.

Observations and Results

The initial purpose of the study was to confirm the authenticity of the drugs used in the preparation of Arogyavardhini Compound. For this, coarse powder of all the ingredients was subjected to organoleptic and microscopic evaluation separately to confirm the genuineness of all the raw drugs. Later after the preparation of formulation, pharmacognostical evaluation was carried out.

Organoleptic evaluation: Organoleptic features like color; odor and taste of the Arogyavardhini Compound were recorded and are placed in table no 2.

Table 2: organoleptic characters of Arogyavardhini Compound:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Dark grayish</td>
</tr>
<tr>
<td>Odor</td>
<td>Like garlic odor</td>
</tr>
<tr>
<td>Test</td>
<td>Bitter, astringent</td>
</tr>
<tr>
<td>Consistency</td>
<td>Fine course powder</td>
</tr>
</tbody>
</table>

Microscopic evaluation: Microscopic evaluation was conducted by dissolving powder of Arogyavardhini Compound in the distilled water and studied under microscope for the presence of characteristics of ingredient drugs. The diagnostic characters are Scleroids of Haritaki (Image:01), Parenchyma cells of Lasuna (Image:02), Rhomboidal crystals of Katukai (Image:03), Stone cells with brown contents of Katukai (Image:04), Elongated parenchyma cells of Lasuna (Image:05), Stone cells of Haritaki (Image:06), Pitted scleroid of Bibhitaka (Image:07), Parenchyma cells with prismatic crystals of Lasuna(Image:08), Parenchyma cells with rhomboidal crystals of Katuki(Image:09), Spindle shaped fibers of single bulb Lasuna (Image:10), Silica deposition of Amalaki (Image:11), Mesocarp cells of Amalaki (Image:12), Fragment of annular vessels of Lasuna (Image:13), Simple fibers of Amalaki (Image:14), Trichomes of Bibhitaka (Image:15), Parenchyma cells and brown contents of Erandmula (Image:16), Pitted vessels of Katuki (Image:17), Lignified fibers of Erandmula (Image:18)Simple trichome of Nimbpatra (Image:19) and Tannin contents of Haritaki(Image:20).

Physico-chemical parameters: Physico-chemical parameters of the Churna like loss on drying, pH values were found within the normal range. Methanol and water soluble extractive values were found to be 17.2% and 13.5% respectively. Details is shown in table no.3

Table 3: Physico-chemical analysis of Arogyavardhini Compound

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss on drying at 110 °C</td>
<td>3.00 %</td>
</tr>
<tr>
<td>Ash Value</td>
<td>13.50%</td>
</tr>
<tr>
<td>Acid insoluble Ash</td>
<td>0.077%</td>
</tr>
<tr>
<td>Water soluble extract</td>
<td>26.72%</td>
</tr>
<tr>
<td>Methanol Soluble extract</td>
<td>14.96%</td>
</tr>
<tr>
<td>pH (By pH indicator paper)</td>
<td>6.5</td>
</tr>
</tbody>
</table>

High performance thin layer chromatography:

Densitometry scanning of the HPTLC pattern showed 09 spots at corresponding Rf values 0.01, 0.03, 0.11, 0.16, 0.23, 0.28, 0.37, 0.50, 0.88, in short wave UV 254 nm, and 07 spots at corresponding Rf values 0.01, 0.03, 0.07, 0.11, 0.06, 0.24, 0.36, obtained in long wave UV 366 nm (Table no.4). Though it cannot be possible to identify particular chemical constituent from the spot obtained, the pattern may be used as a reference standard for further quality control researches. (Images: 21–23)
Table 4: Rf Values of Arogyavardhini Compound:

<table>
<thead>
<tr>
<th>Rf Values at 254 nm</th>
<th>Rf Values at 366 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPTLC 0.01, 0.03, 0.11, 0.16, 0.23, 0.28, 0.37, 0.50, 0.88</td>
<td>0.01, 0.03, 0.07, 0.11, 0.06, 0.24, 0.36</td>
</tr>
</tbody>
</table>

DISCUSSION

Powder microscopy of Arogyavardhini Compound revealed the diagnostic characters like Scleroids of Haritaki, Parenchyma cells of Lasuna, Rhomboidal crystals of Katukai, Stone cells with brown contents of Katukai, Pitted parenchyma cells of Lasuna, Stone cells of Haritaki, Pitted scleroid of Bibhitaka, Parenchyma cells with prismatic crystals of Lasuna, Parenchyma cells with rhomboidal crystals of Katukai, Spindle shaped fibers of single bulb Lasuna, Silica deposition of Amalaki, Mesocarp cells of Amalaki, Fragment of annular vessels of Lasuna, Simple fibers of Amalaki, Trichomes of Bibhitaka, Parenchyma cells and brown contents of Erandmula, Pitted vessels of Katuki, Lignified fibers of Erandmula, Simple trichome of Nimbpatra and Tannin contents of Haritaki which authenticate genuineness of the raw drugs of Arogyavardhini Compound.

Taste of Arogyavardhini Compound was Tikta (bitter), because Katuki is in maximum quantity in Arogyavardhini Rasa and having strong bitter taste results in bitterness of formulation. Garlic is in equal quantity of Arogyavardhini Rasa in this formulation may resulted in garlic like odor of formulation.

Moisture contents should be minimum to prevent degradation of product. Excess of water in formulation encourage microbial growth, presence of fungi or insects and deterioration following hydrolysis. Arogyavardhini Compound contains 5.58% w/w moisture, showing that the Churna should be protected.
from humid atmosphere. Ash values are the criteria to judge the identity and purity of crude drugs were total ash, water soluble and acid insoluble ashes are considered. Arogyavardhini Compound contained 15.91% w/w total ash and 0.077% w/w acid insoluble ash. The results revealed that Arogyavardhini Compound is free from unwanted organic compounds and production site was good enough keeping sample free from dust and other solid matters. The 13.5% w/w of water soluble extractives and 17.2% w/w methanol soluble extractives were present in Arogyavardhini Compound indicating that the drug is having good solubility in water.\(^\text{[19]}\)

REFERENCES

17. http://en.wikipedia.org/wiki/Metabolic_syndrome#cite_note-1

In HPTLC study 9 spots at 254 nm and 7 spots at 366 nm were obtained, indicating its possible components of matrix which may possess its therapeutic effect.

CONCLUSION

The ingredients were identified and authenticated pharmacognostically and were used for the preparation. The formulation was subjected to pharmacognostical study reveal genuineness as that all the ingredient microscopical characters were observed. Physico-chemical and HPTLC studies inferred that the formulation meets the minimum quality standards as reported in the API at a preliminary level. The inference from this study may be used as reference standard in the further quality control researches.