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INTRODUCTION
Cardiovascular diseases are the leading cause of death 

for both sexes in the world. In 2012 about 13% of deaths 
were due to ischaemic heart disease, and 11% to stroke. 
In Italy cardiovascular diseases are responsible for 37% 
of total deaths [1]. Preclinical and clinical data indicate 
that the female gender is less exposed to cardiovascular 
disease. Specifically, the incidence of cardiomyopathies 
and stroke is lower in premenopausal women than in 
men, whereas this trend decreases with age and rapidly 
disappears after menopause. The mechanisms respon-
sible of these differences are not completely clear.

As it is well known, the anatomy and the physiology 
of the heart and the vascular system are similar in both 
sexes. However, minimal differences occur. In women, 
the heart is smaller, has an increased heart rate, has bet-
ter performance indices, and is subjected to less control 
by the autonomic nervous system. Nevertheless, sex has 
a profound impact on the cardiac response to harmful 
insults such as ischemia and hypertension. Here we re-
viewed the literature comparing gender differences in 
cardiac response to high blood pressure or ischemia in 
humans as well as in animal models of post-infarction 
or hemodynamic overload-induced cardiac remodeling. 

CARDIAC REMODELING INDUCED  
BY HEMODYNAMIC OVERLOAD

Cardiac remodeling develops in response to chronic 
hemodynamic overload, abnormal gene expression, or 
loss of cardiomyocytes caused by myocardial infarction 
or aging. The Framingham Heart Study, the first major 
epidemiological study by cohort to assess the risk of car-
diovascular disease, indicated cardiac remodeling as a 

negative prognostic factor, as the presence of hypertro-
phic echocardiographic signs was associated with an in-
creased appearance of coronary ischemic events [2, 3], 
major incidence of stroke in an elderly cohort [4], and 
increased risk of sudden death [5]. Cardiac remodeling 
can be defined as a complex set of cellular, biochemical 
and molecular events that occur in response to cardiac 
injury or increased load (ischemia, pressure or volume 
overload) leading to chamber enlargement without a 
relative increase in its wall thickness (eccentric hyper-
trophy) or thickening of ventricular walls without cham-
ber enlargement (concentric hypertrophy) (Figure 1). 

Pressure overload is a common cause of cardiac re-
modeling and heart failure. Sustained pressure overload 
causes concentric cardiac hypertrophy. Conventional 
wisdom holds that pressure overload-induced hyper-
trophy represents a compensatory response aimed at 
countering the increased wall stress, to diminish oxygen 
consumption and to maintain cardiac systolic function 
(adaptive cardiac hypertrophy), but that unrelieved 
hemodynamic load can overwhelm these adaptive pro-
cesses and result in heart failure.

Clinical studies suggest that sex-related factors in-
fluence the adaptive response of the heart to pressure 
overload. Garavaglia et al. evaluated sex differences in 
left ventricular adaptations to essential hypertension. 
Premenopausal women had smaller left ventricular 
thickness, diameter and mass and higher left ventricular 
performance indices compared with men with the same 
level of arterial pressure [6], which is in accordance 
with the results of other studies [7-11]. These sex dif-
ferences tended to disappear after the menopause [6]. 

Sex differences in left ventricular (LV) remodeling 
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Abstract
Cardiac remodeling is a complex process that occurs in response to different types of 
cardiac injury such as ischemia and hypertension, and that involves cardiomyocytes, 
fibroblasts, vascular smooth muscle cells, vascular endothelial cells, and inflammatory 
cells. The end result is cardiomyocyte hypertrophy, fibrosis, inflammation, vascular, and 
electrophysiological remodeling. This paper reviews a large number of studies on the in-
fluence of gender on pathological cardiac remodeling and shows how sex differences re-
sult in different clinical outcomes and therapeutic responses, with males which generally 
develop greater cardiac remodeling responses than females. Although estrogens appear 
to have an important role in attenuating adverse cardiac remodeling, the mechanisms 
through which gender modulates myocardial remodeling remain to be identified.
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and function preservation were also observed in pa-
tients with aortic stenosis. Despite a similar degree of 
left ventricular outflow obstruction (similar transvalvu-
lar aortic gradient and estimated aortic area), women 
developed more marked concentric hypertrophy, lower 
levels of wall stress, and higher indices of systolic func-
tion compared with men [12-16]. Similar results were 
also observed in premenopausal hypertensive women. 
Collectively, these results suggest that gender is a pos-
sible determinant of the cardiac adaptative response 
to chronic pressure overload. Additional evidence sup-
porting the presence of sex related differences in LV 
adaptation to pressure overload derives from preclini-
cal studies. In spontaneously hypertensive rats (SHR), 
Pfeffer et al. [17] observed that female SHR had better 
indices of systolic function and smaller end-diastolic 
and end-systolic dimensions compared with male SHR, 
which also developed LV dysfunction and heart failure 
after 12 months of age. In the aortic banding-induced 
pressure overload model, Douglas et al. [14] found that 
male but not female rats showed LV chamber dilation, 
loss of concentric remodeling and elevated wall stress 
20 weeks after surgery. In line with this study, Wein-
berg et al. [18] reported that, in comparison with males, 
females developed higher LV pressures in the isolated 
heart 6 weeks after banding, despite a similar degree of 
LV hypertrophy and systolic wall stress. 

Valvular heart disease is another cause of pathological 
remodeling. Volume overload leads to eccentric cardiac 
hypertrophy with increased ventricular diameter but 
reduced relative wall thickness and preserved systolic 
function. Rohde et al. [19] demonstrated that, in com-

parison with men, women with pure aortic regurgitation 
had smaller LV mass and volume indexes. In a preclini-
cal model of volume overload induced by aortocaval fis-
tula, Gardner et al. [20] found that female but not male 
rats showed minimal mortality and no significant LV 
dilatation after fistula surgery. Altogether, these results 
indicate that gender influences the evolution of the car-
diac response to hemodynamic overload.

GENDER DIFFERENCES IN GENETIC MOUSE 
MODELS OF CARDIAC REMODELING

Important differences in the development of the hy-
pertrophic process between males and females have 
also been observed in experimental models of geneti-
cally modified animals. In transgenic mice overexpress-
ing phospholamban protein and with increased levels of 
circulating catecholamines, males have an earlier onset 
of hypertrophy, and die before females [21]. In addi-
tion, the genetic inactivation of FKBP12.6, a binding 
protein that modulates the activity of the cardiac ry-
anodine receptor, caused cardiac hypertrophy in male 
but not in female mice [22]. Finally, in a mouse model 
of hypertrophic cardiomyopathy associated with the 
mutation R403Q of α-myosin heavy chain, male mice 
developed a progressive dilatation of the left ventricle 
and a reduced heart systolic function. In contrast, fe-
male mice with a similar degree of cardiac hypertrophy 
showed preserved ventricular performance without 
chamber dilation [23].

GENDER DIFFERENCES IN  
POST-INFARCTION CARDIAC REMODELING

Cardiac remodeling after myocardial infarction (MI) 
is characterized by infarct expansion, hypertrophy of 
surviving myocardium, increased collagen deposition, 
geometric changes in chamber shape, and eventual 
progression to heart failure. Epidemiologic and animal 
studies suggest that sex significantly affects cardiac re-
modeling after MI. 

Cavasin et al. [24] compared LV remodeling after MI 
in male and female mice. They reported that mortality 
and cardiac rupture during the first week after MI were 
significantly higher in males than females. In addition, 
male mice had more pronounced neutrophil infiltration 
at the infarct border zone with increased metallopro-
teinase activity and a higher infarct expansion index. 
During the 12 weeks after the ischemic insult, males 
showed worse LV function, and more extensive remod-
eling, with more cardiac chamber dilation and myocyte 
hypertrophy. In contrast, females had 3 times lower 
mortality despite similar infarct size and showed a bet-
ter outcome during the development of heart failure. In 
line with these results, Wu et al. [25] found that female 
mice with MI underwent less extensive LV remodeling 
than males, with less chamber dilation and a better  pre-
served LV systolic function. Additional evidence for sex 
impact on myocardial remodeling after MI derives from 
an experimental study performed in rats by Litwin et al. 
[26]. They demonstrated that male rats had a greater 
increase in LV posterior wall thickness, higher myocyte 
diameter in the non-infarcted region, and greater dia-
stolic dysfunction compared to female rats 6 weeks af-

Figure 1
Aortic banding-induced cardiac hypertrophy. Representative 
hematoxylin and eosin staining of left ventricular cross sec-
tions from (a) sham-operated and (b) aortic banded mice, 2 
weeks after surgery. Sustained pressure overload causes an 
increase in left ventricular wall thickness (LVWTh) whereas 
left ventricular internal diameters (LVID) do not change. Con-
sequently, the ratio of LV wall thickness to LV radius increases 
(concentric left ventricular hypertrophy).
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ter MI. A clinical study published by Crabbe et al. [27] 
supports preclinical results with women having less myo-
cyte hypertrophy in post MI LV remodeling than men. 
Collectively, preclinical and clinical results suggest that 
in the presence of myocardial infarction sex affects ad-
aptative cardiac responses and that in females the heart 
is protected from chronic remodeling and deterioration 
of function after MI. Although there is evidence that 
sex hormones play an important role in post-MI car-
diac remodeling, the mechanisms responsible for car-
dioprotection are unclear. Since estrogens can inhibit 
apoptosis in many cell types, it cannot be ruled out that 
males and females have a different modulation of the 
apoptotic pathway in the peri-infarct region. Indeed, in 
a post-mortem study, Biondi-Zoccai et al. [28] showed 
that in the peri-infarct region, males had a 10-fold high-
er apoptotic rate and greater gene expression of the 
apoptotic promoter Bax than women. Further evidence 
supporting the role of apoptosis in sex-related differ-
ences comes from patients undergoing transplantation 
for cardiac failure. Indeed, Guerra et al. [29] found that 
the magnitude of apoptotic and necrotic myocyte death 
differed significantly in women and men. The reduced 
incidence of cell death in women was associated with a 
longer duration of the cardiomyopathy, a later onset of 
heart failure, and a longer interval between diagnosis of 
cardiac dysfunction and transplantation. 

ESTROGENS IN CARDIAC REMODELING
The impact of hormone replacement therapy on car-

diovascular morbidity is a subject of much controversy 
in medical literature. Some studies, such as the ‘’Heart 
and estrogen / progestin Replacement Study (HERS)” 
[30] and the “Women’s Health Initiative Clinical Trial 
“ suggest that hormone replacement therapy in post-
menopausal women can increase the possibility of myo-
cardial infarction, deep vein thrombosis and pulmonary 
embolism [31, 32]. Conversely, other studies report 
that female sex hormones improve the performances 
of contractile postmenopausal women [33-35] and 
their prognosis in myocardial ischemia [36-38]. In ad-
dition, results from clinical trials indicate that hormone 
replacement therapy reduces cardiovascular risk only if 
it starts within the first years after menopause [39-41]. 
This suggests that age- and menopause-related vascular 
endothelial injury, changes in vascular estrogen recep-
tors expression, intracellular signaling or genomics may 
alter the cardiovascular effects of sex hormones [42].

Although the mechanisms responsible for the sex-
related differences in cardiac remodeling are not com-
pletely understood, preclinical and clinical studies indi-
cate that circulating sex hormones have an important 
role. Pines et al. [43] studied 30 postmenopausal wom-
en with borderline to mild hypertension to evaluate 
whether hormone replacement therapy (HRT) affects 
cardiac  morphology. They found that HRT causes a sig-
nificant reduction in left ventricular cavity dimensions 
and mass, which is in accordance with the results of oth-
er studies [44-46]. Other evidence that estrogens have 
antihypertrophic effects comes from preclinical studies. 
van Eickels et al. [47] reported that administration of 
estrogens in ovariectomized rats reduces the develop-

ment of aortic banding-induced cardiac hypertrophy by 
30%. Jazbutyte et al. [48] showed that administration 
of an agonist of estrogen receptor b in ovariectomized 
spontaneously hypertensive rats lowers blood pressure 
thus preventing the increase in cardiac mass. Patten et 
al. [49] reported that estrogen treatment promotes car-
diomyocyte survival in a murine model of myocardial 
infarction. In addition, Pedram et al. [50] observed that 
treatment with 17-b-estradiol, the most important cir-
culating estrogen, is able to prevent angiotensin II- or 
endothelin-1-induced hypertrophy of cultured cardio-
myocyte. Together, these results imply that estrogens 
exert their cardioprotective action through indirect and 
direct effects on vascular and cardiac cells. 

The mechanisms of antihypertrophic effects of estro-
gens remain to be determined. Vega et al. [51] found 
that estrogens increase the expression in the left ven-
tricle of the antihypertrophic protein MCIP1, which is 
able to inhibit the activity of calcineurin, a well-known 
hypertrophic inducer, which is in keeping with the re-
sults of other studies [52, 53]. Ma et al. [54] reported 
that in ovariectomized mice there is an increase of d 
isoform of CaMKII, and that estrogen administration 
prevented this increase. The inhibition of CaMKII in 
ovariectomized mice produced cardioprotective effects 
similar to those obtained with the administration of 
17-b-estradiol, further suggesting a possible mechanism 
underlying cardioprotective effect of estrogen [54].

SEX INFLUENCE ON FETAL GENE 
EXPRESSION

With a few exceptions, cardiac hypertrophic remod-
eling is characterized by cardiomyocyte hypertrophy 
associated with the remodeling of extracellular matrix 
and the re-activation of the fetal gene program which 
includes myosin heavy chain (MHC) isoforms, skeletal 
α-actin (skACT), and atrial natriuretic peptide (ANP), 
the expression of which is repressed in adult ventricu-
lar myocardium. In conjunction with these changes, 
a decrease in the adult cardiac muscle-specific genes,  
α-myosin heavy chain (α-MHC) and sarcoplasmic re-
ticulum Ca2+-ATPase (SERCA) also occurs [55]. 

These changes may be interpreted as indicating that 
the fetal gene program, or at least a part of it, is involved 
in a complex adaptative process aimed at limiting cardi-
ac energy consumption and supporting cardiac output 
in the presence of an increased cardiac workload. This 
view is consistent with: a) the poor tolerance to pres-
sure overload of hearts in which the fetal gene response 
is abrogated; b) the cardioprotective action of ANP, a 
peptide endowed with natriuretic and antihypertrophic 
properties; c) the lower ATPase activity of b-MHC, able 
to generate a cross-bridge force with a higher economy 
and energy consumption than α-MHC; and d) the sig-
nificant positive correlation between skACT cardiac 
amount and cardiac contractile function.

Although gender influence on the left ventricular re-
modeling has been studied extensively, the influence of 
sex on fetal gene expression has been poorly investigat-
ed. Reiser et al. [56] studied whether there is a sex-re-
lated difference in the level of b-MHC in the right and 
left atria of humans with cardiomyopathy. They found 
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significant differences in MHC isoform expression of 
failing atria between men and women and a twofold 
greater amount of b-MHC in the nonfailing left atrium 
of women compared with men. Villar et al. [16] deter-
mined the b-MHC gene expression in LV samples from 
patients with aortic stenosis and controls. They found 
no difference in MHC isoform expression between 
elderly men and woman. Sex-related differences have 
been reported by us [57, 58] in mice both in physi-
ological conditions and under an increased pressure 
load induced by thoracic aortic coarctation (TAC), a 
preclinical model of pressure overload cardiomyopathy. 
We observed that in physiological condition b-MHC 
expression was tenfold higher in the LV of fertile fe-
male mice, compared to the age-matched males (Fig-
ure 2), whereas no difference was found in α-MHC 
expression [57, 58] (data not shown). However, gender 
difference in the b-MHC gene expression tended to 
disappear after ovariectomy or in the presence of he-
modynamic overload induced by TAC [58] (Figure 2), 
as TAC increased b-MHC mRNA levels in males but 
not females. 

CONCLUSIONS
There is evidence that gender affects cardiac response 

to pressure overload or ischemia in both humans and 
animals and that sex differences should be taken into 
account when studying cardiac remodeling in humans 
as well as in animal models (Table 1). Since cardiac 
remodeling is a prognostic negative factor in patients 
with chronic heart failure, a better understanding of the 
mechanisms through which gender regulates cardiac re-
modeling could open the way to innovative therapeutic 
strategies for heart failure therapy.
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Figure 2
Sex-associated differences in cardiac expression of β-myosin 
heavy chain isoform. β-MHC mRNA expression in the left ven-
tricles from male sham-operated (M-Sham), female sham-op-
erated (F-Sham), and ovariectomized female (F-Ovx) mice of 
12-weeks-old. M-TAC and F-TAC represent male (M-TAC) and fe-
male (F-TAC) mice subjected to thoracic aortic coarctation (TAC). 
*p < 0.05 = significantly different from M-Sham and F-Ovx.

Table 1
Sex-associated differences in cardiac remodeling responses to different injures

Cardiac remodeling 
(females vs males)

Clinical studies Preclinical studies

Hemodynamic remodeling

Hypertension

Smaller left ventricular thickness, diameter and mass [6] Better indices of systolic function in females SHR [17]

Higher left ventricular performance indices [6] Smaller end-diastolic and end-systolic dimensions in females SHR [17]

Lower prevalence of LV hypertrophy  [8] Lower chamber dilation and wall stress after TAC [14]

Preservation of ejection parameters [10, 11] Higher expression of b-MHC [57, 58]

Valvular heart disease

More marked concentric hypertrophy [12] Minimal mortality and no LV dilatation after fistula surgery [20]

Lower levels of wall stress [14, 15]

Smaller LV mass and volume indexes [19]

Higher indices of systolic function [13, 16]

Postinfarction remodeling

Smaller myocyte hypertrophy [27] Lower mortality and cardiac rupture [24]

Lower apoptotic rate in the peri-infarct region [28] Lower neutrophil infiltration and infarct expansion index [24]

Smaller LV posterior wall thickness and diastolic dysfunction[26]

Lower LV remodeling and better preserved LV systolic function [25]
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