Magic covering of chain of an arbitrary 2-connected simple graph

P. Jeyanthi and P. Selvagopal

(Received August 19, 2007; Revised November 30, 2007)

Abstract. A simple graph $G = (V, E)$ admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. We say that G is H-magic if there is a total labeling $f : V \cup E \to \{1, 2, 3, \ldots, |V| + |E|\}$ such that for each subgraph $H' = (V', E')$ of G isomorphic to H, $\sum_{v \in V'} f(v) + \sum_{e \in E'} f(e)$ is constant. When $f(V) = \{1, 2, \ldots, |V|\}$, then G is said to be H-supermagic. In this paper we show that a chain of any 2-connected simple graph H is H-supermagic.

AMS 2000 Mathematics Subject Classification. 20J06.

Key words and phrases. Chain of graph, Magic covering and H-supermagic.

§1. Introduction

The concept of H-magic graphs was introduced in [2]. An edge-covering of a graph G is a family of different subgraphs H_1, H_2, \ldots, H_k such that each edge of E belongs to at least one of the subgraphs H_i, $1 \leq i \leq k$. Then, it is said that G admits an (H_1, H_2, \ldots, H_k)-edge covering. If every H_i is isomorphic to a given graph H, then we say that G admits an H-covering.

Suppose that $G = (V, E)$ admits an H-covering. We say that a bijective function $f : V \cup E \to \{1, 2, 3, \ldots, |V| + |E|\}$ is an H-magic labeling of G if there is a positive integer $m(f)$, which we call magic sum, such that for each subgraph $H' = (V', E')$ of G isomorphic to H, we have, $f(H') = \sum_{v \in V'} f(v) + \sum_{e \in E'} f(e) = m(f)$. In this case we say that the graph G is H-magic. When $f(V) = \{1, 2, \ldots, |V|\}$, we say that G is H-supermagic and we denote its supermagic-sum by $s(f)$.

We use the following notations. For any two integers $n < m$, we denote by $[n, m]$, the set of all consecutive integers from n to m. For any set $I \subset \mathbb{N}$ we write $\sum I = \sum_{x \in I} x$ and for any integers k, $\mathbb{I} + k = \{x + k : x \in \mathbb{I}\}$. Thus
$k + [n, m]$ is the set of consecutive integers from $k + n$ to $k + m$. It can be easily verified that $\sum (\mathbb{I} + k) = \sum \mathbb{I} + k\mathbb{I}$. Finally, given a graph $G = (V, E)$ and a total labeling f on it we denote by $f(G) = \sum f(V) + \sum f(E)$.

In [2], A. Gutierrez, and A. Llado studied the families of complete and complete bipartite graphs with respect to the star-magic and star-supermagic properties and proved the following results.

- The star $K_{1,n}$ is $K_{1,h}$-supermagic for any $1 \leq h \leq n$.
- Let G be a d-regular graph. Then G is not $K_{1,h}$-magic for any $1 < h < d$.
- (a) The complete graph K_n is not $K_{1,h}$-magic for any $1 < h < n - 1$.
 (b) The complete bipartite graph $K_{n,n}$ is not $K_{1,h}$-magic for any $1 < h < n$.
- The complete bipartite graph $K_{n,n}$ is $K_{1,n}$-magic for $n \geq 1$.
- The complete bipartite graph $K_{n,n}$ is not $K_{1,n}$-supermagic for any integer $n > 1$.
- For any pair of integers $1 < r < s$, the complete bipartite graph $K_{r,s}$ is $K_{1,h}$-supermagic if and only if $h = s$.

The following results regarding path-magic and path-supermagic coverings are also proved in [2].

- The path P_n is P_h-supermagic for any integer $2 \leq h \leq n$.
- Let G be a P_h-magic graph, $h > 2$. Then G is C_h-free.
- The complete graph K_n is not P_h-magic for any $2 < h \leq n$.
- The cycle C_n is P_h-supermagic for any integer $2 \leq h < n$ such that $\gcd(n, h(h - 1)) = 1$.

Also in [2], the authors constructed some families of H-magic graphs for a given graph H by proving the following results.

- Let H be any graph with $|V(H)| + |E(H)|$ even. Then the disjoint union $G = kH$ of k copies of H is H-magic.

Let G and H be two graphs and $e \in E(H)$ a distinguished edge in H. We denote by $G \ast eH$ the graph obtained from G by gluing a copy of H to each edge of G by the distinguished edge $e \in E(H)$.

- Let H be a 2-connected graph and G an H-free supermagic graph. Let k be the size of G and $h = |V(H)| + |E(H)|$. Assume that h and k are not both even. Then, for each edge $e \in E(H)$, the graph $G \ast eH$ is H-magic.
In [3], P. Selvagopal and P. Jeyanthi proved that for any positive integer \(n \), a \(k \)-polygonal snake of length \(n \) is \(C_k \)-supermagic.

In this paper we construct a chain graph \(H_n \) of 2-connected graph \(H \) of length \(n \), and prove that a chain graph \(H_n \) is \(H \)-supermagic.

§2. Preliminary Results

Let \(P = \{X_1, X_2, \ldots, X_k\} \) be partition set of a set \(X \) of integers. When all sets have the same cardinality we say then \(P \) is a \(k \)-equipartition of \(X \). We denote the set of subsets sums of the parts of \(P \) by \(\sum P = \{\sum X_1, \sum X_2, \ldots, \sum X_k\} \).

The following lemmas are proved in [2].

Lemma 1. Let \(h \) and \(k \) be two positive integers and let \(n = hk \). For each integer \(0 \leq t \leq \lfloor \frac{h}{2} \rfloor \) there is a \(k \)-equipartition \(P \) of \([1, n] \) such that \(\sum P \) is an arithmetic progression of difference \(d = h - 2t \).

Lemma 2. Let \(h \) and \(k \) be two positive integers and let \(n = hk \). In the two following cases there exists a \(k \)-equipartition \(P \) of a set \(X \) such that \(\sum P \) is a set of consecutive integers.

(i) \(h \) or \(k \) are not both even and \(X = [1, hk] \).

(ii) \(h = 2 \) and \(k \) is even and \(X = [1, hk + 1] - \{\frac{k}{2} + 1\} \).

We have the following four results from the above two lemmas.

(a) If \(h \) is odd, then there exists a \(k \)-equipartition \(P = \{X_1, X_2, \ldots, X_k\} \) of \(X = [1, hk] \) such that \(\sum P \) is a set of consecutive integers and \(\sum P = \frac{h(hk + k + 1)}{2} + [1, k] \).

(b) If \(h \) is even, then there exists a \(k \)-equipartition \(P = \{X_1, X_2, \ldots, X_k\} \) of \(X = [1, hk] \) such that subsets sum are equal and is equal to \(\frac{h(hk + 1)}{2} \).

(c) If \(h \) is even and \(k \) is odd, then there exists a \(k \)-equipartition \(P = \{X_1, X_2, \ldots, X_k\} \) of \(X = [1, hk] \) such that \(\sum P \) is a set of consecutive integers and \(\sum P = \frac{h(hk + k + 1)}{2} + [\frac{k-1}{2}, \frac{k}{2}] \).

(d) If \(h = 2 \) and \(k \) is even, and \(X = [1, 2k + 1] - \{\frac{k}{2} + 1\} \) then there exists a \(k \)-equipartition \(P = \{X_1, X_2, \ldots, X_k\} \) of \(X \) such that \(\sum P \) is a set of consecutive integers and \(\sum P = \left[\frac{3k}{2} + 3, \frac{5k}{2} + 2\right] \).

We generalise the second part of Lemma 2.

Corollary 1. Let \(h \) and \(k \) be two even positive integers and \(h \geq 4 \). If \(X = [1, hk + 1] - \{\frac{k}{2} + 1\} \), there exists a \(k \)-equipartition \(P \) of \(X \) such that \(\sum P \) is a set of consecutive integers.
Proof. Let $Y = [1, 2k + 1] - \{ \frac{k}{2} + 1 \}$ and $Z = (2k + 1) + [1, (h - 2)k]$. Then $X = Y \cup Z$. By (d), there exists a k-equipartition $P_1 = \{ Y_1, Y_2, \ldots, Y_k \}$ of Y such that

$$\sum P_1 = \left[\frac{3k}{2} + 3, \frac{5k}{2} + 2 \right].$$

As $h - 2$ is even, by (b) there exists a k-equipartition $P'_2 = \{ Z'_1, Z'_2, \ldots, Z'_k \}$ of $[1, (h - 2)k]$ such that

$$\sum P'_2 = \left\{ \frac{(h - 2)(hk - 2k + 1)}{2} \right\}.$$

Hence, there exists a k-equipartition $P_2 = \{ Z_1, Z_2, \ldots, Z_k \}$ of Z such that

$$\sum P_2 = \left\{ (h - 2)(2k + 1) + \frac{(h - 2)(hk - 2k + 1)}{2} \right\}.$$

Let $X_i = Y_i \cup Z_i$ for $1 \leq i \leq k$. Then $P = \{ X_1, X_2, \ldots, X_k \}$ is a k-equipartition of X such that $\sum P$ is a set of consecutive integers and

$$\sum P = (h - 2)(2k + 1) + \frac{(h - 2)(hk - 2k + 1)}{2} + \left[\frac{3k}{2} + 3, \frac{5k}{2} + 2 \right].$$

\[\square\]

§3. Chain of an arbitrary simple connected graph

Let H_1, H_2, \ldots, H_n be copies of a graph H. Let u_i and v_i be two distinct vertices of H_i for $i = 1, 2, \ldots, n$. We construct a chain graph H_n of H of length n by identifying two vertices u_i and v_{i+1} for $i = 1, 2, \ldots, n - 1$. See Figures 1 and 2.

§4. Main Result

Theorem 1. Let H be a 2-connected (p, q) simple graph. Then H_n is H-supermagic if any one of the following conditions is satisfied.

(i) $p + q$ is even

(ii) $p + q + n$ is even

Proof. Let $G = (V, E)$ be a chain of n copies of H. Let us denote the ith copy of H in H_n by $H_i = (V_i, E_i)$. Note that $|V| = np - n + 1$ and $|E| = nq$. Moreover, we remark that by H is a 2-connected graph, H_n does not contain a subgraph H other than H_i.
Let v_i be the vertex in common with H_i and H_{i+1} for $1 \leq i \leq n - 1$. Let v_0 and v_n be any two vertices in H_1 and H_n respectively so that $v_0 \neq v_1$ and $v_n \neq v_{n-1}$. Let $V_i' = V_i - \{v_{i-1}, v_i\}$ for $1 \leq i \leq n$.

Case (i): $p + q$ is even

Suppose p and q are odd. As $p - 2$ is odd, by (a) there exists an n-equipartition $P'_1 = \{X'_1, X'_2, \ldots, X'_n\}$ of $[1, n(p - 2)]$ such that

$$\sum P'_1 = \frac{(p - 3)(np - n + 1)}{2} + [1, n].$$

Adding $n+1$ to $[1, n(p - 2)]$, we get an n-equipartition $P_1 = \{X_1, X_2, \ldots, X_n\}$ of $[n + 2, np - n + 1]$ such that

$$\sum P_1 = (p - 2)(n + 1) + \frac{(p - 3)(np - n + 1)}{2} + [1, n]$$

Similarly, since q is odd there exists an n-equipartition $P_2 = \{Y_1, Y_2, \ldots, Y_n\}$ of $(np - n + 1) + [1, nq]$ such that

$$\sum P_2 = q(np - n + 1) + \frac{(q - 1)(nq + n + 1)}{2} + [1, n]$$

Define a total labeling $f : V \cup E \rightarrow \{1, 2, 3, \ldots, np + nq - n + 1\}$ as follows:

(i) $f(v_i) = i + 1$ for $0 \leq i \leq n$.

(ii) $f(V'_i) = X_{n-i+1}$ for $1 \leq i \leq n$.

(iii) $f(E_i) = Y_{n-i+1}$ for $1 \leq i \leq n$.

Then for $1 \leq i \leq n$,

$$f(H_i) = f(v_{i-1}) + f(v_i) + \sum f(V'_i) + \sum f(E_i)$$

$$= f(v_{i-1}) + f(v_i) + \sum X_{n-i+1} + \sum Y_{n-i+1}$$

$$= \frac{n(p + q)^2 + 3(p + q) - 2n(p + q) + 2n - 2}{2}$$

As $H_i \cong H$ for $1 \leq i \leq n$, Hn is H-supermagic.

Suppose both p and q are even. As p is even, by Lemma 1, there exists an n-equipartition $P'_1 = \{X'_1, X'_2, \ldots, X'_n\}$ of $[1, n(p - 2)]$ such that $\sum P'_1$ is arithmetic progression of difference 2 and

$$\sum P'_1 = \left\{ n \left[(p - 2)^2 - 2\right] + p - 4 + 2r : 1 \leq r \leq n \right\}.$$
Adding \(n+1 \) to \([1, n(p-2)]\), we get an \(n\)-equipartition \(P_1 = \{X_1, X_2, \ldots, X_n\}\) of \([n + 2, np - n + 1]\) such that
\[
\sum P_1 = \left\{(p-2)(n+1) + \frac{n[(p-2)^2 - 2] + p - 4}{2} + 2i : 1 \leq i \leq n\right\}
\]

As \(q \) is even, by (b), there exists an \(n\)-equipartition \(P'_2 = \{Y'_1, Y'_2, \ldots, Y'_n\}\) of \([1, nq]\) such that \(\sum P'_2 = \left\{\frac{q(nq+1)}{2}\right\}\).

Adding \(np - n + 1 \) to \([1, nq]\) there exists an \(n\)-equipartition \(P_2 = \{Y_1, Y_2, \ldots, Y_n\}\) of \((np - n + 1) + [1, nq]\) such that
\[
\sum P_2 = \left\{q(np - n + 1) + \frac{q(nq+1)}{2}\right\}
\]

Define a total labeling \(f : V \cup E \rightarrow \{1, 2, 3, \ldots, np + nq - n + 1\}\) as follows:

(i) \(f(v_i) = i + 1 \) for \(0 \leq i \leq n \).

(ii) \(f(V'_i) = X_{n-i+1} \) for \(1 \leq i \leq n \).

(iii) \(f(E_i) = Y_{n-i+1} \) for \(1 \leq i \leq n \).

Then for \(1 \leq i \leq n \),
\[
f(H_i) = f(v_{i-1}) + f(v_i) + \sum f(V'_i) + \sum f(E_i)
= f(v_{i-1}) + f(v_i) + \sum X_{n-i+1} + \sum Y_{n-i+1}
= \frac{n(p+q)^2 + 3(p+q) - 2n(p+q) + 2n - 2}{2}
\]

As \(H_i \cong H \) for \(1 \leq i \leq n \), \(Hn \) is \(H\)-supermagic.

Case (ii): \(p + q + n \) is even: Suppose \(p \) is odd, \(q \) is even and \(n \) is odd. Since \(p \) is odd as in proof of Case (i), there exists an \(n\)-equipartition \(P_1 = \{X_1, X_2, \ldots, X_n\}\) of \([n + 2, np - n + 1]\) such that
\[
\sum P_1 = (p-2)(n+1) + \frac{(p-3)(np - n + 1)}{2} + [1, n]
\]

Since \(q \) is even and \(n \) is odd, by (c) there exists an \(n\)-equipartition \(P'_2 = \{Y'_1, Y'_2, \ldots, Y'_n\}\) of \([1, nq]\) such that
\[
\sum P'_2 = \frac{q(nq+1)}{2} + \left[-\frac{n-1}{2}, \frac{n-1}{2}\right].
\]

Adding \(np-n+1 \) to \([1, nq]\) there exists an \(n\)-equipartition \(P_2 = \{Y_1, Y_2, \ldots, Y_n\}\) of \((np - n + 1) + [1, nq]\) such that
\[
\sum P_2 = q(np - n + 1) + \frac{q(nq+1)}{2} + \left[-\frac{n-1}{2}, \frac{n-1}{2}\right]
\]

Define a total labeling \(f : V \cup E \rightarrow \{1, 2, 3, \ldots, np + nq - n + 1\}\) as follows:
(i) \(f(v_i) = i + 1 \) for \(0 \leq i \leq n \).

(ii) \(f(V'_i) = X_{n-i+1} \) for \(1 \leq i \leq n \).

(iii) \(f(E_i) = Y_{n-i+1} \) for \(1 \leq i \leq n \).

Then for \(1 \leq i \leq n \),
\[
f(H_i) = f(v_{i-1}) + f(v_i) + \sum f(V'_i) + \sum f(E_i)
= f(v_{i-1}) + f(v_i) + \sum X_{n-i+1} + \sum Y_{n-i+1}
= \frac{n(p + q)^2 + 3(p + q) - 2n(p + q) + 2n - 2}{2}
\]

As \(H_i \cong H \) for \(1 \leq i \leq n \), \(H_n \) is \(H \)-supermagic.

Suppose \(p \) is even, \(q \) is odd and \(n \) is odd. Since \(p - 2 \) is even and \(n \) is odd, by (c) there exists an \(n \)-equipartition \(P'_1 = \{X'_1, X'_2, \ldots, X'_n\} \) of \([1, n(p-2)]\) such that
\[
\sum P'_1 = (p-2)[n(p-2)+1] + \left[-\frac{n-1}{2}, \frac{n-1}{2} \right].
\]

Adding \(n+1 \) to \([1, n(p-2)]\), we get an \(n \)-equipartition \(P_1 = \{X_1, X_2, \ldots, X_n\} \) of \([n+2, np-n+1]\) such that
\[
\sum P_1 = (p-2)(n+1) + \frac{(p-2)[n(p-2)+1]}{2} + \left[-\frac{n-1}{2}, \frac{n-1}{2} \right].
\]

Since \(q \) is odd, as in Case (i) there exists an \(n \)-equipartition \(P_2 = \{Y_1, Y_2, \ldots, Y_n\} \) of \((np-n+1) + [1, nq]\) such that
\[
\sum P_2 = q(np-n+1) + \frac{(q-1)(nq+n+1)}{2} + [1, n]
\]

Define a total labeling \(f : V \cup E \to \{1, 2, 3, \ldots, np+nq-n+1\} \) as follows:

(i) \(f(v_i) = i + 1 \) for \(0 \leq i \leq n \).

(ii) \(f(V'_i) = X_{n-i+1} \) for \(1 \leq i \leq n \).

(iii) \(f(E_i) = Y_{n-i+1} \) for \(1 \leq i \leq n \).

Then for \(1 \leq i \leq n \),
\[
f(H_i) = f(v_{i-1}) + f(v_i) + \sum f(V'_i) + \sum f(E_i)
= f(v_{i-1}) + f(v_i) + \sum X_{n-i+1} + \sum Y_{n-i+1}
= \frac{n(p + q)^2 + 3(p + q) - 2n(p + q) + 2n - 2}{2}
\]

As \(H_i \cong H \) for \(1 \leq i \leq n \), \(H_n \) is \(H \)-supermagic. \(\square \)
§5. Illustrations

A chain of a 2-connected \((5, 7)\) simple graph \(H\) of length 5 is shown in Figure 1 and a chain of a 2-connected \((6, 9)\) simple graph \(H\) of length 3 is shown in Figure 2.

Figure 1. \(p = 5, q = 7, s(f) = 322\).

Figure 2. \(p = 6, q = 9, s(f) = 317\).
References

P. Jeyanthi
Department of Mathematics, Govindammal Aditanar College for women
Tiruchendur 628 215, India
E-mail: jeyajeyanthi@rediffmail.com

P. Selvagopal
Department of Mathematics, Lord Jegannath College of Engineering and Technology
PSN Nagar, Ramanathichenputhur, 629 402, India
E-mail: ps_gopaal@yahoo.co.in