
Asian Journal of Multidisciplinary Studies
Volume1, Issue.1, August 2013 Online available at www.ajms.co.in
ISSN: 2321-8819

63

An Overview of Software Cost Estimation Models
Suvarna R.Jagtap
Assistant Professor

BharatiVidyapeeth Deemed University
YashwantraoMohiteCollege,Pune- 38
Email:- suvarna.rjagtap@gmail.com

Abstract:-

To date most work carried out in the software cost estimation field has
focused on algorithmic cost modeling. In this process, costs are analysed using
mathematical formulae linking costs or inputs with metrics to produce an
estimated output. The formulae used in a formal model arise from the analysis of
historical data. The accuracy of the model can be improved by calibrating the
model to your specific development environment, which basically involves
adjusting the weightings of the metrics. There are a variety of different models
available, the best known are Boehm's COCOMO[BOEHM-81], Putman's SLIM ,
and Albrecht's' FP [ALBR-83].This paper takes an overview of various Software
Cost Estimation Models used widely for software project cost estimation.

Keywords: algorithmic cost model ,metrics,COCOMO,SLIM ,FP

Introduction:-

Software project development includes a

number of activities that result in a

delivered product (software). As software

becomes more and more expensive to

develop, project management has been

recognised as a difficult task in practice.

There are a lot of unpredictable factors

existing in the software development cycle

that have become contributing factors to this

problem.Project planning is basically a 12

step program which includes :-

1) Set goal and scope

2) Select lifecycle

3) Set org./team form

4) Start team selection

5) Determine risks

6) Create WBS

7) Identify tasks

8) Estimate size

9) Estimate effort

10) Identify task dependencies

11) Assign resources

12) Schedule work

On an initial instinct you might expect

formal models to be advantageous for their

'off-the-shelf' qualities, but after close

observation this is regarded as a

disadvantage by cost estimators due to the

additional overhead of calibrating the

system to the local circumstances. However,

the more time spent calibrating a formal

model the more accurate the cost estimate

id2680221 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Asian Journal of Multidisciplinary Studies (AJMS)

https://core.ac.uk/display/229673043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ajms.co.in
mailto:suvarna.rjagtap@gmail.com

An Overview of Software Cost Estimation Models

Asian Journal Of Multidisciplinary Research,

should be. A distinct disadvantage of formal

models is the inconsistency of

estimates,[KEMERER] conducted a study

indicating that estimates varied from as

much as 85 - 610 % between predicated and

actual values. Calibration of the model can

improve these figures, However, formal

models still produce errors of 50

Figure 1.0 : Classical view of the algorithmic cost estimation process

An input requirement of an

algorithmic model is to provide a metric to

measure the size of the finished system.

Typically lines of source code are used, this

is obviously not known at the start of the

project. SLOC is also very dependent on the

programming language and programming

environment, this is difficult to determine at

an early stage in the problem especially as

requirements are likely to be sketchy.

Despite this SLOC has been the most

widely used size metric in the past, but

current trends indicate that it is fast

becoming less stable. This is probably due

to the changes in software development

process in recent years highlighted with a

An Overview of Software Cost Estimation Models

l Of Multidisciplinary Research, 1(1) August 2013

should be. A distinct disadvantage of formal

models is the inconsistency of

conducted a study

indicating that estimates varied from as

610 % between predicated and

actual values. Calibration of the model can

However, formal

models still produce errors of 50-100%. In

terms of the estimation process , nearly all

algorithmic models deviate from the

classical view of the cost estimation

process.In terms of the estimation process ,

nearly all algorithmic models dev

the classical view of the cost estimation

process.

Classical view of the algorithmic cost estimation process

An input requirement of an

algorithmic model is to provide a metric to

measure the size of the finished system.

Typically lines of source code are used, this

is obviously not known at the start of the

project. SLOC is also very dependent on the

language and programming

environment, this is difficult to determine at

an early stage in the problem especially as

requirements are likely to be sketchy.

Despite this SLOC has been the most

widely used size metric in the past, but

that it is fast

becoming less stable. This is probably due

to the changes in software development

process in recent years highlighted with a

tendency to use prototyping, case tools and

so forth. An alternative is to use

points proposed by [ALBRECHT]

are related to the functionality of the

software rather than its size. A more recent

approach is to use object points. This is in

comparison a new methodology and has not

been publicised in the same depth as

function points and SLOC. In essence the

method is very similar to function points but

counts objects instead of functions. Its

recent rise has been prompted by the interest

in the object orientation revolution.

Algorithmic models generally provide direct

estimates of effort or duration. As shown in

figure 1 the main input is usually a

 64

terms of the estimation process , nearly all

algorithmic models deviate from the

classical view of the cost estimation

process.In terms of the estimation process ,

nearly all algorithmic models deviate from

the classical view of the cost estimation

Classical view of the algorithmic cost estimation process

tendency to use prototyping, case tools and

so forth. An alternative is to use function

[ALBRECHT], which

are related to the functionality of the

software rather than its size. A more recent

h is to use object points. This is in

comparison a new methodology and has not

been publicised in the same depth as

function points and SLOC. In essence the

method is very similar to function points but

counts objects instead of functions. Its

has been prompted by the interest

in the object orientation revolution.

Algorithmic models generally provide direct

estimates of effort or duration. As shown in

the main input is usually a

An Overview of Software Cost Estimation Models

Asian Journal Of Multidisciplinary Research, 1(1) August 2013 65

prediction of software size. Effort prediction

models take the general form :

effort = p*S

(1/productivity rate)

wherep is a productivity constant and S is

the size of the system.

 E.g. productivity = 450 source lines of code

per month, making p = 0.0022 and the size

of the system has been estimated at 8500

KLOC.

 effort=0.0022 * 8500;effort = 18.7 person

moths

The example above assumes that the

relationship between effort and size is a

linear one. Most models allow for non-

linear relationships by introducing

economies or dis-economies of scale. The

general formula being:

effort = p * Se

These findings indicate that there is greater

productivity when building large software

systems as opposed to small systems.

However, the results can be justified as it is

expected that larger teams can specialise

and the overheads are of a relatively fixed

size.

There are various estimation

methodologies used for software project

estimation. They are as follows:-

Table 1.0 :Cost Estimation Methodologies

TOP DOWN BOTTOM UP EXPERT
JUDGEMENT

ESTIMATION BY
ANALOGY

PRICED TO
WIN

Based on overall
characteristics of
project-Some of
the others can be
�types� of top-
down (Analogy,
Expert Judgment,
and Algorithmic
methods)
Advantages
Easy to calculate
Effective early on
(like initial cost
estimates)
Disadvantages
Some models are
questionable or
may not fit
Less accurate
because it doesn�t
look at details

Create WBS
Adds from the
bottom-up
Advantages
Works well if
activities well
understood
Disadvantages
Specific
activities not
always known
More time
consuming

Use somebody
who has recent
experience on a
similar project
 get a
�guesstimate�
Accuracy depends
on their �real�
expertise
Comparable
application(s) must
be accurately
chosen
Systematic
Can use a
weighted-average
of opinions

Use past project
Must be sufficiently
similar (technology,
type, organization)Find
comparable attributes
(ex: # of
inputs/outputs)
Can create a function
Advantages
Based on actual
historical data
Disadvantages
Difficulty �matching�
project types
Prior data may have
been mis-measured
How to measure
differences � no two
exactly same

Just follow other
estimates
Save on doing
full estimate
Needs
information on
other estimates
(or prices)
Purchaser must
closely watch
trade-offs
Priced to lose?

COCOMO(Algorithmic Method)

The best known and most transparent cost

model COCOMO (Constructive Cost

Model) was developed by [BOEHM],

derived from the analysis of 63 software

projects.It has evolved into a more

An Overview of Software Cost Estimation Models

Asian Journal Of Multidisciplinary Research, 1(1) August 2013 66

comprehensive estimation model called

COCOMO II. Boehm proposed three levels

of the model; basic, intermediate,

detailed.As with all estimation models, it

requires sizing information and accepts it in

three forms: object points, function points,

and lines of source code.

SLIM

Putman�s SLIM (Software LIfe Cycle

Management) is an automated �macro

estimation model� for software estimation

based on the Norden/Rayleigh function.

SLIM uses linear programming, statistical

simulation, program evaluation and review

techniques to derive a software cost

estimate. SLIM enables a software cost

estimator to perform the following

functions:

1) Calibration : Fine tuning the model

to represent the local software

development environment by

interpreting a historical database of

past projects.

2) Build : an information model of the

software system, collecting software

characteristics, personal attributes,

computer attributes etc.

3) Software sizing : SLIM uses an

automated version of the lines of

code (LOC) costing technique.

FUNCTION POINTS:

As an alternative to the problems identified

with SLOC, [ALBRECT] devised a method

of estimating effort by measuring the

functionality of a system as opposed to size,

namely function points. The approach taken

is to identify and count a number of unique

function types:

 external inputs (e.g. file names)

 external outputs (e.g. reports,

messages)

 queries (interactive inputs needing a

response)

 external files or interfaces (files

shared with other software systems)

 internal files (invisible outside the

system)

 By focusing on the requirements

specification document, the estimator can

calculate the functionality of the system to

be developed by identifying the function

types listed above.

The sum of all the occurrences is computed

by multiplying each raw function count with

a weighting and then adding up all the

values. The weights are based on the

complexity of the feature being counted.

As an alternative to the problems identified

with SLOC, [ALBRECT] devised a method

of estimating effort by measuring the

functionality of a system as opposed to size,

namely function points. The approach taken

An Overview of Software Cost Estimation Models

Asian Journal Of Multidisciplinary Research, 1(1) August 2013 67

is to identify and count a number of unique

function types:

 external inputs (e.g. file names)

 external outputs (e.g. reports,

messages)

 queries (interactive inputs needing a

response)

 external files or interfaces (files

shared with other software systems)

 internal files (invisible outside the

system)

 By focusing on the requirements

specification document, the estimator can

calculate the functionality of the system to

be developed by identifying the function

types listed above.

The sum of all the occurrences is computed

by multiplying each raw function count with

a weighting and then adding up all the

values. The weights are based on the

complexity of the feature being counted.

CONCLUSION

Software Cost Estimation requires more

effort from researchers to work on it as there

is no technique which can show the precise

or accurate result for cost estimation.So in

order to get accurate cost estimation

researcher, manager and organizations

should work on it. Organization should

work on completing every project data in

future to get more accurate results.

REFERENCES :

1. Albrecht, A.J. and J.R. Gaffney,
'Software function, source lines of
code, and development effort
prediction: a software science
validation', IEEE Trans. on
Softw.Eng., 9(6),pp639-648, 1983.

2. Banker, R.D. and C.F. Kemerer,
�Scale economies in new software
development�, IEEE Trans. on
Softw.Eng., 15(10), 199-204, 1989

3. Boehm, B.W., Software Engineering
Economics. Prentice-Hall:
Englewood Cliffs, NJ, 1981.

4. Cowderoy, A.J.C. and J.O Jenkins,
�Cost estimation by analogy as a
good management practise�, in Proc.
Software Engineering 88, ed. Pyle,
I.C., Liverpool: IEE/BCS, pp80-84,
1988

5. DeMarco, T., Controlling Software
Projects. Management, measurement
and estimation. Yourdon Press: NY,
1982.

6. Fenton, N.E., 'Software Metrics: a
rigorous approach'. Chapman &
Hall,1991.

7. Fenton, N.E. and S. Pfleeger,
'Software Metrics: a rigorous and
practical approach'. Thomson
Computer Press, 1997.

8. Heemstra, F.J., �Software cost
estimation�, Information &Softw.
Technol.,34(10), pp627-639, 1992.

9. Hughes, R.T., �Expert judgement as
an estimating method�, Information
&Softw. Technol., 38(2), pp67-75,
1996.

10. Jack R. and M. Mannion, 'Improving
the software cost estimation process',
Software Quality Management.,
1995 1 pp245-56.

11. Karunanithi, N., D. Whiyley and
Y.K. Malaiya, �Using neural
networks in reliability prediction�,
IEEE Softw., 9(4), 53-9, 1992.

12. Kemerer, C.F., �An empirical
validation of software cost
estimation models�, CACM, 36(2),
1993.

An Overview of Software Cost Estimation Models

Asian Journal Of Multidisciplinary Research, 1(1) August 2013 68

13. Kitchenham, B.A., 'Empirical
studies of assumptions that underlie
software cost estimation'.
Information and Softw. Technol.,
34(4), 211-18, 1992.

14. Londeix, B., Cost Estimation for
Software Development .Addison-
Wesley:Workingham, 1987.

15. Londeix, B., 'Aspects of estimation
practice in software development', in
Proc. Software Engineering 88, ed.
Pyle, I.C., Liverpool: IEE/BCS, pp
75-79, 1988

16. Low, G.C and D.R. Jeffery,
�Function points in the estimation
and evaluation of the software
process�, IEEE Trans. on Softw.
Eng., 16(1), 64-71, 1990.

17. Low, G.C. and D.R. Jeffery,
'Calibrating estimation tools for
software development', Softw. Eng.
J., 5(4), pp215-221, 1990.

18. McDermid, J.A., Software
Engineer's Reference Book,
Butterworth-Heinemann: Oxford,
UK, 1991.

19. Pengelly, A., 'Performance of effort
estimating techniques in current
development environments', Softw.
Eng. J.l, September 1995, pp162-169

20. Putman, L.H., 'A general empirical
solution to the macro software sizing
and estimating problem'. IEEE
Trans. on Softw. Eng., 4(4), 345-61,
1978.

