
Colgate University Libraries
Digital Commons @ Colgate

Senior Honors Theses Student Work

2017

Engineering an Efficient Branch-and-Reduce
Algorithm for the Minimum Vertex Cover Problem
Haonan Zhong
Colgate University, hzhong2@colgate.edu

Follow this and additional works at: http://commons.colgate.edu/theses

Part of the Discrete Mathematics and Combinatorics Commons, and the Theory and Algorithms
Commons

This Thesis is brought to you for free and open access by the Student Work at Digital Commons @ Colgate. It has been accepted for inclusion in Senior
Honors Theses by an authorized administrator of Digital Commons @ Colgate. For more information, please contact seblack@colgate.edu.

Recommended Citation
Zhong, Haonan, "Engineering an Efficient Branch-and-Reduce Algorithm for the Minimum Vertex Cover Problem" (2017). Senior
Honors Theses. 17.
http://commons.colgate.edu/theses/17

http://commons.colgate.edu?utm_source=commons.colgate.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.colgate.edu/theses?utm_source=commons.colgate.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.colgate.edu/students?utm_source=commons.colgate.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.colgate.edu/theses?utm_source=commons.colgate.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=commons.colgate.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=commons.colgate.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=commons.colgate.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.colgate.edu/theses/17?utm_source=commons.colgate.edu%2Ftheses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:seblack@colgate.edu

Bachelor Thesis

Engineering an E�cient Branch-and-Reduce Algorithm
for the Minimum Vertex Cover Problem

Haonan Zhong

Date: May 15, 2017

Advisor: Prof. Darren Strash

Technical Report: COSC-TR-2017-03

Department of Computer Science
Colgate University

Hamilton, New York

Abstract

The Minimum Vertex Cover problem asks us to �nd a minimum set of vertices in a graph
such that each edge of the graph is incident to at least one vertex of the set. It is a classical
NP-hard problem and in the past researchers have suggested both exact algorithms and
heuristic approaches to tackle the problem. In this thesis, we improve Akiba and Iwata’s
branch-and-reduce algorithm, which is one of the fastest exact algorithms in the �eld, by
developing three techniques: dependency checking, caching solutions and feeding an initial
high quality solution to accelerate the algorithm’s performance. We are able to achieve
speedups of up to 3.5 on graphs where the algorithm of Akiba and Iwata is slow. On one
such graph, the Stanford web graph, our techniques are especially e�ective, reducing the
runtime from 16 hours to only 4.6 hours.

iii

Acknowledgments

I would like to thank my thesis advisor, Prof. Darren Strash, for pushing me forward and
guiding me as I worked on my thesis. He provided encouragement and advice throughout
my time as his advisee and I am extremely lucky to have a advisor who cares so much about
my work. I would like to thank the professors, lab instructors and all other sta� at the
Department of Computer Science. They led me to the amazing world of computer science
and guided me as I explored di�erent topics and �elds. Special thanks to my computer
science advisor Prof. Phil Mulry for instructing me in the past four years. Finally, I would
like to thank my family and friends who always support me and help me relieve stress.

v

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Hamilton, NY May 15, 2017

. .
(Haonan Zhong)

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Organization . 3

2 RelatedWork 5
2.1 Exact Algorithms . 5
2.2 Heuristic Approaches . 6

3 Preliminaries 9
3.1 Graphs . 9

3.1.1 The Minimum Vertex Cover Problem 9
3.2 The Branch-and-Reduce Paradigm . 9
3.3 Branching Rules . 10

4 Dependency Checking 13
4.1 Dependency Checking Overview . 13
4.2 Reduction rules . 15
4.3 Updating Vertices . 15
4.4 Our Dependency Checking Algorithm . 16
4.5 Potential Issues . 16

5 Pruning 19
5.1 Pruning Overview . 19
5.2 Cache Subgraphs . 20
5.3 Using an Initial High Quality Solution . 21

5.3.1 Lower bound checking techniques 21
5.3.2 Why a initial solution? . 21

6 Experimental Results 23
6.1 Experimental Setup . 23

6.1.1 Machine and Language . 23

ix

Contents

6.1.2 Graphs . 23
6.1.3 Algorithms Compared . 23

6.2 Results . 24
6.2.1 Summary Statistics . 24
6.2.2 Results of the Original Algorithm 24
6.2.3 Results with Dependency Checking 24
6.2.4 Results with Caching . 26
6.2.5 Results with a High-Quality Initial Solution 26
6.2.6 Results with Dependency Checking and a High Quality Initial Solution 27
6.2.7 Issues Combining Techniques . 27
6.2.8 Results conclusion . 27

7 Conclusion 31
7.1 Contributions . 31
7.2 Future Work . 31

x

1 Introduction

The Minimum Vertex Cover problem asks us to �nd a minimum set of vertices in a graph
such that each edge of the graph is incident to at least one vertex of the set. It is a classical
NP-hard optimization problem in computer science and so far no one knows if it can be
solved in polynomial time. Along with the Minimum Vertex Cover the related Maximum
Independent Set and Maximum Clique problems are also in the class.

This problem and its related problems have many applications. For example, it is used in
computational biochemistry to resolve con�icts between DNA sequences [32]. Two DNA
fragments can have a con�ict if they are similar but one potentially has an error due to DNA
sequencing. We can build a graph in which vertices represent di�erent DNA fragments
and there is an edge between two vertices if the two fragments are in con�ict. A minimum
vertex cover in the graph can help us detect DNA fragments we suspect that are likely
candidates to have errors.

Another application of the Minimum Vertex Cover problem is advanced real-time rendering.
Sander et al. [36] formed a dual graph of a triangular mesh, in which they used vertices to
represent each face in the mesh and edges to show that two faces are adjacent to each other.
Computing a minimum vertex cover of the dual graph, Sander et al. are able to e�ciently
�nd a fast traversal of all mesh faces which speeds up the performance of rendering of these
meshes.

Cheng et al. [18] invented a disk-based index for fast lookup of single-source shortest path
queries and distance queries between any two vertices in a graph. They use a small vertex
cover of the graph and compute the distances between vertices in the cover to create their
index. An minimum vertex cover can also help them reduce their index size.

1.1 Motivation

Many past studies have been conducted to tackle the Minimum Vertex Cover problem and the
complementary Maximum Independent Set problem [2, 3, 9, 11, 12, 22]. Akiba and Iwata [2]
implement an advanced branch-and-reduce algorithm which intermixes branching with

1

1 Introduction

reduction rules that repeatedly reduces the size of the graph. They compare the algorithm
to two state-of-the-art solvers: a branch-and-cut method with an integer programming
formulation of the problem by CPLEX, a commercial integer programming solver, and a
branch-and-bound method called MCS [41]. They showed that their branch-and-reduce
algorithm is superior to those techniques used in industry to solve the Minimum Vertex
Cover problem, especially on social networks and web crawl graphs such as petster-dog
and BerkStan [2], which are large and sparse. However, their algorithm still has trouble
solving some of the most complex graphs such as the Stanford web graph. Strash [38],
however, showed that Akiba and Iwata’s branch-and-reduce algorithm is not necessary for
computing a minimum vertex cover for many instances from Akiba and Iwata’s experiments.
Processing the graph by �rst applying a sequence of simple reduction rules is su�cient to
solve most graphs in practice.

Based on Strash’s empirical results, we hypothesize that by reserving advanced reductions
for "di�cult" portions of a graph and using a better pruning technique, Akiba and Iwata’s
algorithm can be sped up on di�cult graphs. Also, although the branch-and-reduce algo-
rithm is shown to be more e�cient than other state-of-the-art algorithms on most of the
graphs from Akiba and Iwata’s experiments, it fails to solve some graphs in a reasonable
time. For instance, with their original algorithm, it takes 67 270 seconds (18.6 hours) to �nd
a minimum vertex cover for the Stanford web graph and it takes 24 365 seconds (6.7 hours)
to complete the sanr400_0.7 [2] graph. By comparison, it only takes the commercial integer
programming solver CPLEX 1 836 seconds to complete the Stanford graph. It shows that the
algorithm is not superior to other solvers in all instances. In this paper, we want understand
why their algorithm is slow on instances like the Stanford graph, and in addition, improve
the time it takes to solve them.

1.2 Our Contribution

In this thesis, we intend to speed up the branch-and-reduce algorithm from Akiba and Iwata
by applying reductions in a more targeted and less time-consuming way, and by developing
a more advanced pruning technique. With these techniques, we are trying to see whether
we can more quickly handle di�cult graphs like the Stanford web graph, road networks
and the LiveJournal instance. We develop three techniques. First, we apply reduction rules
in a di�erent order so that e�ective reductions can be applied more times than less e�ective
ones. For instance, for graphs that can be easily solved with lightweight reductions from the
exact exponential algorithm by Fomin et al. [23], we apply those rules as much as possible
to solve the graph. If those rules encounter the "di�cult" portion of the graph, we switch to
advanced techniques like the uncon�ned reduction rule by Xiao and Nagamochi [44]. In

2

1.3 Organization

this case graphs such as Skitter [2] become 1.3 times faster. For the Stanford graph, we
even achieve a speedup of 3.5. Finally, we apply a better pruning technique for branching to
avoid redundant searching. Instead of repeatedly evaluating all disconnected components,
which are groups of vertices in a graph that are connected together but separated from
each other, we cache previous solutions to subgraphs and avoid repeated computations. We
also show that seeding the branch-and-reduce algorithm with a high quality initial solution
helps the algorithm prune more e�ectively. With all the techniques, we are able to reduce
the running time of the skitter graph from 2 988.275 seconds to 2 286.676 seconds and the
hollywood-2011 graph from 76.557 to 26.672 seconds.

1.3 Organization

In Chapter 2, we discuss in depth about past related work on the Minimum Vertex Cover
problem. In Chapter 3 we explain basic concepts of graphs and describe the branch-and-
reduce algorithm by Akiba and Iwata. In Chapters 4 and 5 we explain our two techniques:
dependency checking and pruning, and show their e�ectiveness. In Chapter 6 we give
extensive experimental results to compare the e�ectiveness of our techniques and in the
last chapter we conclude our �ndings and suggest potential future work.

3

2 RelatedWork

Many researchers have studied the Minimum Vertex Cover problem and its related problems
the Maximum Independent Set problem and the Maximum Clique problem. These problems
are computationally equivalent. Suppose we have a graph G. A maximum clique in G’s
complement graph Ḡ is also a maximum independent set for G. A maximum independent
cover I in G can then be used to �nd a minimum vertex cover C as C = V \ I . An example
of the three problems in one graph is shown in Figure 2.1.

2.1 Exact Algorithms

Many exact branch-and-bound algorithms can exactly solve the Maximum Clique problem
on small instances [35, 40, 41]. These techniques recursively build a maximum clique
and conduct upper bound checks to avoid unnecessary branching. One of the most well-
known branch-and-bound algorithms is MCR by Tomita et al. [40]. They used a coloring
method [42] with a initial vertex ordering for their algorithm to e�ciently �nd a upper
bound of the solution size, and use the bound to reduce search space. Tomita et al. [41]
further improved the coloring technique, and created a new branch-and-bound algorithm
called MCS. The new algorithm is proven to be more e�ective for dense graphs than MCR.

Batsyn et al. further [4] showed that initializing MCS [41] with an initial near-optimal
solution generated using the local search algorithm by Andrade et al. [3] helped the algorithm
improved signi�cantly on many benchmark instances. Their approach has a speedup of 4
over MCS in solving DIMACS graphs. For gen instances there is even a speedup of 11 000
compared to MCS. Overall their algorithm is extremely e�ective in dense and large graphs.

Minimum Vertex Cover Maximum Independent Set Maximum Clique

Figure 2.1: Three NP-hard problems

5

2 Related Work

The idea of reducing graph size to lower graph complexity is another technique that has
long been studied [1, 11, 24]. A rule for reducing graph size while maintaining the ability
to compute an optimal solution is called a reduction. These methods are crucial in the
Minimum Vertex Cover and the Maximum Independent Set problems. Abu-Khzam et al. [1]
showed that a crown structure can be used to quickly identify a minimum vertex cover in
a graph. They also suggest that the crown structure based reduction is best applied prior
to other reduction rules due to its e�ciency but also because of its limitation in reducing
dense graphs. Butenko et al. [12] further showed that simple reductions are also e�ective
in reducing graph size in practice. They showed that a critical independent set, which is
solvable in polynomial time, can be used to reduce graph size for the Maximum Independent
Set problem. These reduction techniques are in general e�ective for the Minimum Vertex
Cover problem but they fail to solve graphs with large kernel size, which is the size of a
graph when no reduction rules can further remove vertices [31].

Branch-and-reduce algorithms [2, 4, 9, 23, 35, 39, 44] use a combination of branching,
reducing, and pruning techniques. Akiba and Iwata’s algorithm [2] is shown to be one of
the most e�ective algorithms for the Minimum Vertex Cover problem. They showed that
their implementation of branch-and-reduce is superior to other state-of-the-art solvers on
many instances, even including some large graphs. However, Strash [38] showed that Akiba
and Iwata’s algorithm is only bene�cial on a few networks with large kernels. For graphs
with small kernels with respect to simple reductions, their algorithm can be outperformed
by simple reductions combined with MCS. Overall exact algorithms, though computing
optimal solutions, are still slow compared to heuristic approaches for most of the largest
graphs [10], so heuristic approaches are still needed for the Minimum Vertex Cover and its
related problems.

2.2 Heuristic Approaches

Many researchers have investigated heuristic (or inexact) approaches for the Maximum
Clique problem [3, 5, 13, 14, 19, 21, 26, 27, 28] and they apply similar ideas of reducing the
search space of a graph to a feasible size by removing or adding vertices. For example,
Andrade et al. [3] proposed a fast implementation of a local search procedure for the
Maximum Independent Set problem, which �nds a near-optimal solution for sparse and
large graphs such as road networks within a much shorter time than many state-of-the-art
algorithms. However, it is outperformed by other methods such as the one by Lamm et
al. [31] for web graphs and social networks with hundreds of millions to billions of nodes.

Dahlum et al. [19] showed that three issues exist in the algorithm by Andrade et al. which
can be improved upon. First, during vertex selection for perturbation, the algorithm treats

6

2.2 Heuristic Approaches

all vertices the same including those with degree one which are always in some solution.
It causes extra searching time which can be avoided by including the degree one vertices
directly into the solution set. Second, high-degree vertices can be cut out of complex graphs
to reduce time since they are less likely to be in the solution than other vertices. Third, a
better implementation of "vertex pair selection" can also be achieved by limiting valid pairs
to a small number.

San Segundo et al. [35] gave an exact bit-parallel algorithm which makes full use of the
ability of CPUs to solve the Maximum Clique problem and further improved the algorithm
by incorporating a recoloring strategy by Tomita et al. [41] and optimized bit scanning with
the use of compiler intrinsic to compute basic bit string operations [16].

Lamm et al. [31] developed an evolutionary algorithm for the Maximum Independent Set
problem. They repeatedly kernelize a graph with a combination of both exact reductions
and selections of likely vertices to �nd a high quality solution. Their implementations not
only speed up computations on large graphs but also obtain better results compared to the
algorithm by Andrade et al. [3].

NuMVC, which is a heuristic algorithm by Cai et al. [14] is shown to outperform many
other state-of-the-art local search algorithms on the Minimum Vertex Cover problem. It
adopts two strategies to improve local search performance. First, it uses a vertex exchange
strategy which reduces the complexity of selecting vertex and doing search. Second, it
introduces an edge weight forgetting mechanism to further speed up the algorithm. Edge
weighting is shown to be useful in local search because it separates uncovered vertices from
covered vertices. The forgetting mechanism proposes that the weights assigned too far
in the past are less useful in performing searches so they can be forgotten to improve the
overall algorithm speed.

The FastVC algorithm introduced by Cai [13] also solves the Minimum Vertex Cover problem.
For large graphs, the idea of FastVC is to swap vertices within the vertex cover and outside
the vertex cover of a graph and calculate gain and loss along the way. At the end it returns a
vertex cover with the maximum gain, which is also a high quality solution for the Minimum
Vertex Cover problem. He showed that FastVC is much faster than NuMVC on large graphs
and it also �nds better solutions. For example, FastVC is able to �nd a high quality solution
for the graphs that NuMVC can not even �nish in a reasonable time.

Comparatively, exact algorithms can not achieve the same e�cacy as heuristic approaches
when dealing with complex graphs with large kernel sizes but heuristic methods only �nd
locally optimal solutions. A method that is both e�cient and fast is needed and thus we
propose to further improve Akiba and Iwata’s branch-and-reduce algorithm which has
already shown great results on many large graphs.

7

3 Preliminaries

3.1 Graphs

A graph G = (V ,E) is a mathematical structure that represents pairwise interactions of
objects. Each object in the graph is represented as a vertexv ∈ V and each of the two related
objects (v,u) ∈ E are connected with an edge e ∈ E. We use V to denote all the vertices in
the graph and E for all the edges. We use N (v) to denote vertex v’s open neighborhood,
which are the vertices in the graph that are directly connected tov . The closed neighborhood
N [v] = N (v) ∪ {v}.

3.1.1 The Minimum Vertex Cover Problem

The Minimum Vertex Cover problem is a classical NP-hard problem in graph theory. NP-
hard is the class of problems that are at least as di�cult as any problem in NP. So far no one
knows if these problems can be solved in polynomial time [25]. A vertex cover C is a set
of vertices of a graph G such that each edge of G is incident to at least one vertex in C . In
brief, it is a subset of vertices C ⊆ V that covers all the edges. A minimum vertex cover is a
vertex cover with minimum cardinality.

3.2 The Branch-and-Reduce Paradigm

Branch-and-reduce is a technique that computes an optimal solution by reducing graph size
and selecting vertices to temporarily add to a growing solution. The branch-and-reduce
algorithm by Akiba and Iwata [2] recursively computes many candidate solutions from
di�erent branching choices and in the end computes a minimum vertex cover. Initially we
have a graph G, a current vertex cover X to store the current growing cover and a best
vertex cover Y (the smallest vertex cover) formed so far to be the �nal result. We apply a
set of reduction rules to reduce the size of G and during the reduction we also add vertices
to X . The reduction set is a set of techniques that are used to remove or fold, forming

9

3 Preliminaries

a smaller graph. They also help to identify vertices that are probably in some minimum
vertex cover. Akiba and Iwata include simple reductions such as degree one, degree two,
vertex folding and domination reductions [23], but also use advanced reductions such as
the uncon�ned and twin reductions [44]. With repeated application of reduction rules, G is
minimized to a kernel. Then we select a vertex v using a set of branching rules and remove
v from G and add it to X . Since G’s structure has been changed, we re-apply all reductions
to reduce its size until it again reaches a kernel. After repeating the whole reducing and
branching process until either G is empty or it reaches the lower bound, the algorithm
compares current cover X with the best cover Y and update Y to be X if X has a smaller size.
After updating Y , the algorithm recursively returns to the previous kernel from before it
branched. This time it selects a di�erent vertex to branch on and continues recursively until
it �nds another solution. Akiba and Iwata further experimented with three lower-bounding
techniques: clique cover, LP relaxation and cycle cover [2] to check if the solution can be
improved further (see Chapter 5). The whole algorithm’s pseudocode is shown below in
Algorithm 1.

3.3 Branching Rules

The branching rules by Akiba and Iwata include vertex selection, mirror branching, satellite
branching and packing branching. Vertex selection [23] selects a vertex with the maximum
degree to branch on and if there are multiple vertices with the same maximum degree then
we choose one vertexv that minimizes the total degree of N (v). Mirror branching is another
technique by Fomin et al. [23]. It �rst �nds a vertex v that has a mirror, which is a set of
u ∈ N 2(v) (v’s neighbors’ neighbors) such that N (v) \ N (u) forms a clique or the empty
set. Then we remove v from the graph and add all its mirrors to the vertex cover. Satellite
branching is a di�erent branching rule by Kneis et al. [29]. The idea is similar to mirror
branching but we need to �nd a vertex v’s satellites, which is a set of vertices u ∈ N 2(v)
such that for a w ∈ N (v), N (w) \ N [v] = {u}. We then discard v’s satellites S and include v
and S in the vertex cover. The last branching rule, packing branching, is correlated with
the packing constraints. A packing constraint indicates that if we want to �nd a minimum
vertex cover that does not include vertex v , then for its neighbor w ∈ N (v), we can add
a set of constraints

∑
u∈N+(w) xu ≤ |N

+(w) | − 1 (N + = N (w) \ N [S]) in which xu = 1 if a
vertex u is in the cover and xu = 0 otherwise. These constraints are used to speed up the
search for a branching candidate.

10

3.3 Branching Rules

Algorithm 1 A branch-and-reduce algorithm for the Minimum Vertex Cover problem
INPUT Graph G = (V ,E), current solution X , best solution Y
Solver (G)

while G is not a kernel do
G ← reduce (G) AND update X

end while
if G is not satis�ed packing constraints then

return X
else if G is empty then

return X
else if X + LowerBound(G) > Y then

return X
else if G is disconnected then

for each component C ∈ G do
X ← X + Solve (C)

end for
return X

end if
if |X | ≤ |Y | then

Y ← X
end if
G1,G2 ← branch(G)
Y ← Solve (G1)
Y2 ← Solve (G2)
if |Y2 | ≤ |Y | then

Y ← Y2
end if
return Y

11

4 Dependency Checking

In this chapter, we discuss dependency checking, a technique to reduce time spent on
reductions, and describe our implementation of this technique.

4.1 Dependency Checking Overview

Dependency checking is a technique �rst introduced by Strash [38]. He showed that simple
reduction can be quickly applied when considering only parts of the graph that change.
Inspired by his idea, we want to apply simple reductions rules on graphs as much as possible
before using advanced reduction techniques in order to fully utilize simple reductions [37].
Simple reductions are the ones that are e�ective and quick to reduce graphs. These include
the degree one reduction, the degree two reduction [23] and vertex folding [17]. Advanced
reductions, on the other hand, are ones that are e�ective at reducing the graph size but are
time-consuming, which includes the uncon�ned reduction and the twin reduction [44].

There are two reasons to use dependency checking. First, many graphs can be easily reduced
to small kernels with just simple reductions [38], so it is unnecessary to use advanced
reductions which output similar kernel sizes with much more time. Second, some advanced
techniques such as the uncon�ned reduction are expensive so if we can reduce the graph
size before using them, they can take less time to apply. Overall our idea is to reorder the
way Akiba and Iwata apply their suite of reductions to achieve a speedup.

In order to implement our dependency checking strategy. We use our own version of a
deque (double-ended queue) stored "circularly" in an array, which can only be pulled from
one end at a time. Our deque has two anchor pointers pointing the two ends and is used
to store vertices from a graph. It supports four operations: PushRight, PushLeft, PopRight
and PopLeft. We will refer the two anchor pointers as left and right. The section of the
deque before the left pointer is the left end and the right section after the right pointer
is the right end (see Figure 4.1). With our deque we store vertices that are candidates for
simple reductions in the left end, and store the rest vertices for advanced techniques in the
right end. We �rst populate the deque with all vertices in a graph, so we can pop them and
apply reductions in order later. If a vertex is eligible for our simple reductions, we push it to

13

4 Dependency Checking

Left Right

Removed

neighbor3

neighbor2
neighbor1

Figure 4.1: Pulling a vertex from the left end, removing it from the graph and adding its neighbors
back to the deque

the left end, else we push it to the right end. We want to pop as many vertices from the
left as possible because we want to fully utilize simple reductions to reduce graph before
applying advanced reductions. Along the process we add the neighbors of the removed
vertices back to the left end if they are eligible for our simple reductions, and we push the
rest neighbors to the right end. If the left end is empty, we pop one vertex from the right
and apply advanced reductions. If the popped vertex can be removed from the graph with
our advanced reductions, we add its neighbors to our deque based on the same rules as
before, otherwise we do nothing.

We use degree one, degree two and vertex folding [23] as the suite of simple reductions and
use the uncon�ned reduction [44] as our advanced reduction. There are two main reasons
for these choices. First, based on our preliminary experiments with Akiba and Iwata’s
branch-and-reduce algorithm, degree one, degree two, vertex folding and uncon�ned are
the most e�ective reductions among all other reductions: they successfully reduce graphs the
most. Secondly, after breaking down algorithm running time, we found that the uncon�ned
reduction on average takes half the total running time. For instance, the overall running time
for the NotreDame web graph [2] is around 17 seconds but more than 8 seconds are spent on
running uncon�ned reductions. By these observations, we think degree one, degree two,
vertex folding and uncon�ned are the most critical reductions in the branch-and-reduce
algorithm. In addition, since degree one, degree two, and vertex folding reductions on
average are much less time-consuming than the uncon�ned reduction, we use them as our
simple reduction suite and leave uncon�ned alone as the advanced technique. We now
explain these reduction rules and walk through an example of our dependency checking in
the following sections.

14

4.2 Reduction rules

4.2 Reduction rules

We now explain the main reduction rules used in our dependency checking strategy.
Degree One: For any vertex v ∈ V , if |{N (v)}| ≤ 1, then we know there must exist a
minimum vertex that does not have v . We thus include v’s neighbor n ∈ N (v) in our vertex
cover and remove both n and v from G.
Degree Two: If a vertex has 2 neighbors connected by an edge, then both those neighbors
are in some minimum vertex cover.
Vertex Folding: For any vertex v which only has two neighbors n1 and n2 and there is no
edge between them, we remove N [v] from the graph G and introduce a new vertex v′ to
connect with vertices that are distance two away from v , N (n1) and N (n2). In doing that,
we change the graph from G to G′ with two fewer vertices, and for any minimum vertex
cover C′ in G′, if C′ contains v′, then a minimum vertex cover C for the original graph G is
equal to C′ ∪ {v}, else C is equal to (C′ \ {v′}) ∪ N (v).
Uncon�ned: There are three steps in the uncon�ned reduction. For any v ∈ V , �rst
initialize S = {v}. Second, go through all u ∈ N (v). If |N (u) ∩ S | = 1, meaning u is only
connected to one vertex in S and |N (u)\N [S]| is minimized, we move to next step, otherwise
the vertex is not uncon�ned and we are �nished. Third, if N (u) \ N [S] = ∅, then v is an
uncon�ned vertex and we add it to our vertex cover. If N (u) \ N [S] only has one vertex w ,
we go back to the second step and add w to S . If N (u) \ N [S] has more than one vertex, we
know v is not an uncon�ned vertex so we move on to test next vertex in G.
Other Rules: When our deque is empty, we run the remaining reductions from Akiba and
Iwata’s implementation. The reduction set includes the LP-based reduction [34], the twin
reduction [43], the alternative reduction [43] and a set of packing reductions [2].

4.3 Updating Vertices

If we successfully remove a vertex v from graph, based on di�erent reduction rules, we
either add v to our vertex cover and remove its neighbors N (v), or we remove v and add its
neighbors to the cover instead. Either way the degrees of v′s two degree neighbors N 2(v)
are reduced by one. We then loop through all u ∈ N 2(v) and if |N (u) | ≤ 2, we add it to
the left end of our deque, else we add it to the right. We further expand this technique
to all other reductions in order to add more candidates for our three reductions. If any
reduction in the algorithm removes a vertex from the graph, we apply the same rule to add
its two degree neighbors to the deque. This way we can more e�ciently utilize our deque
to achieve a better reduction performance.

15

4 Dependency Checking

4.4 Our Dependency Checking Algorithm

Given a graph G = (V ,E), we �rst check all v ∈ V and add v to the left end of deque if
|N (v) | ≤ 2 or otherwise add v to the tail. We then pull one vertex v from the left end, apply
degree one reduction on it if N (v) ≤ 1 or degree two vertex folding reduction if |N (v) | = 2.
Either way N 2(v) have changed since we remove v from the G . For n ∈ N (v), if |N (n) | ≤ 2,
we add n to the left end, otherwise add it to the right end. We pull vertices from the left end
until the left end is empty, then we pull a vertex v′ from the right end. If v′ can be removed
under the uncon�ned reduction, then we add v’s neighbors to the deque based on the same
criterion discussed above.

Algorithm 2 Dependency Checking
Graph G = (V ,E), deque
while ! deque.isEmpty() do

while v ∈ deque such that |N (v) | ≤ 2 do
if |N (v) | ≤ 1 and deg-one(G) then

add N (v) to deque
else if |N (v) | = 2 and deg-two(G) then

add N (v) to deque
end if

end while
if uncon�ned(G) then

add N (v) to deque
end if

end while
return

4.5 Potential Issues

There are potential issues associated with our dependency checking technique. First, our
deque will keep applying degree one, degree two vertex folding and uncon�ned reductions
as long as one of them is still reducing the graph, while other reduction rules are deprived
the chance of being applied. So if the three reductions we choose are not e�ective on a
particular graph, continuously applying them will only slow our algorithm down. Second,
giving these reductions higher priorities than any other reductions might change a graph’s
structure which makes other reductions less likely to apply. For example, if a graph’s original

16

4.5 Potential Issues

structure can be reduced signi�cantly by another rule such as the twin reduction [43] in the
reduction set, but we change the graph structure drastically in our dependency checking,
then twin reduction’s e�ectiveness might be decreased.

17

5 Pruning

In this chapter, we discuss what pruning is, our implementation of pruning techniques and
why they help to improve the branch-and-reduce algorithm.

5.1 Pruning Overview

When we conduct a recursive or backtracking algorithm to �nd an optimal solution, we do
not need to branch on all vertices. The idea is that through bound checking, we can �nd
that some recursive calls will only generate a solution no better than current best solution,
so it is unnecessary to waste time on them. We add additional idea to pruning besides
bound checking. Through caching process we can also save time on computing identical
sub graphs.

Many researchers have implemented pruning techniques for the Minimum Vertex Cover
problem and its related problems [20, 40, 41]. One of the �rst pruning ideas was introduced
by Carraghan and Pardalos [15] for the Maximum Clique problem. In their algorithm, they
introduced the notion of depth and used it to prune unneeded branches. They found that
the technique helped them to reduce running time drastically for graphs with high density.
Tomita et al. [40] in their MCR algorithm used approximate graph coloring to both prune
and branch. They used a greedy coloring algorithm and assigned a di�erent color (with
numbers) to vertices, then they sort vertices by color to decide branching order. Tomita et
al. [41] further added recoloring of vertices in their pruning and managed to improve the
speed of their algorithm on even dense graphs.

Batsyn et al. [4] implemented the idea to feed a high quality solution (found using local
search) to MCS to solve the Maximum Clique problem and they found that the algorithm is
able to compute "di�cult" graphs from DIMACS instances as much as 11 000 times faster
than MCS. In Akiba and Iwata’s original algorithm, they use lower bound checks to avoid
some branches on computing subgraphs but they did not prune the main branch. In this
paper we incorporate the idea from Batsyn et al.’s algorithm into a branch-and-reduce
algorithm for the Minimum Vertex Cover problem and also develop our own pruning
technique, which we now describe.

19

5 Pruning

Removed

Removed

Figure 5.1: The triangle component never changes, so we can compute its solution once and store it

5.2 Cache Subgraphs

In Akiba and Iwata’s original algorithm [2], they detect when the graph becomes discon-
nected and solve components individually, then combine their solutions together into the
�nal result. For instance, in a graph G = (V ,E) there is a set of components C . For each
c ∈ C if branching or reducing breaks c into two new components c1 and c2, the original
algorithm solves c1 and c2 separately to �nd their minimum vertex covers and make the
union of the two results a minimum cover for c . This strategy is ine�cient when there are
many disconnected components in G, where there will be at most one c whose structure is
changed at each vertex branching. However, we nevertheless have to calculate the minimum
vertex covers for all c ∈ C . There is a lot of repeated work in these computations, especially
for sparse graphs which may have many components, so our idea is to cache solutions of
previously encountered components and, if these parts never change, we use the cached
solutions without computing again (see Figure 5). If a component is modi�ed and we have
new additional subgraphs, then we compute their solutions and add them to our cached
solution set.

In order to implement this idea, we use a mapping technique to store previous components’
solutions. Each component c is given an id which is equivalent to the smallest vertex
number in the component. Previous subgraph solutions are also indexed based on their
component id and they are stored in an array at positions equal to their ids. When a new set
of components C′ is generated after branching, we check c′ ∈ C′ with old c ∈ C , for each c′

that is the same as c , we just reuse the existing solution. Thus we only solve the components
whose structures are changed. This technique can improve the original algorithm on graphs
in which solving subgraphs is time consuming or there are many unique disconnected
components.

20

5.3 Using an Initial High Quality Solution

There are some potential issues with our caching. First, we add overhead of comparing com-
ponents. If a graph’s components can be easily solved then this comparison is unnecessary
and will only slow the algorithm down. Second, in order to compare cached solutions with
new components more e�ciently, we store cached solutions based on its component id,
which can be as large as the graph size (component id is de�ned by a vertex id). We allocate
more space than the total number of components in a graph to avoid array index out of
bounds errors, so ine�cient use of space is another shortfall of our caching technique.

5.3 Using an Initial High Quality Solution

Lower bound checking is used in the original algorithm to avoid unnecessary branching. For
a component c in a graph G , we can calculate whether it is worth solving it by conducting a
lower bound check. If we are able to successfully compute a lower bound size in c , then we
can add it with our current solution set and compare with the size of our best solution. If it
has a larger size, then we know it is unnecessary to solve c . Akiba and Iwata used three
di�erent lower bound checking techniques, we brie�y explain below.

5.3.1 Lower bound checking techniques

Clique Cover: The �rst one uses a clique cover. A cliqueC is a subset of a graphG = (V ,E)
such that for every two v1,v2 ∈ C , there exists an edge e = (v1,v2) ∈ E. A clique cover
is just a set of disjoint cliques C1, ...,Ck which cover all the vertices in G, we can use
k∑
i=1

(|Ci | − 1) = |V | − k to calculate a lower bound.

LP Relaxation: The second technique is based on linear programming (LP) which is
associated with the LP-based reduction in the algorithm. After applying the reduction, the
remaining graph admits a half integral optimal solution of value |V |2 [2].

Cycle Cover: The third technique is from a cycle cover. A cycle is a set of vertices which
are connected to form a closed simple cycle and each vertex v in the graph has exactly
degree two. A cycle cover is a disjoint set of cycles C1, ...,Ck which cover all the vertices in

a graph G. We can use
k∑
i=1

|Ci |
2 as a lower bound.

5.3.2 Why a initial solution?

Although these lower bound techniques are helpful in solving subgraph solutions, they

21

5 Pruning

are not useful until we �rst have a solution for the current subproblem being evaluated in
recursive search. A high quality initial solution is e�ective in upper-bound checking for
the branch-and-bound algorithm MCS, as shown in experiments by Batsyn et al. [4]. If we
can also help our algorithm to conduct a lower bound check before it even starts solving
a subgraph the �rst time it is encountered, then we would expect improved performance.
However,since our goal is to output a minimum vertex cover of a graph, how do we feed a
solution to it prior to running the algorithm? Our idea is to use a heuristic solution such as
the one by Dahlum et al. [19] which is near-optimal and can be obtained in less than a few
seconds.

22

6 Experimental Results

In this chapter, we discuss our experimental setup, data sets, and results

6.1 Experimental Setup

6.1.1 Machine and Language

The machine we use is equipped with 2 6-core Intel Xeon E7540 processors running at 2.0
GHz. It has 64 GB local memory, 18 MB L3-Cache and 256 KB L2-Cache. The operating
system we use is 64-bit Ubuntu 16.04.2 LTS, with Linux kernel version 4.4.0-31.

The language we use is Java with JDK version 1.8.0, with no special compiler �ags.

In our experiment, we use the original Java Implementation of Akiba and Iwata 1

6.1.2 Graphs

Our datasets include real world sparse networks such as social networks, web graphs, road
networks and computer networks obtained from the Stanford Large Network Dataset [33],
the Koblenz Network Collection [30] and Laboratory for Web Algorithmics [6, 7, 8].

6.1.3 Algorithms Compared

We compare the original branch-and-reduce algorithm with our four implementations. First,
with just dependency checking technique. Second, with just the caching technique. Third,
with just feeding initial solution and last, with both dependency checking and feeding initial
solution.

1https://github.com/wata-orz/vertex_cover

23

https://github.com/wata-orz/vertex_cover

6 Experimental Results

6.2 Results

6.2.1 Summary Statistics

There are 47 graphs in our dataset, which we summarize in Table 6.1. The largest graph
based on number of vertices is the LiveJournal network which has 4 847 571 vertices and
42 851 237 edges. The smallest graph based on vertices is ca-GrQc graph and it has 5 242
vertices with 14 484 edges. The largest graph based on edges is hollywood-2011 with
114 492 816 edges and 1 985 306 vertices, and the smallest one is also the ca-GrQc graph. The
average number of vertices of all the graphs is 858 391 vertices, so most of them are quite
large. They also on average have 9 500 530 edges. Most of the graphs are sparse and the
most dense graph is wiki-Vote with 7 115 vertices, 100 762 edges and a density of 0.004.
The most sparse graph is the wiki-Talk graph with a density of 1.6×10−6.

6.2.2 Results of the Original Algorithm

The original algorithm of Akiba and Iwata is e�cient on most of the graphs (see Table 6.2). 39
graphs out of all 47 �nish within 10 seconds. The datasets p2p-Gnutella08, p2p-Gnutella05,
p2p-Gnutella06 and Wiki-Vote are solved almost instantly with running time of 0.01, 0.012,
0.012 and 0.014 seconds. They are in general small graphs with less than 10 000 vertices. The
slowest one is the Stanford web graph with a running time of 58 983 seconds (16 hours).
It has 281 903 vertices, 1 992 636 edges and a minimum vertex cover size of 118 513. The
as-skitter graphs is also slow. It takes the original algorithm 2 988 seconds (50 minutes) to
compute a minimum vertex cover of 525 835 vertices. Other slow graphs include libimseti,
web-BerkStan, hollywood-2011 graphs with running times of 2 126 seconds (35 minutes),
203 seconds and 76 seconds respectively. These slow graphs are all relatively large with
more than 500 000 vertices, except for libimseti and Stanford, which have around 200 000
vertices.

6.2.3 Results with Dependency Checking

With dependency checking, the fastest solved graphs are ca-GrQc, p2p-Gnutella08 with
a running time around 0.04 seconds (see Table 6.2). The originally slow graphs such as
the Stanford web graph and the as-skitter graph are all solved faster with dependency
checking. We solve the Stanford graph 3.5 times faster than the original algorithm, and it
only takes 4.6 hours to compute a minimum vertex cover instead of the former 16 hours.
We also achieve a speedup of 1.6 on the as-skitter graph, reducing the running time from

24

6.2 Results

Table 6.1: Summary Table (density is rounded to 5 decimal points)

25

6 Experimental Results

2 988 seconds to 2 308 seconds (38 minutes). There are also signi�cant speedups for both
hollywood graphs. The hollywood-2009 graph is solved is 2.8 times faster, with its running
time reduced from 43 seconds to 15 seconds. The hollywood-2011 instance is also solved
2.5 times faster with a new running time of 30 seconds compared to previous 76 seconds.
However, the running time of libimseti stays relatively unchanged and is even 50 seconds
(2%) slower. We hypothesize that it can be due to small variations of running time and
overhead of pushing and popping vertices. Surprisingly the web-BerkStan graph is 184
seconds (90%) slower with dependency checking. We hypothesize that the web-BerkStan is
better solved with other reductions (see Chapter 4). In addition, most of the previous quickly
solved graphs are slightly slower compared to the original algorithm, but it is expected
since we add overhead of pushing and pulling from a deque. Overall most of the former
slow graphs have been sped up with our technique.

6.2.4 Results with Caching

Our pruning technique does not reduce the overall running time by a large scale but there
is also no instance with signi�cantly worse performance (unlike the web-BerkStan graph
under dependency checking). The fastest solved graph is the p2p-Gnutella08 graph with a
running time of 0.009 seconds, which is 0.001 seconds faster than the original algorithm. The
p2p-Gnutella graphs in general take the least amount of time but they are not improved
under pruning because they are also solved instantly under the original algorithm. One
of the largest speedups by real value (seconds) is the web-BerkStan graph which reduced
from 203 seconds to 195 seconds. The hollywood-2009 graph is also slightly faster with a
running time reduction of 4 seconds. Most of the graphs are solved with the same running
time as the original algorithm and it seems pruning is not particularly e�ective with the
graphs in our experiments.

6.2.5 Results with a High-Quality Initial Solution

Giving a high-quality initial solution always works well. 40 out of the 45 graphs are
solved faster when feeding a initial exact solution and the other �ve’s running times are
at most 1 second slower than the original algorithm. The e�ect is especially prominent
on graphs that are quickly solved. It takes the original algorithm 0.012 seconds to solve
the p2p-Gnutella06 graph and it only needs 0.005 seconds to compute a minimum vertex
cover with this technique. There are also performance improvements on previously slow
graphs. For instance, it takes the original algorithm 17 seconds to compute a minimum
vertex cover for the NotreDame graph but with a initial solution, the running time is reduced

26

6.2 Results

to 14 seconds. Also, for the as-skitter graph, the running time is also cut down by 124
seconds from 2 988 to 2 864 seconds. However, the performance overall is not as pronounced
as with the dependency checking technique.

6.2.6 Results with Dependency Checking and a High Quality Initial Solution

When we combine dependency checking with a high-quality initial solution, the algorithm
further improves on previously slow graphs. For instance, we achieve a speedup of 3.4 for
the hollywood-2009 graph with a running time cut from 43 seconds to 12 seconds. This is 2
seconds faster than with just dependency checking. We also solve both the as-skitter and
Stanford graph faster. The Stanford graph is solved 3.5 times faster, from 58 983 seconds (16
hours) to 16 768 seconds, reduced 53 seconds compared to with just dependency checking.
This indicates that both techniques can be e�ective on graphs but since feeding an initial
solution is shown to only a�ect algorithm performance slightly, the major running time
reduction is still due to dependency checking.

6.2.7 Issues Combining Techniques

Combining dependency checking and subproblem caching currently gives incorrect results
for some of the graphs such as the Stanford network. We hypothesize the reason to be that
some structures of the graphs are changed in our dependency checking process but they
are replaced by the cached solutions. In the future, we need a better monitoring technique
of graph structures and also conduct a better comparison to �nd candidates for the cached
solutions.

6.2.8 Results conclusion

Our dependency checking technique together with a high-quality initial solution shows the
highest e�cacy in improving the algorithm by Akiba and Iwata. Originally slow graphs
such as the Stanford and as-skitter graphs are solved much faster. This is especially true
for the Stanford graph, which requires around 16 hours to �nd a minimum vertex cover
with the original algorithm, only needs 4.6 hours under our implementation. Although
many previously fast-to-compute graphs have been slightly slowed down due to overhead
of manipulating our deque, they are still being solved quickly with 33 of the 47 graphs
�nishing within 10 seconds. We have also addressed the reason of the slowness which
can be the graphs are not particularly desirable for degree one, degree two folding and
uncon�ned reductions. Caching and feeding an initial solution does not seem to improve

27

6 Experimental Results

Table 6.2: Time (in seconds) to solve each instance

the algorithm performance much, but they do not harm the performance either. Giving
a high-quality initial solution even speeds up solving 40 of 45 graphs although the e�ect
is very small. Caching on the other hand, shows a potential to further reduce running
time on large graphs such as web-BerkStan, but our current implementation does not give
a signi�cant improvement. We summarize the results of all algorithms in Table 6.2 and
an algorithm speedup chart is shown in Figure 6.1. It includes the slowest graphs in our
experiments which are web-NotreDame, as-skitter, libimseti, web-BerkStan, Stanford,
hollywood-2009, hollywood-2011 and soc-LiveJournal1. It is also obvious from the chart
that dependency checking and dependency checking with an initial solution have the best
running time improvement among other techniques.

28

6.2 Results

Figure 6.1:A summary of speedups for each technique over the original algorithm of Akiba and
Iwata for slow instances: those taking more than 10 seconds with the original algorithm

29

7 Conclusion

7.1 Contributions

Through our implementations, many of the previous graphs, on which Akiba and Iwata’s
algorithm is slow, have been solved faster. Dependency checking together with a high-
quality initial solution is the most e�ective on these slow graphs. Alone, giving an high-
quality initial solution has also proven to have high e�cacy on most of the graphs, regardless
of whether they are fast or slow with the original algorithm. Although caching is not as
e�ective as we expected, we are still able to show its potential on a few graphs such as
web-BerkStan graph and LiveJournal1.

7.2 Future Work

An obvious direction for future work is to focus on e�ectively combining all three of the
techniques discussed in this paper. We would like to see whether combining the techniques
gives an even greater speedup. Also, dependency checking has clearly showed its power on
many "di�cult" graphs with signi�cant speed improvements. We might be able to further
explore this technique with adding additional reductions into our dependency checking
scheme.

31

Bibliography

[1] F. N. Abu-Khzam, M. R. Fellows, M. A. Langston, and W. H. Suters. Crown structures
for vertex cover kernelization. Theory of Computing Systems, 41(3):411–430, 2007.

[2] T. Akiba and Y. Iwata. Branch-and-reduce exponential/FPT algorithms in practice: A
case study of vertex cover. Theoretical Computer Science, 609, Part 1:211–225, 2016.

[3] D. V. Andrade, M. G. Resende, and R. F. Werneck. Fast local search for the maximum
independent set problem. Journal of Heuristics, 18(4):525–547, 2012.

[4] M. Batsyn, B. Goldengorin, E. Maslov, and P. M. Pardalos. Improvements to mcs
algorithm for the maximum clique problem. Journal of Combinatorial Optimization,
27(2):397–416, 2014.

[5] R. Battiti and M. Protasi. Reactive local search for the maximum clique problem 1.
Algorithmica, 29(4):610–637, 2001.

[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multiresolution
coordinate-free ordering for compressing social networks. In Proceedings of the 20th
international conference on World wide web, pages 587–596. ACM, 2011.

[7] P. Boldi and S. Vigna. Laboratory for web algorithmics datasets.

[8] P. Boldi and S. Vigna. The WebGraph framework I: compression techniques. In
Proceedings of the 13th international conference on World Wide Web, pages 595–602.
ACM, 2004.

[9] N. Bourgeois, B. Esco�er, V. T. Paschos, and J. M. van Rooij. Fast algorithms for max
independent set. Algorithmica, 62(1-2):382–415, 2012.

[10] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk. Finding maximum
independent sets in graphs arising from coding theory. In Proceedings of the 2002 ACM
symposium on Applied computing, pages 542–546. ACM, 2002.

[11] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk. Estimating the size
of correcting codes using extremal graph problems. In Optimization, pages 227–243.
Springer, 2009.

33

Bibliography

[12] S. Butenko and S. Trukhanov. Using critical sets to solve the maximum independent
set problem. Operations Research Letters, 35(4):519–524, 2007.

[13] S. Cai. Balance between complexity and quality: Local search for minimum vertex
cover in massive graphs. In IJCAI, pages 747–753, 2015.

[14] S. Cai, K. Su, C. Luo, and A. Sattar. Numvc: An e�cient local search algorithm for
minimum vertex cover. Journal of Arti�cial Intelligence Research, 46:687–716, 2013.

[15] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum clique problem.
Operations Research Letters, 9(6):375–382, 1990.

[16] P. S. S. Carrillo, F. M. Espada, D. R.-L. González, and M. H. Gutiérrez. An improved bit
parallel exact maximum clique algorithm. 2011.

[17] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further improve-
ments. Journal of Algorithms, 41(2):280–301, 2001.

[18] J. Cheng, Y. Ke, S. Chu, and C. Cheng. E�cient processing of distance queries in large
graphs: a vertex cover approach. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 457–468. ACM, 2012.

[19] J. Dahlum, S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. Accelerating
local search for the maximum independent set problem. In International Symposium
on Experimental Algorithms, pages 118–133. Springer, 2016.

[20] T. Fahle. Simple and fast: Improving a branch-and-bound algorithm for maximum
clique. Algorithms—ESA 2002, pages 47–86, 2002.

[21] Y. Fan, C. Li, Z. Ma, L. Brankovic, V. Estivill-Castro, and A. Sattar. Exploiting reduction
rules and data structures: Local search for minimum vertex cover in massive graphs.
arXiv preprint arXiv:1509.05870, 2015.

[22] T. A. Feo, M. G. Resende, and S. H. Smith. A greedy randomized adaptive search
procedure for maximum independent set. Operations Research, 42(5):860–878, 1994.

[23] F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for the
analysis of exact algorithms. Journal of the ACM (JACM), 56(5):25, 2009.

[24] J. Gajarskỳ, P. Hliněnỳ, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith, F. S. Villaamil,
and S. Sikdar. Kernelization using structural parameters on sparse graph classes. In
European Symposium on Algorithms, pages 529–540. Springer, 2013.

[25] M. R. Gary and D. S. Johnson. Computers and intractability: A guide to the theory of
np-completeness, 1979.

34

Bibliography

[26] A. Grosso, M. Locatelli, and F. Della Croce. Combining swaps and node weights in
an adaptive greedy approach for the maximum clique problem. Journal of Heuristics,
10(2):135–152, 2004.

[27] P. Hansen, N. Mladenović, and D. Urošević. Variable neighborhood search for the
maximum clique. Discrete Applied Mathematics, 145(1):117–125, 2004.

[28] K. Katayama, A. Hamamoto, and H. Narihisa. An e�ective local search for the maximum
clique problem. Information Processing Letters, 95(5):503–511, 2005.

[29] J. Kneis, A. Langer, and P. Rossmanith. A �ne-grained analysis of a simple independent
set algorithm. In LIPIcs-Leibniz International Proceedings in Informatics, volume 4.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

[30] J. Kunegis. Konect: the Koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1343–1350. ACM, 2013.

[31] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. Finding near-optimal
independent sets at scale. In 2016 Proceedings of the Eighteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 138–150. SIAM, 2016.

[32] G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz. SNPs problems, complexity,
and algorithms. In European Symposium on Algorithms, pages 182–193. Springer, 2001.

[33] J. Leskovec and A. Krevl. SNAP Datasets:Stanford large network dataset collection.
2015.

[34] G. L. Nemhauser and L. E. Trotter. Vertex packings: structural properties and algorithms.
Mathematical Programming, 8(1):232–248, 1975.

[35] P. San Segundo, D. Rodríguez-Losada, and A. Jiménez. An exact bit-parallel algorithm
for the maximum clique problem. Computers & Operations Research, 38(2):571–581,
2011.

[36] P. V. Sander, D. Nehab, E. Chlamtac, and H. Hoppe. E�cient traversal of mesh edges
using adjacency primitives. In ACM Transactions on Graphics (TOG), volume 27, page
144. ACM, 2008.

[37] D. Strash. personal communication.

[38] D. Strash. On the power of simple reductions for the maximum independent set
problem. In International Computing and Combinatorics Conference, pages 345–356.
Springer, 2016.

[39] R. E. Tarjan and A. E. Trojanowski. Finding a maximum independent set. SIAM Journal
on Computing, 6(3):537–546, 1977.

35

Bibliography

[40] E. Tomita and T. Kameda. An e�cient branch-and-bound algorithm for �nding a
maximum clique with computational experiments. Journal of Global optimization,
37(1):95–111, 2007.

[41] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. A simple and faster
branch-and-bound algorithm for �nding a maximum clique, pages 191–203. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[42] E. Tomita and M. Yamada. An algorithm for �nding a maximum complete subgraph.
In Conference Records of the National Convention of IECE, volume 8, page 1978, 1978.

[43] M. Xiao and H. Nagamochi. Con�ning sets and avoiding bottleneck cases: A simple
maximum independent set algorithm in degree-3 graphs. Theoretical Computer Science,
469:92–104, 2013.

[44] M. Xiao and H. Nagamochi. Exact algorithms for maximum independent set. In
International Symposium on Algorithms and Computation, pages 328–338. Springer,
2013.

36

	Colgate University Libraries
	Digital Commons @ Colgate
	2017

	Engineering an Efficient Branch-and-Reduce Algorithm for the Minimum Vertex Cover Problem
	Haonan Zhong
	Recommended Citation

	Introduction
	Motivation
	Our Contribution
	Organization

	Related Work
	Exact Algorithms
	Heuristic Approaches

	Preliminaries
	Graphs
	The Minimum Vertex Cover Problem

	The Branch-and-Reduce Paradigm
	Branching Rules

	Dependency Checking
	Dependency Checking Overview
	Reduction rules
	Updating Vertices
	Our Dependency Checking Algorithm
	Potential Issues

	Pruning
	Pruning Overview
	Cache Subgraphs
	Using an Initial High Quality Solution
	Lower bound checking techniques
	Why a initial solution?

	Experimental Results
	Experimental Setup
	Machine and Language
	Graphs
	Algorithms Compared

	Results
	Summary Statistics
	Results of the Original Algorithm
	Results with Dependency Checking
	Results with Caching
	Results with a High-Quality Initial Solution
	Results with Dependency Checking and a High Quality Initial Solution
	Issues Combining Techniques
	Results conclusion

	Conclusion
	Contributions
	Future Work

