
1, A Kim2, D Anderson3 and M Lisak3

1 Department of Physics, Clarendon Laboratory, Oxford OX1 3PU, UK
2 Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
3 Department of Radio and Space Science, Chalmers University of Technology, SE-412 96 G¤oteborg,
Sweden

E-mail: f.cattani1@physics.ox.ac.uk

Received 23 October 2009, in �nal form 15 January 2010
Published 23 March 2010
Online at stacks.iop.org/JPhysB/43/085301

Abstract
A semi-classical model is derived for describing the interaction between coherent
electromagnetic radiation and a Bose�Einstein condensate in the limit of zero temperature,
including the back action of the atoms on the radiation. This model is used to analyse the
problem of the self-consistent evolution of a laser beam and a BEC atomic beam. The mutual
propagation is studied numerically and demonstrates not only the possibility of a stationary
regime of mutual guiding, but also of generating a collapse-like phenomenon.

(Some �gures in this article are in colour only in the electronic version)
nonlinear features in the atom physics and we are interested
in studying these effects from the point of view of atom
manipulation and creation of localized light�atom structures.

The light wave acting as a nonlinear medium can mediate
atomic interactions, in complete analogy with the role played
by a nonlinear medium in the case of light nonlinearities.
In the simplest model under dipole approximation, the
electromagnetic radiation induces emission of dipole radiation
which in turn gives rise to a long-range interaction among the

atoms [2, 3]. This model has attracted much interest since
the pioneering work of Askar�jan [4] and Ashkin [5] who
demonstrated how it was possible to describe and test the
effects of electromagnetic radiation on neutral atoms, which
made it possible to focus atoms with light. Klimontovich
and Luzgin then proceeded in showing how neutral atoms can
focus light as a result of light pressure dipole forces [6]. The
main conceptual difference between those original models and
the description of coherent atomic beams is due to the presence
instance [10]. Here we will consider a mean �eld model and
in what follows, taking into account also the effects of the
system inhomogeneity, we will give a description of the same
phenomenon based on the analogy between matter waves and
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classical waves. We will then consider the possible formation
of mutually localized structures and the possibility of having
a collapse-like phenomenon even in one dimension.

2. Semi-classical approach

A semi-classical approach for describing the laser-induced
atom interactions in a BEC was presented in [11], where
the difference between the local �eld (the microscopic �eld
acting on an atom) and the macroscopic �eld (the �eld
averaged over a volume containing many atoms) was taken
into account. Semi-classical reasoning leads to an extension
of the Gross�Pitaevskii equation normally used to describe
BECs through the de�nition of laser-induced forces (striction
forces) which, written as gradient forces, yield a potential
energy in agreement with fully quantum mechanical results.
To calculate these forces, Helmholtz considered the work done
by the electric �eld on a dielectric [12]. By working out
the stress tensor through the variation of the dielectric free
energy, an expression for the force was found for the case of
a time-independent electric �eld [13]. This result was then
generalized to the case of time-dependent �elds by Pitaevskii
[14] who showed that the expression for the stress tensor in
this case is given by the time average of the same tensor
calculated for a constant �eld. A straightforward application
of Pitaevskii�s results gives for the atom�atom interaction force
induced by a far-off resonant laser �eld Re[Eexp(Š iωLt)] on
a zero-temperature, dilute BEC:

f =
n

16π
�

[
|E|2

∂ε

∂n

]
, (1)

where n is the condensate atom density and ε is the dielectric
permittivity of the condensate gas which has to be suitably
modelled. Quantum theory and macroscopic electrodynamics
[15] both yield

ε = 1 +
4παn

1 Š 4π
3 αn

, (2)

where, as derived from quantum theory, α = Š d2/flh� is
the atomic polarizability at the laser frequency, with � =
ωL Š ωa being the detuning from the nearest atomic resonance
frequency ωa , and d is the dipole matrix element of the resonant
transition. It is important to underline that (1) and (2) delimit
the atomic physics we shall describe: the concept of force
being a classical one, we will neglect quantum �uctuations,
stochastic heating, incoherently scattered light and focus our
attention on the coherent behaviour of the system. This limits
the validity of the model mainly to large detunings |�| �
ωa, � (where � is the atoms� natural line width). Besides, any
singularity occurring within this model is unphysical since
losses and saturation effects (which are not accounted for)
would then become important. Neglecting these effects allows
us to study possible mutual localization mechanisms and, in the
eventuality of collapsing cases, this analysis will be relevant
for the evolution stage occurring before saturation mechanisms
become important. The character of long-range coherence is
captured through the dipole�dipole interaction term.

The total force acting on a single atom is F = f/n =
Š� Vd and the generalized Gross�Pitaevskii equation for the

condensate wavefunction 	(r, t) in the spirit of mean �eld
theory reads [1]

iflh
∂	

∂t
= �H0	 +

[
U0|	|2 Š

α

4

|E|2(
1 Š 4π

3 α|	|2
)2

]
	. (3)

Here �H0 is the linear single-particle Schr¤odinger Hamiltonian,
the wavefunction 	 is normalized as N =

∫
|	|2 dr with N

denoting the total number of atoms, so that the gas density
is n = | 	|2, U0 = 4π flh2as/m, m is the atom mass and as

is the s-wave scattering length which can be either positive
or negative (repulsive or attractive collisional interaction). It
must be kept in mind that this equation is valid for moderate
laser intensities and for atom densities high enough to allow
for a semi-classical description including near dipole�dipole
interactions.

As already mentioned, effects of the laser-induced dipole�
dipole interactions have been considered for instance in [7]
or [8], but with a simpli�ed interaction term, justi�ed by the
relatively low atomic densities and large detunings considered,
which allowed an expansion of the potential energy term for
|	|2α � 1. This is the most important difference between the
present work and [7] since a low-density expansion makes the
dipole interaction term independent of the sign of the detuning.
It is natural, however, to expect that the structural dynamics of
the condensate will depend on the nature of the nonlinearity,
i.e. the sign of the detuning, and in the present investigation
we will consider the fully nonlinear term. Depending on the
sign of the detuning, the atom nonlinearity can have either a
saturation character (� > 0, blue detuning, i.e. α < 0) or
a singularity character (� < 0, red detuning, i.e. α > 0).
By studying the consequences of the full nonlinear term
on the density structures of an atomic beam copropagating
with a laser beam, we expect to �nd an extension of well-
known results on cold atom guiding, see for instance [16] and
references therein.

3. Basic equations

A �rst analysis which considered the full atomic nonlinearity
but only a simpli�ed description of the laser dynamics
predicted the formation of self-localized atomic structures
[11]. However, the feedback of the atoms on the laser was not
taken into account and this effect may be of importance. In
order to describe this feedback effect, it is necessary to include
also a description of the evolution of the electromagnetic
radiation, coupled to that of the atoms in order to analyse
the possibility of mutual guiding and formation of localized
structures.

The starting point is Maxwell�s equations for propagation
in a medium. Since we are interested in a stationary solution,
we shall have

E(r, t) = Re[E(r) exp(Š iωLt)] (4)

	(r, t) = 
(r) exp(Š iωat). (5)

Under the assumption of Ln � λL or � ε · E � 0 where
Ln is the characteristic length scale of transverse density
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modulations and λL is the radiation wavelength, we have from
� · D = 0 that � · E � 0 and the wave equation

� × � × E +
1

c2

∂2 D
∂t2

= 0, (6)

given (2), becomes (ωL = kLc)

� 2E + k2
L

(
1 +

4πα|
|2

1 Š 4π
3 α|
|2

)
E = 0 (7)

which corresponds to three scalar equations for the three
components of the electromagnetic �eld.

This equation is further simpli�ed by using the slowly
varying envelope approximation, i.e. writing

E(r) = a(r� , z) exp(ikLz)e, (8)


(r) = ψ(r� , z) exp(ikaz), (9)

where r� denotes the dimensions transverse to the propagation
direction z, e is the polarization vector of the �eld and ka is
the atom wave number. The coupled system of equations (3),
(7), can then be written in normalized variables as

iμ
∂ �ψ

∂ �z
= Š

1

2
�� 2

�
�ψ +

1

2
βcoll| �ψ |2 �ψ Š

s

2

| �a|2

(1 Š s| �ψ |2)2
�ψ (10)

i
∂ �a

∂ �z
= Š

1

2
�� 2

� �a Š
3s

2

| �ψ |2 �a

1 Š s| �ψ |2
, (11)

where the following normalization has been used: �r = rkL, for
the atom wavefunction �ψ = ψ/ψ� with (4π |α|/3)ψ2

� = 1, for
the laser �a = a/a� , with m|α|a2

�

/(
2flh2k2

L

)
= 1, s = sign(α),

μ = ka/kL and βcoll = 6as

/(
k2

L|α|
)
. The tilde will be dropped

hereafter unless otherwise stated.
If the assumption of a classical model for the laser �eld is

justi�ed by the choice of the intensity regime, it is clear that, for
a mean �eld model to be valid based on the simplest possible
approximation to the many-body atomic wavefunction, we
must consider not only a zero-temperature limit but also a
low density limit with na3

s � 1, see [17]. It will be shown
hereafter that the parameter range in which we are interested
is such as to satisfy this requirement.

We note that, although the laser equation is formally
linear, it will nevertheless involve nonlinear evolution due
to the presence of the |ψ |2 term. For simplicity, in all
studied cases we assume μ = 1 and consider one transverse
dimension only, r� = x, assuming that the system has a very
large extension in y and can be considered as homogeneous
in that direction. It is possible to �nd exact localized,
stationary solutions via the shooting method which will be
discussed elsewhere [18]. Our main concern in the present
investigation is how the initial transverse distributions of atom
density (|ψ(x, 0)|2) and laser intensity (|a(x, 0)|2) vary during
propagation along z.

4. Laser and BEC atomic beam propagation

From the point of view of physical effects, the most interesting
case is that of an initially �at laser intensity pro�le where no
gradient forces due to the electromagnetic radiation are present

�  < 0

ch
irp

 fu
nc

tio
n

x

�  > 0

x

Figure 1. Qualitative behaviour of the chirp function (12), solid line,
for an initial Gaussian atom density distribution, dashed line. Left:
red detuning, i.e. sign(α) > 0; right: blue detuning, i.e. sign(α) < 0.

at the beginning of the propagation. As already pointed out
by Saffman [7], spatial gradients can grow even on such an
homogeneous intensity pro�le. However, in contrast with
[7], we do not consider an explicit nonlinearity for the laser
equation and in our case such gradients will be due to the effect
of the atoms only. To gain insight on the physics acting during
the very �rst stage of propagation, it is useful to look at the
evolution of the laser intensity pro�le.

4.1. Initial laser evolution

In general, we may describe the propagating laser pulse
amplitude as proportional to exp(ihx + ikz) where neither
h nor k is known. The �group velocity� of the pulse along
x during propagation is vx = Š ∂k/∂h|h0 (where h0 is the
central wave number in x, which is assumed to be zero). We
expect the laser pro�le to diffract along x during the pulse
propagation along z and the role of the atoms must be clari�ed.
With an initially �at amplitude pro�le (e.g. super-Gaussian)
the second derivative with respect to x in (11) can be safely
neglected. Thus, the presence of the atoms translates into
a chirp on the laser transverse wave number as can be seen
by separating real and imaginary parts in (11), discarding the
second derivative and solving for the laser amplitude |a| and
phase ϕ (a = | a| exp(iϕ)). The straightforward algebra gives
ϕ = 2πkLα|ψ |2z/(1 Š 4πα|ψ |2/3). The effect of such a
chirp is well known in optics and it can be understood by
noting that the modi�ed phase ϕ(x, z) induces a modi�cation
in the propagation velocity along x of the different Fourier
components of the pulse. In fact, we can now write for the
propagating pulse |a| exp(iϕ(x) + ikz) which shows how the
chirp effect is to create an instantaneous x-wave number [20]

hc =
∂ϕ

∂x
=

2παkLz(
1 Š 4π

3 α|ψ |2
)2

∂ |ψ |2

∂x
, (12)

i.e. h = h0 + hc. Assuming an initial Gaussian form
for the atom wavefunction well localized within the laser
intensity distribution, the qualitative behaviour of the chirp
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Figure 2. Atom density and laser intensity (details of �at top) for
red detuning (left) and blue detuning (right) after a very short
propagation (z = 0.0012� L ). Dotted line: initial intensity
distribution. The parameters are the same as for runa, see the text.
Normalization as given in the text.

as a function ofx is shown in �gure 1. Since we have4

dvx/ dh = Š � 2k/�h 2|h0 > 0, parts of the pulse withh > h 0

will have a higher propagation velocity alongx and vice versa.
Looking at �gure1, we expect that those parts of the pulse that
are localized around the positive peak of the chirp function will
move with higher velocities in the direction of positivex while
those parts of the pulse that are localized around the negative
peak will slow down. In the red detuning case, this creates a
central peak in the laser intensity pro�le and two symmetric
troughs where the chirp effect is stronger and empties the pulse.
This is clearly seen in the numerical simulations immediately
after the simulations start. In the blue detuning case, the result
of the chirp effect is the opposite; thus, the seed for further
evolution depends on the sign of the detuning. An example of
the modi�cation induced on the laser intensity pro�le can be
seen in �gure2 for two runs with the same initial conditions
but opposite sign of the detuning. Once this initial change in
the laser structure is formed, it drives a dynamical reaction on
the atom density since the potential now felt by the atoms has
been modi�ed. Again, the response will be different according
to the sign of the detuning.

4.2. Red detuning

This is an interesting case since the atoms will feel a focusing
action from the dipole-induced potential. In particular,
such an action will be strengthen by the initial formation
of a central peak in the laser intensity and may lead to a
catastrophic instability with subsequent collapse even in the
one-dimensional case. As noted above, the atom equation
has a singular nonlinearity and we may de�ne a critical atom
density as� 2

� = 3/( 4� |� |) in unnormalized variables (i.e,

4 As can be seen by Taylor-expandingk = k(h0) + �k/�h |h0(h Š h0) +
1/ 2� 2k/�h 2|h0(h Š h0)2 + · · ·. According to the usual transformation
ik � i�/�z from the expansion fork we obtain an equation for the laser
amplitude which corresponds exactly to our (11) if � 2k/�h 2|h0 < 0.

� 2
� = 1 normalized variables), dependent on the detuning

and on the dipole moment. However, the presence of the
collisional nonlinearity cannot be neglected and should play
an even more important role as soon as the atom density
undergoes focusing. For a negative scattering length, the
more the atoms are focused, the stronger the focusing action
and this is expected to strictly limit the stability of the system
against collapse, whereas a repulsive collisional nonlinearity,
acting in the same direction as the diffractive kinetic energy
contribution, should tend to balance the focusing effect of
the laser-induced nonlinearity. The possibility of reaching
this equilibrium (i.e. a structure consisting of two stationary
localized coupled solutions) depends on the initial conditions
and, to our knowledge, cannot be studied analytically.
We have investigated numerically the parameter range for
stability/ collapse at �xed initial width of both the super-
Gaussian laser intensity and the Gaussian atom density pro�le
given as

�(x, 0) = � 0 e(Šx2/ 2d2
a) (13)

a(x, 0) = a0 eŠ(x2/ 2d2
L )g

(14)

where g is the super-Gaussian parameter (g = 10 in the
simulations).

In order to describe the numerical results it is useful to
present a reference case with parameters such that the system
settles down rather smoothly onto a stationary, mutually
localized structure for both atom density and laser intensity.
A possible such case (the one referred to as run(a)) hasda =
5� L , dL = 40� L , initial peak atom density 5.81 × 10Š18 mŠ3

(corresponding to ˜� 2
0 = 3.41 × 10Š4), initial peak laser

intensity 0.0153 mW cmŠ2 (corresponding tõa2
0 = 0.0181),

with  coll = 38 which corresponds for instance to a detuning
of 100 times the decay rate for87Rb atoms. From these initial
conditions, the system stabilizes onto the localized structures
shown in �gure 3, with the evolution of the peak atom
density and laser intensity showing characteristic relaxation
oscillations during the approach to the �nal stationary state,
see �gure 4. The atom transient dynamics is governed by
an interplay between their kinetic energy and interatomic
repulsive interactions together with the focusing laser-induced
potential. The atoms initially see a potential trap induced
by the presence of the laser combined to a central repulsive
barrier due to their own repulsive interaction, see the inset
in �gure 3. The natural thing to happen is for the atoms
to escape from the central region where they are initially
localized. The increase in the peak laser intensity (chirp
effect) and the decrease in repulsion (decrease in the central
atom density) both tend to create a central trap where initially
there was a repulsive barrier, with the effect that some atoms
remain centrally localized while those spreading out will move
to encounter the lateral walls of the laser-induced potential
trap.

The laser intensity pro�le tends to evolve according to
what known for super-Gaussian pulses (note that initially
dL � da) [21], forming modulations on its shoulders which in
turn modify the laser-induced potential trap thus affecting the
natural broadening of the atom wavefunction. Some atoms,
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Figure 3. Stationary atom density and laser intensity after 1.02 × 105λL of propagation along z for run (a). Dotted lines: initial
distributions. Normalization as in the text. The inset shows the potential initially felt by the atoms.
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Figure 4. Peak atom density and laser intensity during propagation along z for run (a). Normalization as in the text.

and part of the electromagnetic radiation too, will escape
out of the laser-induced trap but most of them in this case
remain trapped and return back to interact with the central
bunch. This process continues until a �nal stationary state is
reached. Figure 5 shows some snapshots of this evolution.
The resulting structures have proved to be extremely robust
against numerical perturbation tests.

Although, for �xed dL/da , the physics of the laser
evolution (i.e. central chirp, lateral modulation and shoulder
formation) is qualitatively the same, the nature of the transient

for the atoms changes depending on ψ0/a0 since the balance
between the different effects changes as can be seen by looking
at the initial potential felt by the atom wavefunction, see
�gure 6.

Increasing the initial atom peak density, with �xed initial
laser peak intensity, leads to the formation of mutually
localized structures with higher and higher peak density, see
�gure 7(A). These results also give a good idea of what sort
of physical parameters can be expected for these structures.
For the initial conditions given in the caption of �gure 7(A)
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Figure 5. Snapshots of the evolution of atom and laser wavefunctions during propagation alongz for run (a). The �rst curve (red online) is
the initial wavefunction. Normalization as in the text.
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Figure 6. Initial potential experienced by the atom wavefunction for
two different initial peak densities:n0 = 5.81 × 1018 mŠ3 (same as
run (a), ˜� 0 = 0.0185, dotted line),n0 = 1.44 × 1020 mŠ3

( ˜� 0 = 0.092, solid line). The initial peak laser intensity and all
other parameters are the same as for run (a). Normalization as in the
text.

and an initial red detuning of about 3.81 GHz, i.e. 100 times
the decay rate of87Rb of the 52S1/ 2–52P3/ 2 atomic resonance,
the peak atom densities and peak laser intensities tend to settle
down to values of the order of 10Š19mŠ3 and 0.06 mW cmŠ2.
The maximum peak atom densities and peak laser intensities
reached during this evolution process are of the order of
1.8 × 1019 mŠ3 and 0.1 mW cmŠ2 respectively. Thus, even
at the maximum values reached, the low-density condition
na3 � 1 still holds, beingna3 	 10Š5–10Š6 for all cases of
�gure 7.

In the model we have presented, all absorption processes
were neglected, a legitimate assumption provided that the
laser detuning� is so large compared with the spontaneous
emission rate that the imaginary part of the dielectric
permittivity can be considered negligibly small. In this case the

effect of resonance absorption on the BEC density modulations
is small but will de�ne the life-time of these structures. Even
at very large detunings, resonance absorption could come
into play due to photoassociation which can be an effective
mechanism of excitation of the high-lying vibrational levels
of an excited molecule created from two atoms during a
collisional process [22]. However, photoassociation spectra
are in general known to be quite narrow, and comparing the
range of detunings we are considering here with experimental
data for photoassociation spectra, see for instance [23], shows
that it is possible to neglect photoassociation effects in the
parameter range considered for our model.

For too high initial values of˜� 0 we have found a new
regime and a qualitatively different stationary state with the
creation of two symmetric, mutually localized structures,
moving outwards, see �gure8. This is the result of having
initially a central repulsive push not counterbalanced by the
action of the laser in spite of the enhancement due to the
chirp effect. The formation, dynamics and characteristics
of these jet-like structures will be discussed elsewhere. A
further increase in� 0 yields a dominant broadening of the
atom laser function and a monotonic decrease of the peak
atom density.

Increasing the initial laser peak intensity for a �xed initial
atom density also makes it possible to generate a continuous
family of mutually localized solutions, see �gure7(B) with
examples of �nal stationary structures shown in �gure9.

However, this also opens up the possibility of a collapse-
like instability when the initial laser intensity is larger than a
critical value which depends on the initial atom density. We
have identi�ed as collapsing cases, within the approximations
of this model, those cases in which the peak atom density
showed an increase towards the critical value corresponding to
˜� 2

0 = 1, i.e.n� = 1.7 × 1022mŠ3. From the numerical point of
view, the propagation step required to maintain the error within
given limits decreases to zero. There seems to be a threshold
intensity such that, above this, the diffractive contributions to
the atom dynamics can no longer balance the focusing effect of
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Figure 7. (A) Atom peak densities during propagation for �xed laser peak intensity �a0 = 0.1346, I0 = 0.0153 mW cmŠ2 and
(a) �ψ0 = 0.0185, n0 = 5.81 × 1018mŠ3, (b) �ψ0 = 0.0316, n0 = 1.7 × 1019mŠ3, (c) �ψ0 = 0.054, n0 = 4.96 × 1019mŠ3. (B) Atom peak
densities during propagation for �xed atom peak density �ψ0 = 0.0185, n0 = 5.81 × 1018mŠ3 and (a) �a0 = 0.1346, I0 = 0.0153 mW cmŠ2,
(b) �a0 = 0.3873, I0 = 0.127 mW cmŠ2, (c) �a0 = 0.5477, I0 = 0.254 mW cmŠ2, (d) �a0 = 1, I0 = 0.847 mW cmŠ2. Normalization as in the
text.
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Figure 9. Left column: stationary atom density and laser intensity after 1.99 × 104λL of propagation along z for run (b) of �gure 7(B). Right
column: after 1.61 × 104λL of propagation along z for run (d) of �gure 7(B). Dotted lines: initial distributions. Normalization as in the text.
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Figure 10. (A) Minimum initial laser intensity at which collapse was numerically observed for different values of the initial atom density n0

given with respect to the critical one n� . (B) Peak atom densities during the propagation for varying initial laser intensities. For all cases
�ψ0 = 0.1, n0 = 1.7 × 1020 mŠ3 and (a) �a0 = 1, I0 = 0.847 mW cmŠ2, (b) �a0 = 1.8, I0 = 1.52 mW cmŠ2, (c) �a0 = 1.975, I0 =

1.67 mW cmŠ2, (d) �a0 = 10, I0 = 8.47 mW cmŠ2. Normalization as in the text.

the dipole�dipole interaction. Furthermore, due to the singular
character of the focusing nonlinearity, this threshold decreases
for higher initial atom densities. The numerically observed
threshold intensities for collapse are given in �gure 10(A) for
a range of initial atom densities. It is plausible that for low
atom densities no collapse occurs, irrespective of how large
the laser intensity is; however, the corresponding extremely
rapid dynamical features observed cannot be described under
the hypothesis of the slowly varying envelope approximation.
The effect of lowering the laser intensity is shown in
�gure 10(B) for a particular value of the initial atom
density.

5. Conclusion

The present analysis has demonstrated that it should be
possible to exploit the interaction of coherent electromagnetic
radiation and BEC atomic beams to generate mutually
localized structures. Assuming an initial �at-top pro�le for
the laser intensity, the �nal peak densities and intensities, as
well as the widths of the generated structures, depend on the
initial conditions. It also seems possible to induce a collapse-
like phenomenon on these systems. However, in such cases
the model used here is insuf�cient and must be generalized to
incorporate additional effects that are neglected in the present
analysis.
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