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ABSTRACT

Claw-free Graphs and Line Graphs

Yehong Shao

The research of my dissertation is motivated by the conjecture of Thomassen that

every 4-connected line graph is hamiltonian and by the conjecture of Tutte that every

4-edge-connected graph has a no-where-zero 3-flow. Towards the hamiltonian line graph

problem, we proved that every 3-connected N2-locally connected claw-free graph is hamil-

tonian, which was conjectured by Ryjacek in 1990; that every 4-connected line graph of an

almost claw free graph is hamiltonian connected, and that every triangularly connected

claw-free graph G with |E(G)| ≥ 3 is vertex pancyclic. Towards the second conjecture,

we proved that every line graph of a 4-edge-connected graph is Z3-connected.
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Chapter 1

Introduction

We use [1] for terminology and notations not defined here. Let G be a graph. A graph

with at least two vertices is called a nontrivial graph. For an integer k > 0, a k-cycle,

denoted by Ck, is a 2-regular connected graph with k edges; similarly Pk denotes a path

of length k. We use κ(G), κ′(G) to denote the connectivity and the edge-connectivity

of G, respectively. The degree of a vertex v ∈ V (G) and the minimum degree of G

are respectively denoted by dG(x) and δ(G). An edge e = uv is called a pendant edge

if either dG(u) = 1 or dG(v) = 1. For a vertex or an edge subset X of G, G[X] denotes

the subgraph of G induced by X.

For a graph G and for v ∈ V (G), the neighborhood NG(v) denotes the set of all

vertices adjacent to v in G. A vertex v ∈ V (G) is called a locally connected vertex if

G[NG(v)] is connected. A graph G is locally connected if every vertex of G is locally

connected.

A graph G is pancyclic if for each integer k with 3 ≤ k ≤ |V (G)|, G has a k-cycle;

G is vertex pancyclic if for every vertex v ∈ V (G), G has a k-cycle Ck containing v as

a vertex, for each k with 3 ≤ k ≤ |V (G)|.

For a graph G and each i = 0, 1, 2, · · · , we let Di(G) = {v ∈ V (G)|dG(v) = i}. For

H ⊆ G and x ∈ V (G), we let dH(x) = |NH(x)| and if A ⊆ V (G), we let G − A =

1
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G[V (G)− A]. When A = {v}, we use G− v for G− {v}.

For a graph G and a vertex v ∈ V (G), define

EG(v) = {e ∈ E(G) : e is incident with v in G}.

An edge cut X of G is peripheral if for some v ∈ V (G), X = EG(v); and is essential

if each side of G − X has an edge. A graph G is essentially k-edge-connected if

|E(G)| ≥ k + 1 and if for every E0 ⊆ E(G) with |E0| < k, G − E0 has exactly one

component H with E(H) 6= ∅.

Let X ⊆ E(G). The contraction G/X is the graph obtained from G by identifying

the two ends of each edge in X and then deleting the resulting loops. For convenience,

we use G/e for G/{e} and G/∅ = G; and if H is a subgraph of G, we write G/H for

G/E(H). Note that even if G is a simple graph, contracting some edges of G may result

in a graph with multiple edges.

1.1 Line Graphs

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two

vertices in L(G) are linked by k edges if and only if the corresponding edges in G share

exactly k vertices in common. Note that when G is a simple graph, two vertices in L(G)

are adjacent if and only if the corresponding edges in G are adjacent.

Proposition 1.1.1 Let G be a nontrivial simple graph. Then L(G) is complete if and

only if G is a K3 or a K1,n for an integer n ≥ 1.

Proof The line graph L(G) is complete if and only if any two edges in G are adjacent.

If |E(G)| = 1, G = K2 = K1,1; if |E(G)| = 2, G = P2 = K1,2; if |E(G)| = 3, G = K3 or

G = K1,3; if |E(G)| ≥ 4, G = K1,n.

Proposition 1.1.2 (i) The graphs K3 and K1,n do not have essential edge-cuts.
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(ii) Every essential edge cut in G corresponds to a vertex cut in L(G). Moreover, if L(G)

is not complete, then X is a vertex cut in L(G) if and only if the corresponding edge set

is an essential edge cut in G.

Proof (i) It is straightforward by the definition of an essential edge cut.

(ii) Let X be an essential edge cut in G. Since X is essential, G−X has at least two

components each of which has at least one edge. So the set of the corresponding vertices

of X in L(G) is a vertex cut of L(G). Conversely let X ′ be a vertex cut of L(G). If

L(G) is not complete, L(G)−X ′ has at least two components. Then the edge set of the

corresponding edges of X ′ in G is an essential edge cut of G.

The following proposition follows directly from Proposition 1.1.2(ii).

Proposition 1.1.3 If L(G) is k-connected, then G is essentially k-edge-connected. More-

over, when L(G) is not complete, G is essentially k-edge-connected if and only if L(G) is

k-connected.

1.2 Hamiltonian and Hamilton-connected line Graphs

A subgraph H of a graph G is dominating if E(G − V (H)) = ∅. Let O(G) denote the

set of odd degree vertices of G. A graph G is eulerian if O(G) = ∅ and G is connected.

A spanning closed trail of G is also called a spanning eulerian subgraph of G. If a

closed trail C of G satisfies E(G− V (C)) = ∅, then C is called a dominating eulerian

subgraph.

From the following theorem we can see that there is a close relationship between

dominating eulerian subgraphs in G and hamilton cycles in its line graph L(G).

Theorem 1.2.1 (Harary and Nash-Williams, [11]) Let G be a graph with |E(G)| ≥ 3.

Then L(G) is hamiltonian if and only if G has a dominating eulerian subgraph.
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A graph G is hamilton-connected if for u, v ∈ V (G)(u 6= v), there exists a (u, v)-

path containing all vertices of G.

We view a trail of G as a vertex-edge alternating sequence

v0, e1, v1, e2, · · · , ek, vk (1.1)

such that all the ei’s are distinct and such that for each i = 1, 2, · · · , k, ei is incident with

both vi−1 and vi. All the vertices in {v1, v2, · · · , vk−1} are internal vertices of the trail

in (1.1). For edges e′, e′′ ∈ E(G), an (e′, e′′)-trail of G is a trail of G whose first edge is

e′ and whose last edge is e′′. (Thus the trail in (1.1) is an (e1, ek)-trail). A dominating

(e′, e′′)-trail of G is an (e′, e′′)-trail T of G such that every edge of G is incident with an

internal vertex of T ; and a spanning (e′, e′′)-trail of G is a dominating (e′, e′′)-trail T of

G such that V (T ) = V (G).

With a similar argument in the proof of Theorem 1.2.1, one can obtain a theorem for

hamilton-connected line graphs.

Theorem 1.2.2 Let G be a graph with |E(G)| ≥ 3. Then L(G) is hamilton-connected

if and only if for any pair of edges e1, e2 ∈ E(G), G has a dominating (e1, e2)-trail.

1.3 Subdivided graphs

We say that an edge e ∈ E(G) is subdivided when it is replaced by a path of length 2

whose internal vertex, denoted by v(e), has degree 2 in the resulting graph. The process

of taking an edge e and replacing it by that length 2 path is called subdividing e (see

Figure 1.1).

t te

in G

t t tv(e)

in G(e)

Figure 1.1
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For a graph G and edges e′, e′′ ∈ E(G), let G(e′) denote the graph obtained from G by

subdividing e′, and let G(e′, e′′) denote the graph obtained from G by subdividing both

e′ and e′′. Then,

V (G(e′, e′′))− V (G) = {v(e′), v(e′′)}.

Lemma 1.3.1 For a graph G and edges e′, e′′ ∈ E(G), each of the following holds.

(i) if G(e′, e′′) has a spanning (v(e′), v(e′′))-trail, then G has a spanning (e′, e′′)-trail.

(ii) if G(e′, e′′) has a dominating (v(e′), v(e′′))-trail, then G has a dominating (e′, e′′)-

trail.

Proof (i) Let e′ = u1u2, e
′′ = w1w2 and T be a spanning (v(e′), v(e′′))-trail of G(e′, e′′).

Since T is spanning in G(e′, e′′), u1, u2, w2, w2 must be on T . So we can assume that T =

v(e′)u1 · · ·w1v(e′′). Delete v(e′), v(e′′) in T and join u1u2, w1w2 by an edge respectively

and denote the resulting trail by T ′. Then T ′ is a spanning (e′, e′′)-trail of G.

(ii) Let C be a dominating (v(e′), v(e′′))-trail of G(e′, e′′). By the definition of a

dominating (v(e′), v(e′′))-trail, u1, u2, w2, w2 must be on T . So we can construct C ′ from

C the same way as constructing T ′ from T in the proof of (i). Then C ′ is a dominating

(e′, e′′)-trail of G.

1.4 Core graphs

Let G be a graph such that κ(L(G)) ≥ 3 and L(G) is not complete. The core of this

graph G, denoted by G̃, is obtained from G by the following two operations until no

vertices of degree 1 or 2 remain:

Operation 1 recursively delete the vertices of degree 1;

Operation 2 contract exactly one edge xy or yz for each path xyz in G with dG(y) = 2

(see Figure 1.2).
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t ttx y z

in G

t tx z

in G̃

Figure 1.2

Lemma 1.4.1 Let G be a graph, G′ = G−D1(G) and G̃ the core graph of G. If κ(L(G)) ≥
3 and L(G) is not complete, then

(i) G′ is nontrivial and δ(G′) ≥ κ′(G′) ≥ 2, D2(G) = D2(G
′).

(ii) G̃ in nontrivial and δ(G̃) ≥ κ′(G̃) ≥ 3.

(iii) for v ∈ V (G) with dG(v) = 1 or dG(v) = 2, NG(v) ⊆ V (G̃).

(iv) G̃ is well defined.

Proof Let e = uv ∈ E(G) and u ∈ D1(G). Since κ(L(G)) ≥ 3, dG(v) ≥ 4. If dG′(v) =

0, then G = K1,n (for a positive integer n) and so L(G) is complete, contrary to the

assumption; if 1 ≤ dG′(v) ≤ 2, then EG′(v) is an essential dG′(v)-edge-cut of G, contrary

to the assumption that κ(L(G)) ≥ 3. Hence dG′(v) ≥ 3. So G′ is nontrivial.

And we also have δ(G′) ≥ 2. If there exists some v′ ∈ V (G′) such that dG′(v′) = 1,

then there must be at least one pendent edge incident with v′ in G. And so EG′(v′) is an

essential 1-edge-cut of G, contrary to the assumption that κ(L(G)) ≥ 3. Note that every

essential edge cut of G′ is also an essential edge cut of G. So G′ does not have essential

1-edge-cuts. This completes the proof of (i).

Now we show that D2(G) = D2(G
′). If there exists some v′ ∈ V (G′) such that

dG′(v′) = 2 but dG(v′) 6= 2, then there must be at least one pendent edge incident with

v′ in G. Then EG′(v′) is an essential 2-edge-cut of G, contrary to the assumption that

κ(L(G)) ≥ 3.

Suppose that there exists x ∈ V (G′) such that dG′(x) = 2 and NG′(x) = {x1, x2}. As
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D2(G) = D2(G
′), dG(x) = 2. Since κ(L(G)) ≥ 3, dG(x) + dG(x1) ≥ 5 and so dG(x1) ≥ 3.

If dG′(x1) = 2, then there must be at least one pendent edge incident with x1 in G. Then

EG′(x1) is an essential 2-edge-cut of G, contrary to the assumption that κ(L(G)) ≥ 3.

Hence dG′(x1) ≥ 3. Similarly we have dG′(x2) ≥ 3. So G̃ is nontrivial and δ(G̃) ≥ 3 by

the definition of G̃. Note that every essential edge cut of G̃ is also an essential edge cut

of G. So G̃ does not have essential edge-cuts of size less than 3. This completes the proof

of (ii).

From the proofs of (i) and (ii), the proof for (iii) is straightforward.

(iv). By (iii), for v ∈ V (G) with dG(v) ≥ 3, the degree of v will never change when

we do the two operations in the definition of core graphs. So G̃ is unique.

Proposition 1.4.2 Let G be a graph and G̃ the core graph of G.

(i) If G̃ has a spanning eulerian subgraph, then G has a dominating eulerian subgraph.

(ii) If G̃(e′, e′′) has a spanning (v(e′), v(e′′))-trail for any e′, e′′ ∈ E(G̃), then for any

e′, e′′ ∈ E(G), G(e′, e′′) has a dominating (v(e′), v(e′′))-trail.

Proof If G = G̃, there is nothing to prove. Therefore, we assume that G 6= G̃ and

consider the following cases for (i) and (ii) respectively.

(i) Let T be a spanning eulerian subgraph of G̃. By the definition of core graphs,

there are some edges of G̃ which may not be in G and we know each of these edges (say

xz) must be obtained by contracting exactly one edge of some edge xy or yz for some

path xyz in G with dG(y) = 2 (see Figure 1.2). So we can subdivide xz in G̃ (see Figure

1.1). For all these edges we subdivide them in T , so we get T ′ and it is also a spanning

eulerian subgraph of G−D1(G). So T ′ is a dominating eulerian subgraph of G.

(ii) Case 1 For e′, e′′ ∈ E(G), if they are both in E(G̃), then by the assumption,

G̃(e′, e′′) has a spanning (v(e′), v(e′′))-trail T . By Lemma 1.4.1(iii), T can be adjusted to

a dominating (v(e′), v(e′′))-trail in G(e′, e′′).

Case 2 At least one of e′ and e′′ is not in E(G̃).
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Without loss of generality, we can assume first that e′′ is not a pendent edge of G and

if e′′ 6∈ E(G̃), then by the definition of G̃, there must be an edge f ′′ ∈ E(G) such that for

some vertex z of degree 2 in G, EG(z) = {e′′, f ′′}. In this case, by the definition of G̃ we

may contract f ′′ and so we may always assume that e′′ ∈ E(G̃). With this view point,

if e′ is not a pendent edge of G either, then we may assume that e′ ∈ E(G̃). That is, if

neither of e′, e′′ is a pendent edge of G, then we can always assume that they are both in

E(G̃). And this is back to Case 1. So we may assume that e′ is a pendent edge of G.

If e′′ ∈ E(G̃), let h1 ∈ E(G̃) be an edge adjacent to e′ in G and e′ and h1 are both

incident with a vertex v. By the assumption, G̃(h1, e
′′) has a spanning (v(h1), v(e′′))-trail

T ′. Since e′ is a pendent edge adjacent to h1, By Lemma 1.4.1(iii), T ′ can be extended to

a dominating (v(e′), v(e′′))-trail of G(e′, e′′).

If e′′ /∈ E(G̃), then both e′ and e′′ are pendent edges of G. A similar argument

indicates that G(e′, e′′) also has a dominating (v(e′), v(e′′))-trail.

1.5 Claw free graphs

For a graph G, an induced subgraph H isomorphic to K1,3 is called a claw of G, and the

only vertex of degree 3 of H is the center of the claw (see Figure 1.3). A graph G is claw

free if it does not contain a claw.

t
t tt

center

a claw

Figure 1.3



Chapter 2

Hamiltonian claw-free graphs

2.1 Background

A graph G is N2-locally connected if for every vertex v in G, the edges not incident

with v but having at least one end adjacent to v in G induce a connected graph.

The following theorems give the hamiltonicity of locally and N2-locally connected

graphs respectively.

Theorem 2.1.1 (Oberly and Sumner, [21]) Every connected locally connected claw-free

graph on at least three vertices is hamiltonian.

Theorem 2.1.2 (Ryjác̆ek, [22]) Let G be a connected, N2-locally connected claw-free

graph without vertices of degree 1, which does not contain an induced subgraph H isomor-

phic to either G1 or G2(Figure 2.1) such that NG(x) of every vertex x of degree 4 in H is

disconnected. Then G is hamiltonian.

Theorem 2.1.3 (Li, [20]) Let G be a connected, N2-locally connected claw-free graph

with δ(G) ≥ 3, which does not contain an induced subgraph H isomorphic to either G1 or

G2 (Figure 2.1). Then G is vertex pancyclic.

9
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2.2 Main Result

The main purpose of this chapter is to prove the following theorem, conjectured by Ryjác̆ek

in [22].

Theorem 2.2.1 (Lai, Shao and Zhan, [19])Every 3-connected N2-locally connected claw-

free graph is hamiltonian.

In [23], Ryjác̆ek defined the closure cl(G) of a claw-free graph G by recursively completing

the neighborhood of any locally connected vertex of G, as long as this is possible. The

closure cl(G) is a well-defined claw-free graph and its connectivity is at least equal to the

connectivity of G.

In order to prove Theorem 2.2.1, we need the following Theorems 2.2.2, 2.2.3 and

Lemma 2.2.4.

Theorem 2.2.2 (Ryjác̆ek, [23]) Let G be a claw-free graph and cl(G) its closure. Then

(i) there is a triangle-free graph H such that cl(G) is the line graph of H,

(ii) both graphs G and cl(G) have the same circumference.

Theorem 2.2.3 (Lai, [15]) Let G be a 2-connected graph with δ(G) ≥ 3. If every edge

of G is in an m-cycle of G (m ≤ 4), then G has a spanning eulerian subgraph.
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Lemma 2.2.4 Let G be an N2-locally connected graph and let x be a locally connected

vertex of G such that G[NG(x)] is not complete. Let N ′ = {uv : u, v ∈ NG(x), uv 6∈ E(G)}
and let G′ be the graph with vertex set V (G′) = V (G) and with edge set E(G′) = E(G)∪N ′.

Then G′ is N2-locally connected.

The proof of Lemma 2.2.4 Let w ∈ V (G′). If w = x, then N2(w, G′) is con-

nected since NG′(x) is complete. So we may assume that w 6= x. Since G is N2-

locally connected, N2(w, G) is connected. If E(N2(w, G′)) − E(N2(w, G)) = ∅, then

E(N2(w, G′)) = E(N2(w, G)) and N2(w, G′) is connected. Thus we assume that

E(N2(w, G′))− E(N2(w, G)) 6= ∅.

Let e = uv ∈ E(N2(w, G′)) − E(N2(w, G)). Since e = uv ∈ E(N2(w, G′)), we have

w 6∈ {u, v}, and so uv ∈ E(G′). Without loss of generality, we assume that wu ∈ E(G′).

Case 1. uv ∈ E(G).

By e = uv 6∈ E(N2(w,G)), we have wu, wv 6∈ E(G). Since wu ∈ E(G′) by the

assumption, w, u ∈ NG(x). So xu ∈ E(N2(w, G)). Therefore adding a new edge uv to

N2(w, G) does not change its connectivity, and so N2(w,G′) is connected.

Case 2. uv 6∈ E(G).

Since uv ∈ E(G′), we have u, v ∈ NG(x). If w ∈ NG(x), then xu, xv ∈ E(N2(w,G)).

Thus adding a new edge uv to N2(w,G) does not change its connectivity, and so N2(w, G′)

is connected. If w 6∈ NG(x), then we have wu ∈ E(G) since wu ∈ E(G′)(otherwise,

w ∈ NG(x), a contradiction). Thus xu ∈ E(N2(w,G)). So adding a new edge uv to

N2(w, G) does not change its connectivity, and therefore N2(w, G′) is connected.

The proof of Theorem 2.2.1 We can assume that G is not complete. By Theorem

2.2.2(ii), the graph G is hamiltonian if and only if its closure cl(G) is hamiltonian. By

Lemma 2.2.4 and as cl(G) is both 3-connected and claw free, the graph cl(G) is also a

3-connected N2-locally connected claw-free graph. By Theorem 2.2.2, we may assume

that for a triangle free graph H, G = cl(G) = L(H).

Claim Let e = uv ∈ E(H). If e is not a pendant edge, then e is in some 4-cycle of H.
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Proof. Since H is triangle-free, we have NH(u)∩NH(v) = ∅. Let ve ∈ V (G) correspond

to the edge e ∈ E(H) in terms of the line graph. Since e is not a pendant edge and G

is claw free, NG(ve) is the union of two disjoint cliques. Suppose they are L1, L2. Since

G is 3-connected, there exits at least one path w1w2 · · ·wn which is edge disjoint with

G[V (L1) ∪ V (L2) ∪ {ve}] in G − ve with w1 ∈ V (L1), wn ∈ V (L2). Since G is N2-locally

connected, we have that n = 3. Thus vew1w2w3ve is an induced 4-cycle of G, which

corresponds to a 4-cycle in H containing e.

The proof of Theorem 2.2.1, continued. Let H̃ be the core graph of H. Since G

is 3-connected, H̃ is 3-edge-connected. Let B be an arbitrary block of H̃. Since H̃ is

3-edge-connected, δ(B) ≥ 3. By the above Claim, every edge of B lies in a cycle of B of

length at most 4. By Theorem 2.2.3 and since B is 2-connected, B has a spanning eulerian

subgraph. Since every block of H̃ has a spanning eulerian subgraph, H̃ has a spanning

eulerian subgraph. By Proposition 1.4.1(i), H has a dominating eulerian subgraph. By

Theorem 1.2.1, cl(G) is hamiltonian.



Chapter 3

Hamiltonian connected almost claw

free graphs

3.1 Background

In [25], Thomassen conjectured that every 4-connected line graph is hamiltonian, and in

1986, Zhan proved:

Theorem 3.1.1 (Zhan, [27]) If G is a 4-edge-connected graph, then the line graph L(G)

is hamiltonian connected.

In 2001, Kriesell presented a nice result.

Theorem 3.1.2 (Kriesell, [14]) Every 4-connected line graph of a claw free graph is

hamiltonian connected.

Let C4 denote a 4-cycle in K5. The graph K5−E(C4) is called an hourglass. A graph

G is hourglass free if G does not have an induced subgraph isomorphic to K5 −E(C4).

13
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Theorem 3.1.3 (Broersma, Kriesell and Ryjác̆ek, [2]) Every 4-connected hourglass free

line graph is hamiltonian connected.

It is well known that every hamiltonian connected graph with at least 4 vertices must

be 3-connected. In this chapter, we investigate such graphs G that L(G) is hamiltonian

connected if and only if L(G) is 3-connected. Our main result is the following

Theorem 3.1.4 Let G be a connected graph with |V (G)| ≥ 4 and G̃ be the core graph

of G. If every 3-edge-cut of the core G̃ has at least one edge lying in a cycle of length at

most 3 in G̃, then the following statements are equivalent.

(i) L(G) is hamiltonian connected;

(ii) κ(L(G)) ≥ 3.

Theorem 3.1.4 clearly extends Theorems 3.1.1 and 3.1.2. The following corollaries of

Theorem 3.1.4 also extend Theorem 3.1.3 and Theorem 3.1.2 respectively.

Corollary 3.1.5 Let G be a graph with |V (G)| ≥ 4. Suppose that L(G) is hourglass

free in which every 3-cut of L(G) is not an independent set. Then L(G) is hamiltonian-

connected if and only if κ(L(G)) ≥ 3.

A set B ⊂ V (G) is a dominating set if every vertex of G belongs to B or has a

neighbor in B. The size of a minimum dominating set of G will be called dominating

number of G and is denoted by γ(G). If γ(G) ≤ k, then G is k-dominated. A graph G

is almost claw free if the vertices that are centers of claws in G are independent and if

the neighborhoods of the center of each claw in G is 2-dominated. Note that every claw

free graph is an almost claw free graph and there exist almost claw free graphs that are

not claw-free.

Corollary 3.1.6 Every 4-connected line graph of an almost claw free graph is hamiltonian-

connected.

The verification of Corollaries are in Section 3.4.
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3.2 Catlin’s Reduction Method

In this section we introduce Catlin’s reduction method, and provide the mechanism needed

in the proofs. The proofs of the main results are in Section 3. In the last section, we

present some applications of our main results.

A graph G is collapsible if for any even subset X of V (G), G has a spanning connected

subgraph RX of G such that O(RX) = X. Catlin [5] showed that every graph G has a

unique subgraph H each of whose components is a maximal collapsible subgraph of G.

The contraction G/H is the reduction of G. A graph G is reduced if G has no nontrivial

collapsible subgraphs; or equivalently, if G equals the reduction of G. We summarize some

results on Catlin’s reduction method and other related facts below.

Theorem 3.2.1 Let G be a graph and let H be a collapsible subgraph of G. Let vH denote

the vertex onto which H is contracted in G/H. Each of the following holds.

(i) (Catlin, Theorem 3 of [5]) G is collapsible if and only if G/H is collapsible. In

particular, G is collapsible if and only if the reduction of G is K1.

(ii) (Catlin, Theorem 8 of [5]) 2-cycles and 3-cycles are collapsible.

(iii) If G is collapsible, then for any pair of vertices u, v ∈ V (G), G has a spanning (u, v)-

trail.

(iv) For vertices u, v ∈ V (G/H)− {vH}, if G/H has a spanning (u, v)-trail, then G has

a spanning (u, v)-trail.

(v)(Catlin, Theorem 5 of [5])Any subgraph of a reduced graph is reduced.

(vi) If G is collapsible, and if e ∈ E(G), then G/e is also collapsible.

Proof (iii) Let X = {u, v}. Then |X| ≡ 0 (mod 2), and a spanning connected subgraph

RX = X of G with O(RX) = {u, v} is a spanning (u, v)-trail.

(iv) Let Γ′ be a spanning (u, v)-trail of G/H and let

X = {w ∈ V (H) : w is incident with an odd number of edges in Γ′}.

Since vH has even degree in Γ′, |X| ≡ 0 (mod 2). Let R′
X be a spanning connected

subgraph of H with O(R′
X) = X. Then Γ = G[E(Γ′) ∪ E(R′

X)] is a spanning (u, v)-trail

in G.
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(vi) follows by the definition of collapsible graphs.

Let τ(G) denote the maximum number of edge-disjoint spanning trees of G. Catlin

showed the relationship between τ(G) and the edge-connectivity κ′(G). Part (ii) of the

next theorem is an observation made in [4] and in [7].

Theorem 3.2.2 Let G be a graph, H be a subgraph of G, and k > 0 be an integer.

(i) (Catlin, [3]) κ′(G) ≥ 2k if and only if for any edge subset X ⊆ E(G) with |X| ≤ k,

τ(G−X) ≥ k.

(ii) If τ(H) ≥ k and if τ(G/H) ≥ k, then τ(G) ≥ k.

Theorem 3.2.3 (Catlin and Lai, Theorem 4 of [8]) Let G be a graph with τ(G) ≥ 2 and

let e′, e′′ ∈ E(G). Then G has a spanning (e′, e′′)-trail if and only if {e′, e′′} is not an

essential edge cut of G.

We define F (G) be the minimum number of additional edges that must be added to

G such that the resulting graph has two edge-disjoint spanning trees.

Theorem 3.2.4 Let G be a graph.

(i) (Catlin, Han and Lai, Lemma 2.3 of [6]) If for any H ⊂ G with |V (H)| < |V (G)|, H

is reduced, and if |V (G)| ≥ 3, then F (G) = 2|V (G)| − |E(G)| − 2.

(ii) (Catlin, Theorem 7 of [5]) If F (G) ≤ 1, then G is collapsible if and only if κ′(G) ≥ 2.

(iii) (Catlin, Han and Lai, Theorem 1.3 of [6]) Let G be a connected graph and t an

integer. If F (G) ≤ 2, then G is collapsible if and only if G cannot be contracted to a

member in {K2} ∪ {K2,t : t ≥ 1}.

3.3 Proof of Theorem 3.1.4

We start with a few more lemmas.
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Lemma 3.3.1 Let G be a graph, v, v1, u1, u2 ∈ V (G) be such that dG(v1) = 3 and

EG(v1) = {v1v, v1u1, v1u2}, and let X ′ = {u1u2, u1vi, u2vi : 1 ≤ i ≤ k} be an edge subset

of G (depicted in Figure 3.1) and W = G[X ′]. If τ((G− vv1)/W ) ≥ 2, then τ(G) ≥ 2.

�
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r
r

r
r

v1

u1 u2

v

(a): k = 1

�
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�
��
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@

@
@@

HHH
HHH

HHH

PPPPPPPPPPPPPP

r
r r

r r rr r r

Figure 3.1 W with edge vv1

(b): k ≥ 2

v1 v2 vk

u1 u2

v

Proof Let H = (G−vv1)/W . For k = 1 (see Figure 3.1(a)), let T ′
1, T

′
2 be two edge-disjoint

spanning trees of H. Then T1 = G[E(T ′
1)∪ {vv1, u1u2}] and T2 = G[E(T ′

2)∪ {v1u1, v1u2}]
are two edge-disjoint spanning trees of G.

For k ≥ 2 (see Figure 3.1(b)), let

L = W/{u1u2, u1v1, u2v1}.

Then every edge of L is in a parallel class of two edges, and so τ(L) ≥ 2. Since H =

(G − vv1)/W = ((G − vv1)/{u1u2, u1v1, u2v1})/L, and since τ(H) ≥ 2, it follows by

Theorem 3.2.2(ii) that τ((G− vv1)/{u1u2, u1v1, u2v1}) ≥ 2, and so τ(G) ≥ 2 by what we

have just proved the case when k = 1.

Lemma 3.3.2 Let G be a 3-edge-connected graph, G1 and G2 be connected subgraphs of

G such that G = G1 ∪G2, |E(G2)| ≥ 1 and |V (G1) ∩ V (G2)| ≤ 2. If for every 3-edge-cut

X of G with X ⊆ E(G2), X has at least one edge lying in a cycle of length at most 3 in

G2, then either G has a peripheral 3-edge-cut or each of the following holds.

(i) G2(e) is not reduced for any e ∈ E(G2).

(ii) G2 is not reduced.

Proof If for an edge e ∈ E(G2), G2(e) is not reduced, then G2 has a nontrivial subgraph

H such that either e /∈ H and H is collapsible or H(e) is collapsible. By Theorem 3.2.1(vi),
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G2 has a nontrivial collapsible subgraph, and so G2 is not reduced. Therefore it suffices

to prove (i).

Suppose that all 3-edge-cuts of G are non-peripheral and G2(e) is reduced for some

e ∈ E(G2).

Assume first that V (G1)∩V (G2) = {v}, then dG2(e)(u) ≥ 4 for u ∈ V (G2(e))−{v(e), v}
by the assumption. As G2(e) is reduced, it follows by Theorem 3.2.4(i) that F (G2(e)) =

2|V (G2(e))| − |E(G2(e))| − 2 ≤ 2|V (G2(e))| − 4(|V (G2(e))|−2)+3+2
2

− 2 = −1
2
≤ 0. So G2(e)

is not reduced by Theorem 3.2.4(ii), contrary to the assumption that G2(e) is reduced.

Now assume that V (G1) ∩ V (G2) = {v1, v2}, then dG2(e)(v) ≥ 4 for u ∈ V (G2(e)) −
{v(e), v1, v2} and dG2(e)(v1) + dG2(e)(v2) ≥ 3. As G2(e) is reduced, it follows by Theorem

3.2.4(i) that F (G2(e)) = 2|V (G2(e))|−|E(G2(e))|−2 ≤ 2|V (G2(e))|− 4(|V (G2(e))|−3)+3+2
2

−
2 = 3

2
. So G2(e) is not reduced by Theorem 3.2.4(ii), contrary to the assumption that

G2(e) is reduced.

Lemma 3.3.3 If G is a graph with τ(G) ≥ 2 and κ′(G) ≥ 3, then G(e′, e′′) is collapsible

for any e′, e′′ ∈ E(G).

Proof Since τ(G) ≥ 2, F (G(e′, e′′)) ≤ 2. By Theorem 3.2.4(iii), G(e′, e′′) is either

collapsible, or the reduction of G(e′, e′′) is a K2 or a K2,t for some integer t ≥ 1. Since

κ′(G) ≥ 3, κ′(G(e′, e′′)) ≥ 2 and G(e′, e′′) has at most two 2-edge-cuts. Thus G(e′, e′′)

can not be contracted to K2 or K2,t for some integer t ≥ 1, and so G(e′, e′′) must be

collapsible.

Theorem 3.3.4 Let G be a graph with κ′(G) ≥ 3. If every 3-edge-cut of G has at

least one edge in a 2-cycle or 3-cycle of G, then the graph G(e′, e′′) is collapsible for any

e′, e′′ ∈ E(G).

Proof By contradiction, we assume that

G is a counterexample to Theorem 3.3.4 with |V (G)| minimized. (3.1)
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Thus G satisfies the hypotheses of Theorem 3.3.4 but for some e′, e′′ ∈ E(G), G(e′, e′′) is

not collapsible.

Let G1 be the reduction of G(e′, e′′). The following observations (I), (II) and (III)

follow from the assumption that κ′(G) ≥ 3, from (2) and Theorem 3.2.1(i), and from the

definition of G(e′, e′′).

(I) The only edge cuts of size 2 in G(e′, e′′) are EG(e′,e′′)(v(e′)) and EG(e′,e′′)(v(e′′)).

(II) G1 6= K1 and so G1 is not collapsible.

(III) For every 3-edge-cut X1 of G1, there is a 3-edge-cut X of G such that

X =


(X1 − f ′) ∪ e′ : if X1 contains f ′ ∈ EG1(v(e′)) and EG1(v(e′′)) ∩X1 = ∅

(X1 − f ′′) ∪ e′′ : if X1 contains f ′′ ∈ EG1(v(e′′)) and EG1(v(e′)) ∩X1 = ∅
(X1 − {f ′, f ′′}) ∪ {e′, e′′} : if X1 contains f ′ ∈ EG1(v(e′)) and f ′′ ∈ EG1(v(e′′))

X1 : otherwise

In any case, we shall say that X is an edge-cut in G corresponding to the edge-cut

X1 in G1, or vice versa.

Let X be a 3-edge-cut of G such that at least one edge of X lies in a cycle CX of G

with |E(CX)| ≤ 3. This CX is called a short cycle related to the edge-cut X. If

e′ ∈ E(CX), then call X an e′-cut. Similarly, we define an e′′-cut.

Since G1 is the reduction of G(e′, e′′), we have either G1 = G(e′, e′′) or G1 6= G(e′, e′′).

Next we show that neither of these two cases is possible.

Case 1 G1 6= G(e′, e′′).

Then by the definition of reduction, G1 = G(e′, e′′)/H for a nontrivial subgraph H of

G(e′, e′′) each of whose components is a maximal collapsible subgraph of G(e′, e′′).

If v(e′), v(e′′) /∈ V (H), then v(e′), v(e′′) ∈ V (G1) and EG1(v(e′))∪EG1(v(e′′)) ⊆ E(G1).

Let G′
1 = (G1 − {v(e′), v(e′′)}) ∪ {e′, e′′}. Then G′

1 = G/H satisfies the conditions of

Theorem 3.3.4 with |V (G′
1)| < |V (G)|. By (3), G1 = G′

1(e
′, e′′) must be collapsible,

contrary to (II).
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If v(e′), v(e′′) ∈ V (H), then EG1(v(e′))∪EG1(v(e′′)) ⊆ E(H), as collapsible graphs are

2-edge-connected. Thus e′, e′′ /∈ E(G1) = E(G(e′, e′′))− E(H) and so by (I), κ′(G1) ≥ 3.

If G1 has a 3-edge-cut X, then as X ∩ E(H) = ∅ and by (III), X must be a 3-edge-cut

of G. It follows by the assumption of Theorem 3.3.4 that X has a related short cycle CX

in G with |E(CX)| ≤ 3 and with |E(CX) ∩ X| = 2. Since CX is a collapsible subgraph

by Theorem 3.2.1(ii), CX ⊆ H, and so X ∩E(H) 6= ∅, a contradiction. Thus κ′(G1) ≥ 4,

and so by Theorem 3.2.2(i) and 2.7(iii), G1 is collapsible, contrary to (II).

Therefore we assume without loss of generality that v(e′) /∈ V (H) and v(e′′) ∈ V (H).

Let H1 = (H − v(e′′))∪ e′′. Thus each component of H1 is collapsible by the definition of

collapsible graphs. Since e′ is not in H1,

G1 = G(e′, e′′)/H = (G/H1)(e
′) and κ′(G/H1) ≥ 3 . (3.2)

Claim 1 Each of the following holds for the graph G/H1.

(i). The graph G/H1 must have 3-edge-cuts.

(ii). Every 3-edge-cut of G/H1 is an e′-cut of G/H1.

(iii). One of 3-edge-cuts of G/H1 is peripheral.

Proof of Claim 1 (i). If G/H1 has no 3-edge-cuts, then by (3), κ′(G/H1) ≥ 4. By

Theorem 3.2.2(i), F ((G/H1)(e
′)) ≤ 1, and so by Theorem 3.2.4(ii), G1 = (G/H1)(e

′) is

collapsible, contrary to (II).

(ii). Let X be a 3-edge-cut of G/H1. Since G1 = (G/H1)(e
′), G1 has a 3-edge-cut X1

corresponding to X. If X is not an e′-cut, then CX1 = CX is a collapsible subgraph of G1

by Theorem 3.2.1(ii), contrary to the assumption that G1 is reduced.
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Figure 3.2 G/H1

(iii). Now we assume that all 3-edge-cuts are non-peripheral and let X be a non-peripheral

e′-cut of G/H1. Let W1, W2 denote the two nontrivial components of (G/H1) − X(see

Figure 3.2). Since X is also a 3-edge-cut of G, some edge of X lies in a short cycle CX

of G with |E(CX)| ≤ 3, and so two edges in X must be adjacent. Thus, without loss

of generality, we may assume that |V ((G/H1)[X]) ∩ V (W2)| ≤ 2 and that e′ /∈ E(W2).

As G1 is reduced and G1 = (G/H1)(e
′), W2, being a subgraph of a reduced graph, is

also reduced by Theorem 3.2.1(v). Apply Lemma 3.3.2 with G and G2 in Lemma 3.3.2

replaced by G/H1 and W2 respectively to conclude that W2 is not reduced, contrary to

the assumption that W2 is reduced.

This completes the proof for Claim 1.

By Claim 1(i), (ii) and (iii), G/H1 must have a peripheral 3-edge-cut which is also an

e′-cut, i.e., whose related short cycle contains e′. Then G/H1 has a subgraph S isomorphic

to the graph in Figure 3.1(a), where EG/H1(v1) is a peripheral 3-edge-cut in G/H1 and

e′ = u1u2.

Let M be a maximal edge subset of G/H1 such that E(S)− vv1 ⊆ M and such that

V ((G/H1)[M ])− {u1, u2} equals the set of all the vertices adjacent to both u1 and u2 in

G/H1. By Claim 1(ii), the related short cycle of each 3-edge-cut contains e′. And so the

subgraph W = G[M ∪ vv1] is isomorphic to the graph in Figure 3.1(b). By Claim 1(ii),

the related short cycle of any 3-edge-cut of G/H1 must be contained in (G/H1)[M ]. If
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(G/H1)/M = K1, then G/H1 is spanned by M . Since M is obtained from a K2,t(t ≥ 2)

by adding one edge joining two vertices of degree t and e′ joins a vertex of degree 2 to

another vertex in this K2,t, τ(G/H1) ≥ 2 and so G1 = (G/H1)(e
′) is collapsible by Lemma

3.3.3 and Theorem 3.2.1(vi), contrary to (II).

Therefore we may assume that (G/H1)/M is a nontrivial 4-edge-connected graph. By

Theorem 3.2.2(i), τ((G/H1 − vv1)/M) ≥ 2. By Lemma 3.3.1, τ(G/H1) ≥ 2, and so by

Theorem 3.2.4(i), F [(G/H1)(e
′)] ≤ 1. Thus by Theorem 3.2.4(ii), G1 = (G/H1)(e

′) is

collapsible, contrary to (II). This contradiction precludes Case 1.

Case 2 G1 = G(e′, e′′).

Claim 2 Each of the following must hold.

(i). The graph G has at least three 3-edge-cuts.

(ii). Every 3-edge-cut of G is either an e′-cut or an e′′-cut of G.

(iii). One of the 3-edge-cuts of G is peripheral.

Proof of Claim 2 (i). As κ′(G) ≥ 3, if G has at most two 3-edge-cuts, then we can add

two new edges f1, f2 to G such that κ′(G + {f1, f2}) ≥ 4. It follows by Theorem 3.2.2(i)

that τ(G) ≥ 2. Thus by Lemma 3.3.3, G(e′, e′′) is collapsible, contrary to (II).

(ii). Let X be a 3-edge-cut of G and suppose that the short cycle CX related to X

does not contain e′ or e′′. Since G1 = G(e′, e′′), G1 has a 3-edge-cut X1 corresponding

to X. Then by Theorem 3.2.1(ii), CX is a collapsible subgraph of G1, contrary to the

assumption that G1 is reduced.

(iii). Assume that all 3-edge-cuts are non-peripheral. By (i) and (ii), we can assume

that G has e′-cuts and let X be an e′-cut of G.

Let W1, W2 denote the two nontrivial components of G − X. Since X is a 3-edge-

cut of G, some edge of X lies in a short cycle CX of G with |E(CX)| ≤ 3, and so two

edges in X must be adjacent. Thus, without loss of generality, we may assume that

|V (G[X]) ∩ V (W2)| ≤ 2 and e′ /∈ E(W2).
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Case 1 of Claim 2(iii) e′′ /∈ E(W2). As G1 = G(e′, e′′) is reduced, W2 which does not

contain e′′ and so is a subgraph of the reduced graph G1, is also reduced by Theorem

3.2.1(v). Apply Lemma 3.3.2 with G2 in Lemma 3.3.2 replaced by W2 to conclude that

W2 is not reduced, contrary to the assumption that W2 is reduced.

Case 2 of Claim 2(iii) e′′ ∈ E(W2). As G1 = G(e′, e′′) is reduced, W2(e
′′) which is a

subgraph of the reduced graph G1, is also reduced by Theorem 3.2.1(v). Apply Lemma

3.3.2 with G2, e in Lemma 3.3.2 replaced by W2, e
′′ respectively to conclude that W2(e

′′)

is not reduced, contrary to the assumption that W2(e
′′) is reduced.

This completes the proof for Claim 2.

By Claim 2(i), (ii) and (iii), we may assume that G has a peripheral e′-cut. Then G

has a subgraph S1 isomorphic to the graph in Figure 3.1(a), where EG(v1) is a peripheral

3-edge-cut in G and e′ = u1u2.

Let M1 be a maximal edge subset of G such that E(S1) − vv1 ⊆ M1 and such that

V (G[M1]) − {u1, u2} equals the set of all the vertices adjacent to both u1 and u2 in G.

And so the subgraph W ′ = G[M1∪vv1] is isomorphic to the graph in Figure 3.1(b). With

z 7→ z′ being a graph isomorphism from W in Figure 3.1(b) to W ′, we may assume that

E(W ′) = M1 ∪ {v′v′1} = {u′
1u

′
2, u

′
1v

′
i, u

′
2v

′
i : 1 ≤ i ≤ k} ∪ {v′v′1} and e′ = u′

1u
′
2.

Let v′v′1 = e1. By Claim 2(ii), the related short cycle of any e′-cut of G must be

contained in G[M1]. Define G11 = G/M1. If G11 = K1, then G is spanned by M1. Since

M1 is obtained from a K2,t(t ≥ 2) by adding one edge joining two vertices of degree t

and since e1 joins a vertex of degree 2 to another vertex in this K2,t, τ(G) ≥ 2 and so

G1 = G(e′, e′′) is collapsible by Lemma 3.3.3, contrary to (II). Thus we may assume that

G11 is a nontrivial graph with κ′(G11) ≥ 3.

Claim 3 (i) The graph G11 must have 3-edge-cuts.

(ii) Every 3-edge-cut of G11 must be an e′′-cut of G.

(iii) G11 has a peripheral e′′-cut.
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Proof of Claim 3 (i) If κ′(G11) ≥ 4, then by Theorem 3.2.2(i), τ(G11− e1) = τ(G/M ′
1−

e1) ≥ 2 and so by Lemma 3.3.1, τ(G) ≥ 2. It follows by Lemma 3.3.3 that G(e′, e′′) is

collapsible, contrary to (II).

(ii) As any edge-cut of G11 is also an edge-cut of G and e′ /∈ E(G11), by Claim 2(ii),

every 3-edge-cut of G11 must be an e′′-cut of G.

(iii) By a similar argument as in the proof of Claim 1(iii), G11 has a peripheral e′′-cut.

This completes the proof of Claim 3.

By Claim 3(i), (ii) and (iii), we may assume that G11 has a peripheral e′′-cut. Then

G11 has a subgraph S2 isomorphic to the graph in Figure 3.1(a), where EG11(v1) is a

peripheral 3-edge-cut in G11 and e′′ = u1u2.

Let M2 be a maximal edge subset of G such that E(S2) − vv1 ⊆ M2 and such that

V (G[M2])− {u1, u2} equals the set of all the vertices adjacent to both u1 and u2 in G11.

By Claim 3(ii), the related short cycle of each 3-edge-cut must contain e′′. And so the

subgraph W ′′ = G[M2 ∪ vv1] is isomorphic to the graph in Figure 3.1(b). With z 7→ z′′

being a graph isomorphism from W in Figure 3.1(b) to W ′′, we may assume that

E(W ′′) = M2 ∪ {v′′v′′1} = {u′′
1u

′′
2, u

′′
1v

′′
i , u

′′
2v

′′
i : 1 ≤ i ≤ k} ∪ {v′′v′′1} and e′′ = u′′

1u
′′
2.

Let v′′v′′1 = e2 and L = G11/M2 = G/(M1∪M2). Then by Claim 3(ii) and as W ′′ = G11[M2]

is maximal, we must have κ′(L) ≥ 4 (similar argument as κ′(G11)). Since

L− {e1, e2} = G11/M2 − {e1, e2} = (G11 − e1)− e2)/M2,

it follows by Theorem 3.2.2(i) that τ(L− {e1, e2}) ≥ 2.

By applying Lemma 3.3.1 to e2 and M2, τ(G11−e1) ≥ 2. Since G11−e1 = (G−e1)/M1,

by applying Lemma 3.3.1 again to e1 and M1, τ(G) ≥ 2. Thus by Lemma 3.3.3, G(e′, e′′)

must be collapsible, contrary to (II). This contradiction precludes Case 2.

Proof of Theorem 3.1.4 Since Theorem 3.1.4(i) trivially implies Theorem 3.1.4(ii), it

suffices to show that Theorem 3.1.4(ii) implies Theorem 3.1.4(i). Assume that L(G) is

not complete. By Lemma 1.4.1(ii), κ′(G̃) ≥ 3. By Theorem 3.3.4 and Theorem 3.2.1(iii),
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G̃(e′, e′′) has a spanning (v(e′), v(e′′))-trail for any e′, e′′ ∈ E(G̃). Then by Proposition

1.4.2(ii), G(e′, e′′) has a dominating (v(e′), v(e′′))-trail for any e′, e′′ ∈ E(G). By Proposi-

tion 1.2.2, Theorem 3.1.4 is proved.

3.4 Applications

Let F denote the set of connected graphs such that a graph G ∈ F if and only if each of

the following holds:

(F1) If X is an edge cut of G with |X| ≤ 3, then there exists a vertex v ∈ V (G) of

degree |X| such that X = EG(v), and

(F2) for every v ∈ V (G) of degree 3, v lies in a k-cycle Cv of G, where 2 ≤ k ≤ 3.

The next corollary follows from Theorem 3.3.4 and Theorem 3.2.1(iii).

Corollary 3.4.1 ([18]) Let G ∈ F . If κ′(G) ≥ 3, then for every pair of edges e′, e′′ ∈
E(G), then

(i). G(e′, e′′) is collapsible.

(ii). G(e′, e′′) has a spanning (v(e′), v(e′′))-trail.

For convenience, we restate Corollaries 3.1.5 and 3.1.6 below.

Corollary 3.4.2 Let G be a graph with |V (G)| ≥ 4. Suppose that L(G) is hourglass

free in which every 3-cut of L(G) is not an independent set. Then L(G) is hamiltonian-

connected if and only if κ(L(G)) ≥ 3.

Proof If suffices to show that if κ(L(G)) ≥ 3, then L(G) is hamiltonian-connected. We

may assume that L(G) is not a complete graph.

Let G̃ denote the core of G. As L(G) is not a complete graph and κ(L(G)) ≥ 3, by

Lemma 1.4.1(ii), G̃ is nontrivial and κ′(G̃) ≥ 3. By Theorem 3.1.4, it suffices to show that
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every 3-edge-cut of G̃ has an edge lying in a cycle of length at most 3. Let X = {e0, e1, e2}
be a 3-edge-cut of G̃. By the definition of G̃, we may assume that X ⊆ E(G) and so X

is an edge cut of G. Assume first that X is non-peripheral. Since every 3-cut of L(G) is

not an independent set, two of the corresponding vertices e0, e1, e2 in L(G) are adjacent.

We may assume that e1, e2 are adjacent in L(G) and so are in G. By the definition of G̃,

e1, e2 are adjacent in G̃(see Figure 3.3). Since κ′(G̃) ≥ 3, there is some edge e3 incident

with v and there are some edges e4, e5 incident with v2 in G̃(see Figure 3.3(a)). By the

definition of G̃, we may assume that e3, e4, e5 ∈ E(G) and e3 is incident with v and e4, e5

are incident with v2 in G.

Case 1 At least one of {e1, e2} is not subdivided in G. Without loss of generality we

assume that e2 is not subdivided in G (see Figure 3.3(a)). Since L(G) is hourglass free

and without loss of generality, we may assume that e4 is adjacent to e1 in L(G). Thus e4

is either incident with v or v1 in G. In any case, e2 is in a cycle of length at most 3 in G,

so is in G̃.

Case 2 Both e1, e2 are subdivided in G (see Figure 3.3(c)), then {e0, e1, e2} is a 3-

edge-cut of G and so the corresponding vertex set in L(G) is a 3-cut of L(G). If v1 = v2,

then e1 lies in a 2-cycle in G̃; otherwise we may assume without loss of generality that e0

is incident with v1 and X ′′ = {e0, e
′
1, e2} is a 3-edge-cut of G and so the corresponding

vertex set in L(G) is a 3-cut of L(G). Since X ′′ is a 3-edge-cut of G, we must have that

v2 = v1. In either case one edge of X lies in a cycle of length at most 3 in G̃.

Next we assume that X ′ = {e1, e2, e3} is a peripheral edge cut in G̃. Then there

exists v ∈ V (G̃) such that EG̃ = {e1, e2, e3} and ei = vvi, i = 1, 2, 3. Since δ(G̃) ≥ 3

(Lemma 1.4.1(ii)), we may assume that vi(i = 1, 2, 3) is incident with ei1 and ei2 in

E(G̃) − {e1, e2, e3}. If at least one of {e1, e2, e3} is not subdivided in G, with the same

argument as in Case 1, we can see that an edge in X ′ must be lying in a cycle of length

at most 3 in G̃. If each of {e1, e2, e3} is subdivided in G, it’s easy to see that X ′ has one

edge lying in a cycle of length 2 in G̃.
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Figure 3.3

Corollary 3.4.3 Every 4-connected line graph of an almost claw free graph is hamiltonian-

connected.

Proof Let G be an almost claw free graph such that L(G) is 4-connected. By Theorem

3.1.4, it suffices to show that every 3-edge-cut of G̃ must have an edge lying in a cycle

of length at most 3. Since L(G) is 4-connected, G has no essential 3-edge-cuts. By the

definition of G̃, G̃ has no essential 3-edge-cuts either. Let X be a peripheral 3-edge-cut

of G̃. If there are no edges of X in a 2-cycle or 3-cycle of G̃, then G̃[X] must be a claw of

G̃. Let v ∈ V (G̃) be the center of the claw X. By the definition of G̃, G̃[X] gives rise to

a claw with center v in G. Since v is of degree 3 in G, the neighborhood of v in G can not

be 2-dominated. So there must be at least one edge of X lying in a 2-cycle or a 3-cycle

of G̃. By Theorem 3.1.4, L(G) is hamiltonian connected.



Chapter 4

Triangularly connected claw-free

graph

4.1 Introduction

Graphs considered in this chapter are finite and simple graphs. For subgraphs G1 and

G2 of a graph G, G14G2 is the subgraph of G induced by the edge set E(G1)∪E(G2)−
(E(G1) ∩ E(G2)).

Theorem 4.1.1 (D. J. Oberly and D. P. Sumner [21]) Every connected, locally connected

claw-free graph is hamiltonian.

Theorem 4.1.2 (L. Clark [10], R. H. Shi [24], and C.-Q. Zhang [28]) Every connected,

locally connected claw-free graph is vertex pancyclic.

A graph G is triangularly connected if for every pair of edges e1, e2 ∈ E(G),

G has a sequence of 3-cycles C1, C2, · · · , Cl such that e1 ∈ C1, e2 ∈ Cl and such that

E(Ci) ∩ E(Ci+1) 6= ∅, (1 ≤ i ≤ l − 1). The following proposition follows from definitions

28
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immediately.

Proposition 4.1.3 Every connected, locally connected graph is triangularly connected.

One can easily construct graphs that are triangularly connected but not locally

connected. For example, let k > 3 be an integer, and let H1, H2, · · · , Hk be com-

plete graphs of order at least 4. Obtain a graph G by the following process: for each

i = 1, 2, ..., k − 1, identify an edge e′i in Hi with an edge e′′i in Hi+1 to form an edge ei

such that Hi ∩ Hi+1 = G[{ei}] ∼= K2 and such that all these ei’s form a matching of G,

and identify a vertex v1 in H1 with a vertex vk in Hk to form a vertex v in G such that

V (H1)∩V (Hk) = {v} and such that v is not incident with any of the edges e1, e2, · · · , ek−1.

Then G is triangularly connected, but N(v) does not induce a connected subgraph of G.

We present another view point for triangularly connectedness. Let C3(G) denote the

graph whose vertex set is the set of all 3-cycles of G. For two 3-cycles C1 and C2 of G,

If C1 and C2 have common edge in G, then C1 is adjacent to C2 in C3(G). Again by

definitions, we have

Proposition 4.1.4 A graph G is triangularly connected if and only if both of the following

hold:

(i) ∀e ∈ E(G), ∃Ce ∈ V (C3(G)) such that e ∈ E(Ce), and

(ii) the graph C3(G) is connected.

In view of Proposition 4.1.3, our main result of this paper, as stated below in Theorem

1.5, extends Theorems 4.1.1 and 4.1.2.

Theorem 4.1.5 Every triangularly connected claw-free graph G with |E(G)| ≥ 3 is vertex

pancyclic.
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4.2 Proof of the Theorem 4.1.5

By the definition of triangularly connectedness, any triangularly connected graph must

also be connected. Let v ∈ V (G) be a vertex. Since G is connected and since |E(G)| ≥ 3,

G must have two distinct edges, one of which is incident with v. By the assumption that

G is triangularly connected, G has a 3-cycle. Let n = |V (G)|.

Suppose that for some integer r ≥ 3, and for each l with 3 ≤ l ≤ r, G has an l-cycle

containing v. If r = n, then done. Therefore we assume that r < n. Let C be an r-cycle

containing v. It suffices to show that G has an (r + 1)-cycle C ′ containing v.

Arguing by contradiction, we assume that

G does not have an (r + 1)-cycle C ′ containing v. (4.1)

Since r < n and since G is connected,

∂C = {e ∈ E(G) : e is incident with exactly one vertex in V (C)} 6= ∅. (4.2)

Denote C = v1v2 · · · vrv1, where the subscripts are integers modulo r. We shall prove

Theorem 4.1.5 by verifying each of the following claims.

(2.1) For each e = viu ∈ ∂C, where u ∈ V (G) − V (C). Then vi−1vi+1 ∈ E(G) and

uvi−1, uvi+1 6∈ E(G).

Proof: If uvi−1 ∈ E(G) or uvi+1 ∈ E(G), then C4G[{u, vi−1, vi}] or C4G[{u, vi+1, vi}],
respectively, is an (r +1)-cycle containing v, contrary to statement (4.1). Therefore, both

uvi−1 6∈ E(G) and uvi+1 6∈ E(G). But G[{u, vi−1, vi, vi+1}] 6∼= K1,3, and so we must have

vi−1vi+1 ∈ E(G).
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Figure 4.1: Proof of (2.1)
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By Proposition 4.1.4(i), there exist 3-cycles C1, C2, · · · , Cm of G such that E(C) ⊆
E(C1)∪ · · ·∪E(Cm) and such that m is minimized with this property. By the minimality

of m,

E(Ci) ∩ E(C) 6= ∅, 1 ≤ i ≤ m. (4.3)

For each e ∈ ∂C, by Proposition 4.1.4(i), G has a 3-cycle C0 such that e ∈ E(C0),

and C3(G) has a shortest path P in C3(G) from C0 to the vertex set {C1, C2, · · · , Cm}.
By Claim (2.1), the length of P is at least one. Without the loss of generality, we may

assume P = Z0Z1 · · ·Zk where k ≥ 1, and where Z0 = C0 and Zk ∈ {C1, C2, · · · , Cm}.
Note that P (and so the length of P ) may depend on e. We choose an edge e ∈ ∂C such

that

k is as small as possible. (4.4)

Without loss of generality, we assume that Zk = C1. Since P is a shortest path, for

each i with 0 ≤ i ≤ k − 1,

E(Zi) ∩ E(C) = ∅. (4.5)

(2.2) C1 6= C.

Proof: If C1 = C, then r = 3 and so C4Zk−1 is an (r + 1)-cycle containing v, contrary

to statement (4.1).
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By (4.5), E(Z0) ∩ E(C) = ∅. Since e ∈ ∂C and by (4.2), |V (Z0) ∩ V (C)| ≤ 2. Thus

there must be a largest integer i0 such that |V (Zi0) ∩ V (C)| = 2.

(2.3) i0 = 0.

Proof: Let Zi0 = u′vivju
′, for some 1 ≤ i < j ≤ r, where u′ ∈ V (G) − V (C). Suppose

that i0 > 0. Then e′ = u′vi corresponds to a shorter path P ′ = Zi0 · · ·Zk, contrary to

(4.4).

By the choice of Zi0 and by (2.2), we may assume that Z0 = uvivju and Z1 = vhvivjvh,

where 1 ≤ h < i < j ≤ r. By (2.1), we have

vi−1vi+1, vj−1vj+1 ∈ E(G). (4.6)

(2.4) i− h 6≡ 1 (mod r) and h− j 6≡ 1 (mod r), and so k > 1.

Proof: Suppose that i = h + 1 (or h ≡ j + 1 (mod r)). By (4.6),

C ′ = vhvjuvivi+1vi+2 · · · vj−1vj+1vj+2 · · · vh

is an (r + 1)-cycle containing v, contrary to statement (4.1), (See Figure 4.2). The case

when h ≡ j + 1 (mod r) can be proved similarly.

If k = 1, then E(Z1) ∩ E(C) 6= ∅, and so we may assume that either i = h + 1 or

h ≡ j + 1 (mod r). As shown above, this leads to a contradiction to statement (4.1).

Figure 4.2: Proof of (2.4)

'
&

$
%

x x x x
x

x

x x
�

�
�

�
�

@
@

@
@
@b

b
b

b
b

b
bb

C

u

vh vi vi+1

vjvj+1 vj−1



CHAPTER 4. TRIANGULARLY CONNECTED CLAW-FREE GRAPH 33

(2.5) vh−1vh+1 ∈ E(G).

Proof: By contradiction, we assume that vh−1vh+1 6∈ E(G). Since G[{vh, vh−1, vh+1, vi}] 6∼=
K1,3, either vivh−1 ∈ E(G), or vivh+1 ∈ E(G).

Suppose first that vivh−1 ∈ E(G). By (4.6),

C ′ = vhvh+1 · · · vi−1vi+1vi+2 · · · vj−1vj+1 · · · vh−1viuvjvh

is an (r + 1)-cycle containing v, contrary to statement (4.1), (See Figure 4.3).

Therefore, we have vivh+1 ∈ E(G). Then

C ′ = vhvjuvivh+1vh+2 · · · vi−1vi+1 · · · vj−1vj+1vj+2 · · · vh

is an (r + 1)-cycle containing v, contrary to statement (4.1), (See Figure 4.3).

Figure 4.3: Proof of (2.5)
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By Claim (2.4), k ≥ 2. By (4.4), E(Z2) ∩ E(Z1) 6= {vivj}, for otherwise Z0Z2 · · ·Zk

is a shorter path, contrary to (4.4). Thus we may assume that E(Z2) ∩ E(Z1) = {vivh}.

Now we consider the induced subgraph G[{vh, vi, u, vi+1}]. As this cannot be isomor-

phic to a K1,3, either uvi+1 ∈ E(G), contrary to Claim (2.1); or uvh ∈ E(G), whence

e′ = uvi and Z ′
0 = uvivhu would correspond to a path Z ′

0Z2 · · ·Zk, contrary to (4.4); or

vhvi+1 ∈ E(G), whence by Claim (2.5) and (4.6),

C ′ = vhvi+1vi+2 · · · vj−1vj+1vj+2 · · · vh−1vh+1vh+2 · · · vi−1viuvjvh
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is an (r + 1)-cycle containing v, contrary to statement (4.1), (See Figure 4.4).

These contradictions establish Theorem 4.1.5.

Figure 4.4: Proof of the last paragraph
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For an integer k ≥ 2, a graph G is k-cycle connected if for every pair of edges e1, e2

in E(G), G has a sequence of l-cycles (l ≤ k) C1, C2, · · · , Cr such that e1 ∈ E(C1) and

e2 ∈ E(Cr) and E(Ci) ∩ E(Ci+1) 6= ∅ for i = 1, 2 · · · , r − 1. We complete this chapter

with the following conjecture.

Conjecture 4.2.1 Every 3-connected 4-cycle connected claw-free graph G with |E(G)| ≥
3 is vertex pancyclic.



Chapter 5

Z3-connected Line Graphs

5.1 Introduction

Graphs considered in this chapter are finite graphs with possible loops and multiple edges.

We use Z to denote the group of all integers, and for an integer n > 1, Zn to denote the

cyclic group of order n. For a graph G and a vertex v ∈ V (G), define

EG(v) = {e ∈ E(G) : e is incident with v in G}.

Let G be a digraph, A be a nontrivial additive Abelian group with additive identity

0, and A∗ = A − {0}. For an edge e ∈ E(G) oriented from a vertex u to a vertex v, u

is referred as the tail of e, while v the head of e. For a vertex v ∈ V (G), the set of all

edges incident with v being the tail (or the head, respectively) is denoted by E+(v) (or

E−(v), respectively). We define

F (G, A) = {f | f : E(G) 7→ A} and F ∗(G, A) = {f | f : E(G) 7→ A∗}.

For each f ∈ F (G, A), the boundary of f is a function ∂f : V (G) 7→ A defined by

∂f =
∑

e∈E+(v) f(e)−
∑

e∈E−(v) f(e), for each vertex v ∈ V (G), where “
∑

” refers to the

addition in A. We define

Z(G, A) = {b | b : V (G) 7→ A with
∑

v∈V (G)

b(v) = 0}.

35
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An undirected graph G is A-connected, if G has an orientation G′ such that for

every function b ∈ Z(G, A), there is a function f ∈ F ∗(G′, A) such that ∂f = b. For an

Abelian group A, let 〈A〉 denote the family of graphs that are A-connected. It has been

observed in [13] that that G ∈ 〈A〉 is independent of the orientation of G.

An A-nowhere-zero-flow (abbreviated as an A-NZF) of G is a function f ∈ F ∗(G, A)

such that ∂f = 0. For an integer k ≥ 2, a k-nowhere-zero-flow (abbreviated as a k-

NZF) of G is a function f ∈ F ∗(G,Z) such that ∂f = 0 and such that for every e ∈ E(G),

0 < |f(e)| < k. Tutte ([26], also [12]) showed that a graph G has an A-NZF if and only

if G has an |A|-NZF.

The concept of A-connectivity was introduced by Jaeger et al in [13], where A-NZF

is successfully generalized to A-connectivity. For a graph G, define

Λg(G) = min{k : if A is an abelian group of order at least k, then G ∈ 〈A〉}.

From the definitions, if Λg(G) ≤ k, then G has a k-NZF. The following conjectures have

been proposed.

Conjecture 5.1.1 (Tutte [26], and [12]) Every 4-edge connected graph has a 3-NZF.

Conjecture 5.1.2 (Jaeger et al [12]) If G is 5-edge connected graph, then Λg(G) ≤ 3.

Both conjectures are still open.

In [9], Chen et al adjusted the definition of line graphs to reflect the fact of multiple

edges in the original graph and the following is proved.

Theorem 5.1.3 (Chen et al.,[9]) If every 4-edge-connected line graph has a 3-NZF, then

every 4-edge-connected graph has a 3-NZF.

The main purpose of this chapter is to investigate when a line graph is Z3-connected

or has a 3-NZF. By the definition of a line graph, for a vertex v ∈ V (G), the edges incident
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with v in G induce a complete subgraph Hv in L(G), and when u, v ∈ V (G) with u 6= v,

Hv and Hu are edge disjoint complete subgraphs of L(G). Such an observation motivates

the following definition.

For a connected graph G, a partition (E1, E2, · · · , Ek) of E(G) is a clique partition

of G if G[Ei] is spanned by a complete graph for each i ∈ {1, 2, · · · , k}. Furthermore,

(E1, E2, · · · , Ek) is a (≥ 4)-clique partition of G, if for each i ∈ {1, 2, · · · , k}, G[Ei] is

spanned by a Kni
with ni ≥ 4; and a Km-partition if for each i ∈ {1, 2, · · · , k}, G[Ei] is

spanned by a Km. Note that if G is simple, and if (E1, E2, · · · , Ek) of E(G) is a clique

partition of G, then |V (G[Ei]) ∩ V (G[Ej])| ≤ 1 where i 6= j and i, j ∈ {1, 2, · · · , k}.

Our main result is the following.

Theorem 5.1.4 If G is 4-edge-connected and G has a (≥ 4)-clique partition, then Λg(G) ≤
3.

The corollary below follows from Theorem 5.1.4 and from the observations made

above.

Corollary 5.1.5 Each of the following holds.

(i) If κ′(G) ≥ 4, then Λg(L(G)) ≤ 3.

(ii) Every line graph of a 4-edge-connected graph has a 3-NZF.

We display some of the prerequisites in Section 5.2 and present the proof of the main

result in Section 5.3.

5.2 Prerequisites

Throughout this section, we use the notation that Z3 = {0, 1, 2} with the mod 3 addition.
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Theorem 5.2.1 Let G be a graph and A be an abelian group. Each of the following holds.

(i) (Proposition 3.2 of [16]) Let H be a subgraph of G and H ∈ 〈Z3〉, then G/H ∈ 〈Z3〉
if and only if G ∈ 〈Z3〉.
(ii) ([13] and Lemma 3.3 of [16]) For an integer n ≥ 1 and an abelian group A, the n-cycle

Cn ∈ 〈A〉 if and only if |A| ≥ n + 1. (Thus Λg(Kn) = n + 1.)

(iii) (Corollary 3.5 of [16]) For n ≥ 5, Λg(Kn) = 3.

(iv) (Lemma 2.1 of [17]) If for every edge e in a spanning tree of G, G has a subgraph

He ∈ 〈A〉 with e ∈ E(He), then G ∈ 〈A〉.

Lemma 5.2.2 Let G be a graph, and let G′ denote the graph obtained from G by con-

tracting the 2-cycles of G (if there are any) and then contracting all loops of the resulting

graph (if there are any). If G′ ∈ 〈Z3〉, then G ∈ 〈Z3〉.

Proof This follows from Theorem 5.2.1(ii) and (i).

Lemma 5.2.3 Let G be a graph and H ∼= K4 a subgraph of G and v ∈ V (H) (see Figure

5.1, 5.2(a)).

(i) If dG(v) = 6 and G has another subgraph H ′ ∼= K4 with V (H)∩V (H ′) = {v}, then let

Gv be the graph obtained from G by splitting the vertex v ∈ V (G) into v1, v2 (see Figure

1(b)), and by first deleting x3v1, y3v2 and then contracting v1x1, v2y1 (see Figure 1(c)); if

dG(v) > 6, let Gv be the graph obtained from G by splitting the vertex v ∈ V (G) into v1, v2

and then contracting v1x1(see Figure 5.2(b)). If Gv ∈ 〈Z3〉, then G ∈ 〈Z3〉.

(ii) Suppose that G is simple and if (E1, E2, · · · , Ek) (k ≥ 2) is a K4-partition of G. De-

fine Gv as in (i), and obtain a graph G′ by contracting repeatedly cycles of length ≤ 2 in

Gv until no such cycles exist. Then G′ has a K4-clique partition. Moreover, if κ′(G′) ≤ 3,

we must have κ′(G′) = 3 and for any 3-edge-cut X of G′, there exists u ∈ V (G′) such that

X ⊆ EG′(u).
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Proof (i) If dG(v) = 6, using the notation in Figure 1(c), we may assume that Gv is so

oriented and the edge e1 is oriented from x1 to x2, e2 is from y1 to y2 in Gv. Then restore

G from Gv by preserving the orientation of Gv and by orienting the edges incident with

v as follows: from v to x2 and x3, from v to y2 and y3, and from x1, y1 to v.

Let b ∈ Z(G,Z3). We consider three cases below.

Case 1 b(v) = 0.

Let

b′(z) =


b(z) , if z ∈ V (Gv)− {x3, y3}

b(z) + 1 , if z = x3

b(z) + 2 , if z = y3
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Then b′ ∈ Z(Gv,Z3). Since Gv ∈ 〈Z3〉, there exits f1 ∈ F ∗(Gv,Z3) such that ∂f1 = b′

under the given orientation of Gv. Let f ∈ F ∗(G,Z3) be given by

f(e) =



f1(e) , if e ∈ E(G)− {x1v, vx3, vx2, y1v, vy3, vy2}
f1(e1) , if e ∈ {x1v, vx2}
f1(e2) , if e ∈ {y1v, vy2}

1 , if e = vx3

2 , if e = vy3

Then, for each z ∈ V (G),

∂f(z) =


∂f1(z) = b′(z) = b(z) , if z ∈ V (G)− {x3, v, y3}

∂f1(x3)− f(vx3) = b(x3) + 1− 1 = b(x3) , if z = x3

∂f1(y3)− f(vy3) = b(y3) + 2− 2 = b(y3) , if z = y3

1 + 2 = 0 = b(v) , if z = v

It follows that ∂f = b.

Case 2 b(v) = 1.

Let

b′(z) =


b(z) , if z ∈ V (Gv)− {x3, y3}

b(z) + 2 , if z = x3

b(z) + 2 , if z = y3

Then b′ ∈ Z(Gv,Z3). Since Gv ∈ 〈Z3〉, there exits f1 ∈ F ∗(Gv,Z3) such that ∂f1 = b′

under the given orientation of Gv. Let f ∈ F ∗(G,Z3) be given by

f(e) =



f1(e) , if e ∈ E(G)− {x1v, vx3, vx2, y1v, vy3, vy2}
f1(e1) , if e ∈ {x1v, vx2}
f1(e2) , if e ∈ {y1v, vy2}

2 , if e = vx3

2 , if e = vy3

Then, for each z ∈ V (G),

∂f(z) =


∂f1(z) = b′(z) = b(z) , if z ∈ V (G)− {x3, v, y3}

∂f1(x3)− f(vx3) = b(x3) + 2− 2 = b(x3) , if z = x3

∂f1(y3)− f(vy3) = b(y3) + 2− 2 = b(y3) , if z = y3

2 + 2 = 1 = b(v) , if z = v
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It follows that ∂f = b.

Case 3 b(v) = 2.

b′(z) =


b(z) : if z ∈ V (Gv)− {x3, y3}

b(z) + 1 : if z = x3

b(z) + 1 : if z = y3

Then b′ ∈ Z(Gv,Z3). Since Gv ∈ 〈Z3〉, there exits f1 ∈ F ∗(Gv,Z3) such that ∂f1 = b′

under the given orientation of Gv. Let f ∈ F ∗(G,Z3) be given by

f(e) =



f1(e) , if e ∈ E(G)− {x1v, vx3, vx2, y1v, vy3, vy2}
f1(e1) , if e ∈ {x1v, vx2}
f1(e2) , if e ∈ {y1v, vy2}

1 , if e = vx3

1 , if e = vy3

Then, for each z ∈ V (G),

∂f(z) =


∂f1(z) = b′(z) = b(z) , if z ∈ V (G)− {x3, v, y3}

∂f1(x3)− f(vx3) = b(x3) + 1− 1 = b(x3) , if z = x3

∂f1(y3)− f(vy3) = b(y3) + 1− 1 = b(y3) , if z = y3

1 + 1 = 2 = b(v) , if z = v

Thus ∂f = b.

The proof for the case when dG(v) > 6(see Figure 5.2) is similar to that for dG(v) = 6

and so is omitted.

(ii) Since G is simple, when i 6= j,

|V (G[Ei]) ∩ V (G[Ej])| ≤ 1.

By the definition of Gv and G′, if dG(v) = 6, G′ can be obtained by first splitting v into

v1 and v2 and then contracting both K4 cliques of the resulting graph containing v1 or v2;

if dG(v) > 6, G′ can be obtained by first splitting v into v1 and v2 and then contracting

the K4 clique of the resulting containing v1. Therefore, in either case, G′ has a K4-clique

partition.
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Suppose that κ′(G′) ≤ 3. Let X be an edge cut of G′ with |X| ≤ 3. Since every

edge of G′ must be in one of the K4 cliques, X must contain an edge cut of a K4, and so

|X| = 3, and there exists u ∈ V (G′) such that X ⊆ EG′(u).

Lemma 5.2.4 Let G be a loopless graph spanned by a complete graph Kn(n ≥ 4) and R

a nonempty subset of E(G). Then G/R ∈ 〈Z3〉.

Proof Since G is loopless and R is not empty, G/R must have a 2-cycle. If n = 4, we

contract this 2-cycle in G/R. Then the resulting graph has at most 2 vertices and so is

Z3 connected. If n > 4, we can argue by Theorem 5.2.1(i) and by induction on n and

contract the 2-cycle in G/R to reduce the order of G so that induction hypothesis can be

applied.

5.3 Proof of Theorem 5.1.4

Proof Note that by Theorem 5.2.1(ii) and (iii), Theorem 5.1.4 holds if |V (G)| ≤ 5,

and so we assume that |V (G)| ≥ 6. By Theorem 5.2.1(ii) and (iv), for each i with

1 ≤ i ≤ k, Λg(G[Ei]) ≤ 4. Again by Theorem 5.2.1(iv), Λg(G) ≤ 4. It suffices to show

that Λg(G) 6= 4.

We argue by contradiction. Suppose that there exists a graph G with κ′(G) ≥ 4 and

with a (≥ 4)-clique partition (E1, E2, · · · , Ek), such that Λg(G) = 4. Therefore we may

choose such a graph that

G is not Z3-connected. (5.1)

and that

|V (G)|+ |E(G)| is minimized. (5.2)

(3.1) G does not have a nontrivial subgraph H such that H ∈ 〈Z3〉.

Proof Suppose that G has a nontrivial maximal subgraph H ∈ 〈Z3〉. Then there

must exist some Ei such that Ei ∩ E(H) 6= ∅. Let L = G[E(H) ∪ Ei]. Then L/H ∼=
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G[Ei]/(Ei ∩ E(H)). Since Ei ∩ E(H) 6= ∅ and since G[Ei] is spanned by a complete

graph, by Lemma 5.2.4, L/H ∈ 〈Z3〉. Since H ∈ 〈Z3〉, by Theorem 5.2.1(i), L ∈ 〈Z3〉.
But since H is a subgraph of L and since H is maximal, we must have H = L, and so

Ei ⊆ E(L) = E(H). Hence we may assume that there exists a smallest integer m with

0 ≤ m < k, such that Ei ⊆ E(H) for each i ≥ m+1 and Ei∩E(H) = ∅ for each i < m+1.

Therefore, (E1, E2, · · · , Em) is a (≥ 4)-clique partition of G/H, and κ′(G/H) ≥ 4. By

(5.2) and since H is nontrivial, G/H ∈ 〈Z3〉. By Theorem 5.2.1(i) and since H ∈ 〈Z3〉,
we conclude that G ∈ 〈Z3〉, contrary to (5.1).

By Theorem 5.2.1(ii) and (iii), loops, 2-cycles and Km with m ≥ 5 are in 〈Z3〉.
Therefore Claim (3.2) below follows immediately from (3.1).

(3.2) G is simple, and for each i ∈ {1, 2, · · · , k}, G[Ei] ∼= K4.

By (3.2), G is simple and so any two distinct K4 clique of G can have at most one

vertex in common. By the assumption that κ′(G) ≥ 4, we have

(3.3) δ(G) ≥ 4 and so k ≥ 4.

If G has a cut vertex, then by (5.2), each block of G is in 〈Z3〉 and so by Theorem

1.2(iv), G ∈ 〈Z3〉, contrary to (5.1). Thus

(3.4) κ(G) ≥ 2.

Furthermore, we have

(3.5) For any v ∈ V (G), G has a vertex 2-cut (a vertex cut with 2 vertices) containing v.

Proof By (3.2) and (3.3), (E1, E2, · · · , Ek), (k ≥ 4) is a K4-partition of G. Pick

v ∈ V (G) such that

v ∈ V (G[El1 ]) ∩ V (G[El2 ]) ∩ · · · ∩ V (G[Elm ]), (m ≥ 2).

Split v and perform the operation as in Lemma 5.2.3(i) to get graph Gv, and contract 2-

cycles and loops in Gv. Denote the resulting graph by G′. Then G′ also has a K4-partition

by Lemma 5.2.3(ii).
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By (3.4), G′ is connected. If κ′(G′) ≥ 4, then by (5.2), G′ ∈ 〈Z3〉. By Lemmas 5.2.1(i),

5.2.2, and 5.2.3, G ∈ 〈Z3〉, contrary to (5.1).

Thus κ′(G′) ≤ 3, and so κ′(G′) = 3. By Lemma 5.2.3(ii), if X is a 3-edge-cut of G′,

then there exists u ∈ V (G′) such that X ⊆ EG′(u). Since X is a 3-edge-cut of G′, it

follows that u is a cut vertex of G′ and u 6= v, and so {u, v} is a vertex 2-cut of G.

Let W = {w1, w2} be a vertex cut of G and W ′
1, W

′
2, · · · , are components of G−W .

Define Gi = G[V (W ′
i ) ∪W ] to be the subgraph induced by V (W ′

i ) ∪W and we call each

Gi a W -component of G . For each vertex 2-cut W of G, let S(W ) denote a specified

W -component such that |V (S(W ))| is minimized, among all W -components of G.

Choose a subgraph H ∈ {S(W ) : W is a 2-cut of G} such that |V (H)| is the smallest

among them. Then for some vertex 2-cut W = {w, w′} of G, H = S(W ).

Since H is a W -component, we have V (H) − W 6= ∅ and so we can pick a vertex

v ∈ V (H)−W . By (3.5) G has a vertex 2-cut W ′ = {v, v′} where v′ ∈ V (G′′).

Case 1 v′ ∈ V (H).

If v′ = w (or v′ = w′, respectively), then W ′′ = {v, w} (or {v, w′}, respectively)

is a vertex 2-cut of G and |S(W ′′)| < |V (H)|, contrary to the choice of H. If v′ ∈
V (H) − {w,w′} and {v, v′} separates w and w′ in H, then {v, v′} is not a 2-cut of G.

Therefore, W ′ does not separate w, w′ in H, and so a W ′-component of G which does not

contain w and w′ would be a proper subgraph of H, contrary to the choice of H, (see

Figure 5.3).
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Case 2 v′ /∈ V (H).

By (3.4), v must by a cut vertex of H separating w and w′ in H, and so W ′′ = {v, w}
is also a vertex 2-cut of G, and a W ′′-component that does not contain w′ is a violation

to the choice of H (see Figure 5.4).
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Thus neither of the cases is possible. The contradictions establish Theorem 5.1.4.
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